一元二次方程及其解法

一元二次方程及其解法
一元二次方程及其解法

第2课时 一元二次方程及其解法

一·基本概念理解 1 一元二次方程的定义:

含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中2

ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 2、一元二次方程的解法 (1)、直接开平方法:

利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如

b a x =+2

)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 (2)、配方法:

配方法的理论根据是完全平方公式2

22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有2

22)(2b x b bx x ±=+±。

配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 (3)、公式法

公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02

≠=++a c bx ax 的求根公式:

)

04(2422≥--±-=ac b a ac b b x

公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c (4)、因式分解法

因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式

(5)、韦达定理

若1x ,2x 是一元二次方程的一般形式:)0(02≠=++a c bx ax 的两个实数根,则

a b x x -=+21,a

c

x x =21。以上的就称为韦达定理(或称为根与系数的关系)利用

韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=a

b

-,二根之积

=a c 也可以表示为a b x x -=+21,a

c

x x =21。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用 3、一元二次方程根的判别式

根的判别式

一元二次方程)0(02≠=++a c bx ax 中,ac b 42

-叫做一元二次方程

)0(02≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=?

I 当△>0时,一元二次方程有2个不相等的实数根; II 当△=0时,一元二次方程有2个相同的实数根; III 当△<0时,一元二次方程没有实数根

4、一元二次方程根与系数的关系

如果方程

)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b

x x -

=+21,

a c

x x =

21。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方

程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

5、一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。 直接开平方法是最基本的方法。

公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算根的判别式的值,以便判断方程是否有解。

配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。

二.例题讲解:

例1:解一元二次方程

(1)42=x (2)062=--x x (3)01322=++x x 【例题解析】:(1)可以利用直接开方法或利用因式分解法或公式法;(2)可以利用配方法或公式法或因式分解法;(3)可以利用配方法或公式法或因式分解法。

解:(1)a 直接开方法:242±=?=x x

b 因式分解法:220)2)(2(04422-==?=-+?=-?=x x x x x x 或 (2)a 配方法: 解:

3

22

5

2125

21)25

(425)21()21

(6)21(2126

6222

2222=-=?±

=?±

=-?==-?+=+??-?=-?=--x x x x x x x x x x x 或

b 公式法 :使用该方法首先要将方程转化为02=++

c bx ax ,再准确找出该一元二次方程中的c b a ,,的值是做对该题的重要前提和保证。 由题可知:6,1,1-=-==c b a

所以 3

21

2)

6(14)1()1(2=-=??-??--±--=x x x 或

(3)方法一:(配方法)

2

1

14

1

434143161)43()4

3

(21)43(43221

231

320

13222

22222-

=-=?±

-=?±

=+?=+?+-=+?+?-

=+?-=+?=++x x x x x x x x x x x x x 或

方法二:(公式法)

由题可知: 1,3,2===c b a

所以:2

1

1221

24332-

=-=????-±-=

x x x 或

方法三:(因式分解)

2

110

)1)(12(-

=-=?=++x x x x 或

注:在求一元二次方程的根之前,首先要将方程转化成标准形式

)0(02≠=++a c bx ax ,再对它的?的取值情况进行判定;最后再对求根

的方法进行选取,如配方,公式,还是因式分解法,特别是配方法的知识基础是建立在完全平方公式:222)(2b a b ab a ±=+±之上的。

例2:用直接开方法解一元二次方程

(1) 0492=-x (2) 4)1(2=-x (3) 3)1(2=+x (4) 9)1(162=-x

解析:(1)由题可知:

3

2

32329449049222=-=?±=?=

?=?=-x x x x x x 或 (2) 由题可知:

1321214)1(2-==?±=?±=-?=-x x x x x 或

(3) 由题可知:

313131313)1(2--=+-=?±-=?±=+?=+x x x x x 或

(4)由题可知:

4

147431431169)1(9)1(1622==?±=?±=-?=

-?=-x x x x x x 或 注:求一元二次不等式的根方法中,直接开方法是最基础的方法。 【练一练】:用直接开平方法解下列一元二次方程。

(1)0142=-x (2)

2)3(2=-x

(3) ()512=-x (4)

()162812

=-x

例3:用配方法解一元二次方程

(1)0822=-+x x (2)01322=++x x (3)0132=--x x (4)01842=+--x x 解析:(1)由题可知:

9)1(1811282082222222=+?+=+??+?=+?=-+x x x x x x x

423131-==?±-=?±=+?x x x x 或

(2) 由题可知:

21141434143161

)43()43(21)43(4322

1

2313201322222222-

=-=?±-=?±=+?=+?+-=+?+?-=+

?-=+?=++x x x x x x x x x x x x x 或

(3) 由题可知:

22222)2

3

(1)23(23213013+=+??

-?=-?=--x x x x x x 2

13

2321323413)23(2±

-=?±=+?=+?x x x 2

13

32133+-=

--=

?x x 或 (4) 由题可知:

2

1

2184018401842222=

+?=+?=-+?=+--x x x x x x x x 2

6

123)1(1211122222±

=+?=+?+=

+??+?x x x x 2

6

2262261+-=

--=?±

-=?x x x 或 注解:配方法的知识基础是建立在完全平方公式:222)(2b a b ab a ±=+±之上的。

【练一练】:用配方法解下列一元二次方程。

1、.0662=--y y

2、x x 4232=-

3、9642

=-x x 4、0542=--x x

5、01322=-+x x

6、

07232=-+x x

7、01842=+--x x 8、04

1

212=+--x x

例4:用公式法解一元二次方程

(1)0322=--x x (2)01322=++x x (3)132=-x x (4)1842-=x x 解析(1)由题可知: 3,2,1-=-==c b a

所以:1

31

2)

3(14)2()2(2-==??-??--±--=x x x 或 (2)由题可知: 1,3,2===c b a

所以:2

1

122124332-

=-=????-±-=

x x x 或

(3)由题可知: 1,3,2===c b a

所以:2

1

122124332-

=-=????-±-=

x x x 或

(4)由题可知: 1,3,2===c b a

所以:2

1

122124332-

=-=????-±-=

x x x 或

注解:使用公式法求一元二次方程的根,要将方程转化为

)0(02≠=++a c bx x a 的形式,再准确找出对应的c b a ,,的值。

【练一练】用公式解法解下列方程。

1、0822=--x x

2、22

3

14y y -=

3、y y 32132=+

4、

01522=+-x x

5、1842

-=--x x 6、02322=--x x

7、04

1

212=+--

x x 8、07232=-+x x

例5:用因式分解法解一元二次方程 (1)0822=-+x x (2)01322=++x x (3)032=-x x (4)0342=+--x x

解析:多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”.

对于用因式分解法求一元二次方程根的问题,首先将方程转化为

)0(02≠=++a c bx x a 或)0(02≠=+a bx x a 的形式,第一种形式)0(02≠=++a c bx x a 再考虑用因式分解中十字相乘法,第二种形式)0(02≠=+a bx x a 就只需提取公因数(式)即可。

(1)由题可知:

0822=-+x x

x 4 4+x

x 2- 2-x

x x x 24)2(=?+-?

所以0)2)(4(=-+x x

24=-=x x 或

以后做得非常熟练之后,其解答过程可直接写成:0)2)(4(=-+x x 从而方程的根就为24=-=x x 或 (2)由题可知

01322=++x x

所以0)1)(12(=++x x

12

1

-=-=x x 或

(3)由题可知:该题符合)0(02≠=+a bx x a 的形式,则只需提取公因

式即可,故 0)3((=-x x 所以方程的根为30==x x 或

(4)由题可知:首先将方程转化为0342=-+x x

0342=-+x x

3

x x x =-?+?)3(14

所以0)1)(34(=+-x x

14

3

-==

x x 或

注解:要使用因式分解法求一元二次方程的根,首先将方程转化为)0(02≠=++a c bx x a 或)0(02≠=+a bx x a 的形式,第一种形式

)0(02≠=++a c bx x a 再考虑用因式分解中十字相乘法,第二种形式)0(02≠=+a bx x a 就只需提取公因数(式)即可。

【练一练】用因式分解法解下列一元二次方程。

1、x x 22=

2、0862

=+-x x

3、06732=--y y

4、0122=--x x

5、031652=+-x x

6、042

1

2=--x x

7、0)32()1(22=--+x x 8、2

2)2(25)3(4-=+x x

9、0)21()21(2

=--+x x 10、

0)23()32(2=-+-x x

第1练 一元二次方程及其解法

用适当的方法解下列一元二次方程。

1、()()513+=-x x x x

2、x x 5322=-

3、2260x y -+=

4、01072

=+-x x 5、()()623=+-x x 6、()()03342

=-+-x x x

7、()02152=--x 8、0432=-y y 9、03072=--x x

10、()()412=-+y y 11、()()1314-=-x x x 12、

()025122

=-+x

13、22244a b ax x -=- 14、

()b a x a b x +-=-2322 15、022=-+-a a x x

16、

3631352=

+x x 17、()()213=-+y y 18、)0(0)(2≠=++-a b x b a ax

19、03)19(32

=--+a x a x 20、

012=--x x 21、02932=+-x x

22、02222=+-+a b ax x 23、 x 2+4x -12=0

24、030222

=--x x

25、01752=+-x x 26、1852-=-x x 27、023322

22=+---+n mn m nx mx x

28、3x 2+5(2x+1)=0 29、x x x 22)1)(1(=-+ 30、1432

+=x x

31、y y 2222=+ 32、x x 542=- 33、

34、()1126=+x x . 35、030222

=--x x 36、x 2+4x -12=0

04522=--x x

37、032=-+x x 38、12

=+x x 39、

y y 32132=+

40、081

222=+-

t t 41、1252+=y y 42、7922++x x =0

一元二次方程定义及其解法

班级姓名课题一元二次方程定义及其解法(配方法) 一、目标导航 1.掌握一元二次方程的定义及a,b,c的含义; 2.掌握配方法解一元二次方程的方法. 二、教学重难点 重点:1.掌握一元二次方程的定义及a,b,c的含义; 2.掌握配方法解一元二次方程的方法. 难点:配方法解一元二次方程. 三、走进教材 知识点一:一元二次方程的定义 1.一元二次方程的定义:方程两边都是整式,只含有一个未知数,并且未知数的最

高次数为2的方程叫做一元二次方程。 2. 一元二次方程的一般形式:()200ax bx c a ++=≠,其中2ax 叫做二次项,a 叫做二次项系数,bx 叫做一次项,b 叫做一次项系数,c 叫做常数项。举例:2230x x +-= 3. 一元二次方程的解:能使一元二次方程的左右两边相等的未知数的值叫做一元二次方程的解,一元二次方程的解也可以叫做一元二次方程的根。 自主练习: 下列方程中,是一元二次方程的有 。(填序号) ①2 5x =; ②30x y +-=; ③253302x x +-=; ④2(5)2x x x x +=-; ⑤23580x x -+=; ⑥2 04y y -=。 知识点二:配方法解一元二次方程 1. 解一元二次方程的思路:降次,即把二次降为一次,把一元二次方程转化为一元一次方程,化未知为已知,化繁为简,这是转化思想的体现。

2. 配方法:利用配方法将一个一元二次方程的左边配成完全平方形式,而右边是 一个非负数,即把一个方程转化成()2 x n p +=(p≥0)的形式,这样解方程的方法叫做配方法。 3. 配方法具体操作: (1)对于一个二次三项式,当二次项系数为1时,配上一次项系数一半的平方就可以将其配成一个完全平方式,举 例:解方程2230 +-=, x x (2)当二次项系数不为1时,首先把二次项系数化为1,方程两边除以二次项系数,然后再利用(1)的步骤完成配 方。举例:解方程22230 +-=。 x x 4. ()2 += x n p x n p +=(p≥0)的解法:对于方程()2

一元二次方程专题复习讲义(知识点-考点-题型总结)-----hao---use--ok

一元二次方程专题复习 一、知识结构: 一元二次方程?? ???*?韦达定理根的判别解与解法 二、考点精析 考点一、概念 (1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax ⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。 针对练习: ★1、方程782=x 的一次项系数是 ,常数项是 。

★2、若方程()021=--m x m 是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于x 的一元一次方程。 ★★3、若方程()112=?+ -x m x m 是关于x 的一元二次方程,则m 的取值范 围是 。 ★★★4、若方程2x2=0是一元二次方程,则下列不可能的是( ) 2 21 C21 1 考点二、方程的解 ⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值; 典型例题: 例1、已知322-+y y 的值为2,则1242++y y 的值为 。 例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根, 则m 的值为 。 针对练习: ★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 ★2、已知关于x 的方程022=-+kx x 的一个解与方程 311=-+x x 的解相同。 ⑴求k 的值; ⑵方程的另一个解。

一元二次方程的基本解法

第一讲:一元二次方程的基本解法 【知识要点】 ① 一元二次方程及其标准形式: 只含有一个未知数,且未知数的最高次数是二次的方程叫一元二次方程。 形如ax 2+bx+c=0(a 、b 、c 为常数,且a≠0)的方程叫一元二次方程的标准形式。 任何一元二次方程都可以通过去分母、去括号、移项、合并同类项等过程,转化为标准形式。 ② 一元二次方程的解法主要有: 直接开方法、配方法、求根公式法、因式分解法。 一元二次方程的求根公式为x 1,2=)04(2422≥--±-ac b a ac b b . ③一元二次方程解(根)的含义:使方程成立的未知数的值 【经典例题】 例1、直接开平方法 (1)x 2-196=0; (2)12y 2-25=0; (3)(x +1)2-4=0; (4)12(2-x )2-9=0. 例2 、配方法: (1)x 2-2x =0; (2)2 12150x x +-= (3)24x 2x 2=+ (4)17x 3x 2+= 例3 、求根公式法: (1) 1522-=x x (2) 052222 =--x x

(3)(x +1)(x -1)=x 22 (4)3x (x -3) =2(x -1) (x +1). 例4 、因式分解法: (1) x (3x +2)-6(3x +2)=0. (2)4x 2 +19x -5=0; (3) ()()2232 -=-x x x (4)x (x +1)-5x =0. 例5、换元法解下列方程: (1)06)12(5)12(2=+---x x (2) 06)1 (5)1(2=+---x x x x 例6、配方法的应用:求证:代数式122+--x x 的值不大于 4 5.

一元二次方程解法的综合运用

一元二次方程解法的综合运用 [内容] 教学目标 (一)巩固、掌握解一元二次方程的四种解法: (二)提高题目难度,培养计算能力和计算技巧,渗透换元思想; (三)培养观察能力,根据题目结构,选择恰当的解法. 教学重点的难点 重点:四种方法的综合运用,选择恰当的解法. 难点:选择恰当的解法.要有一定的计算能力和技巧. 教学过程设计 (一)复习 1.一元二次方程的一般形式是什么? 2.不完全的一元二次方程有哪几种? 3.解一元二次方程有哪四种方法? (二)新课 同一个题目可能会有多种解法,我们应该根据题目的结构选取恰当的解法.在解题过 程中应该根据算理,发挥计算技能,要有毅力计算到底,并在解题过程中随时检查可能出现 的错误. 例1 解方程:x(x-1)=3x(x+1) 分析:(启发学生一起想)先化为一般形式. 解:原方程化为(1-3)x 2-(1+3)x=0,提取公因式x,得x[(1-3)x-(1+3)]=0,x=0,(1-3)x-(1+3)=0. (二次根式运算的结果,应化为最简二次根式) 例2 解方程:(3x+2)2-8(3x+2)+15=0. 分析:(启发学生一起想)不宜把(3x+2)2和8(3x+2)展开整理为一元二次方程一般形式. 观察题目的结构可见,把3x+2换元为t ,则原方程就是t 的一元二次方程. 解:设3x+2=t,原方程变为t 2-8t+15=0,(t-3)(t-5)=0.所以t 1=3,t 2=5.即3x+2=3或3x+2= 5.故x 1=31 1 3,x 2=1. 注:本题也可直接写为[(3x+2)-3][(3x+2)-5]=0,即(3x-1)(3x-3)=0,故x 1=1 3,x 2=1. 例3 解方程:144x 2=61-208x. 解:原方程化为144x 2+208x-61=0,则 a=144,b=208,c=-61.b 2-4ac=2082-4×144(-61)=2082+4×144×61. (此题数据太大,不宜大乘大除,应注意计算技巧.分解因数,提取公因数,化为连乘积) b 2-4ac=(16×13) 2+22×42×9×61=82 (4×169+9×61)=82×1225=(8×35) 2>0,原方程有实根.

一元二次方程及解法经典习题及解析

一元二次方程及解法经典习题及解析 知识技能: 一、填空题: 1.下列方程中是一元二次方程的序号是 . 42=x ① 522=+y x ② ③01332=-+x x 052=x ④ 5232=+x x ⑤ 412=+x x ⑥ x x x x x x 2)5(0143223-=+=+-。。。。⑧⑦ 2.已知,关于2的方程12)5(2=-+ax x a 是一元二次方程,则a 3.当=k 时,方程05)3()4(22=+-+-x k x k 不是关于X 的一元二次方程. 4.解一元二次方程的一般方法有 , , , · 5.一元二次方程)0(02=/=++a c bx ax 的求根公式为: . 6.(2004·沈阳市)方程0322=--x x 的根是 . 7.不解方程,判断一元二次方程022632 =+--x x x 的根的情况是 . 8.(2004·锦州市)若关于X 的方程052=++k x x 有实数根,则k 的取值范围是 . 9.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根. 10.关于x 的方程0)4(2)1(222=++-+k kx x k 的根的情况是 . 二、选择题: 11.(2004·北京市海淀区)若a 的值使得1)2(42 2-+=++x a x x 成立,则a 的值为( ) A .5 8.4 C .3 D .2 12.把方程x x 332-=-化为02=++c bx ax 后,a 、b 、c 的值分别为( ) 3.3.0.--A 3.3.1.--B 3.3.1.-C 3.3.1.--D 13.方程02=+x x 的解是( ) x A .=土1 0.=x B 1,0.21-==x x C 1.=x D

一元二次方程的解法(二)配方法(基础)

一元二次方程的解法(二)配方法—知识讲解(基础) 【学习目标】 1.了解配方法的概念,会用配方法解一元二次方程; 2.掌握运用配方法解一元二次方程的基本步骤; 3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能 力. 【要点梳理】 知识点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式: . (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释: (1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±. 知识点二、配方法的应用 1.用于比较大小: 在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小. 2.用于求待定字母的值: 配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值. 3.用于求最值: “配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明: “配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释: “配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好. 【典型例题】

一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 如果 a x =2那么 a x ±= 注意;x 可以是多项式 一、用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22 =--x 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 配方法解一元二次方程的步骤: 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) (1)当b 2-4ac>0时,=1x ,=2x 。 (2)当b 2-4ac=0时,==21x x 。 (3)当b 2-4ac<0时,方程根的情况为 。 二、用公式解法解下列方程。 1、0822=--x x 2、22314y y -= 3、y y 32132=+ 4、01522=+-x x 5、1842-=--x x 6、02322=--x x 7.x 2+4x -3=0 8. .03232=--x x 方法四:因式分解法 因式分解的方法: (1)提公因式法: (2)公式法:平方差: 完全平方: (3)十字相乘法: 一、 用因式分解法解下列一元二次方程。 1、x x 22= 2、0)32()1(22=--+x x 3、0862=+-x x 4、22)2(25)3(4-=+x x 5、0)21()21(2=--+x x 6、0)23()32(2=-+-x x

2.2《一元二次方程的解法》专题训练题及答案

湘教版九年级数学上册 第2章 反比例函数 一元二次方程 2.2 一元二次方程的解法 根据平方根的意义解一元二次方程 专题训练题 1.已知x =2是一元二次方程x 2-2mx +4=0的一个解,则m 的值为( ) A .2 B .0 C .0或2 D .0或-2 2.若关于x 的一元二次方程ax 2+bx +c =0有一个根为1,则下列结论正确的是( ) A .a +b +c =1 B .a +b +c =0 C .a -b +c =0 D .a -b +c =1 3.已知m 是一元二次方程x 2-x -1=0的一个根,那么代数式m 2-m 的值等于( ) A .1 B .0 C .-1 D .2 4.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( ) A .1 B .-1 C .0 D .-2 5.已知关于x 的一元二次方程(x +1)2-m =0有实数根,则m 的取值范围是( ) A .m ≥-34 B .m ≥0 C .m ≥1 D .m ≥2 6.方程x 2-3=0的根是( ) A .x =3 B .x 1=3,x 2=-3 C .x = 3 D .x 1=3,x 2=- 3 7.一元二次方程(x +6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x +6=4,则另一个一元一次方程是( ) A .x -6=-4 B .x -6=4 C .x +6=4 D .x +6=-4 8.方程-4x 2+1=0的解是( ) A .x =12 B .x =-12 C .x =±12 D .x =±2 9.方程(x -4)2=11的根为( ) A .x 1=-4+11,x 2=-4-11 B .x 1=4+11,x 2=4-11 C .x 1=11+4,x 2=11-4 D .x 1=4+11,x 2=-4-11 10.对于形如(x +m )2=n 的方程,它的解的正确表述为( ) A .都能用直接开平方法求解得x =-m ±n B .当n ≥0时,x =m ±n C .当n ≥0时,x =-m ±n D .当n ≥0时,x =±n -m 11.下列方程中,适合用直接开平方法求解的是( ) A .x 2+5x +1=0 B .x 2-6x -4=0 C .(x +3)2=16 D .(x +2)(x -2)=4x 12.方程4x 2-81=0的解为________. 13.解下列方程: (1)16x 2=25; (2)(2x +1)2-1=0.

一元二次方程的解法综合练习题及答案

一元二次方程之概念 一、选择题 1.在下列方程中,一元二次方程的个数是(). ①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5 x =0 A.1个B.2个C.3个D.4个 2.方程2x2=3(x-6)化为一般形式后二次项系数、?一次项系数和常数项分别为().A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,6 3.px2-3x+p2-q=0是关于x的一元二次方程,则(). A.p=1 B.p>0 C.p≠0 D.p为任意实数 二、填空题 1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.2.一元二次方程的一般形式是__________. 3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________. 三、综合提高题 1.a满足什么条件时,关于x的方程a(x2+x)x-(x+1)是一元二次方程? 2.关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么? 一元二次方程之根 一、选择题 1.方程x(x-1)=2的两根为(). A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=2 2.方程ax(x-b)+(b-x)=0的根是(). A.x1=b,x2=a B.x1=b,x2=1 a C.x1=a,x2= 1 a D.x1=a2,x2=b2 3.已知x=-1是方程ax2+bx+c=0的根(b≠0)(). A.1 B.-1 C.0 D.2 二、填空题 1.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________.2.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________. 3.方程(x+1)2x(x+1)=0,那么方程的根x1=______;x2=________.

一元二次方程及解法归类

寒假培训八年级下数学资料 一、一元二次方程及其相关概念 1、只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元 二次方程。 2、一元二次方程的一般形式是ax 2+bx+c=0(a,b,c 是已知数且0≠a ),其中ax 2叫做 ________, bx 叫做_______, a 叫做___________系数,b 叫做___________系数,c 叫做_________. 典型例题: 1. 下列方程是一元二次方程的有___________ (1) 215)25(3x x x =-.(2) 035)12(22=---x x ; (3) 2 33432-+x x =0; 【变式练习】下列方程不是一元二次方程的是( ) A. x 2+2x+1=0 B. x 2=1-3x C. +1=0 D. x 2+x=(x+1)(x-2) 2. 方程4x 2=13-2x 化为一般形式为_____________,它的二次项系数是______, 一次项系数是 ________,常数项是______. 【变式练习】把一元二次方程(1-3x )(x+3)=2x 2+1化成一般形式是:______________; 它的二次项系 数是_______;一次项系数是_________; 常数项是_________. 3. ; 4. 当m=______时,关于x 的方程(m-2)x 2+mx=5是一元一次方程;当m______时,关于x 的方程 (m-2)x 2+mx=5是一元二次方程。 【变式练习】已知m 是方程012=--x x 的一个根,则m m -2=( ) A. -1 B. 0 C. 1 D. 2 5. 关于x 的方程01)1(1=+++-kx x k k 是一元二次方程,则k 的值为________ 【变式练习】已知关于x 的一元二次方程01)1(22=-++-k x x k 的一个根是0,则k=_______ 二、直接开平方法 若x 2 =25,由平方根定义可以知:5±=x , 即x 1=5, x 2=-5; 若(2x-1)2=5,那么2x-1=±______, 即2x-1=______, 2x-1=_____; 从而可以得到方程两根为:x 1=______, x 2=_______ 、 解下列方程:(1)1) 3(2=+x (2)18)54(22=-x 三、配方法 用配方法解一元二次方程的一般步骤: ① 化二次项系数为1; ② 移项,使方程左边为二次项和一次项,右边为常数项;

一元二次方程及一元二次方程的解法测试题(绝对经典)

. 第二章一元二次方程单元测验 一、选择题:(每小题3分,共36分) 1. 下列方程中是一元二次方程的是 ( ) (A )22)1(2-=-x x (B )01232=+-x x (C )042=-x x (D )02352 =-x x 2. 方程1)14(2 =-x 的根为( ) (A )4121==x x (B )2121==x x (C ),01=x 212=x (D ),2 1 1-=x 02=x 3. 解方程 7(8x + 3)=6(8x + 3)2 的最佳方法应选择( ) (A )因式分解法 (B )直接开平方法 (C )配方法 (D )公式法 4. 下列方程中, 有两个不相等的实数根的方程是( ) (A )x 2 –3x + 4=0 (B )x 2–x –3=0 (C )x 2–12x + 36=0 (D )x 2–2x + 3=0 5、已知m是方程012 =--x x 的一个根,则代数m2 -m的值等于 ( ) A 、1 B 、-1 C 、0 D 、2 6、若方程0152 =--x x 的两根为的值为则 、212111,x x x x +( ) A 、5 B 、51 C 、5- D 、5 1- 7. 以知三角形的两边长分别是2和9, 第三边的长是一元二次方程x 2 –14x + 48=0的解, 则这个三角形 的周长是( )(A )11 (B )17 (C )17或19 (D )19 8. 下列说法中正确的是 ( )(A )方程2 80x -=有两个相等的实数根; (B )方程252x x =-没有实数根;(C )如果一元二次方程20ax bx c ++=有两个实数根,那么0?=; (D )如果a c 、异号,那么方程2 0ax bx c ++=有两个不相等的实数根. 9. 若一元二次方程(1–2k)x 2 + 12x –10=0有实数根, 则K 的最大整数值为( ) (A )1 (B )2 (C )–1 (D )0 10.把方程2x 2 -3x+1=0化为(x+a)2 =b 的形式,正确的是( ) A. 23162x ??- = ???; B.2312416x ??-= ???; C. 2 31416x ? ?-= ? ?? ; D.以上都不对 11、 若方程02 =++q px x 的两个实根中只有一个根为0,那么 ( ) (A )0==q p ; (B )0,0≠=q p ; (C )0,0=≠q p ; (D )0,0≠≠q p . 12、下面是李刚同学在一次测验中解答的填空题,其中答对的是 ( ) A . 若x 2=4,则x =2 B .方程x (2x -1)=2x -1的解为x =1 C .若x 2 +2x +k =0有一根为2,则8=-k D .若分式1 2 32-+-x x x 值为零,则x =1,2 二、填空题:(每小题3分,共30分) 1、方程()()-267-x 5x =+,化为一般形式为 ,其中二次项系数和一次项系数的和为 。 2. 当x =________时,分式1 4 32+--x x x 的值为零。 3. 若关于x 的方程02)1(2 =+--m mx x m 有实数根,则m 的取值范围是______ 4.若方程042 2 =++m x x ,则m= . 5.已知0822 =--x x , 那么=--7632 x x _______________. 6. 若关于x 的一元二次方程02 =++c bx ax (a ≠0)的两根分别为1,—2,则b a -的值为______. 7. 若2 2 2 (3)25a b +-=,则22 a b +=____ 8.若一元二次方程02 =++c bx ax 中,024=+-c b a ,则此方程必有一根为________. 9、若两个连续整数的积是20,则他们的和是________。 10.某企业前年的销售额为500万元,今年上升到720万元,如果这两年平均每年增长率相同,则去年销售额为 11. 如果x x 12、是方程x x 2 720-+=的两个根,那么x x 12+=____________。 13. 已知一元二次方程x x 2 350--=的两根分别为x x 12、,那么x x 12 22 +的值是____。 14. 若方程x x k 2 20-+=的两根的倒数和是 8 3 ,则k =____________。 15.已知关于x 的方程(2k+1)x 2 -kx+3=0,当k______时,?方程为一元二次方程,? 当k______时,方程为一元一次方程,其根为______.

小专题(一)-一元二次方程的解法

专题(一)一元二次方程的解法 1.用直接开平方法解下列方程: (1)x2-16=0;(2)3x2-27=0; (3)(x-2)2=9;(4)(2y-3)2=16. 2.用配方法解下列方程: (1)x2-4x-1=0; (2)2x2-4x-8=0; (3)3x2-6x+4=0; (4)2x2+7x+3=0.

3.用公式法解下列方程: (1)x2-23x+3=0; (2)-3x2+5x+2=0; (3)4x2+3x-2=0; (4)3x=2(x+1)(x-1). 4.用因式分解法解下列方程: (1)x2-3x=0; (2)(x-3)2-9=0;

(3)(3x-2)2+(2-3x)=0; (4)2(t-1)2+8t=0; (5)3x+15=-2x2-10x; (6)x2-3x=(2-x)(x-3). 5.用合适的方法解下列方程: (1)4(x-3)2-25(x-2)2=0; (2)5(x-3)2=x2-9;

(3)t 2-22t +18=0. 参考答案 1.(1)移项,得x 2=16,根据平方根的定义,得x =±4,即x 1=4,x 2=-4. (2)移项,得3x 2=27,两边同除以3,得x 2=9,根据平方根的定义,得x =±3,即x 1=3,x 2=-3. (3)根据平方根的定义,得x -2=±3,即x 1=5,x 2=-1. (4)根据平方根的定义,得2y -3=±4,即y 1=72,y 2=-12. 2.(1)移项,得x 2-4x =1.配方,得x 2-4x +22=1+4,即(x -2)2=5.直接开平方,得x -2=±5,∴x 1=2+5,x 2=2- 5. (2)移项,得2x 2-4x =8.两边都除以2,得x 2-2x =4.配方,得x 2-2x +1=4+1.∴(x -1)2=5.∴x -1=± 5.∴x 1=1+5,x 2=1- 5. (3)移项,得3x 2-6x =-4.二次项系数化为1,得x 2-2x =-43.配方,得x 2-2x +12=-43+12,即(x -1)2=-13.∵ 实数的平方不可能是负数,∴原方程无实数根. (4)移项,得2x 2+7x =-3.方程两边同除以2,得x 2+72x =-32.配方,得x 2+72x +(74)2=-32+(74)2,即(x +74)2=2516. 直接开平方,得x +74=±54.∴x 1=-12,x 2=-3. 3.(1)∵a =1,b =-23,c =3,b 2-4ac =(-23)2-4×1×3=0,∴x =-(-23)±02×1 = 3.∴x 1=x 2= 3. (2)方程的两边同乘-1,得3x 2-5x -2=0.∵a =3,b =-5,c =-2,b 2-4ac =(-5)2-4×3×(-2)=49>0,∴x =-(-5)±492×3=5±76,∴x 1=2,x 2=-13. (3)a =4,b =3,c =--4ac =32-4×4×(-2)=41>=-3±412×4=-3±418.∴x 1=-3+418,x 2=-3-418 . (4)将原方程化为一般形式,得2x 2-3x -2=0.∵a =2,b =-3,c =-2,b 2-4ac =(-3)2-4×2×(- 2)=11>0,∴x =3±1122 =6±224.∴x 1=6+224,x 2=6-224.

一元二次方程解法举例

https://www.360docs.net/doc/672787094.html, ------------------华夏教育资源库 https://www.360docs.net/doc/672787094.html, ------------------华夏教育资源库 一元二次方程解法举例 教学目标:1.巩固一元二次方程的四种解法 2.灵活选用一元二次方程的四种解法解方程 教学重点: 一元二次方程的四种解法的灵活运用 教学难点:能准确把握方程的特征,选用适当的解法. 教学准备:小黑板 教学过程: 复习引入:1. 一元二次方程02 =++c bx ax 的求根公式为 . 2.一元二次方程解法有哪几种?各有那些步骤? 对于方程02=++c bx ax (a ≠0,042≥-ab b ) 若b=0,则宜用 法解,其根为 ; 若c=0,则宜用 法解,其根为 ; 若b ≠0,c ≠0,则要准确把握方程的特征,选用适当的解法. 讲授新课: 范例讲解 例1 选用适当的方法解方程: (1)()922=-x ;(直接开平方法) (2)222 =-t t ;(配方法) (3)()()052432922=--+x x ;(因式分解法) (4)4.013.001.02 -=-x x ;(化小数系数为整数系数后再因式分解) (5)x x 2 21232=-;(去分母后用公式法) (6)1417522-=mx x m (m ≠0).(因式分解法) (7)()()x x x 211=-+;(先整理后,再确定适当的方法,配方法) (8)()()742322 +=+m m ;(先整理后,再确定适当的方法,公式法) (9)()()0812151222 =-+++x x .(因式分解法) 例2 (1)当x= 时,31432 +-x x 的值与22-x 的值相等.

一元二次方程解法讲义

龙文教育学科教师辅导讲义 课 题 一元二次方程的解法 教学目标 1. 理解一元二次方程及其有关概念 2. 会解一元二次方程,并能熟练运用四种方法去解 重点、难点 1. 一元二次方程的判定,求根公式 2. 一元二次方程的解法与应用 考点及考试要求 1. 一元二次方程的定义,一般形式,配方式 2. 熟练一元二次方程的解法能灵活运用:直接开平法,配方法.,因式分解,公式法去 3. 一元二次方程在实际问题中的综合应用 教学内容 考点一、概念 (1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③ 整式方程.... 就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax 注:当b=0时可化为02=+c ax 这是一元二次方程的配方式 (3)四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为)0(02≠=++a c bx ax 的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式: 2 =++c bx ax 时,应满足(a≠0) (4)难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132 +=+x x B 02112 =-+ x x C 0 2 =++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。

一元二次方程的解法(综合)

环球教育学科教师辅导讲义 学员姓名:xxx年级:初三课时数:3 班主任:xxx 辅导科目:数学学科教师:王兴华 课题一元二次方程的解法 授课时间及时段2014-06-19 授课类型T T C 教学目标 1.学习掌握通公式法和因式分解法解一元二次方程 2.灵活选择合适的方法解一元二次方程 一、回顾 ?1.一元二次方程的含义:_____________________________________________________________. ?2.一元二次方程的一般形式:_____________________________________________________. ?3.一元二次方程的解法: ①直接开平方法 *适用形式: *答题基本步骤: ②配方法 *含义: *答题基本步骤: *可以解决的题型: *处理一元二次方程和二次三项式有什么不同: 友情提醒:请在不熟的知识点上用着重符号标出,课后及时巩固训练哦!! XXX,很高兴在环球之家又见面了,孔子曰:温故而知新,可以为师矣!我们一起回 顾上次所学习的知识吧!

二、引入与讲解 ?1.求根公式法: ①用公式法解一元二次方程的前提是: *必须是一般形式的一元二次方程: )0(02 ≠=++a c bx ax . *042 ≥-ac b ②解一元二次方程的基本步骤: Step1:化为一元二次方程的一般形式; Step2:确定c b a ,,和ac b 42 -的值; Step3:代入求根公式 1.用公式法解一元二次方程。 (1)x x x 3)1)(1(=-+ (2)03322 =+-x x 练一练: (1)6)6(=+x x (2)01222=+-x x )0(02≠=++a c bx ax 还记得如何用配方法推导出一元二次方程 的解吗?(请你快速的推导一遍) XXX ,你知道为什么要确定 ac b 42-的值吗? a ac b b x 242-±-=小博士提醒:求根公式一定要熟练记忆和运用。

一元二次方程及其解法

第2课时 一元二次方程及其解法 一·基本概念理解 1 一元二次方程的定义: 含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中2 ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 2、一元二次方程的解法 (1)、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。 直接开平方法适用于解形如 b a x =+2 )(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 (2)、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有2 22)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 (3)、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程 )0(02 ≠=++a c bx ax 的求根公式:

) 04(2422≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c (4)、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 (5)、韦达定理 若1x ,2x 是一元二次方程的一般形式:)0(02≠=++a c bx ax 的两个实数根,则 a b x x -=+21,a c x x =21。以上的就称为韦达定理(或称为根与系数的关系)利用 韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=a b -,二根之积 =a c 也可以表示为a b x x -=+21,a c x x =21。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用 3、一元二次方程根的判别式 根的判别式 一元二次方程)0(02≠=++a c bx ax 中,ac b 42 -叫做一元二次方程 )0(02≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=?

专题:一元二次方程的八种解法(后附答案)【精品】

专题:一元二次方程的八种解法 方法1 形如x2=p或(mx+n)2=p(p≥0)时,用直接开平方法求解用直接开平方法解一元二次方程的三个步骤: (1)看:看是否符合x2=p或(mx+n)2=p(p≥0)的形式; (2)化:对于不符合x2=p或(mx+n)2=p(p≥0)形式的方程先化为符合的形式; (3)求:应用平方根的意义,将一元二次方程化为两个一元一次方程求解. 1.用直接开平方法解下列方程: (1)x2-25=0; (2)4x2=1; (3)81x2-25=0; (4)(2y-3)2-64=0; (5)3(x+1)2=1 3 ; (6)(3x+2)2=25; (7)(x+1)2-4=0; (8)(2-x)2-9=0.

方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解用配方法解一元二次方程的“五步法” (1)移项:使方程的左边为二次项和一次项,右边为常数项. (2)化1:当方程的二次项系数不为1时,在方程的两边同除以二次项系数,把二次项系数化为1. (3)配方:在方程的两边同时加上一次项系数一半的平方,把原方程化成(x+n)2=p的形式. (4)开方:若p≥0,则两边直接开平方得到一元一次方程;若p<0,则原方程无解. (5)求解:解所得到的一元一次方程,求出原方程的解. 2.用配方法解下列方程: (1)x2-2x-2=0; (2)x2-10x+29=0; (3)x2+2x=2; (4)x2-6x+1=2x-15;

3.用配方法解下列方程: (1)3x 2 +6x -5=0; (2)12 x 2-6x -7=0. (3)x 2 +16x -13=0; (4)2x 2-3x -6=0; 方法3 能化成形如(x+a )(x+b )=0时,用因式分解法求解 用因式分解法解一元二次方程的“四步法” (“右化零,左分解,两因式,各求解”) 4.用因式分解法解下列方程: (1)x 2-8x =0; (2)5x 2+20x +20=0;

一元二次方程及解法

课题:复习一元二次方程及其解法 【课前热身】 1.方程3(1)0x x +=的二次项系数是 ,一次项系数是 ,常数项是 . 2.一元二次方程 x 2=3x 的根是 . 3.一元二次方程2230x x --=的根是 . 4. 关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实 数 p =( ) 5.关于x 的方程1 (3)(1)30n n x n x n +++-+=是一元二次方程,则一次项系数是 . 【课标解读】 1了解一元二次方程的有关概念,知道一元二次方程的一般形式; 2会用直接开平方法、配方法、公式法、因式分解法解简单系数的一元二次方程,并根据方程的特点,灵活选择方程的解法(重点) 【命题趋向】一元二次方程是中考的重点,一元二次方程的解法以选择题和解答题为主。 【考点精要】 1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数。(警告:判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .) 2. 一元二次方程的常用解法: (1)直接开平方法:形如 )0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法. (警告:用直接开平方的方法时要记得取正、负.) (2)配方法:用配方法解一元二次方程 ()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(警告: 用配方法时二次项系数要化1.) (3)公式法:一元二次方程 20(0)ax bx c a ++=≠的求根公式是 21,2(40)2b x b ac a -±=-≥.(警告:方程要先化成一般形式.) (4)因式分解法:1提取公因式2运用公式法(平方差公式和完全平方公式)3十字相乘法: 因式分解法的步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.(警告:方程要先化成一般形式.) 3、一元二次方程的根的判断式 若 ()02≠=++a o c bx ax , 则

九年级数学上册小专题(一) 一元二次方程的解法

编号:954555300022221782598333158 学校:战神市白虎镇禳灾村小学* 教师:战虎禳* 班级:战神参班* 专题(一)一元二次方程的解法 1.用直接开平方法解下列方程: (1)x2-16=0; (2)3x2-27=0; (3)(x-2)2=9; (4)(2y-3)2=16. 2.用配方法解下列方程: (1)x2-4x-1=0; (2)2x2-4x-8=0;

(3)3x2-6x+4=0; (4)2x2+7x+3=0. 3.用公式法解下列方程: (1)x2-23x+3=0; (2)-3x2+5x+2=0; (3)4x2+3x-2=0; (4)3x=2(x+1)(x-1).

4.用因式分解法解下列方程: (1)x2-3x=0; (2)(x-3)2-9=0; (3)(3x-2)2+(2-3x)=0; (4)2(t-1)2+8t=0; (5)3x+15=-2x2-10x; (6)x2-3x=(2-x)(x-3). 5.用合适的方法解下列方程: (1)4(x-3)2-25(x-2)2=0;

(2)5(x -3)2=x 2-9; (3)t 2- 22t +18 =0. 参考答案 1.(1)移项,得x 2=16,根据平方根的定义,得x =±4,即x 1=4,x 2=-4. (2)移项,得3x 2=27,两边同除以3,得x 2=9,根据平方根的定义,得x =±3,即x 1=3,x 2=-3. (3)根据平方根的定义,得x -2=±3,即x 1=5,x 2=-1. (4)根据平方根的定义,得2y -3=±4,即y 1=72,y 2=-12 . 2.(1)移项,得x 2-4x =1.配方,得x 2-4x +22=1+4,即(x -2)2=5.直接开平方,得x -2=±5,∴x 1=2+5,x 2=2- 5. (2)移项,得2x 2-4x =8.两边都除以2,得x 2-2x =4.配方,得x 2-2x +1=4+1.∴(x -1)2=5.∴x -1=±5.∴x 1=1+5,x 2=1- 5. (3)移项,得3x 2-6x =-4.二次项系数化为1,得x 2-2x =-43.配方,得x 2-2x +12=-43+12,即(x -1)2=-13 .∵实数的平方不可能是负数,∴原方程无实数根. (4)移项,得2x 2+7x =-3.方程两边同除以2,得x 2+72x =-32.配方,得x 2+72x +(74)2=-32+(74)2,即(x +74)2=2516 .直接开平方,得x +74=±54.∴x 1=-12 ,x 2=-3. 3.(1)∵a =1,b =-23,c =3,b 2-4ac =(-23)2-4×1×3=0,∴x =-(-23)±02×1= 3.∴x 1=x 2= 3. (2)方程的两边同乘-1,得3x 2-5x -2=0.∵a =3,b =-5,c =-2,b 2-4ac =(-5)2-4×3×(-2)=49>0,∴x =-(-5)±492×3 =5±76,∴x 1=2,x 2=-13. (3)a =4,b =3,c =-2.b 2-4ac =32-4×4×(-2)=41>0.x =-3±412×4 =-3±418.∴x 1=-3+418,x 2=-3-418. (4)将原方程化为一般形式,得2x 2-3x -2=0.∵a =2,b =-3,c =-2,b 2-4ac =(-3)2-4×2×(- 2)=11>0,∴x =3±1122 =6±224.∴x 1=6+224,x 2=6-224.

相关文档
最新文档