《理论力学实验》讲义

《理论力学实验》讲义
《理论力学实验》讲义

《理论力学实验》讲义

福州大学机械工程及自动化学院

机械设计系《工程力学》组编

二O O九年十一月

前言

科学和经济的发展,市场经济体系的建立,人才聘用的市场化,都对大学生的实际能力提出了很高的要求。培养和训练大学生的分析问题、解决问题的能力,培养和训练大学生的实践动手能力,是课程建设和课程教学的基本目标,为此,我们突破长期以来《理论力学》课程教学无实验的状态,初步建设了理论力学实验室,开展了《理论力学》实践教学活动。

《理论力学实验》作为《理论力学》新教学体系的重要组成部分,目的是通过这样一组实践教学环节的实施,开阔学生的眼界,加强《理论力学》的工程概念,了解这门课程与工程实际的紧密关系,培养、锻炼学生的创新思维和科研能力。大量与《理论力学》相关的产品和科研成果作为《理论力学实验》实践教学的内容,通过参观图片实物、实验演示以及学生自己观察、分析和动手实践达到实验的目的。实验的结果考核将采取填写实验报告、撰写小论文和交习作的形式进行。

目前,《理论力学实验》主要包括三项内容:

1、静力学、运动学和动力学创新应用实验。

2、动力学参数测定实验。

3、运动学和动力学计算机模拟仿真实验。

第一项实验 静力学、运动学和动力学创新应用实验

一. 实验目的

1、 通过大量工业产品和科技成果向学生展示《理论力学》的工程意义和工程应用,开阔学生的眼

界。

2、 通过学生对大量工业产品和科技成果的观察分析,通过学生动手操作,加深对《理论力学》基

本概念的理解,巩固力学分析方法的掌握。

3、 培养、训练学生的创新思维,提高、锻炼他们建立力学模型的能力。 二. 仪器设备 1、 挂图、照片。

2、 40余套产品、模型、设备和零部件。 三. 实验内容

(一) 静力学部分

(一)曲柄滚轮挤水拖把的受力分析与过程

其计算简图如图2,应用虚位移原理可以得出D F 和B F 的关系。

]

sin

cos

1[

sin

2

θ

θ

OA

AB

OA

OD

OA

F

F

B

D

-

+

?

?

?

=

二者的过程关系如下图:

(二)桑塔那汽车用的千斤顶受力分析与自锁条件

千斤顶受到平面汇交力系的作用,已知车重G ,容易求得1F 和2F 。进一步,利用虚位移原理,可以求得手柄作用力F :

d

M F G M F E =?

=,δδ 当螺纹升角小于摩擦角(m ?α<)时,千斤顶还将发生自锁现象:

(三)膨胀螺钉的应用技术与约束反力分析

如图,膨胀螺钉的约束反力是一空间力系:

F越大,静摩擦力也越大。

之所以能固接在墙中,机理如图,

N

(四)管子钳的受力分析与剪刀钳的受力分析管子钳的设计充分利用了力学原理:

(五)兔子挠骨抗扭强度测试仪——空间力偶等效理论的应用

测试仪利用空间力偶等效理论,对下图的挠骨进行扭矩和转角的实验:

得到二者的关系如图:

其中右图为扭矩和愈合天数的关系曲线图。

(六)挖掘机部件的受力分析与求解各油缸的推力或拉力

灵活、正确的选取研究对象是求解静力学问题的诀窍,如图所示的挖掘机受力分析:

(七)静、动滑动摩擦因数的测定装置

利用图示测定装置可以测定材料静、滑动摩擦因数:

简化得到力学模型:

利用临界条件和newton定律可以求得静、动摩擦因数。

(八)压延机的摩擦因数问题

压延机的压延厚度和摩擦因数有关。如图所示,要使得压延产生,必须使合力向右,进而可以求得厚度和因数的关系:

剥毛豆机是一应用实例。

(九)滑动摩擦不自锁——自动关门的摇皮

该设计同样应用了自锁原理,当升角(或倾角)不小于摩擦角时,机构无法实现静平衡。

(十)翻倒问题与起重机的稳定度

这是典型的平面平行力系的平衡问题,利用临界条件,可以求出平衡块的限重和稳定度:

(十一)螺旋压榨机或螺旋拔销爪

利用虚位移原理,可以求出主动力M和反作用力F之间的关系:

M r F α

tan 1

=

其中:r 为螺旋半径,α为螺纹升角。

(十二)桁架在桥梁设计中的应用与计算

工程实际中的桥梁设计广泛应用了理论力学的知识: A .拱桥

材料一般为脆性材料,单个构件受到平面汇交力系作用:

B .桁架结构桥

构件受到平面汇交力系或一般力系的作用,应用节点法或截面法可以求解:

下图为一跨珩架在自重和一般载荷作用下的受力图:

C.悬索桥

悬索上的每一个节点为一平面汇交力系作用点:

D.斜拉桥

E.公路桥

必须指出,以上各种桥梁除了需要进行静力平衡分析外,还需要进行动力计算,如模态分析,固有频率计算等。

(十三)应力集中概念、空间杠杆原理和弯曲技术在磁砖切割机上的综合应用瓷砖切割机综合应用了材料力学中的应力集中、理论力学中的杠杆原理和弯曲技术:

(二)运动学部分

(一)计算机驱动器变角速度的控制

驱动器中包含有涡轮蜗杆机构、摩擦传动和凸轮紧固等。为保证线速度不变,在信号接受点不断变动的情况下,驱动器转盘的角速度也是时变的:

(二)旋转式、往复式剃须刀的比较,曲柄框架机构与外壳振动控制的技术下图为剃须刀的示意图,其中包括可剃须区和不可剃须区:

在电机转速为定值的情况下,根据切削速度和转速的正比关系容易确定出最佳效果的剃须区域。

应用曲柄框架机构,将电机转动变为刀片的平动,显然比上面的旋转式更为合理和有效:

为了避免振动,可以采取两种方法:一是在曲柄上装偏心块;二是采用两排运动方向相反的动刀片。

(三)推土机的机构运动与分析

其中OABC为一四连杆机构。

(四)多功能万花尺——刚体平面运动时,平面图形上各点有不同的轨迹

小齿轮作平面运动,各个点的运动轨迹不同。

(五)剥线钳的运动特征

机构把剥线的两个过程统一起来。

(六)跳“的嗒”舞(“踢踏舞”)音乐鞋的传动机构与运动分析

跳舞鞋利用刚体定轴转动理论中的多级齿轮传动和凸轮传动,左右两只鞋的凸轮设计成相位差45度,即可实现“的嗒”节拍。

(七)绕线器的转速比与圈数指示器

利用刚体定轴转动的角速度(转速)和齿数之间成反比的关系,容易实现圈数的计算。(八)悬浮平衡与气流速度测定仪

利用悬浮力和流速的关系可以实现

悬浮平衡和物料输送,还可以测定流速。

(九)不可见轴转速的测定方法

&来确定转动的角速度利用曲柄滑块机构把转动变为平动的特点,可以通过测定平动的加速度y&

ω。

(十)评估房屋抗震特性的方法与分析

通过安装加速度传感器的方法来模拟地震,进而设计减震器。

(三) 动力学部分

(一)非均质发动机摇杆对轴转动惯量的等效方法

A . 均质圆盘转动惯量求法与误差分析

理论值计算公式:22

1

mr J oz =

从线性振动微分方程推导,利用实测数据得出的计算公式:l

mgr T J oz 22)2(π= 经过验证,摆长对于测量误差有重要影响(越长精度越高)。

B . 等效方法

在物体为非均质的情况下,如果(a )、(b )两者的质量和摆周期相同,则它们的转动惯量亦相

同,而后一种情形的转动惯量是可以计算得到的。

C .高科技上的拓宽应用

(二)拳击机拳击力的标定方法——动力学普遍定理的综合应用与恢复系数

利用动能定理、动量定理和碰撞理论中恢复系数的定义,可以求出拳击力和恢复系数:

)cos 1(2)1(12

12

10α-+?'+=

gl m m m m gt e F m

2

1128

.08.0v v u u e e --=='

(三)单自由度振动系统在工程中的应用

A .复摆应用在“小爬虫”上使一个贫困村致富

B .音乐的节拍器

摆动周期和转动惯量的平方根成正比。

C.电视塔用一串单摆控制“风振”

利用11个质量不同、摆长不同的单摆构成的频带同塔自身的一阶模态和气流风谱频带相仿,使得塔振动产生的能量由单摆消除,达到控制“风振”的目的。

D.扭振减振器控制曲轴振动

减震器的频率设计和曲轴的频率一样,使得曲轴系统的部分能量转化为减震器的能量,从而减少了曲轴的震动,提高了使用寿命。

(四)汽车振动两自由度模型

汽车在铅直平面内的振动可以简化为二自由度系统的模型:

其两个主振型如图:

(五)质点系动量定理的演示

图示的弹性球系在理想情况下满足动能守恒和动量守恒:

(六)振动电机及其在工程中的应用

这是一种新型电机,它将动力源和振动源合在一起,能产生可变的激振力:

以上是两种振动电机。

理论力学实验报告

实验一求不规则物体的重心 一、实验目的:用悬吊法和称重法求出不规则物体的重心的位置。 二、实验设备仪器:ZME-1型理论力学多功能实验台,直尺、积木、磅秤、胶带、白纸等。 三、实验原理方法简述 (一)悬吊法求不规则物体的重心 适用于薄板形状的物体,先将纸贴于板上,再在纸上描出物体轮廓,把物体悬挂于任意一点A,如图1-1(a)所示,根据二力平衡公理,重心必然在过悬吊点的铅直线上,于是可在与板贴在一起的纸上画出此线。然后将板悬挂于另外一点B,同样可以画出另外一条直线。两直线的交点C就是重心,如图1-1(b)所示。 A (a) 图1-1 (二)称重法求轴对称物体的重心 对于由纵向对称面且纵向对称面内有对称轴的均质物体,其重心必在对称轴上。

图1-2 首先将物体支于纵向对称面内的两点,测出两个支点间的距离l ,其中一点置于磅秤上,由此可测得B 处的支反力N1F 的大小,再将连杆旋转180O ,仍然保持中轴线水平,可测得N2F 的大小。重心距离连杆大头端支点的距离C x 。根据平面平行力系,可以得到下面的两个方程: C 1N N21N =?-?=+x W l F W F F 根据上面的方程,可以求出重心的位置: N2 N11N F F l F x C +?= 四、实验数据及处理 (一)悬吊法求不规则物体的重心 (二)称重法求对称连杆的重心。 a.将磅秤和支架放置于多功能台面上。将连杆的一断放于支架上,另一端放于支架上,使连杆的曲轴中心对准磅秤的中心位置。并利用积木块调节连杆的中心位置使它成水平。记录此时磅秤的读数 F N1=1375g b.取下连杆,记录磅秤上积木的重量F J1=385g c.将连杆转?180,重复a 步骤,测出此时磅秤读数F N2=1560g d.取下连杆,记录磅秤上积木的重量F J1=0g

理论力学转动惯量实验报告

理论力学转动惯量 实验报告

【实验概述】 转动惯量是描述刚体转动中惯性大小的物理量,它与刚体的质量分布及转轴位置有关。 正确测定物体的转动惯量,~对于了解物体转动规律,~机械设计制造有着非常重要的意义。 然 而在实际工作中,大多数物体的几何形状都是不规则的, 难以直接用理论公式算出其转动惯~ 量,只能借助于实验的方法来实现。 因此,在工程技术中,用实验的方法来测定物体的转动 ’ 惯量就有着十分重要的意义。 IM-2刚体转动惯量实验仪,应用霍尔开关传感器结合计数计 ’ 时多功能毫秒仪自动记录刚体在一定转矩作用下, 的角加速度和刚体的转动惯量。 因此本实验提供了一种测量刚体转动惯量的新方法, 实验思 路新颖、科学,测量数据精确,仪器结构合理,维护简单方便,是开展研究型实验教学的新 仪器。 【实验目的】 1. 了解多功能计数计时毫秒仪实时测量(时间)的基本方法 2. 用刚体转动法测定物体的转动惯量 3. 验证刚体转动的平行轴定理 4. 验证刚体的转动惯量与外力矩无关 【实验原理】 1. 转动力矩、转动惯量和角加速度关系系统在外力矩作用下的运动方程 即绳子的张力T=m(g-r p 2) 砝码与系统脱离后的运动方程 (2) 由方程(1) (2)可得 J=mr(g-r p 2)/( p 2- p 1) 2. 角加速度的测量 0=3 o t+? p t2 若在t 1 、t 2时刻测得角位移0 1、B 2 则 0 1 = 3 0 t 1+? p t2 0 2=3 0 t 2+? p t2 所以,由方程(5)、(6)可得 p =2 (0 2 t 1- 0 1 t 2) / t 1 t 2 (t 2- t 1) 【实验仪器】 转过n 角位移的时刻,测定刚体转动时 T X 叶M 严J p 2 (1) 由牛顿第二定律可知,砝码下落时的运动方程为: mg-T=ma (5)

SGP-I型偏振光实验系统说明书

1规格与主要技术指标 1.1 规格 计算机与操作软件1套 格兰棱镜2块 1/2波片(632.8nm) 1片 1/4波片(632.8nm) 1片 三维调节架2套 二维调节架2套 底座9套 由步进电机控制的调节架3套 光电接收系统2套 分束器1片 氦氖激光器(包括电源)1套 1.2 主要技术指标 所有调节架光学中心高度200mm 步进电机控制的调节架任意旋转角度,精度0.05° 氦氖激光器和电源波长632.8nm 、功率≥1.5 mW 2工作原理 2.1 实验用光源 光源采用氦氖激光光源,这种光源具有很好的单色性,波长为632.8nm。 2.2 偏振器 偏振器从工作原理上可分为三大类:(1)利用反射和折射产生线偏振光的原理制成的各种偏振分光镜;(2)由双折射晶体制成的各种偏振棱镜;(3)由二向色性透光材料制成的偏振片。当偏振器用来将自然光转换成线偏振光时通常被称之为起偏器,而偏振器被用来检验偏振光时又被称之为检偏器。本实验采用格兰棱镜做偏振器。 波片波片是相位延迟器的一种,是由双折射材料制成的一种光学元件,本实验采用石英晶体材料制作的偏振片,其性能稳定。 2.3 原理 光的偏振现象比光的干涉和衍射更为抽象,若不借助于专门的器件和方法,人的眼睛和光学接收器无法鉴别光的偏振特性,为适应大学基础实验要求,我公司特设计了一套用于偏振光实验的实验系统,该系统的测量内容包括两部分:一是对用做起偏和相位延迟器件本身的工作参数进行标定测量,二是利用偏光器件对光的偏振性质进行测量和鉴别。 偏振光实验,将光电接收的电信号经A/D变换进入计算机进行处理,实验中通过测量光强分布来确定偏振光的偏振态。 用光电器件探测偏振光时,应注意的一个问题是:几乎所有的光电器件都具有偏

理论力学第四章讲义

CATALOG OF CHAPTER 4§4.1 SPACIAL ROTATIONAL FRAME OF REFERENCE §4.2 THE EFFECTS INDUCED BY THE EARTH’S ROTATION

CH4 ROTATIONAL FRAME OF REFERENCE §4.1 Spacial Rotational Frame of Reference (一)Kinematics the stationary frame of reference S: Setting up a stationary coordinate system o-ξηζ;the spacial rotational frame of reference S': Setting up a moving coordinate system o-xyz;

?The origin is coincident with that of the stationary coordinate system ,∴r r ' = o z η ξ ζ x y P ?The angular velocity is always through the origin point O ; ω

In the stationary frame , the time derivative of any physical quantity is G G k dt dG j dt dG i dt dG z y x ?+++=ω???)???(k G j G i G dt d dt G d z y x ++= th e component expression for the vector G the moving frame in the o z η ξ ζ x y P ω

ZME-1型理论力学

理论力学实验报告 实验名称:ZME-I型理论力学 多功能试验台实验 指导教师: 学院:建筑工程学院 班级:工力131 学号: 姓名: 时间:2016.12.29 昆明理工大学

ZME-I型理论力学多功能试验台实验报告 实验设备名称: ZME-I型理论力学多功能试验台 实验日期: 2016.12.27 试验一:测试单自由度振动系统的变形,计算刚度系数与固有频率 一、实验目的 1.了解并掌握单自由度振动系统的刚度系数k的测定; ; 2.求取单自由度振动系统的固有频率f 二、实验设备和仪器 1.ZME—1理论力学多功能实验装置; 2.质量为0.138kg的高压输电线模型; 3.100g砝码2个,200g砝码2个; 三、实验原理 弹簧质量组成的单自由度振动系统,在弹簧的线性变形范围内,系统的变形和所受到的外力的大小成线性关系。据此,施加不同的力,产生不同的变形,可以得到系统的刚度系数。 四、实验方法与步骤: 1.将砝码托盘挂在弹簧质量系统塑料质量模型下的小孔内,记录此时塑料质量模型上指针的位置; 2.首先把一个200g的砝码放在砝码托盘上,稳定后读取并记录指针的偏移位置; 3.逐步增加砝码质量至600g,并记录相应的指针偏移位置; 4.在坐标上画出系统变形与砝码重量之间的关系曲线; 5.计算振动系统的刚度系数和固有频率。 图1 加200g砝码图2 加至600g砝码

五、数据记录及处理: 表一: 5.88 75 48 122.5 图3 振体竖向变形图 1.单自由度系统的等效刚度: l k eq ?=W =125.33N/m 2.单自由度系统的固有振动频率: m k 21f eq n π = =4.8Hz 实验二:物体重心的测试 一、实验目的: 1.用悬吊法测取不规则物体的重心位置; 2.用称量法测取连杆的重心位置,并计算其重量。 二、实验设备和仪器: 1.ZME —1理论力学多功能实验台; 2.不规则物体(各种型钢组合体); 3.连杆1个; 4.台秤1台。 三、实验原理: 物体重心的位置是固定不变的,利用柔软细绳的受力特点和二力平衡原理,我们可以用悬挂的方法决定重心的位置;再利用平面一般力系的平衡条件,可以测取连杆的重心位置和物体的重量。

理论力学实验报告

F F B o C o W o A (a) (b) A A B W W X C l l ⑻ (b) x C A 7 F N 1 F N1 F N1 F N1 F N2 F N2 F N1 I 实验一求不规则物体的重心 一、 实验目的: 用悬吊法和称重法求出不规则物体的重心的位置。 二、 实验设备仪器:ZME-1型理论力学多功能实验台,直尺、积木、磅秤、胶带、白纸等。 三、 实验原理方法简述 (一)悬吊法求不规则物体的重心 适用于薄板形状的物体,先将纸贴于板上,再在纸上描出物体轮廓,把物体悬挂于任意一点 A ,如图 1-1( a )所示,根据二力平衡公理,重心必然在过悬吊点的铅直线上,于是可在与板贴在一起的纸上画出 此线。然后将板悬挂于另外一点 B ,同样可以画出另外一条直线。 两直线的交点C 就是重心,如图1-1(b ) 所示。 图1-1 (二)称重法求轴对称物体的重心 对于由纵向对称面且纵向对称面内有对称轴的均质物体,其重心必在对称轴上。 图1-2 首先将物体支于纵向对称面内的两点,测出两个支点间的距离 I ,其中一点置于磅秤上,由此可测得 B 处的支反力F N1的大小,再将连杆旋转 180°,仍然保持中轴线水平,可测得 F N2的大小。重心距离连杆 大头端支点的距离 x C 。根据平面平行力系,可以得到下面的两个方程: F N2二W 根据上面的方程,可以求出重心的位置: I -W x C =0 四、实验数据及处理 (一)悬吊法求不规则物体的重心

F NI =1375 g 4)连杆 a. 将磅秤和支架放置于多功 能台面上。将连杆的一断放于支架上,另一端放于支架上,使连杆的曲轴 中心对准磅秤的中心位置。 并利用积木块调节连杆的中心位置使它成水平。 记录此时磅秤的读数 b. 取下连杆,记录磅秤上积木的重量 F JI =385g c. 将连杆转180,重复a 步骤,测出此时磅秤读数 F N 2=1560g d. 取下连杆,记录磅秤上积木的重量 F JI =0 g e. 测定连杆两支点间的距离 I =221mm f. 计算连杆的重心位置 = (1375_385)_ _ 86mm 重心距离连杆大头端支点的距离 x C =86mm 。 1375 -385 1560 五、思考题 1. 在进行称重法求物体重心的实验中,哪些因素将影响实验的精度? 答:影响实验精度的因素有: 1)磅秤的精度;2)支点位置的准确度;3 )连杆中心线的水平度; 支点间距离测量的准确度,等。 实验四四种不同载荷的观测与理解 一、 实验目的: 通过实验理解渐加载荷,冲击载荷,突加载荷和振动载荷的区别。 二、 实验设备仪器:ZME-1型理论力学多功能实验台,磅秤,沙袋。 三、 实验原理方法:

偏振光实验报告

实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间: 一、实验室名称:偏振光实验室 二、实验项目名称:偏振光实验 三、实验学时: 四、实验原理: 光波的振动方向与光波的传播方向垂直。自然光的振动在垂直与其传播方向的平面内,取所有可能的方向;某一方向振动占优势的光叫部分偏振光;只在某一个固定方向振动的光线叫线偏振光或平面偏振光。将非偏振光(如自然光)变成线偏振光的方法称为起偏,用以起偏的装置或元件叫起偏器。 (一)线偏振光的产生 1.非金属表面的反射和折射 光线斜射向非金属的光滑平面(如水、木头、玻璃等)时,反射光和折射光都会产生偏振现象,偏振的程度取决于光的入射角及反射物质的性质。当入射角是某一数值而反射光为线偏振光时,该入射角叫起偏角。起偏角的数值α与反射物质的折射率n 的关系是: n =αtan (1) 称为布如斯特定律,如图1所示。根据此式,可以简单地利用玻璃起偏,也可以用于测定物质的折射率。从空气入射到介质,一般起偏角在53度到58度之间。 非金属表面发射的线偏振光的振动方向总是垂直于入射面的;透射光是部分偏振光;使用多层玻璃组合成的玻璃堆,能得到很好的透射线偏振光,振动方向平行于入射面的。 图 1 图 2 2.偏振片 分子型号的偏振片是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构的分子,这些分子平行地排列在同一方向上。这种胶膜只允许垂直于分子排列方向的光振动通过,因而产生

线偏振光,如图2所示。分子型偏振片的有效起偏范围几乎可达到180度,用它可得到较宽的偏振光束,是常用的起偏元件。 图 3 鉴别光的偏振状态叫检偏,用作检偏的仪器叫或元件叫检偏器。偏振片也可作检偏器使用。自然光、部分偏振光和线偏振光通过偏振片时,在垂直光线传播方向的平面内旋转偏振片时,可观察到不同的现象,如图3所示,图中(α)表示旋转P ,光强不变,为自然光;(b )表示旋转P ,无全暗位置,但光强变化,为部分偏振光;(c )表示旋转P ,可找到全暗位置,为线偏振光。 (二)圆偏振光和椭圆偏振光的产生 线偏振光垂直入射晶片,如果光轴平行于晶片的表面,会产生比较特殊的双折射现象。这时,非常光e 和寻常光o 的传播方向是一致的,但速度不同,因而从晶片出射时会产生相位差 d n n e )(200 -= λπ δ (2) 式中0λ表示单色光在真空中的波长,o n 和e n 分别为晶体中o 光和e 光的折射率,d 为晶片厚度。 1.如果晶片的厚度使产生的相位差1 (21)2 k δπ=+,k =0,1,2,…,这样的晶片称为1/4波片,其最小厚度为0 min 4() o e d n n λ= -。线偏振光通过1/4波片后,透射光一般是椭 圆偏振光;当α=π/4时,则为圆偏振光;当0=α或π/2时,椭圆偏振光退化为线偏振光。由此可知,1/4波片可将线偏振光变成椭圆偏振光或圆偏振光;反之,它也可将椭圆偏振光或圆偏振光变成线偏振光。 2.如果晶片的厚度使产生的相差πδ)12(+=k ,k =0,1,2,…,这样的晶片称为半波片,其最小厚度为0 min 2() o e d n n λ= -。如果入射线偏振光的振动面与半波片光轴的交角为 α,则通过半波片后的光仍为线偏振光,但其振动面相对于入射光的振动面转过α2角。 3. 如果晶片的厚度使产生的相差2k δπ=,k =1,2,3,…,这样的晶片称为全波片, 其最小厚度为0 min o e d n n λ= -。从该波片透射的光为线偏振光。

20XX190201班理论力学实验报告数据已填写

20XX190201班理论力学实验报告数据已填 写 实验一求不规则物体的重心 一、实验目的:用悬吊法和称重法求出不规则物体的重心的位置。 二、实验设备仪器:ZME-1型理论力学多功能实验台,直尺、积木、磅秤、胶带、白纸等。三、实验原理方法简述 (一)悬吊法求不规则物体的重心 适用于薄板形状的物体,先将纸贴于板上,再在纸上描出物体轮廓,把物体悬挂于任意一点A,如图1-1(a)所示,根据二力平衡公理,重心必然在过悬吊点的铅直线上,于是可在与板贴在一起的纸上画出此线。然后将板悬挂于另外一点B,同样可以画出另外一条直线。两直线的交点C就是重心,如图1-1(b)所示。 FFABCWW(a)A(b) 图1-1 (二)称重法求轴对称物体的重心 对于由纵向对称面且纵向对称面内有对称轴的均质物体,其重心必在对称轴上。 AxCAWBFN1lWBxCFN2l(a)(b)

图1-2 首先将物体支于纵向对称面内的两点,测出两个支点间的距离l,其中一点置于磅秤上,由此可测得B处的支反力FN1的大小,再将连杆旋转180O,仍然保持中轴线水平,可测得FN2的大小。重心距离连杆大头端支点的距离xC。根据平面平行力系,可以得到下面的两个方程: FN1?FN2?WFN1?l?W?xC?0 根据上面的方程,可以求出重心的位置: xC?FN1?l FN1?FN2四、实验数据及处理 (一)悬吊法求不规则物体的重心 A C B (二)称重法求对称连杆的重心。 a.将磅秤和支架放置于多功能台面上。将连杆的一断放于支架上,另一端放于支架上,使连杆的曲轴中心对准磅秤的中心位置。并利用积木块调节连杆的中心位置使它成水平。记录此时磅秤的读数FN1=1375g b.取下连杆,记录磅秤上积木的重量FJ1=385g c.将连杆转180?,重复a步骤,测出此时磅秤读数 FN2=1560g d.取下连杆,记录磅秤上积木的重量FJ1=0g e.测定连杆两支点间的距离l=221mm f.计算连杆的重心位置

理论力学组合实验

理论力学组合实验报告 使用设备名称与型号 同组人员 实验时间 一、实验目的 理论力学是一门理论性较强的技术基础课,是现代工程技术基础理论之一,在日常生活、工程技术各领域都有着广泛的应用。这门学科的理论比较抽象,真正掌握也较困难。本实验指导书介绍理论力学的六个小实验,让学生在做实验过程中既动手又动脑,培养学生的创新思维和科学实验能力。 二、实验设备与仪器 理论力学多功能实验台ZME-1型 三、实验原理 四、实验操作步骤 实验(1):求弹簧质量系统的固有频率 在高压输电线模型的砝码盘上,分四次挂上不同重量的砝码,观察并记录弹簧的变形。 实验(2):求重心的实验方法 (A)悬吊法 将求重心的型钢片状试件,用细绳将其挂吊在上顶板前端的螺钉上,再换一个位置挂吊,通过两次挂吊便可求出重心位置。 (B)称量法 使用连杆、积木、台称,利用已学力学知识,用称量法求连杆的重量及重心位置。实验(3):验证均质圆盘转动惯量的理论公式

转动实验台右边手轮,使圆盘三线摆摆长下降为60cm,左手给三线摆一初始角(一般小于60),释放圆盘后,三线摆发生扭转振动。右手拿秒表,记录扭转十次或以上的时间,并算出周期,比较实验与理论计算两种方法求得的转动惯量,确定误差,还可以求摆长(四种长度)对误差的影响。 由弹簧的变形计算该系统的等效刚度和固有频率。 实验(4):用等效方法求非均质物体转动惯量 分别转动左边两个三线摆的手轮,让有非均质摇臂的圆盘三线摆下降至摆长约60cm,也使配重相同的带有强磁铁的两个圆柱铁三线摆下降到相同的高度进行转动惯量等效实验,测出扭转振动的周期,再与两个圆柱的三线摆计算周期进行等效,从而求出非均质摇臂的转动惯量。 五、实验结果及分析计算 1、弹簧质量系统的固有频率 2、连杆的重心

偏振光实验数据处理分析

偏振光实验数据处理分析 ——关于验证马吕斯定律的数据处理方法 一、 马吕斯定律: 1.一束光强度为的线偏振光,透过检偏器以后,透射光的光强度为α20cos I I = (1) 其中是线偏振光的光振动方向与检偏器透振方向间的夹角,该式称为马吕斯定律。 2.在光路中放入偏振片 作为起偏器,获得振动方向与 透振方向一致的线偏振光,线偏 振光的强度为入射自然光强度的 。 马吕斯定律光路图 3.在光路中放入偏振片,作为检偏器,其透振方向 与的夹角为,透过的光振 幅为 αcos A A 2 20 2 = (2) 式中为透过的线偏振光的振幅。因为 ,所以,光强度为α20cos I I = 这就是马吕斯定律,马吕斯定律说明了入射到偏振片上的线偏振光,其透射光强度的变化规律。 二、 简单实验过程 以He-Ne 激光作光源,用偏振片起偏和检偏,光电池接收,用电检流计量度光强的大小。实验从两偏振片方向(或称光轴)平行或垂直开始,记录光电流。测量时每转15记录一个数据,转180,取12个位置读数。 2 P 1 P

三、 数据处理 以角度为横坐标,光电流为纵坐标画图,并与余弦函数的平方值随着角度的变化关系比较 表1 将表1中角度θ和电流i 的数据输入,并通过工作表计算出2cosθ的值。打开Origin 数据处理软件,将含有原始数据的excel 工作表在Origin 数据处理软件中打开。 当图形窗口为当前窗口时,可以采用从菜单进行电流i 和cos 2θ的直线拟合,其拟合的函数为 Y=A+BX i 采用最小二乘法估计方程参数: B X -Y A = ∑ ∑ = N i 2 i N i i i X -X Y -Y X -X B )() )(( 对马吕斯定律的验证一般采用的方法是由实验得到的角度θ和电流i 的数据,进而用作图法得出cos 2θ和I 成正比的线性关系,如果cos 2θ与电流i 的线性关系良好,则说明马吕斯定律得以验证。然而学生用作图法验证马吕斯实验时,是用目测测试点分布而画出cos 2θ和电流i 之间的直线图,目测时测试点呈直线与否的界限难以确定,手工作图过程中也必然引入误差,以至于使实验中真正导致误差较大的原因容易被掩盖。同时,这种处理方法也使实验中产生的有规律性的误差被忽略,其结果往往达不到定量验证的目的。用Origin 数据分析软件依据最小二乘法原理进行实验数据处理,可由相关系数R 定量表示测试点的线性程度,达到定量验证物理规律的目的。由回归标准差SD 可得到实验误差。

理论力学完整讲义

理论力学 一 静力学(平衡问题) 01力的投影与分力 02约束与约束力 03二力构件 04平面汇交力系的简化 05力矩与力偶理论 06平面一般力系的简化:主矢和主矩 07平面一般力系的平衡方程 08零杆的简易判断方法 09刚体系统的平衡问题 10考虑摩擦时的平衡问题 01力的投影与分力 基本概念: 刚体:在力的作用下大小和形状都不变的物体。 平衡:物体相对于惯性参考系保持静止或均速直线运动的状态 力的三要素:力的大小、方向、作用点。 集中力:力在物体上的作用面积很小,可以看做是一个作用点,单位:N 。 分布力:小车的重力均匀分布在桥梁上面,这种力称为分布力(也称为均布荷载),常用q 表示,单位N/m ,若均布荷载q 作用的桥梁的长度是L ,则均布荷载q 的合力就等于q ×L ,合力的作用点就在桥梁的中点位置。 力的投影和分力 1)在直角坐标系: 投影(标量): cos x F F α= cos y F F β= 分力(矢量) cos x F F i α=u u r r cos y F F j β=u u r r

2)在斜坐标系: 投影(标量): cos x F F α= cos()y F F ?α=- 分力(矢量) (cos sin cot )x F F F i αα?=-u u r r sin sin y F F j αβ =u u r r 02约束与约束力 约束:对于研究对象起限制作用的其他物体。 约束力方向:总是与约束所能阻止物体运动的方向相反,作用在物体和约束的接触点处。 约束力大小:通常未知,需要根据平衡条件和主动力求解。 (1)柔索约束: 柔索约束:由绳索、皮带、链条等各种柔性物体所形成的约束,称为柔索约束。 特点:只能承受拉力,不能承受压力。 约束力:作用点位接触点,作用线沿拉直方向,背向约束物体。 (2)光滑面约束 光滑面约束:由光滑面所形成的约束称为光滑面约束。 约束性质:只能限制物体沿接触面公法线趋向接触面的位移。 特点:只能受压不能受拉,约束力F 沿接触面公法线指向物体。

理论力学实验报告2017

《理论力学》实验报告 班级: 姓名: 学号: 成绩:

实验一 实验方法测定物体的重心 一、实验目的: 1、通过实验加深对合力概念的理解; 2、用悬挂法测取不规则物体的重心位置; 3、用称重法测物体的重心位置并用力学方法计算重量。 二、实验设备和仪器 1、理论力学多功能实验装置; 2、不规则物体(各种型钢组合体); 3、连杆模型; 4、台秤。 三、实验原理 物体的重心的位置是固定不变的。再利用柔软细绳的受力特点和两力平衡原理,我们可以用悬挂的方法决定重心的位置;又利用平面一般力系的平衡条件,可以测取杆件的重心位置和物体的重量。 物体的重量:21F F W +=;重心位置:W l F x C 1= 四、实验方法和步骤 A 、悬挂法 1、从柜子里取出求重心用的组合型钢试件,用将把它描绘在一张白纸上; 2、用细索将其挂吊在上顶板前面的螺钉上(平面铅垂),使之保持静止状 态; 3、用先前描好的白纸置于该模型后面,使描在白纸上的图形与实物重叠。 再用笔在沿悬线在白纸上画两个点,两点成一线,便可以决定此状态的重力作用线; 4、变更悬挂点,重复上述步骤2-3,可画出另一条重力作用线; 5、两条垂线相交点即为重心。

B、称重法 1、取出实验用连杆。将连杆一端放在台秤上,一端放在木架上,并使连杆保 持水平。 2、读取台秤的读数,并记录; 3、将连杆两端调换,并使摆杆保持水平; 4、重复步骤2; 五、数据记录与处理 A、悬挂法(请同学另附图) B、称重法 六、注意事项 1、实验时应保持重力摆水平; 2、台称在使用前应调零。

实验二、四种不同类型载荷的比较实验 一、实验目的 1、了解四种常见的不同载荷; 2、比较四种不同类型载荷对承载体的作用力特性。 二、实验仪器和设备 1、理论力学多功能实验装置; 2、2kg台秤1台; 3、0.5kg重石英沙1袋; 4、偏心振动装置1个。 三、实验原理 渐加载荷、突加载荷、冲击载荷和振动载荷是常见的四种载荷。不同类型的载荷对承载体的作用力是不同的。将不同类型的载荷作用在同一台秤上,可以方便地观察到各自的作用力与时间的关系曲线,并进行相互比较。 四、实验方法和步骤 1、将台秤置于实验装置合适的位置并放平稳; 2、渐加载荷:取出装有石英沙的袋子,将沙子缓慢、渐渐地倒入台秤上的 托盘中,仔细观察台秤指针的变化,并描绘出作用力的时程曲线示意图; 3、突加载荷:将托盘中的石英沙装回原袋子,用手将沙袋拎起至刚好与托 盘分离时突然松手,仔细观察台秤指针的变化,并描绘出作用力的时程 曲线示意图; 4、冲击载荷:再将沙袋拎起至某一高度(如5cm)后自由释放,沙袋对台秤 造成一定的冲击,仔细观察台秤指针的变化,并描绘出作用力的时程曲 线示意图; 5、振动载荷:用偏心振动装置代替沙袋。先打开偏心振动装置上的电源开 关让其上的电机旋转,然后轻轻置于台秤的托盘上。仔细观察台秤指针 的变化,并描绘出作用力的时程曲线示意图。 五、实验结果与数据处理

清华大学偏振光学实验完整实验报告

偏振光学实验完整实验报告 工物53 李哲 2015011783 16号 1.实验目的: (1)理解偏振光的基本概念,在概念以及原理上了解线偏振光,圆偏振光以及椭圆偏振光,并了解偏振光的起偏与检偏方法。以及线偏振光具有的一些性质。 (2)学习偏振片与玻片的工作原理。 2.实验原理: (1)光波偏振态的描述: · 单色偏振光可以分解成两个偏振方向垂直的线偏振光的叠加: t a E X ωcos 1=与()δω+=t a E Y cos 1(其中δ是两个偏振方向分量的相位延迟,21,a a 为两个光的振幅),由其中的δ,,21a a 就可以确定这个线偏振光的性质。 πδ=或0=δ就为线偏振光,2 ,21π δ==a a 为圆偏振光(就是光矢量的顶点绕 其中点做圆周运动,依然是偏振光),而一般情况下是椭圆偏振光。 · 上述式子通常描述的是椭圆偏振光,而本实验通过测量椭圆的长轴方位角ψ以及椭圆的短半轴与长半轴的比值对于椭圆偏振光进行描述。其计算式是: ()δβcos 2tan arctan 2 1 ?=ψ () 12sin sin 112222-?-+=βδa b 而对于实验中的椭圆偏振光而言,其光强在短轴对应的方向最小,在长轴的对应方向最大,所以可以通过使这个椭圆偏振光通过一个偏振片,并调整偏振片的透射轴方位,测量其最大最小值,就可以知道其长轴短轴的比值。又由于光强与振幅的平方成正比,所以测得的光强的比值是长轴短轴之比的平方。 (2)偏振片: · 理想偏振片:只有电矢量振动方向与透射轴平行方向的光波分量才能通过偏振片。 · 实验中的偏振片不是理想化的,并不能达到上述的效果,当入射光波的振动方向与透射轴平行时,其透射率不能达到1,当垂直于透射轴时,其透射率不是0。所以对于偏振片有主透射率以及消光比两个量进行描述。 · 主透射率21T T ,指沿透射轴或消光轴方向振动光的光强透射率。两者的比值

《理论力学实验》讲义

《理论力学实验》讲义 福州大学机械工程及自动化学院 机械设计系《工程力学》组编 二O O九年十一月

前言 科学和经济的发展,市场经济体系的建立,人才聘用的市场化,都对大学生的实际能力提出了很高的要求。培养和训练大学生的分析问题、解决问题的能力,培养和训练大学生的实践动手能力,是课程建设和课程教学的基本目标,为此,我们突破长期以来《理论力学》课程教学无实验的状态,初步建设了理论力学实验室,开展了《理论力学》实践教学活动。 《理论力学实验》作为《理论力学》新教学体系的重要组成部分,目的是通过这样一组实践教学环节的实施,开阔学生的眼界,加强《理论力学》的工程概念,了解这门课程与工程实际的紧密关系,培养、锻炼学生的创新思维和科研能力。大量与《理论力学》相关的产品和科研成果作为《理论力学实验》实践教学的内容,通过参观图片实物、实验演示以及学生自己观察、分析和动手实践达到实验的目的。实验的结果考核将采取填写实验报告、撰写小论文和交习作的形式进行。 目前,《理论力学实验》主要包括三项内容: 1、静力学、运动学和动力学创新应用实验。 2、动力学参数测定实验。 3、运动学和动力学计算机模拟仿真实验。

第一项实验 静力学、运动学和动力学创新应用实验 一. 实验目的 1、 通过大量工业产品和科技成果向学生展示《理论力学》的工程意义和工程应用,开阔学生的眼 界。 2、 通过学生对大量工业产品和科技成果的观察分析,通过学生动手操作,加深对《理论力学》基 本概念的理解,巩固力学分析方法的掌握。 3、 培养、训练学生的创新思维,提高、锻炼他们建立力学模型的能力。 二. 仪器设备 1、 挂图、照片。 2、 40余套产品、模型、设备和零部件。 三. 实验内容 (一) 静力学部分 (一)曲柄滚轮挤水拖把的受力分析与过程 其计算简图如图2,应用虚位移原理可以得出D F 和B F 的关系。

理论力学组合实验

理论力学组合实验 理论力学组合实验报告 使用设备名称与型号________________________________________ 同组人员__________________________________________________ 实验时间__________________________________________________ 一、实验目的 理论力学就是一门理论性较强的技术基础课,就是现代工程技术基础理论之一,在日常生活、工程技术各领域都有着广泛的应用。这门学科的理论比较抽象,真正掌握也较困难。本实验指导书介绍理论力学的六个小实验,让学生在做实验过程中既动手又动脑,培养学生的创新思维与科学实验能力。 二、实验设备与仪器 理论力学多功能实验台 ZME-1型 三、实验原理四、实验操作步骤实验(1):求弹簧质量系统的固有频率 在高压输电线模型的砝码盘上,分四次挂上不同重量的砝码,观察并记录弹簧的变形。实验(2):求重心的实验方法 (A)悬吊法 将求重心的型钢片状试件,用细绳将其挂吊在上顶板前端的螺钉上,再换一个位置挂吊,通过两次挂吊便可求出重心位置。 (B)称量法 使用连杆、积木、台称,利用已学力学知识,用称量法求连杆的重量及重心位置。实验(3):验证均质圆盘转动惯量的理论公式 转动实验台右边手轮,使圆盘三线摆摆长下降为60cm,左手给三线摆一初始角(一般小 于60),释放圆盘后,三线摆发生扭转振动。右手拿秒表,记录扭转十次或以上的时间,并算出 周期,比较实验与理论计算两种方法求得的转动惯量,确定误差,还可以求摆长(四种长度) 对误差的影响。 由弹簧的变形计算该系统的等效刚度与固有频率。 理论力学组合实验 实验(4):用等效方法求非均质物体转动惯量 分别转动左边两个三线摆的手轮,让有非均质摇臂的圆盘三线摆下降至摆长约60cm,

初中物理力学讲义第三讲滑轮

基础知识复习: 一、滑轮、滑轮组 定滑轮: ①定义:中间的轴固定不动的滑轮。②实质:定滑轮的实质是:等臂杠杆 ③特点:使用定滑轮不能省力但是能改变动力的方向。 ④对理想的定滑轮(不计轮轴间摩擦)F=G 绳子自由端移动距离S F (或速度v F ) = 重物移动的距离S G (或速度v G )。 动滑轮: ①定义:和重物一起移动的滑轮。(可上下移动,也可左右移动)。 ②实质:动滑轮的实质是:动力臂为阻力臂2倍的省力杠杆。 ③特点:使用动滑轮能省一半的力,但不能改变动力的方向。 ④理想的动滑轮(不计轴间摩擦和动滑轮重力)则:F= 1/2G 。 只忽略轮轴间的摩擦则:拉力F= 1/2(G 物+G 动)。 绳子自由端移动距离S F (或v F )=2倍的重物移动的距离S G (或v G )。 滑轮组: ①定义:定滑轮、动滑轮组合成滑轮组。 ②特点:使用滑轮组既能省力又能改变动力的方向 ③理想的滑轮组(不计轮轴间的摩擦和动滑轮的重力)拉力F= 1/n G 。 只忽略轮轴间的摩擦,则拉力F= 1/n (G 物+G 动) 。 绳子自由端移动距离SF(或vF)=n 倍的重物移动的距离S G (或v G )。 ④组装滑轮组方法: 首先根据公式n=(G 物+G 动) / F 求出绳子的股数。 然后根据“奇动偶定”的原则。结合题目的具体要求组装滑轮。 二、计算公式 公式:s=hn 。 V 绳=n*V 物 注:s :绳子自由端移动的距离。 h :重物被提升的高度。 n :承重的绳子段数。 1

原则是:n为奇数时,绳子从动滑轮为起始。用一个动滑轮时有三段绳子承担,其后每增加一个动滑轮增加二段绳子。如:n=5,则需两个动滑轮(3+2)。n为偶数时,绳子从定滑轮为起始,这时所有动滑轮都只用两段绳子承担。如:n=4,则需两个动滑轮(2+2)。 其次,按要求确定定滑轮个数,原则是:一般的:两股绳子配一个动滑轮,一个动滑轮一般配一个定滑轮。力作用方向不要求改变时,偶数段绳子可减少一个定滑轮;要改变力作用方向,需增加一个定滑轮。 综上所说,滑轮组设计原则可归纳为:奇动偶定;一动配一定,偶数减一定,变向加一定。 滑轮组的用途: 为了既节省又能改变动力的方向,可以把定滑轮和动滑轮组合成滑轮组。 省力的大小 使用滑轮组时,滑轮组用几段绳吊着物体,提起物体所用的力就是物重的几分之一。 滑轮组的特点 用滑轮组做实验,很容易看出,使用滑轮组虽然省了力,但是费了距离——动力移动的距离大于货物升高的距离。 滑轮组绕线问题归类例析 简单的说就是:奇动偶定,先里后外,一动配一定。 偶定:指的是当动滑轮上的绳子段数为偶数时,绳子的起始端在定滑轮上 奇动:指的是当动滑轮上的绳子段数为奇数时,绳子的起始端在动滑轮上 解决简单滑轮组组装问题时,在承重的绳子股数确定以后,如何根据要求设计滑轮组的方法不唯一。 下面介绍“偶顶奇动”的简单法则: 1、当承重的绳子股数n为偶数时,顺子的固定端应栓在定滑轮上(即“偶定”)。如不改变作用 力的方向,则需要的动滑轮为n/2个,定滑轮为(n/2—1)个,如果要改变作用力的方向,则需要定滑轮为n/2个,动滑轮个数=定滑轮个数=n/2个 2、当承重绳子的股数n为奇数时,绳子的固定端应栓在动滑轮上(即“奇动”)。如果不改变力 的方向,则需要的动滑轮个数=定滑轮个数=(n—1)/2个,如果改变力的方向,则需要动滑轮个数为(n—1)/2个,定滑轮个数为(n+1)/2个 例题精讲:

理论力学参赛讲义

理论力学讲义 绪论 一、理论力学研究对象和任务: 1、研究对象; 研究物体机械运动普遍遵循的基本规律并将其用严密的数学表述,使其完全可以用严格的分析方法来加以处理。 机械运动物体在空间的相对位置随时间而改变的现象。 2、任务:归纳机械运动的规律。(借助严密的数学规律进行归纳) 3、表达方式;(理论力学分为矢量力学和分析力学两大部分。) (1)、矢量力学(牛顿力学) 从物体之间的相互作用出发,借助矢量分析这一数学工具,运用形象思维方法,通过牛顿定律揭示物体受力与其运动状态之间的因果关系来确定物体的运动规律。特点:形象直观,易于处理简单的力学问题,范围:仅能解决经典力学问题。(在矢量力学中,涉及量多数是矢量,如力、动量、动量矩、力矩、冲量等。力是矢量力学中最关键的量。) (2)、分析力学: 从牛顿力学的基础上发展起来的,它借助数学分析这一工具,运用抽象思维方法,研究力学体系整体位形变化。特点“从各种运动形态通用的物理量—能量出发,它的运用远远超出经典力学范围,也适用非力学体系。(分析力学中涉及的量多数是标量,如动能、势能、拉格朗日函数、哈密顿函数等。动能和势能是最关键的量。) (分析力学是由拉格朗日、哈密顿等人建立并完善起来的经典力学理论,它的理论体系和处理问题方法,完全不同于牛顿力学,它代表经典力学的进一步发展,它揭示出支配宏观机械运动的更普遍的规律,以致能用比较统一的方法处理力学体系的运动问题,它揭示出力学规律与其他物理的过渡起了重要作用,分析力学已经成为学习后继课程的必要基础。) 二、理论力学的研究内容 1、运动学:从几何的观点来研究物体位置随时间的变化规律,而未研究引起这种变化的物理原因。 2、动力学:研究物体运动和物体间相互作用的联系,阐明物体运动的原因。 3、静力学:研究物体相互作用下的平衡问题。(它可以看作动力学的一部分,质点、质点系,刚体) 三、理论力学的研究方法

理论力学实验1

实验一:用“双踪示波比较法”测量简谐振动的频率 一、实验目的 1、了解“双踪示波比较法”测试未知信号频率的原理; 2、学习“双踪示波比较法”测量简谐振动的频率; 二、实验仪器安装示意图 三、实验原理 双踪示波比较法是采取双踪示波,同时看两个信号波形,其中一通道是已知频率的参考信息,另一通道是待测信号,通过对波形进行比较来确定简谐振动信号的频率。 双通道并行同步示波或采样信号,采用相同的采样频率F s ,时间分辨率△t=1/F s 是相同,不同频率的 正弦信号反映到波形上就是一个周期内采样点数N 不同,信号的频率为: ()t N f ??= 1 用光标读取已知频率为f 0 参考信号的一个周期内的点数N 1 ,再读取待测信号的频率N 2 ,则被测信号的频率为: f 0 N 1 = f x N 2 02 1 f N N f x = 根据所测频率可以计算当前电机的转速:n = 60·f x (转/分钟) 四、实验步骤 1、开机进入DASP2000标准版软件的主界面,选择双通道按钮。进入双通道示波状态进行波形示波。 2、安装偏心激振电机 偏心激振电机的电源线接到调压器的输出端,电源线接到调压器的输入端(黄线为地线),一定要 小心防止接错,要注意调压器的输入和输出端,防止接反。把调速电机安装在简支梁中部,对简支梁产生一个未知的激振力,电机转速(强迫振动频率)可用调压器来改变,把调压器放在“40”档左右,调好后在实验的过程中不要再改变点电机转速。 3、将ZJY-601测振仪功能信号发生器输出信号波形监视接到采集仪的第一通道。将速度传感器布置在激

振电机附近,速度传感器测得的信号接到ZJY-601测振仪的第一通道速度传感器输入口上,输出信号接到采集仪的第二通道。 4、ZJY-601测振仪功能选择旋钮置速度计的“v(mm/s)”档,放大增益可以在试验中根据波形大小设置。 5、调节ZJY-601测振仪信号源频率,震动稳定后,按鼠标左键,停下来读数,把光标移到第一通道的一个波峰处,参考幅值在右窗口中读取最大值所对应的点号NC值,记作N1′,向右移到相邻的峰值处读取相应的点号NC值,记作N1″,第一通道正弦信号的一个周期内的点数N1 = N1′- N1″; 6、把光标移到第二通道的一个波峰处,参考幅值在右窗口中读取最大值所对应的点号N值,记作N2′,向右移到相邻的峰值处读取相应的点号N值,记作N2″,第一通道正弦信号的一个周期内的点数N2=N2′- N2″; 7、改变参考信号频率,重复以上步骤,再做两次并记录试验数据。 8、按公式计算简谐振动的频率F x 。 9、改变电机转速重复以上实验步骤。 五、实验结果和分析 用双踪示波比较法测试简谐振动的频率

7讲义(偏振光)

偏振光的特性研究 一、实验目的 1、观察光的偏振现象,加深对光偏振基本规律的认识。 2、熟悉常用的起偏振和检偏振的方法。 3、了解各种波片的作用原理、 二、实验仪器 三、实验原理 1、偏振光的基本概念 光是电磁波,它的电矢量E 和磁矢量H 相互垂直,且均垂直于光的传播方向C ,通常用电矢量E 代表光的振动方向,并将电矢量E 和传播方向C 构成的平面称为振动面。在传播过程中,电矢量振动方向始终在某一确定的振动面的光称为平面偏振光或线偏振光。光源发出的光是有大量的原子或分子辐射构成的。由于大量原子或分子的热运动和辐射的随机性,它们所发射的光的振动面,出现在各个方向的几率是相同的。故这种光源发射的光对外不显示偏振的性质,称为自然光。在发光过程中,有些光振动面在某个特定的方向上出现的几率大于其它方向,即在较长的时间内电矢量在某个方向是较强,这种光称为部分偏振光,还有一些光其振动面取向和电矢量的大小随时间作有规律的变化,而电矢量末端在垂直于传播方向的平面上轨迹呈椭圆或圆。这种光称为椭圆偏振光或圆偏振光。 2、获得偏振光的常用方法 将非偏振光变成偏振光的过程成为起偏,起偏装置成为起偏器。常用的起偏装置主要有: (1)反射起偏(或透射起偏器) 当自然光在两种媒质的界面反射时,反射光和折射光都将成为部分偏振光。当入射角达到某一特定值 b ?时,反射光成为完全偏振光,其振动面垂直于入射 面(见图1)而角b ?就是布儒斯特角,也称起偏角,由布儒斯特定律得2 1 tan b n n ?= 图2 He —Ne 激光器 (波长632.8nm ) 偏振片 (起偏器) 偏振片 (检偏器) 白屏 波片 (4/λ、2/λ) 图1

相关文档
最新文档