高分子复合材料的性能特点

高分子复合材料的性能特点
高分子复合材料的性能特点

高分子复合材料的性能特点

陈金鹏

(河北工业大学材料科学与工程学院,材料物理与化学国家重点学科,天津)摘要:简单介绍了稀土/高分子复合材料,磁智能材料,聚合物基纳米复合材料,导电高分子复合材料,磁性纳米高分子复合材料等几种高分子复合材料的性能和特点,以及对它们的制作方法做了简单的介绍。

关键词:高分子复合材料,纳米材料,特性

The performance characteristics of polymer composite

materials

Chen jin peng

(College of Materials Science and Engineering, Hebei University of Technology, Tianjin, China )

Abstract: Introduced several the performance and characteristics of the rare earth/polymer composite material l, magnetic intelligent materials, polymer nanocomposites,

conductive polymer composite material, magnetic nano polymer composite

macromolecule composite materials, and their production methods do briefly

introduced.

Key words:Polymer composite materials, Nano materials, characteristics

1.1稀土/高分子复合材料

在高分子材料科学发展过程中,兼备高分子材料质轻、高比强度、易加工、耐腐蚀的优点,同时又具有光、电、磁、声等性能的特种高分子复合材料备受推崇。稀土因其电子结构的特殊性而具有光、电、磁等特性,这些特性是人们制备稀土/高分子复合材料强烈的技术和应用的驱动力。在简单掺混型稀土/高分子复合材料的制备过程中,研

究较多的是稀土无机化合物与高分子材料的复合, 后者是热固性树脂或热塑性树脂对稀土化合物与弹性体(热塑性弹性体和热固性弹性体)的复合进行了研究,得到的稀土/天然橡胶复合材料和稀土/聚氨醋热塑性弹性体复合材料,二者不仅常规物理机械性能优异,弹性好,而且还具有极好的防护中子的能力,用稀土化合物与弹性高分子材料进行复合制备的射线屏蔽材料较适合于固定式场所的应用及获得柔软材料,如医用射线防护服等。

进入20世纪80年代,链上直接键合稀土聚合物的研究逐渐展开,并在制备荧光、激光和磁性材料以及光学塑料、催化剂等方面取得了一定成果[1]。如在尼龙聚合过程中加入环烷酸铈能使硅、铁杂质含量明显降低,聚合度增高,产品的耐磨性成倍提高,耐热性提高10%以上,拉伸强度提高70%[2]。稀土稳定的PVC试样的玻璃化转变温度比硬脂酸镉稳定试样高3O C,因此稀土可用作PVC和PE等热塑性高分子材料的无毒稳定剂,可有效地解决铅、镉等重金属稳定剂对人体、环境造成的危害。稀土离子与含(二酮基、吡啶基、羧基、磺酸基高分子配体作用可制成含铕离子或铽离子的稀土高分子发光材料,前者产生613nm的红色荧光,后者发射545nm的绿色荧光[3];而铕离子与含冠醚基的高分子配体作用,获得的是产生强蓝色荧光的材料[4]。

1.2磁智能材料

能够对环境感知和响应且具有功能发现能力的“微球”和“纳球”高分子材料是当前智能高分子材料研究的前沿。“微球”粒径可达"

1~100μm,“纳球”粒径小于100nm。这些“微球”和“纳球”可实现单一输入(如光)、多重响应(电、磁、光、热),多重输入、多重响应功能,这对生物技术领域具有十分重要的意义[5]。邱广明等[6]以磁性氧化铁胶体粒子为种子粒子,采用吸附-溶胀法,通过苯乙烯等单体的乳液聚合制备了分布均一的亚微米级磁性高分子微球,微球粒径为0.1~0.3μm。能否用具有磁性的稀土粒子代替氧化铁粒子制备稀土/高分子复合微球,还有待于人们的尝试。

1.3聚合物基纳米复合材料

近年来,纳米材料已经在许多科学领域引起了广泛的重视和研究,成为材料科学的热点,世界许多国家都将抢占纳米科学制高点作为21 世纪发展的战略目标。由于纳米粒子尺寸较小,因表面积很大而产生的量子效应和表面效应,它使得纳米材料具有许多特殊的性质,例如磁性、内压、光吸收、热阻、化学活性、催化和烧结等许多方面都呈现各种各样的优异性质[7,8]。

纳米复合材料0 (Nanocompsites)是80年代初由Roy等人提出来的,与单一相组成的纳米结晶材料和纳米相材料不同,它是由两种或两种以上的吉布斯固相至少在一个方向以纳米级大小( 1~ 100nm)复合而成的复合材料。这些固相可以是非晶质、半晶质、晶质或者兼而有之,而且可以是无机、有机或二者都有[9]。因此,纳米复合材料可分为无机纳米复合材料、聚合物基P无机复合纳米、聚合物基P聚合物纳米复合材料。聚合物纳米复合材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料,所采用的纳米单元按成

分分可以是金属, 也可以是陶瓷、高分子等;按几何条件分可以是球状、片状、柱状纳米粒子,甚至是纳米丝、纳米管、纳米膜等;按相结构分可以是单相, 也可以是多相,它涉及的范围很广,广义上说多相高分子复合材料, 只要其某一组成相至少有一维的尺寸处在纳米尺度范围( 1nm~ 100nm)内,就可将其看为高分子纳米复合材料。对通常的纳米粒子P高分子复合材料按其复合的类型大致可分为三种:纳米微粒与纳米微粒复合( 0- 0 复合) ,复合纳米薄膜( 0- 2复合)和纳米微粒与常规块体复合( 0- 3 复合)。纳米粒子在高分子基体中可以均匀分散, 也可以非均匀分散; 可能有序排布, 也可能无序排布;复合体系的主要几何参数包括纳米单元的自身几何参数, 空间分布参数和体积分数。此外,还有1- 3 复合型, 2- 3 复合型高分子纳米复合材料, 高分子纳米多层膜复合材料,有机高分子介孔固体与异质纳米粒子组装的复合材料等等[10]。

原位复合是将热致液晶聚合物与热塑性树脂进行熔融共混,用挤塑或注塑方法进行加工,由于液晶分子有易于自发取向的特点,液晶微区沿外力方向取向形成微纤结构,在熔体冷却时这种微纤结构被原位固定下来,故称为原位复合。只有当材料的微区尺寸在100nm以下才属于纳米材料。中科院的黎学东等详细描述了原位成纤复合材料的成纤原理、流变性能、力学性能、形态及形态分布、结晶熔融行为以及影响形态性能的因素。ICE公司的液晶聚合物P尼龙(LCP PPA)合金, Ho echst Celanese公司的LCP PPA12和40%玻纤增强的液晶聚合物P 聚苯硫醚(LCP PPPS)合金等均已商品化[11]。

由于微纤所起的增强效果有限,其发展前景不如预计的那么乐观。原位聚合是可使刚性分子链均匀分散的一种复合的新途径。在柔性聚合物(或其单元)中溶解刚性直棒状聚合物,使其均匀分散在高分子基体中而形成原位分子复合材料,这种方法称为原位聚合法。钱人元等将吡咯单体溶涨、扩散到柔性链聚合物基体中,以一定的引发剂使吡咯单体在基体中原位就地聚合,制得既有一定导电性,又提高了基体材料力学性能的原位复合材料。Lindsey[12]等以微量交联的聚乙烯醇做基体,用电化学方法就地使吡咯单体聚合,形成增强微纤,得到PPY PPV A原位分子复合材料。

Niwa[13]等以PVC为基体, 也用电化学合成的方法获得了PPY PPVC分子复合材料膜,其电导率在10- 1~ 10s Pcm 之间。白宗武等[14]用较低分子量尼龙- 6 作为基体树脂, 以芳香族二醛和芳香族二胺原微缩聚形成刚性分子聚合物作为增强剂制备了分子复合材料。这种材料的模量比基体材料可提高50%,拉伸强度也得到了提高。

利用模板聚合,将有纳米级尺寸微孔的聚合物浸入另一种单体和氧化剂中,使单体熔涨于纳米级微孔中, 用一定的引发剂获一定的聚合方法使单体在微孔中形成微纤或中空的纳米管,从而形成增强的聚合物P聚合物复合材料。关于聚合物纳米微纤P聚合物的合成目前已有所报道[15]。多种有机、无机组份和大量不同的合成方法可供选择, 所以可得到各种各样的新型纳米复合材料。由于具有优异的力学性能和其它很多方面的综合性能,使它在有机P无机、有机P有机纳米复合材料在高性能工程塑料、阻燃材料、电致发光或光致变材料、半导

体与导电材料、新型包装材料等领域都有巨大的应用潜力。例如,层状硅酸盐与聚合物形成纳米复合材料以后,由于其纳米尺度效应和较强的界面粘结,具有高耐热性、高强度、高模量和低的膨胀系数,而密度仅为一般复合材料的65%- 75%,因此广泛用于航空、汽车领域。目前,丰田汽车公司已成功将Nylon6 P粘土纳米复合材料应用于汽车上[ 16];一般的阻燃剂加入PA6后,都会在增强阻燃能力的同时,使力学性能降低。Gllman[ 17]采用纳米粒子改善材料的阻燃性。通过TEM 观察发现,不但其力学性能没有降低,而是大有增加,而且由于粘土PPA6是复合层结构,粘土起到了绝热作用,阻止了PA6的分解产物的放出,从而提高了PA6基体的阻燃性; Colvin[18]等结合纳米CdSe与聚苯乙烯制得了一种有机P无机复合发光装置, 随着纳米颗粒的大小变化, 发光的颜色也会随着变化; 而采用PEO PNa+2蒙脱土或PEO PLi+2蒙脱土的导电率与PEO盐相近, 但热稳定性更好,在更宽的温度范围保持良好的离子导电性,可用于固态电池的电解质。PEO PV2O5纳米复合材料成为离子-电子混合导电材料,开拓了新的使用领域。

1.4 导电高分子复合材料

长期以来,高分子材料都是被作为电绝缘材料使用的,如果能赋予其导电性,就可进一步拓宽聚合物的应用领域。1977年美国宾夕法尼亚大学的MacDiarmid教授等首先发现了第一个高导电性高分子材料-经过掺杂处理的聚乙炔,导电率从未经掺杂是的10-10S/cm,挺高12个数量级,达到2×108 S/cm,引起了人们极大的兴趣;此后,又相继发现了TCN Q、聚毗咯等材料,开始了导电聚合物的新时代。

但是,这类材料的稳定性、重现性较差,导电率分布范围较窄,成本较高,尚未能进入批量生产的实用阶段[19]。美国对导电性高分子复合材料的需求量以每年20%-30%的速度递增,具有很大的市场潜力[20]。在日本,导电性高分子复合材料也获得了广泛的应用,有关研究课题已被列入通产省于1987年制定的“21世纪产业基础技术研究开发”之中12项优先科研项目之一。

但是,导电性高分子复合材料还存在着不少需要解决的间题Η例如,为了提高材料的导电性能,往往需要增加导电填料的含量,而过多添加物则会导致复合体系其它性能的下降。为了克服这些难点,多学科的科学家们必须联合起来,深入研究导电性高分子复合材料及其组份的物理、化学结构和特性,以及它们与复合工艺条件之间的关系,建立完整的理论基础 ,为更好地开发应用这类新材料提供可靠的科学依据。

导电性高分子复合材料是由高分于材料与导电性物质复合而成的,原则上绝大多数高聚物都可用作复合材料的基体树脂,适用的导电物质种类也很多。但为了满足各种各样的用途,使材料既具有符合实际需要的特殊功能,又具有良好的综合性能,就必须考察多方面的因素,首先要解决的问题是对高分子基体材料和用于填充的导电性物质认真地选择。我们知道 ,随着导电填料的含量增多,复合材料逐渐呈现导电性 ,但与此同时,体系的机械性能和物理性能也将发生很大的变化。例如 ,在树脂基体中加入碳纤维可以提高复合材料的机械强度,而加入碳黑却会降低体系的机械强度〔20〕。又如,尽管树脂基体在

很大程度上决定了复合材料的化学稳定性和热稳定性,但加入导电填料后也可提高体系的热变形温度和尺寸稳定性。由此可见,选取适当的推体和导电物质进行搭配,可以设计制备各种类型的导电复合材料。结合目前社会需求量较大的电磁屏蔽材料和防静电材料,对树脂墓体和导电填料的选择及复合材料组成的设计进行讨论。随着科学技术的现代化和电子工业的迅速发展,导电性高分子复合材料的需求量增加很快。人们为有效地利用这种新型材料的优异性能,使其在导电材料领域中取代或超越金属制品,正在对导电性高聚物多相复合体系开展更深入的基础研究和开发应用研究。

1.5 磁性纳米高分子复合材料

20 世纪70 年代人们利用共沉淀法制备了磁性液体材料,1988年巨磁电阻效应的发现,引起了世界各国的关注,掀起了纳米磁性材料的开发和应用研究热潮[21]。随着纳米科学技术的发展,磁性纳米材料以其优异的磁学性能和独特的结构特点,引起了国内外的广泛重视而成为研究热点[22]。

磁性纳米高分子复合材料是指通过适当的制备方法使有机高分子与无机磁性纳米颗粒结合形成具有一定磁性及特殊结构的复合材料[23]。微纳米粒子较小的尺寸、大的比表面积产生的量子效应和表面效应,赋予其许多特殊的性质[24]。将磁粉混炼于塑料或橡胶中,获得的高分子磁性材料相对密度小,且易加工成尺寸精度高和复杂形状的制品,克服了原有磁性材料铁氧体磁铁、稀土类磁铁和铝镍钴合金磁铁硬而脆、加工性差,无法制成复杂、精细形状制品的缺陷[25]。

磁性纳米颗粒由于具有不同于大块样品的物理和化学性质,因而在日常生活中具有广泛的应用[26]。聚合物作为基质材料具有很多优点,如易处理、柔软、质量小、耐腐蚀等,且其绝缘和导电的性质可以在很多方面应用。纳米粒子以其独特的性能与聚合物复合后,使聚合物的性能得到很大的提高,如改善力学性能、提高热性能、增强耐磨性、提高聚合物的成型加工性等。

高分子复合材料具有普通材料所不具备的许多特性,它的出现给物理、化学、生物等许多学科带来了新的活力和挑战,是各国竞相在研究和开发的重要领域,并不断给人们带来新技术和新产品。

参考文献:

1徐光宪. 稀土[M]. 北京: 金工业出版社,1995

2杨遇春. 稀土漫谈[M]. 北京:化学工业出版社,1999

3Ueba Y, Banks E, Okamoto, et al. Investigation on the synthesis and characterization of rare earth metal containing polymers: Ⅱ.

Fluorescence properties of Eu3+-polymer complexes containing β-diketone ligand[J]. J Appl Polym Sci,1980,25(12);2007~2017

4Adachi G. Fluorescence of a Eu2+-(mathacryloyl-oxymethyl-15-crown-5-oligoether) polymer[J].

Chem Express, 1988,3(2):97~100

5姚康德. 智能材料[M]. 天津:天津出版社,1995

6邱广明,杨春雁,孙宗华,等. 单分散亚微米级磁性微球的合成[J]. 功能高分子学报,1996,9(4):565~571

7周震, 王先有. [ J] . 化学通报, 1998, ( 4) : 23

8杨剑, 腾凤恩. [ J] . 材料导报, 1997, 11( 2): 6.

9Roy R, Komarneni S , Roy DM. [ J] . Mater Res S oc Symp Proc,1984, 32:347.

10严东生, 冯端. [M] . 材料新星纳米材料科学. 湖南科学技术出版社, 第一版, 1997.

11朱小光, 邓小华. [ J] . 材料导报, 1994, ( 3): 7.

12Lindsey S E, et al . [J] . Synt Met , 1984, 10: 67

13Niwa O, et al. [ J] . J Chem Co mmun, 1984, 817.

14白宗武, 冯威, 金日光. [ J] . 高分子通报, 1997, 1: 37.

15Charles R,Martin. [ J] .Chem Mat er, 1996, 8: 1739.

16Kurauchi T, Okada A, et al. SAE Technical Paper Ser, 1991,910584. 17Gllman J W, Kas hiwagi T. [ J] .SAMP LE J, 33( 4) :40.

18Colven V L, SchlampM C,Ali vis atos. [ J] .A P. Nature, 1994, 370:354.

19化工进展,1985(2):26

20余杭材料工艺,1984(1):6

21程敬泉, 高政, 周晓霞,等. 磁性纳米材料的制备及应用新进展[J].

衡水学院学报, 2007,(01)

22石礼伟,李玉国,王强,等.高密存储介质磁性纳米颗粒薄膜与纳米超晶格结构研究进展[J]. 微纳电子技术,2003,40(9):5

23关英勋,房大维,张庆国,等.纳米磁性材料研究现状[J].渤海大学学

报:自然科学版,2004,25 (3):274~275

24童忠良.纳米化工产品生产技术[M] .化学工业出版社,2006

25吴培熙,沈健.特种性能树脂基复合材料[M].北京:化学工业出版社,2003

26王军红,马衍伟. 高分子基磁性纳米复合物的研究进展[J].材料导报, 2007,(07)

高分子复合材料重点

高分子复合材料重点

“高分子复合材料”练习题 第1章绪论 2、简述复合材料的特性。 A 比强度和比模量,复合材料的突出特点是比强度与比模量高。 B 抗疲劳性能 C 减振性能 D 过载安全性 E 高温性能良好 F 具有可设计性 第2章基体材料 2、述不饱和聚酯树脂固化中交联剂的选择以及引发剂的结构特点; 交联剂的选择一般对交联剂有如下的要求:高沸点、低粘度,能溶解树脂呈均匀溶液,能溶解引发剂、促进剂及染料;无毒,反应活性大,能与树脂共聚成均匀的共聚物,共聚物反应能在室温或较低温度下进行。 引发剂的结构特点:引发剂一般为有机过氧化物4、简述酚醛树脂的种类及其常用固化剂; 酚醛树脂的种类:a.热固性酚醒树脂 b.热塑性酚醛树脂 c.其它类型酚醛树脂

(a)低压钡酚醛树脂。(b)硼酚醛树脂。(c)改性酚醛树脂。 常用固化剂:热固性塑料酚醛树脂一般采用酸类固化剂。常用的酸类固化剂有盐盐酸或磷酸,也可用对甲苯磺酸、苯酚磺酸或其它的磺酸。 5 简述热塑性树脂的特点及其常用产品; 热塑性树脂的特点:就是加热软化甚至熔融,冷却后硬化,这个过程是可以反复进行的,因此,热塑性树脂的加工成型是非常方便的。 常用的热塑性树脂:有聚乙烯、聚碳酸酌、聚甲醛、聚苯醚、聚矾、豪四氟乙烯等。 6、简述聚苯硫醚的结构及其物理特性。 聚苯硫醚是以硫化钠和对二氯苯为原料制备的,在其分子链中含有苯硫基,分子结构式为右方所 示。 聚苯硫醚为一种线型结构,当在空气中加热到345℃以上时,它就会发生部分交联。固化的聚合物是坚韧的,且是非常难溶的。聚苯疏醚具有优异的综合性能。表现为突出的热稳定性,优良的化学稳定性、耐蠕变性、刚性、电绝缘性及加工成型性。

大学专业介绍之材料类2(高分子材料与工程、材料科学与工程、复合材料与工程)

大学专业介绍之材料类2(高分子材料与工程 、材料科学与工程、复合材料与工程) 4.高分子材料与工程 培养德智体全面发展,具有良好的科学素养,掌握化学基本理论、基本知识和基本技能,经受过基础研究、应用研究、科技开发、科技管理等系统训练的高分子化学、高分子物理及高分子材料与加工方面的专门人才。系统地学习化学基础理论知识,接受严格基本技能训练。运用化学和物理的基本原理和方法,研究高分子材料的分子设计、合成、结构与性能关系,开发新材料及其应用。具有科研、开发、设计及工艺操作相结合的特点。 业务培养要求:本专业学生主要学习高聚物化学与物理的基本理论和高 1. 2. 3.掌握聚合物加工流变学、成型加工工艺和成型模具设计的基本理论 4.具有对高分子材料进行改性及加工工艺研究、设计和分析测试,并 5.

6.具有对高分子材料改性及加工过程进行技术经济分析和管理的初步 主干课程无机及分析化学、有机化学、物理(含物构)、仪器分析、化工原理、普通化学实验、无机化学实验、分析化学实验、有机化学实验、物理化学实验、仪器分析实验、化工原理实验、化工设备机械基础、化工仪表自动化、机械制图、高分子物理、高分子化学、高分子加工成型原理、高分子流变学、高分子化学实验、高分子物理实验等。 就业方向适宜到科研院所、高等院校从事科研、教学工作;适宜到与石油化工、化工、轻工、工程塑料、特种复合材料、耐高温高分子材料、高分子功能材料、粘合剂与涂料等相关的科研单位、企业、公司从事应用研究、科技开发、生产技术和管理工作。 5.材料科学与工程 材料科学与工程是研究金属材料、无机非金属材料、高分子材料和复合材料的组成、组织结构、制备成型工艺及服役性能之间规律的基本理论与工程应用的学科,是我国21世纪重点发展的专业之一。 培养目标 本专业培养具备宽厚的材料领域的基础知识与技能,能从事科研、技术开发、分析检测、工艺和设备设计、生产经营管理等方面的高级工程技术人才。 主要课程

功能高分子材料研究进展

功能高分子材料研究进展 摘要 功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 关键词:高分子材料;功能高分子;功能材料; Abstract Functional polymer materials is an important branch of polymer science, it is the study of various functional polymer molecular design and synthesis of relationship between structure and properties and application technology as a new material. its importance is that contains every kind of polymer has special function it light functional polymer materials mainly include chemical functional polymer materials electric magnetic functional polymer materials acoustic functional polymer materials, polymer liquid crystal sections medical polymer materials, the research of this field mainly includes the study of the function of the molecular structure and formation of various sorts of special relationship, which is from the macro and go deep into the micro, and from the quantitative and semi-quantitative into from the chemical composition and structure principle to explain the special function of regularity, to explore and this paper mainly discusses the synthesis of new functional materials. Keywords:high polymer materials; functional polymer; functional Materials;

高分子材料和复合材料导学案

高分子材料和复合材料 导学案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第三单元高分子材料和复合材料 编写:王飞审核:何一位作业等第:_______ 班级:________姓名:____________批改日期:_______ 【学习目标】 了解有机高分子材料的分类,认识塑料、纤维、橡胶、功能高分子材料的区别; 【课堂导学】 1、塑料的主要成分是,具有、、、、等优点;塑料按性能和用途可分为、、;按受热情况可分为、。 2、纤维可以分为那两大类: 3、区分不同纤维的常见方法是: 4、橡胶的分类: 5、天然橡胶的主要成分它为分子; 缺点是:;为了改变特性常常要经过处理;使得分子结构变为 6、常见的高分子材料有: 7、复合材料是指: 其优点是: 常见的复合材料有: 二、课堂探究 1.随着社会的发展,复合材料逐渐成为一类新的有前途的发展材料,目前,复合材料最主要的应用领域是( )。 A.高分子分离膜 B.人类的人工器官 c.宇宙航天工业 D.新型药物 2、下列塑料的合成,所发生的化学反应类型与另外三种不同的是() A 聚乙烯塑料 B 聚氯乙烯塑料 C 酚醛塑料 D 聚苯乙烯塑料 3、下列有关高分子化合物的叙述正确的是( )。 A.高分子化合物极难溶解 B.高分子化合物依靠分子间作用力结合,材料强度均较小 C.高分子均为长链状分子 D.高分子材料均为混合物 三、课堂笔记

【巩固反馈】 1.橡胶属于重要的工业原料。它是一种有机高分子化合物,具有良好的弹性,但强度较差。为了增加某些橡胶制品的强度,加工时往往需进行硫化处理,即将橡胶原料与硫黄在一定条件下反应。橡胶制品硫化程度越高,强度越大,弹性越差。下列橡胶制品中,加工时硫化程度较高的是() A.橡皮筋B.汽车外胎 C.普通气球 D.医用乳胶手套 2、物质不属于天然高分子化合物的是( ) A. 淀粉 B. 纤维素 C. 塑料 D. 蛋白质 3下列各物质属于高分子化合物的是( )。 A.葡萄糖 B.硬脂酸甘油酯 C.TNT I).酶 4下列原料或制成的产品中。若出现破损不可以进行热修补的是( )。 A.聚氯乙烯凉鞋 B.电木插座 C.聚丙烯材料 D.聚乙烯塑料膜 5离分子材料与一般金属材料相比,优越性是( )。 A.强度大 B.电绝缘性能好 C.不耐化学腐蚀 D.不耐热 6、材料科学、能源科学、信息科学是二十一世纪的三大支柱产业。在信息通信方面,能同时传输大量信息,且具有较强抗干扰能力的材料是( )。 A.光导纤维 B.塑料 C.合成橡胶 D.合成纤维 7、“空对空”响尾蛇导弹头部的“红外眼睛”,能分辨出0C的温差变化,它是由热敏陶瓷材料和热释电陶瓷材料做成的。下列叙述中不正确的是( )。 A.“红外眼睛”对热非常敏感 B.“红外眼睛”的热目标是敌机发动机或尾部喷口高温区 C.“红外眼睛”的电阻值随温度明显变化

高分子复合材料的研究现状与展望(最新篇)

高分子复合材料的研究现状与展望 高分子复合材料的研究现状与展望 研究领域的一个研究热点。复合材料可以发挥各种材料的优点,避其弱点,可充分利用和节约资源,因此科技界将复合材料作为一类新型材料来研究。例如玻璃钢,因质轻、坚硬,机械强度可与钢材相比,已成功用于印刷电路板、汽车车身、船体等领域。 复合材料与陶瓷、高聚物、金属并称为四大材料。其已成为衡量一个国家或地区的复合材料工业水平的标志之一,是国家安全和国民经济具有竞争优势的源泉。有关研究报道指出,到2020年,复合材料性能潜力可获得20%~25%的提升. 随着工业现代化的发展,设备的集群规模和自动化程度越来越高,同时针对设备的安全连续生产的要求也越来越高,传统的以金属修复方法为主的设备维护工艺技术已远远不能满足高新设备的维护需求,对此需要研发针对设备预防和现场解决的新技术和材料,为此诞生了包括高分子复合材料在内的更多新的维护技术和材料,满足新设备运行环境的维护需求。 1、高分子材料研究现状 高分子材料是以高分子化合物为基础的材料,由巨量原子以共价键结合形成相对分子量大、具有重复结构单元的有机化合物。高分子材料按来源分为天然高分子材料、合成高分子材料、半合成高分子材料。生活中的高分子材料很多,如蚕丝、棉、麻、毛、玻璃、橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等.

我国在高分子材料的开发和综合利用虽起步较晚,但高分子材料为我国的经济建设做出了重要的贡献,已建立了完善的高分子材料的研究、开发和生产体系,取得了进步。目前,我国应提高整体科研水平,致力于创新的高分子聚合反应和方法,开发出绿色功能和智能材料,满足工业和新技术的需求,提高人们生活质量。 高分子材料对我们未来的影响是不可预测的,随着科技的发展,高分子材料也可以具有其他材料的特性,成为最全面的材料,能满足人类在工业、医药、航天方面对新材料的需求,造福人类。 2、复合材料研究现状 复合材料中以纤维增强材料应用最广、用量最大。其特点是比强度和比模量大、比重小。例如碳纤维与环氧树脂复合的复合材料,其比强度、比模量比钢和铝合金的比强度、比模量大数倍,且具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能. 纤维增强材料的另一个特点是各向异性,可按制件不同部位的强度要求设计纤维的排列。以碳纤维和碳化硅纤维增强的铝基复合材料,在500℃时仍能保持足够的强度和模量。碳化硅纤维与钛复合,耐热性高,耐磨损,可作发动机风扇叶片。碳化硅纤维与陶瓷复合,使用温度可达1500℃,比超合金涡轮叶片的使用温度高得多。碳纤维增强碳、石墨纤维增强碳或石墨纤维增强石墨,构成耐烧蚀材料,已用于航天器、火箭导弹和原子能反应堆中。非金属基复合材料由于密度小,用于汽车和飞机可减轻重量、提高速度、节约能源。用碳纤维和玻璃纤维混合制成的复合材料片弹簧,其刚度和承载能力与重量大5倍多的钢片弹簧相当。

功能高分子材料复合材料

第四课时§3.3.4 功能高分子材料复合材料 教学过程: 【引言】前面三节课,我们学习了传统意义上的有机高分子材料中的三大合成材料(塑料、合成纤维、合成橡胶),今天,我们来了解第四大合成材料(功能高分子材料)以及复合材料。 【板书】§3.3.4功能高分子材料复合材料 【过渡】何谓功能高分子材料?它的分类如何?它的性能和应用怎样?这些是我们这节课要弄清楚的。 【教师讲解】一、功能高分子材料: 1.功能高分子材料的定义:功能高分子材料是指既有传统高分子材料的机械性能,又有某些特殊功能的高分子材料。(它是一类性能特殊、使用量小、附加值高的高分子材料。是高分子材料渗透到电子、生物、能源等领域后开发涌现出的一种新型材料。)2.功能高分子材料的分类: 物理功能高分子材料如:导电材料、光敏性材料、液晶高分子材料 功能高分子材料分离功能高分子材料如:膜材料、吸附分离功能材料 化学功能高分子材料如:高分子试剂、高分子卤化剂3.日常生活中常见的几种功能高分子材料: 【投影】用高吸水性树脂制造的纸尿布高吸水性树脂 【教师讲解】(1)高吸水性树脂 高吸水性树脂是一种新型的功能高分子材料,它本身不溶于水或有机溶剂,与水接触时能在短时间内可吸收自身质量几百倍、上千倍,最高可达5300倍的水,即使挤压也很难脱水,被冠于“超级吸附剂”的桂冠,因此可用作农业、园林、苗木移植用保水剂。高吸水性树脂与苯、乙醇、三氯甲烷、四氯化碳、醋酸等化学试剂混合时,可使试剂脱水,却不与试剂发生化学反应。它吸收试剂中的水分后,变成一种凝胶状的物质。 【投影】 触摸屏导电橡胶按键

【教师讲解】(2)导电性材料 如果在高分子中加入各种导电物质,如铁粉、铜粉、石墨粉等,就可制成导电橡胶、导电塑料、导电涂料、导电胶粘剂等。 【投影】 人造心脏 【教师讲解】(3)医用高分子材料 a.性能:优异的生物相容性;很高的机械性能。 b.应用:制作人体的皮肤、骨骼、眼、喉、心、肺、肝、肾等各种人工器官。 【投影展示】 玻璃钢快船波音767飞机碳纤维网球拍 【过渡】不同的材料具有不同的性能,每种材料都有它的优缺点。如普通金属材料强度大,但易被腐蚀;普通陶瓷材料耐高温,但易碎裂;合成高分子材料强度大、密度小,但易老化。航天工业需要强度大、耐高温、密度小的材料。海洋工程需要耐高压、耐腐蚀的材料。有没有兼具它们优点的一种材料呢?复合材料的出现很好地回答了这个问题。 【板书】二、复合材料 【学生阅读】P108复合材料定义并回答。 【板书】1.复合材料的定义:复合材料是指两种或两种以上性质不同的材料组合而成的一种新型材料。其中一种材料作为基体,其他的材料作为增强剂。 【教师讲解】由于复合材料克服了单一材料的不足,一般具有强度高、质量轻、耐高温、耐腐蚀等优异性能,在综合性能上超过了任一单一材料,是材料科学领域的重大突破。【教师组织讨论】P109有一个“交流与讨论”栏目,请同学们举出实例来说明人们的日常生活越来越离不开复合材料。 【学生回答】日常生活中用的牙刷、塑料碗盆、地板、壁纸、人造心脏、人造骨、关节、网球拍、滑雪板、撑杆、弓箭…… 【教师组织练习】以上事实说明复合材料是人类赖以存在和发展的基础,那么,复合材料的组成怎样?请同学们阅读后完成下列练习:(投影) 1.复合材料是由基体材料和分散于其中的增强材料组成的。 2.钢筋混凝土中的混凝土是基体材料,分布于其中的钢筋是增强材料;石棉瓦用石棉作增

高分子纳米生物材料的发展现状及前景

高分子纳米生物材料的发展现状及前景 纳米材料研究都是从20世纪80年代开始的,是在之前三次工业革命的基础上发展起来的的新兴科技领域。巨大的需求与技术支撑,使其在材料、生物、医学、高分子等领域开拓出一片片新大陆,筑起21世纪工业革命的基石。而纳米技术作为一项高新技术在高分子材料中有着非常广阔的应用前景,对开发具有特殊性能的高分子材料有着重要的实际意义 纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1 nm~1000 nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。 1纳米科技与高分子材料的邂逅 高分子材料学的一个重要方面就是改变单一聚合物的凝聚态,或添加填料来使高分子材料使用性能大幅提升。而纳米微粒的小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应能在声、光、电、磁、力学等物理特性方面呈现许多奇异的物理、化学性质。金属、无机非金属和聚合物的纳米粒、纳米丝、纳米薄膜、纳米块体以及由不同组元构成的纳米复合材料,可实现组元材料的优势互补或加强。通过微乳液聚合方法得到的纳米高分子材料具有巨大的比表面积,纳米粒子的特异性能使其在这一领域的发展过程中顺应高分子复合材料对高性能填料的需求,出现了一些普通微米级材料所不具有的新性质和新功能,纳米科技与高分子材料科学的交融互助对高分子材料科学突破传统理念发挥了重要作用。 高分子纳米复合材料的应用及前景 由于高分子纳米复合材料既能发挥纳米粒子自身的小尺寸效应、表面效应和量子效应,以及粒子的协同效应,而且兼有高分子材料本身的优点,使得它们在催化、力学、物理功能(光、电、磁、敏感)等方面呈现出常规材料不具备的特性,故而有广阔的应用前景利用纳米粒子的催化特性,并用高聚物作为载体,既能发挥纳米粒子的高催化性和选择催化性,又能通过高聚物的稳定作用使之具有长效稳定性。 纳米粒子加入聚合物基体后,能够改善材料的力学性能。如纳米A-Al2O3/环氧树脂体系,粒径27nm,用量1%~5%(质量分数)时,玻璃化转变温度提高,模量达极大值,用量超过10%(质量分数)后,模量下降[79]。又如插层原位聚合制备的聚合物基有机)无机纳米级复合材料(聚酰胺/粘土纳米复合材料等)具有高强度、高模量、高热变形温度等优点,目前已有产品出现,用作自行车、汽车零部件等[55]。尤其引人注目的是高分子纳米复合材料在功能材料领域方面的应用,包括磁性、电学性质、光学性质、光电性质及敏感性质等方面。 磁性纳米粒子由于尺寸小,具有单磁畴结构,矫顽力很高,用它制作磁记录材料可以提高记录密度,提高信噪比;一般要求与聚合物复合的纳米粒子,采用单磁畴针状微粒,且不能小于超顺磁性临界尺寸(10nm)。 利用纳米粒子的电学性质,可以制成导电涂料、导电胶等,例如用纳米银代替微米银制成导电胶,可以节省银的用量;还可以用纳米微粒制成绝缘糊、介电糊等。另外可用于静电屏蔽材料,日本松下公司应用纳米微粒Fe2O3、TiO2、Cr2O3、ZnO等具有半导体特性的氧化物粒子制成具有良好静电屏蔽的涂料,而且可以调节其颜色;在化纤制品中加入金属纳米粒子可以解决其静电问题,提高安全性。 利用复合体系的光学性能,可以制成如下材料:(1)优异的光吸收材料。例如在塑料制品表面上涂上一层含有吸收紫外线的纳米粒子的透明涂层,可以防止塑料

高分子复合材料

高分子复合材料 高分子复合材料,从狭义上来说是指高分子与另外不同组成、不同形状、不同性质的物质复合而成的多相材料,大致可分为结构复合材料和功能复合材料两种。广义上的高分子复合材料则还包含了高分子共混体系,统称为“高分子合金”。当分散相为金属/无机物时,则称为有机/无机高分子复合材料;而当分散相为异种高分子材料时,则称为高分子共混物。自然界中有大量的高分子复合材料的例子,如树木、蜂巢、燕窝等。 高分子复合材料分为两大类:高分子结构复合材料和高分子功能复合材料。以前者为主。高分子结构复合材料包括两个组分:①增强剂。为具有高强度、高模量、耐温的纤维及织物,如玻璃纤维、氮化硅晶须、硼纤维及以上纤维的织物。②基体材料。主要是起粘合作用的胶粘剂,如不饱合聚酯树脂、环氧树脂、酚醛树脂、聚酰亚胺等热固性树脂及苯乙烯、聚丙烯等热塑性树脂,这种复合材料的比强度和比模量比金属还高,是国防、尖端技术方面不可缺少的材料。高分子功能复合材料也是由树脂类基体材料和具有某种特殊功能的材料构成,如某些电导、半导、磁性、发光、压电等性质的材料,与粘合剂复合而成,使之具有新的功能。如冰箱的磁性密封条即是这类复合材料。 高分子复合材料有以下优异特性:优异的附着力:高分子渗透形成分子之间的作用力,使其与修复部件形成范德华力和氢键链接。优异的机械性能:分析了机械设备在运行过程中所产生的各种复合力的要求,在材料的合成过程中实现了各种数据的均衡性,并具有良好的机械加工性能和延展性能。抗化学腐蚀性能:解决了大多数高温下的有机酸、无机酸及混合酸的腐蚀。材料的安全性:100%固体,材料没有挥发性;无毒无害,可以和皮肤直接接触。 所以它的应用范围比较广,已经形成工业化生产规模的高分子为通用高分子材料,称具有特殊用途与功能的为功能高分子。高分子是生命存在的形式,所有的生命体都可以看作是高分子的集合。树枝、兽皮、稻草等天然高分子材料是人类或者类似人类的远古智能生物最先使用的材料。在历史的长河中,纸、树胶、丝绸等从天然高分子加工而来的产品一直同人类文明的发展交织在一起。 例如,将水泥砂浆与聚合物等材料以适当比例配制而形成的聚合物水泥砂浆,因其材料组成中有热塑性高分子化合物,在固化剂作用下可形成不溶、不熔硬质的复合材料,此复合材料具有包括抗冲耐磨性能在内的许多优良力学性能。因此,选择合适的材料组成成分并确定其配合比,是实现材料优良性能的先决条件。 上海复鑫分析技术中心研发团队在长期实验室分析经验的积累中,一直坚持专注于成分分析领域,产品种类涵盖:塑料、橡胶、钢材、胶粘剂、涂料、油墨、清洗剂、水处理助剂、表面处理剂、金属加工液、建筑类添加剂、油田助剂、脱模剂、助焊剂等八大行业的四十余个品类。依托复旦大学、上海交大等高校的国家重点实验室作为技术平台,并通过与上海有机化学研究所、上海材料研究所等机构的紧密合作,不断挖掘一线市场需求,服务长三角、全国乃至东南亚和北欧的客户。

高分子复合材料的性能特点

高分子复合材料的性能特点 陈金鹏 (河北工业大学材料科学与工程学院,材料物理与化学国家重点学科,天津)摘要:简单介绍了稀土/高分子复合材料,磁智能材料,聚合物基纳米复合材料,导电高分子复合材料,磁性纳米高分子复合材料等几种高分子复合材料的性能和特点,以及对它们的制作方法做了简单的介绍。 关键词:高分子复合材料,纳米材料,特性 The performance characteristics of polymer composite materials Chen jin peng (College of Materials Science and Engineering, Hebei University of Technology, Tianjin, China ) Abstract: Introduced several the performance and characteristics of the rare earth/polymer composite material l, magnetic intelligent materials, polymer nanocomposites, conductive polymer composite material, magnetic nano polymer composite macromolecule composite materials, and their production methods do briefly introduced. Key words:Polymer composite materials, Nano materials, characteristics 1.1稀土/高分子复合材料 在高分子材料科学发展过程中,兼备高分子材料质轻、高比强度、易加工、耐腐蚀的优点,同时又具有光、电、磁、声等性能的特种高分子复合材料备受推崇。稀土因其电子结构的特殊性而具有光、电、磁等特性,这些特性是人们制备稀土/高分子复合材料强烈的技术和应用的驱动力。在简单掺混型稀土/高分子复合材料的制备过程中,研

《功能高分子材料》教学设计

专题一 为课堂教学注入新的生命力 ---淡如何面对和认识新课程 南京金陵中学李惠娟 们常常会看到这样两种截然不同的景象,如右图所示。 其实,作为老师谁不希望自己的课堂精彩受欢迎? 然而现实中不少老师发出这样的感慨和困惑: 比起以往,现在的学生(尤其城市)对学习的热情 越来越缺乏,对人间的真情越来越淡漠,…… 传统的教育似乎越来越乏力,老师的工作越来越辛 苦,身心越来越疲惫,成就感却越来越缥缈…… 究竟我们的教育出了什么问题?让辛苦的老师得不 到鼓励;让认真的学生无法获得肯定;让学以致用的梦 想无法落实! 如果老师课堂上只是把一个个有理智、有情感的鲜活学生看成是一只只吞咽僵化知识的“饲料鸡”,学习的内容和过程抽离实际的生活情境,他们自然会对学习觉得无聊,对未来感到茫然,这样的教育终究是失败和悲哀的。 也许我们每个老师的脑际时隐时现地会思考这样一些问题: 问题1:“学习是什么?学习如何发生?以及如何使用知识?” 问题2:作为老师的我,今天的教育或教学,想给学生最关键、最宝贵的是什么? 问题3:怎样才能把老师的辛勤付出、美好期待与学生的现在渴求、未来发展紧密相连? …… 其实细细品味,这不是与新课程倡导的三维目标不谋而合吗?所以,我相信绝大多数老师的内心深处对新课程的是持赞同和欢迎态度的。 也许新课程的美好理念与面临的残酷现实似乎存在难以调和的矛盾,“高考考什么,老师教什么,学生学什么!”在现实中这样的教育现象并不少见,也许这是许多老师面对现实无奈的选择。不少老师进行新课改时顾虑重重,其中一点就是认为注重过程、方法的培养势必会影响学生知识技能的操练,因为高中三年的时间是个定量,只要会做题、考高分,现在社会就是这样评价你! 我一直倍感中学老师重任在肩,不仅要为他们眼前高考的现实渴求着想,更要为他们的未来发展负责!也许小学还稚嫩,大学已成型,中学时代学生正处于身体发育、性格形成、思维养成最关键的阶段。中学对一个人的一生影响是非同寻常的!中学老师的人品修养、气

高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展 高秋菊1,夏绍灵1,2* ,邹文俊1,彭 进1,曹少魁2 (1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052 )收稿:2012-01-09;修回:2012-04- 24;基金项目:郑州科技攻关项目(0910SGYG23258- 1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling _xia@haut.edu.cn. 摘要: 石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。 关键词:石墨烯;高分子;纳米复合材料;研究进展 引言 石墨烯是以sp2 杂化连接的碳原子层构成的二维材料, 其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具 有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬, 强度比世界上最好的钢铁还高100倍[1] 。石墨烯还具有特殊的电光热特性, 包括室温下高速的电子迁移率、 半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛 的应用前景[ 2] 。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。 1 石墨烯的改性方法 1.1 化学改性石墨烯 该方法基于改性Hummers法[3] 。首先,由天然石墨制得石墨氧化物, 再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5] 、还原氧化石墨烯的非共价功能化[ 6]、环氧基的亲核取代[7]、重氮基盐的耦合[8] 等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11] 改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性 和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯 利用离子液体对石墨烯进行电化学改性已见报道[12] 。用电化学的方法,使石墨变成用化学改性石 墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电 · 78· 第9期 高 分 子 通 报

高分子复合材料现状及发展趋势

高分子复合材料现状及发展趋势 8090216 王健敏 摘要:本文概述了高分子复合材料近年来的最新发展状况以及未来的发展趋势。针对不同的高分子复合材料,文章分别简要概括了液晶高分子复合材料、纳米高分子复合材料以及导热高分子复合材料这三种目前发展最为迅猛的高分子复合材料各自的发展状况。通过相关文献所报导的对于复合机理或者是具体应用上的报导,可以得知高性能、高功能、合金化、精细化、智能化的高分子复合材料是未来材料发展的主要方向之一。 关键词:液晶高分子复合材料、纳米高分子复合材料、导电高分子复合材料 21世纪是科技迅猛发展的时代,随着科学技术的发展,人们对聚合物材料的应用性能的要求日益提高,仅由合成法制备新的聚合物越来越难以满足要求的应用性能,而高分子复合材料所表现出来的优异性能引起了科学家的极大关注。高性能、高功能、合金化、精细化、智能化的高分子复合材料将在21世纪发挥出巨大的作用和无限的生命力。目前,高分子复合材料主要有高分子液晶复合材料、高分子纳米复合材料等。另外由于导热高分子复合材料的用途广泛及应用价值巨大,因此将它单独列为一类。随着科学技术的发展,这几类高分子复合材料都得到了长足的发展,下面将分别介绍各种高分子复合材料的发展状况。 1、高分子液晶复合材料

自从1888年奥地利植物学家F. Reinitzer在合成苯甲酸胆甾醇时发现了液晶后[1] , 人们对液晶材料的探索就从未停止。在1966年Dopont 公司首次使用各向异性的向列态聚合物溶液制出商品纤维——Fi2bre B后,高分子液晶走向了工业化道路。至本世纪,高分子液晶的研究已成为高分子学科发展的一个重要方向。液晶高分子当前的发展趋势是:降低成本;发展液晶高分子原位材料;开发新的成型加工技术和新品种;发展功能液晶高分子材料。目前,关于热致液晶高分子的原位复合是液晶高分子复合领域的一大热点。 原位复合材料是以热塑性树脂为基体, 热致液晶高分子为增强剂, 利用热致液晶聚合物易于自发取向成纤维或带状结构的特点, 在共混熔融后拉伸或注射成型时, 体系中的分散相TLCP 在合适的应力作用下取向形成微纤结构, 由于刚性分子链有较长的松弛时间,在熔体冷却时能被有效地冻结或保存在T P 基体中, 从而形成一种自增强的微观复合材料, 即热致液晶原位复合材料[2]。热致液晶高分子( TLCP) 具有高强度、高模量和自增强性能, 杰出的耐高温和冷热交变性能, 优异的阻燃性、耐腐蚀性、耐磨性、阻隔性和成型加工性能, 线胀系数和摩擦系数小, 尺寸稳定性高, 抗辐射、耐微波、综合性能十分优异, 被誉为超级工程材料。 据相关报道,由于碳纳米管( CNT ) 具有卓越的力学、热学、电学等理化性能, 因而广泛用于高分子复合材料改性, 由于长径比较大,只需添加极少的CNT, 就可以显著改善高分子基体的性能[3],国内外学者对以各种聚合物为基体的CNT /聚合物纳米复合材料进行了广

高分子基复合材料

高分子基复合材料Polymer Matrix Composite Materials 课程编号:07370380 学分:2 学时:30 (其中:讲课学时:30 实验学时:0 上机学时:0) 先修课程:材料科学导论、高分子化学、大学物理适用专业:高分子材料与工程、复合材料与工程 教材:《聚合物复合材料》黄丽主编,中国轻工业出版社,2012.01 第二版开课学院:材料科学与工程学院 一、课程的性质与任务高分子基复合材料是建立在数学、物理学、化学等课程知识的基础上,为材料科学与工程专业学生开设的一门专业方向课,其性质为选修。 通过本课程的学习,旨在让学生获得复合材料的有关基本理论和基本知识,为拓宽学科方向和今后从事相关研究和工作奠定必要的基础。其主要任务是使学生具备下列知识和能力: 1. 熟悉复合材料的常用基体材料和常用增强材料结构与性能; 2. 初步掌握聚合物基、碳基、纤维增强复合材料的种类和基本性能; 3. 能够根据实际要求合理设计材料,从微观或亚微观水平上选定合适的基体和增强体或功 能体; 4. 依靠复合材料设计知识,确定合适的表面处理技术和成型工艺; 5. 了解先进复合材料的发展概况。二、课程的基本内容及要求 第1 章绪论 1. 教学内容 (1).复合材料的发展史 (2).复合材料的定义、命名及分类 (3).复合材料的特性 (4).对高性能复合材料的期望及开发现状 2. 学习要求 (1).了解复合材料的发展简史 (2).掌握复合材料的概念、分类及命名规则 (3).理解复合材料的特性及发展趋势 3. 重难点 掌握复合材料的定义及特性既是本章的重点,也是难点

第2 章基体材料 1. 教学内容 (1).概述 (2).聚合物基体 (3).金属基体 (4).陶瓷基体 (5).碳基体 2. 学习要求 (1).理解基体的概念 (2).掌握基体在复合材料材料中的作用及对复合材料性能的影响(3).了解复合材料中常用的基体类型 (4).掌握聚合物基体的特性 3. 重难点 (1).重点是熟悉复合材料中基体的类型及各类基体的特性(2).难点是掌握几种常用聚合物基体的制备原理和工艺 第3章复合材料的增强材料 1. 教学内容 (1).玻璃纤维 (2).碳纤维 (3).有机高分子纤维 (4).陶瓷纤维 (5).金属纤维 (6).晶须 (7).粉体增强材料 2. 学习要求 (1).理解增强材料在复合材料中的作用 (2).理解各类增强材料增强原理 (3).掌握常用增强材料的制备工艺 3. 重难点 (1).重点是理解各类型增强材料的增强机制和特点 (2).难点是掌握几种常用增强材料的制备工艺 第4章纤维复合材料及其制造方法 1. 教学内容 (1).聚合物基复合材料

功能高分子材料

种类繁多的功能高分子材料 功能高分子材料目前尚无严格的定义。一般认为,是指除了具有一定的力学性能之外,还具有某些特定功能(如化学性、导电性、磁性、光敏性、生物活性等)的高分子材料。或者理解为是一种当受到外部刺激时,能通过化学或物理方法做出响应的材料。 材料的性能是指材料对外部作用的抵抗特性。而功能是指向材料输入某种能量和信息,经过材料的储存、传输或转换等过程,再向外输出的一种特性。按照功能高分子材料的组成和结构,可将其分为结构型功能高分子材料和复合型功能高分子材料。按照来源又可分为天然功能高分子材料、半合成功能高分子材料和合成功能高分子材料。通常对于功能高分子材料是按照功能和应用特点进行分类。据此大致可将功能高分子材料分为化学、光、电、磁、热、声、机械、生物等八大类。 (1)聚苯乙烯型吸附树脂80%以上的吸附树脂是聚苯乙烯型的吸附树脂,它们主要是以苯乙烯为主要的合成单体,以二乙烯苯作为交联单体制备的。聚苯乙烯是最早工业化的塑料品种之一,其苯环上的邻、对位具有一定的活性,便于和其他的化合物反应,引入其他的化学基团,实现对聚苯乙烯的改性,同时将之作为吸附树脂使用时,为了提高其稳定性,还需对其进行一定的交联。聚苯乙烯的主要缺点在于,机械强度不够高,抗冲击性和耐热性较差。

在水溶液中悬浮聚合得到的聚苯乙烯型吸附树脂其外观是白色或浅黄色,直径不同的多孔球粒。通过选择不同的引发剂,苯乙烯可以实现光引发、热引发聚合,利用所加入的交联剂如二乙烯苯的用量来调节其交联度。同时聚苯乙烯上的活性点为其改性提供了条件,可以引入其他极性基团,甚至可以引入配位结构形成螯合树脂或引入离子型基团得到离子交换树脂。 (2)离子交换树脂是结构上带有可离子化基团的一类高分子,它由高分子骨架、与高分子骨架以化学键相连的固定离子以及可在一定条件下离解出来并与周围的外来离子相互交换的反离子组成。其功能基团为固定离子与反离子组成的离子化基团。功能基团中的可交换离子与外来离子完成交换过程后,通过改变条件又可再生为原有的反离子。 根据离子交换树脂的合成方式,可将其分为缩聚型和加聚型。根据树脂的物理结构,可分为凝胶型、大孔型和载体型离子交换树脂。离子交换树脂在重金属的提取、水处理、化学反应的催化方面均有重要的应用。 (3) 复合型导电高分子材料是采用各种复合技术将导电性物质与树脂复合而成的。按照复合技术分类有导电表面膜形成法,导电填料分散复合法、导电填料层压复合法三种。 常用的导电填料有金粉、银粉、铜粉、镍粉、钯粉、钼粉、铝粉、钴粉镀银二氧化硅粉、镀银玻璃微珠、炭黑、碳化钨、碳化镍等。复合型导电高分材料可用作防静电材料、导电涂料、电路板的制作、压

2-高分子_层状硅酸盐纳米复合材料的研究应用现状及发展前景_李微微

总第!"#期$%%&年第!期安徽化工 高分子/层状硅酸盐纳米复合材料的研究应用现状及发展前景 李微微,陈涛,雷新荣 (中国地质大学材料科学与化学工程学院,武汉430074) 纳米复合材料是指材料显微结构中至少有一相的一维尺寸达到纳米级的复合材料。高分子/层状硅酸盐纳米复合材料由于其具有常规复合材料所没有的结构、形态以及较常规聚合物基复合材料更优越的性能和广泛的应用前景,日益受到人们的关注。 1层状硅酸盐粘土的结构及改性 具有层状结构的粘土矿物主要有四类:高岭土、滑石、膨润土和云母,其中膨润土的主要成分为含蒙脱土的层状硅酸盐。蒙脱土属于2’1型的层状硅酸盐矿物,其基本结构单元是:每个晶胞由两个顶角向内的硅氧四面体中间夹带一层铝氧八面体构成的夹心式结构,二者之间靠共用氧原子连接。四面体及八面体的中心离子Si4+和A13+可被大小与之相近的低价阳离子进行置换,Al3+有时可替换部分Si4+,Mg2+、Fe3+、Zn2+等则可替换部分Al3+[2(5]。 层状硅酸盐层间距仅为lnm左右,层间化学微环境为亲水性。为使其与各类聚合物有良好的相容性、反应性和插层性,必须对层状硅酸盐进行有机改性。有机改性是通过阳离子交换[6]来实现的,用有机阳离子(插层剂)取代层状硅酸盐间的Na+、K+或Ca2+,使层状硅酸盐的表面变为亲油疏水,降低其表面能,同时扩大层间距,增强与聚合物的相容性,使聚合物的单体能更好地进入硅酸盐片层间,在层间发生聚合反应。同时,层间的有机阳离子在制备复合材料过程中,还可与聚合物基体产生较强的分子链接能力,有利于聚合物大分子进入层间,实现纳米化。 2高分子/层状硅酸盐纳米复合材料的制备方法高分子/层状硅酸盐纳米复合材料的制备方法分为层间物理插入和化学法插入[7(8]。层间物理插入方法的插入效果并不理想,实际应用不及化学法插入,因此本文重点介绍化学插入方法。 2.1插层聚合法 插层聚合法[9]指聚合物单体插层进入经有机改性处理后的层状硅酸盐中,进行原位聚合,聚合时放出大量的热可克服硅酸盐片层间的库仑力而使其剥离,从而使硅酸盐片层与聚合物基体以纳米尺度相复合。所谓原位聚合[10]是指将层状硅酸盐在液态(或单体溶液)中溶胀,并将其生成的聚合物插入到片层间。在单体溶胀前,利用一种合适的引发剂或者一种通过阳离子交换引入的催化剂或有机引发剂进行扩散,采用热或辐射来引发聚合反应。 Usuki等[9]首先报道了“两步法”,即先用12(18烷基氨基酸作插层剂对钠基蒙脱土进行有机阳离子交换处理,然后将处理后的蒙脱土与!—己内酞胺混合,在一定反应条件下,使!—己内酞胺发生聚合反应,得到尼龙&/蒙脱土纳米复合材料。)*+,等-./报道了在乙氰溶液中制备01/蒙脱土纳米复合材料。抽提实验表明每克蒙脱土上以化学键的方式接枝了!2!!301,01分子量约$$,%%%。该研究组还报道了用胺基封端的丁二烯—丙烯氰共聚物(4567)制备橡胶/粘土纳米复合材料。18+9:8;<;-!$/等制备了聚甲基丙烯酸甲酯/粘土纳米复合材料,结果表明复合材料的玻璃化转变温度比纯净的聚甲基丙烯酸甲酯高出!$(!#=>,降解温度高$&=>。 插层聚合法的局限性在于很多纳米复合材料都不能用这种方法制得,除了一些乙烯基单体如甲基丙烯酸甲酯、丙烯腈、苯乙烯,其他的聚合物一般不能用这种方法。 摘要:高分子/层状硅酸盐纳米复合材料因其具有优越的性能、广泛的应用前景而成为目前材料科学研究的热点。简要介绍层状硅酸盐粘土的结构与性质;总结了高分子/层状硅酸盐纳米复合材料的制备方法以及目前国内外的研究进展;综述了高分子/层状硅酸盐纳米复合材料的应用现状;展望了高分子/层状硅酸盐纳米复合材料的发展前景。 关键词:高分子;层状硅酸盐;纳米复合材料 中图分类号:TQ31文献标识码:A文章编号:1008-553X(2006)01-0007-04 收稿日期:2005-07-18 作者简介:李微微(1981—),女,辽宁人,在读硕士研究生,主要从事高分子材料科学研究,heimeiu027@163.com。 .

高分子复合材料课程简介 大纲

课程简介和教学大纲 课程代码:09193090 课程名称:高分子复合材料 Polymer Composites 学分:2 周学时:2-0 面向对象:本科生 预修课程要求:高分子化学,高分子物理,高分子材料 一、课程介绍(100-150字) (一)中文简介 材料的复合结构是自然界亿万年的自然选择结果。复合思想是人类科学创新的重要方法。《高分子复合材料》将在介绍材料的复合结构与功能关系基础上,阐述复合对于制备高性能材料的意义和关键作用;结合应用实例,论述聚合物基体,增强基和界面状态对复合材料性能的影响;并介绍新型复合思想在制备功能复合材料,纳米复合材料和复合材料仿生制备中关键作用。 (二)英文简介 The composite structures of the materials are evolved through thousands of years by the nature. The composite thinking is an important innovation of the science of human-being. This course will introduce the relationship between the composites structures and functions, and will explain the importance of composite methods for the advanced functional materials. Also, this course aimed to explain the effect of polymer matrixes, strength agents and the interfaces on the properties of the polymer composites. The preparation of the polymeric functional composites, nano-composites and biomimetic via composite concepts will also be introduced. 二、教学目标 (一)学习目标

相关文档
最新文档