STM32 IAP笔记

STM32 IAP笔记
STM32 IAP笔记

STM32 IIC 学习笔记总结

STM32系列IIC学习笔记经验总结一、各寄存器内容与组织:控制、地址匹配、数据、状态、时钟控制、上升沿控制

二、IIC协议及STM32的master实现 EVENT后的第一个符号表示事件发生后对应的标志位的状态,着重看7位地址的通信;

三、基础知识(主要讨论起主机模式,从机模式的配置与使用可类比) 1.默认工作在从机模式,产生起始信号后自动转为主机模式,产生终止信号或仲裁失权后自动转为从机模式;起止信号由主 机模式下的软件实现,地址也只能由主机发送,响应信号由接收器发出(软件实现),要注意区别主机、从机、发送机、接收机; 2.数据通信的直接通道,SDA LineShift RegisterDRMemory(数据寄存器与存储器直接的数据交换发生在DMA模式, 另外若从机在SDA接收到的是地址则直接会与地址寄存器比较,而不会送入数据寄存器) 3.主机产生时钟信号,一串数据总是以起始于start信号,终止于stop信号,一旦SDA线上产生start位信号,主机模 式便被选中;9个寄存器的功能分配简单明了:I2C_CR2主要配置时钟与模块中断及DMA使能位,I2C_CR1则主要产生Start等控制信号,I2C_SR2主要是MSL、TRA和BUSY标志位,I2C_SR1则是其他事件的标志位,接下来就是存储数据的I2C_DR,时钟设置的I2C_CC4R和I2C_TRISE,地址匹配的I2C_OAR1和I2C_OAR2; 4.主机模式必要操作序列:外围时钟输入最少2M(标准模式)、4M(快速模式) 1)配置I2C_CR2寄存器以产生正确时序; 2)配置时钟控制寄存器I2C_CCR; 3)配置上升时间寄存器I2C_TRISE; 4)配置I2C_CR1寄存器以使能接口电路; 5)配置I2C_CR1寄存器,置位START位以产生起始信号; 5.时序具体解析 1)Start信号,置位I2C_CR1的START位以产生起始信号(在总线空闲时,即I2C_SR2的BUSY清零),使转为主机模式(置位I2C_SR2的MSL);在主机模式下,置位START位会在当前字节传输完成后产生一个重启ReStart信号;一旦Start信号送出,I2C_SR1的SB位会由硬件置位并产生中断(前提是ITEVFEN位被置位,貌似文档有误,我认为应是IC2_SR2的ITEVTEN位),然后需要读SR1和写DR以清零SB(这也符合操作时序); 2)从机地址发送,7位模式下,地址字节一旦送出,I2C_SR1的ADDR位会由硬件置位并产生中断(前提是ITEVFEN 置位),然后主机等待读取SR1和SR2以清零ADDR(稍微符合,读SR2貌似饶了一步);7位模式下,地址字节最低位若是0则说明主机要进入发送模式,若是1则是接收模式;I2C_SR2的TRA表示主机在发送模式还是接收模式; 3)主机发送模式,地址送出且ADDR清零后,主机会将DR中数据发送到SDA line(当然经过Shift Register),主机会等到第一个数据写入DR(EV8_1阶段),若收到响应脉冲,SR1中的TxE位会置位(前提是ITEVFEN和ITBUFEN已置位);在最后一个字节传输结束前的传输过程中,若TxE置位且某数据字节没有写入DR,BTF会置位直到(硬件清零)该数据字节被写入到DR,这个过程中SCL会一直被拉低; 4)主机发送模式关闭通信,最后一个字节被写入DR,CR1的STOP位要由软件置位而产生停止信号,接口自动转为从机模式(MSL清零);置位Stop位即对应于EV8_2事件; 5)主机接收模式,地址送出且ADDR清零后,主机会进入接收模式,接口会从SDA line中读数据到DR中(同样经过Shift Register);每个字节接收后的操作序列为,产生应答信号(前提是CR1的ACK位置位),RxNE位置位并产生中断(前提是SR2的ITEVFEN和ITBUFEN置位);在最后一个字节传输结束前的传输过程中,若RxNE 置位且某数据未从DR中读取,BTF会置位直到(硬件清零)该数据字节被读出,这个过程SCL会一直被拉低; 6)主机接收模式关闭通信,收到最后一个字节后会发送NACK信号给从机,从机收到NACK会释放总线(SDA和SCL),此时主机便可发送一个Stop或Restart信号;在读完倒数第二个字节后(RxNE中断后),要清零ACK 位以产生NACK应答,要置位STOP/START位以产生Stop/Restart信号;在单字节数据接收状况,NACK 要在ADDR清零前(EV6)设置,STOP信号要在ADDR清零后配置;Stop信号产生后,主机自动进入从机模式(SR2的MSL清零); 7)最后一字节数据接收的ACK响应前若RxNE清零(ACK清零与Stop请求)没有完成,则建议采取以下步骤以确保ACK位在最后一字节数据接收前被清零,STOP位在最后一字节数据接受完后(没有附加数据)被置位: (1)2字节的数据接收:等到ADDR=1;清零ACK,置位POS;清零ADDR;等到BTF=1(数据1在DR,

STM32学习笔记

输入模式初始化GPIOE2,3,4 ①IO口初始化:GPIO_InitTypeDef GPIO_InitStructure; ②使能PORTA,PORTE时钟: RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOE,ENABLE); ③PE.2.3.4端口配置:GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4; ④设置成(上拉)输入:GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; ⑤GPIO_Init(GPIOE, &GPIO_InitStructure); 输出模式初始化 ①IO口初始化:GPIO_InitTypeDef GPIO_InitStructure; ②使能PB,PE端口时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB|RCC_APB2Periph_GPIOE, ENABLE); ③3LED0-->PB.5 端口配置GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; ④设置(推挽)输出模式GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; ⑤设置IO口速度为50MHz GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; ⑥说明初始化哪个端口GPIO_Init(GPIOB, &GPIO_InitStructure); 在LED灯试验中初始为高电平灭GPIO_SetBits(GPIOB,GPIO_Pin_5); 再初始化相同发输出模式时③④⑤可省略例如(经实验初始化恰好为不同IO口相同IO序号③可省略,应该不规范吧) GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; //LED1-->PE.5 端口配置, 推挽输出GPIO_Init(GPIOE, &GPIO_InitStructure); //推挽输出,IO口速度为50MHz GPIO_SetBits(GPIOE,GPIO_Pin_5); //PE.5 输出高 1,头文件可以定义所用的函数列表,方便查阅你可以调用的函数; 2,头文件可以定义很多宏定义,就是一些全局静态变量的定义,在这样的情况下,只要修改头文件的内容,程序就可以做相应的修改,不用亲自跑到繁琐的代码内去搜索。 3,头文件只是声明,不占内存空间,要知道其执行过程,要看你头文件所申明的函数是在哪个.c文件里定义的,才知道。 4,他并不是C自带的,可以不用。 5,调用了头文件,就等于赋予了调用某些函数的权限,如果你要算一个数的N次方,就要调用Pow()函数,而这个函数是定义在math.c里面的,要用这个函数,就必需调用math.h 这个头文件。

STM32学习笔记_STM32F103ZET6

STM32F103 系列芯片的系统架构: 系统结构: 在每一次复位以后,所有除SRAM 和FLITF 以外的外设都被关闭,在使用一个外设之前,必须设置寄存器RCC_AHBENR 来打开该外设的时钟。

GPIO 输入输出,外部中断,定时器,串口。理解了这四个外设,基本就入门了一款MCU。 时钟控制RCC: -4~16M 的外部高速晶振 -内部8MHz 的高速RC 振荡器 -内部40KHz低速RC 振荡器,看门狗时钟 -内部锁相环(PLL,倍频),一般系统时钟都是外部或者内部高速时钟经过PLL 倍频后得到 - 外部低速32.768K 的晶振,主要做RTC 时钟源

ARM存储器映像: 数据字节以小端格式存放在存储器中。一个字里的最低地址字节被认为是该字的最低有效字节,而最高地址字节是最高有效字节。

存储器映像与寄存器映射: ARM 存储器映像 4GB 0X0000 00000X1FFF FFFF 0X2000 00000X3FFF FFFF 0X4000 00000X5FFF FFFF

寄存器说明: 寄存器名称 相对外设基地址的偏移值 编号 位表 读写权限 寄存器位 功能说明 使用C语言封装寄存器: 1、总线和外设基地址封装利用地址偏移 (1)定义外设基地址(Block2 首地址) (2)定义APB2总线基地址(相对外设基地址偏移固定) (3)定义GPIOX外设基地址(相对APB2总线基地址偏移固定)(4)定义GPIOX寄存器地址(相对GPIOX外设基地址偏移固定)(5)使用 C 语言指针操作寄存器进行读/写 //定义外设基地址 #define PERIPH_BASE ((unsigned int)0x40000000) 1) //定义APB2 总线基地址 #define APB2PERIPH_BASE (PERIPH_BASE + 0x00010000) 2) //定义GPIOC 外设基地址 #define GPIOC_BASE (AHB1PERIPH_BASE + 0x0800) 3) //定义寄存器基地址这里以GPIOC 为例 #define GPIOC_CRL *(unsigned int*)(GPIOC_BASE+0x00) 4) #define GPIOC_CRH *(unsigned int*)(GPIOC_BASE+0x04) #define GPIOC_IDR *(unsigned int*)(GPIOC_BASE+0x08) #define GPIOC_ODR *(unsigned int*)(GPIOC_BASE+0x0C) #define GPIOC_BSRR *(unsigned int*)(GPIOC_BASE+0x10) #define GPIOC_BRR *(unsigned int*)(GPIOC_BASE+0x14) #define GPIOC_LCKR *(unsigned int*)(GPIOC_BASE+0x18) //控制GPIOC 第0 管脚输出一个低电平5) GPIOC_BSRR = (0x01<<(16+0)); //控制GPIOC 第0 管脚输出一个高电平 GPIOC_BSRR = (0x01<<0);

stm32学习 c语言笔记

这是前段时间做彩屏显示时候遇到的难题, *(__IO uint16_t *) (Bank1_LCD_C)这个就是将后面的数据转换为地址,然后对地址单元存放数据。可如下等效: __IO uint16_t *addr; addr = (__IO uint16_t *) Bank1_LCD_C; #ifdef和#elif连用,语法和if。。。else if语句一样 推挽输出增加驱动,可以驱动LED起来 static int count=0 count++ 这个语句中,count仅仅被初始化一次 以后加加一次期中的值就不会变化了 SysTick_CTRL(控制和状态寄存器) SysTick_LOAD(重装载寄存器) SysTick_VAL(当前值寄存器) SysTick_CALIB(校准值寄存器)

TFT经验:弄多大的相片,必须先把那个相片的尺寸改掉,再去取模,才可以,要不会有重影的嘿嘿嘿嘿 VBAT 是电池供电的引脚 VBAT和ADD同时都掉电时才能让备份区复位。 volatile一个变量的存储单元可以在定义该变量的程序之外的某处被引用。 volatile主要是程序员要告诉编译器不要对其定义的这个变量进行优化,防止其不能被引用,不能被改变。 VDDA>2.4V ADC才能工作 VDDA>2.7V USB才能工作 VDD(1.8-3.6v) VBAT=1.8-3.6v VSS VSSA VREF必须接到地线 没有外部电源供电时必须VBAT接上VDD 使用PLL时,VDDA必须供电

printf("abs(x)=%d\n",x<0?(-1)*x:x) 条件编译是问号前边为真则取冒号前边的值,为假的,则取后边的值。 所以说上边这条打印的语句是打印x的绝对值。 //stm32f10x_nvic.c stm32f10x_lib.c stm32f10x_gpio.c stm32f10x_flash.c stm32f10x_rcc.c TIM6 TIM7基本定时器 (只有这两个定时器不能产生PWM) TIM1 TIM8高级控制定时器 TIM2 TIM3 TIM4 TIM5为通用定时器 其中高级定时器TIM1和TIM8可以同时产生多达7路的PWM输出。而通用定时器也能同时产生多达4路的PWM输出,这样,STM32最多可以同时产生30路PWM输出! 修改和自己写代码时候

STM32学习笔记

STM32学习笔记——时钟频率 ******************************** 本学习笔记基于STM32固件库V3.0 使用芯片型号:STM32F103 开发环境:MDK ******************************** 第一课时钟频率 STM32F103内部8M的内部震荡,经过倍频后最高可以达到72M。目前TI的M3系列芯片最高频率可以达到80M。 在stm32固件库3.0中对时钟频率的选择进行了大大的简化,原先的一大堆操作都在后台进行。系统给出的函数为SystemInit()。但在调用前还需要进行一些宏定义的设置,具体的设置在system_stm32f10x.c文件中。 文件开头就有一个这样的定义: //#define SYSCLK_FREQ_HSE HSE_Value //#define SYSCLK_FREQ_20MHz 20000000 //#define SYSCLK_FREQ_36MHz 36000000 //#define SYSCLK_FREQ_48MHz 48000000 //#define SYSCLK_FREQ_56MHz 56000000 #define SYSCLK_FREQ_72MHz 72000000 ST 官方推荐的外接晶振是8M,所以库函数的设置都是假定你的硬件已经接了8M 晶振来运算的.以上东西就是默认晶振8M 的时候,推荐的CPU 频率选择.在这里选择了: #define SYSCLK_FREQ_72MHz 72000000 也就是103系列能跑到的最大值72M 然后这个C文件继续往下看 #elif defined SYSCLK_FREQ_72MHz const uint32_t SystemFrequency = SYSCLK_FREQ_72MHz; const uint32_t SystemFrequency_SysClk = SYSCLK_FREQ_72MHz; const uint32_t SystemFrequency_AHBClk = SYSCLK_FREQ_72MHz; const uint32_t SystemFrequency_APB1Clk = (SYSCLK_FREQ_72MHz/2); const uint32_t SystemFrequency_APB2Clk = SYSCLK_FREQ_72MHz; 这就是在定义了CPU跑72M的时候,各个系统的速度了.他们分别是:硬件频率,系统时 钟,AHB总线频率,APB1总线频率,APB2总线频率.再往下看,看到这个了: #elif defined SYSCLK_FREQ_72MHz static void SetSysClockTo72(void); 这就是定义72M 的时候,设置时钟的函数.这个函数被SetSysClock ()函数调用,而SetSysClock ()函数则是被SystemInit()函数调用.最后SystemInit()函数,就是被你调用的了

Stm32学习笔记

Stm32笔记: 1)宏定义#define后面千万不要加“;” 2)delay_ms()需要delay_init()初始化否则会进入delay_ms()出不来;非常重要 3)若jlink出现下载问题参照第5讲程序下载与仿真视频教程配置软件 4)在按键实验中,加入一个key_up_test变量按键检测效果会好很多,分析原因 5)信号分析窗口需要把debug设置use simulator而不是jlink,在setup中新建io口名字为 PORTB.5而不是GPIOB.5 6)若jlink出现下载问题参照第5讲程序下载与仿真视频教程配置软件 7)Stm32寄存器地址映射:(举例) #define GPIOA ((GPIO_TypeDef *) GPIOA_BASE) #define GPIOA_BASE (APB2PERIPH_BASE + 0x0800) #define APB2PERIPH_BASE (PERIPH_BASE + 0x10000) #define PERIPH_BASE ((uint32_t)0x40000000) GPIOA 的寄存器的地址=GPIOA 基地址+寄存器相对GPIOA 基地址的偏移值 结构体的一个特征,那就是结构体存储的成员他们的地址是连续的。 GPIOA->BSRR= 0x40000000+0x10000+0x0800+0x10=0x40010810 主函数中中断优先级分组NVIC_Configuration();的意思是先规定一下有几位抢占优先级几位响应优先级,然后再逐个设定每个中断的抢占优先级和响应优先级。例如NVIC_Configuration();的内部是NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); 它的意思是设定两位抢占优先级和两位响应优先级,抢占优先级可以是0.1.2.3,响应优先级可以是0.1.2.3。 8)ADC1->SQR3这个寄存器就理解成:要是要进行3个通道(1,2,3)的转换,你想让3先转换,再是2再是1,那么在SQR3寄存器的最低五位放00011(3),次低5位放00010(2),再次低5位放00001(1),ADC会从最低五位放的那个通道数开始转换,以此类推 9),在用STM32驱动12864时发现PA口可以正常驱动而PB却不行,后经逐个测试发现PB3 与PB4不可以拉低 关于STM32 PB3 PB4 如何设置成普通GPIO的配置 STM32的PB3、PB4,分别是JTAG的JTDO和NJTRST引脚,在没关闭JTAG功能之前,在程序中是配置不了这些引脚的功能的。 要配置这些引脚,首先要开启AFIO时钟,然后在AFIO的设置中,释放这些引脚。

STM32各模块学习笔记

STM32 中断优先级和开关总中断 一,中断优先级: STM32(Cortex-M3) 中的优先级概念 STM32(Cortex-M3) 中有两个优先级的概念 —— 抢占式优先级和响应优先级,有人把响应优 先级称作 '亚优先级 '或 '副优先级 ',每个中断源都需要被指定这两种优先级。 具有高抢占式优先级的中断可以在具有低抢占式优先级的中断处理过程中被响应, 即中断嵌 套,或者说高抢占式优先级的中断可以嵌套低抢占式优先级的中断。 当两个中断源的抢占式优先级相同时, 这两个中断将没有嵌套关系, 当一个中断到来后, 如 果正在处理另一个中断, 这个后到来的中断就要等到前一个中断处理完之后才能被处理。 如 果这两个中断同时到达, 则中断控制器根据他们的响应优先级高低来决定先处理哪一个; 如 果他们的抢占式优先级和响应优先级都相等, 则根据他们在中断表中的排位顺序决定先处理 哪一个。 既然每个中断源都需要被指定这两种优先级, 就需要有相应的寄存器位记录每个中断的优先 级;在 Cortex-M3 中定义了 8 个比特位用于设置中断源的优先级,这 8 个比特位可以有 8 种分配方式,如下: 这就是优先级分组的概念。 Cortex-M3 允许具有较少中断源时使用较少的寄存器位指定中断源的优先级,因此 STM32 把指定中断优先级的寄存器位减少到 4 位,这 4个寄存器位的分组方式如下: 第 0 组:所有 4 位用于指定响应优先级 第 1 组:最高 1 位用于指定抢占式优先级,最低 第 2 组:最高 2 位用于指定抢占式优先级,最低 第 3 组:最高 3 位用于指定抢占式优先级,最低 第 4 组:所有 4 位用于指定抢占式优先级 所有 8 位用于指定响应优先级 最 高 1 位用于指定抢占式优先级, 最高 2 位用于指定抢占式优先级, 最高 3 位用于指定抢占式优先级, 最高 4 位用于指定抢占式优先级, 最高 5 位用于指定抢占式优先级, 最高 6 位用于指定抢占式优先级, 最高 7 位用于指定最低 7 位用于指定响应优先级 最低 6 位用于指定响应优先级 最低 5 位用于指定响应优先级 最低 4 位用于指定响应优先级 最低 3 位用于指定响应优先级 最低 2 位用于指定响应优先级 最低 1 位用于指定响应优先级 3 位用于指定响应优先 级 2 位用于指定响应优先 级

STM32学习笔记(5)通用定时器PWM输出

STM32学习笔记(5):通用定时器PWM输出 2011年3月30日TIMER输出PWM 1.TIMER输出PWM基本概念 脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。简单一点,就是对脉冲宽度的控制。一般用来控制步进电机的速度等等。 STM32的定时器除了TIM6和TIM7之外,其他的定时器都可以用来产生PWM输出,其中高级定时器TIM1和TIM8可以同时产生7路的PWM输出,而通用定时器也能同时产生4路的PWM输出。 1.1PWM输出模式 STM32的PWM输出有两种模式,模式1和模式2,由TIMx_CCMRx寄存器中的OCxM位确定的(“110”为模式1,“111”为模式2)。模式1和模式2的区别如下: 110:PWM模式1-在向上计数时,一旦TIMx_CNTTIMx_CCR1时通道1为无效电平(OC1REF=0),否则为有效电平(OC1REF=1)。 111:PWM模式2-在向上计数时,一旦TIMx_CNTTIMx_CCR1时通道1为有效电平,否则为无效电平。 由此看来,模式1和模式2正好互补,互为相反,所以在运用起来差别也并不太大。 而从计数模式上来看,PWM也和TIMx在作定时器时一样,也有向上计数模式、向下计数模式和中心对齐模式,关于3种模式的具体资料,可以查看《STM32参考手册》的“14.3.9 PWM模式”一节,在此就不详细赘述了。 1.2PWM输出管脚 PWM的输出管脚是确定好的,具体的引脚功能可以查看《STM32参考手册》的“8.3.7 定时器复用功能重映射”一节。在此需要强调的是,不同的TIMx有分配不同的引脚,但是考虑到管脚复用功能,STM32提出了一个重映像的概念,就是说通过设置某一些相关的寄存器,来使得在其他非原始指定的管脚上也能输出PWM。但是这些重映像的管脚也是由参考手册给出的。比如

STM32学习笔记

1、GPIO函数: 输出: HAL_GPIO_WritePin(GPIOA, GPIO_PIN_12, GPIO_PIN_RESET);//此例以PA12口为例 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_12, GPIO_PIN_SET); //此例以PA12口为例 HAL_GPIO_ TogglePin(GPIOA,GPIO_PIN_12); //此例以PA12口为例 2、串口函数: 1、串口发送/接收函数 HAL_UART_Transmit();串口轮询模式发送,使用超时管理机制 HAL_UART_Receive();串口轮询模式接收,使用超时管理机制 HAL_UART_Transmit_IT();串口中断模式发送 HAL_UART_Receive_IT();串口中断模式接收 HAL_UART_Transmit_DMA();串口DMA模式发送 HAL_UART_Transmit_DMA();串口DMA模式接收 2、串口中断函数 HAL_UART_TxHalfCpltCallback();一半数据发送完成时调用 HAL_UART_TxCpltCallback();数据完全发送完成后调用 HAL_UART_RxHalfCpltCallback();一半数据接收完成时调用 HAL_UART_RxCpltCallback();数据完全接受完成后调用 HAL_UART_ErrorCallback();传输出现错误时调用 例程:串口接收中断 uint8_t aTxStartMessages[] = "\r\n******UART commucition using IT******\r\nPlease enter 10 characters:\r\n"; uint8_t aRxBuffer[20]; 2、在main函数中添加两个语句通过串口中断发送aTxStartMessage数组的数据和接收数据10个字符,保存在数组aRxBuffer中 HAL_UART_Transmit_IT(&huart1 ,(uint8_t*)aTxStartMessages,sizeof(aTxStartMessages)); //sizeof()可读取目标长度 HAL_UART_Receive_IT(&huart1,(uint8_t*)aRxBuffer,10); 3、在main.c文件后面添加中断接收完成函数,将接收到的数据又通过串口发送回去。 void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { UNUSED(huart); HAL_UART_Transmit(&huart1,(uint8_t*)aRxBuffer,10,0xFFFF);//(uint8_t*)aRxBuffer为字符串地址,10为字符串长度,0xFFFF为超时时可以在中间加任何可执行代码。 }

超详细单片机学习汇总资料,STM32大神笔记

超详细单片机学习汇总资料,STM32大神笔记 1、NEC协议在发送的时候,会有560us的38KHz的载波信号,而在接收的时候这部分载波信号被认定为低电平,而剩余的(2.25ms-650us)的逻辑“1”和(1.12ms-650us)的逻辑“0”时间则被认定为高电平。 2、在单位时间内的位移被定义为速度,速度有线速度和角速度之分,分别对应两种传感器测量这两种不同的速度:线速度传感器(加速度计)、角速度传感器(陀螺仪)。 前者多应用在静态或者低慢速运动中的姿态求解,后者多应用在动态运动中姿态求解。3、根据标准约定,零加速度(或零G 准位)通常定义为相当于最大输出值(12 位输出为4096,10 位输出为1024 等)一半的输出。对于提供12 位输出的加速度计,零G 准位将等于2048。 输出大于2048 表示正加速度。输出小于2048 表示负加速度。加速度的数量通常用单位g (1g = 9.8m/s2 = 重力加速度)表示。 通过确定测量的输出与零G 准位之间的差值,然后除以加速度计的灵敏度(用计数/g 或LSB/g表示)来计算加速度。 对于提供12 位数字输出的2g 加速度计,灵敏度为819 计数/g 或819 LSB/g。加速度等于:a = (Aout - 2048)/(819 计数/g),单位为g。 4、加速度计测得的加速度的方向和设备设定的坐标系是相反的,因为原理表明在测量力的时候采用的是非惯性系参考系,而我们高中时代研究的坐标系是惯性系参考系,前者在物体进行运动产生加速度时,假想一个与速度方向相反的力作用在物体上,这个力就是惯性力;后者我们说不存在惯性力,只说存在惯性,因为在惯性坐标系中,我们研究的是物体,而非坐标系(即假定坐标系相对地球静止),当我们把坐标系也考虑在内时,当坐标系运动,就产生了惯性力f,这种力作用会假想作用在物体上,只是与运动方向相反。 5、由上可知,加速度计的本质是测量力而非加速度。 6、NRF24L01工作在2.4GHz的频段,由于频段频率较高,所以传输速率较快,为2Mbps。 7、STM32的闪存模块由:主存储器、信息块和闪存存储器接口寄存器3个部分构成。

STM32学习心得笔记

STM32学习心得笔记 时钟篇 在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。 ①、HSI是高速内部时钟,RC振荡器,频率为8MHz。 ②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为 4MHz~16MHz。 ③、LSI是低速内部时钟,RC振荡器,频率为40kHz。 ④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。 ⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍, 但是其输出频率最大不得超过72MHz。 其中40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外, 实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过RTCSEL[1:0]来选择。 STM32中有一个全速功能的USB 模块,其串行接口引擎需要一个频率为48MHz的时

钟源。该时钟源只能 从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL 必须使能, 并且时钟频率配置为48MHz或72MHz。 另外,STM32还可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。 系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟源。系统时钟可选择为PLL 输出、HSI或者HSE。系统时钟最 大频率为72MHz,它通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分 频。其中AHB分频器输出的时钟送给5大模块使用: ①、送给AHB 总线、内核、内存和DMA使用的HCLK时钟。 ②、通过8分频后送给Cortex的系统定时器时钟。 ③、直接送给Cortex的空闲运行时钟FCLK。 ④、送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz), 另一路送给定时器(Timer)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2、3、4使用。

STM32笔记ADC篇

STM32笔记 ADC篇 一、总转换时间的问题: 总转换时间TCONV = 采样时间+ 转换时间(转换时间=12.5个周期) 其中,采样时间是指完成一次转换到开始下一次转换的时间间隔,不包括转换时间;转换时间是固定的12.5个周期。采样时间有几个固定值可以选择设定。 二、ADON:开/关A/D转换器 该位由软件设置和清除。当该位为0时,写入1将把ADC从断电模式下唤醒。当该位为1时,写入1将启动转换。在转换器上电至转换开始有一个延迟时间tSTAB。 函数void ADC_Cmd(ADC_TypeDef* ADCx, FunctionalState NewState);虽然描述说是使能失能ADC,其实就是对ADON的操作,也就是说,当ADON为0时,该函数为唤醒ADC,当ADON为1时,为启动转换。 三、ADC开始转换的问题 芯片资料有以下两段话:

“单次转换模式下,ADC只执行一次转换。该模式既可通过设置ADC_CR2寄存器的ADON位(只适用于规则通道)启动,也可通过外部触发启动(适用于规则通道或注入通道),这时CONT位为0。 “在连续转换模式中,当前面ADC转换一结束马上就启动另一次转换。此模式可通过外部触发启动或通过设置ADC_CR2寄存器上的ADON位启动,此时CONT 位是1。” 此处的关键点是:单次模式下,注入通道只能用软件启动,不能用ADON启动。但连续模式则可以用这两个方式启动。 四、中断的问题 JEOC:该位由硬件在所有注入通道组转换结束时设置,由软件清除 EOC:该位由硬件在(规则或注入)通道组转换结束时设置,由软件清除或由读取ADC_DR时清除 注意点:a、规则和注入都可以产生EOC标志,而JEOC标志只有注入组产生。 b、规则和注入都可以产生EOC中断,而JEOC中断只能由注入组产生。 c、JEOC只能软件清除,硬件不会自动清除,但是

STM32学习笔记(18)-数据的保存和毁灭

数据的保存和毁灭(2) 和以前学到的有关数据保存不同,这里的数据保存还有“保密”之意,即一旦受到意外的侵入,STM32将毁灭数据。这是通过Tamper机制来实现的。 以下是数据手册中的有关说明: 5.3.1 侵入检测 当TAMPER引脚上的信号从0变成1或者从1变成0(取决于备份控制寄存器BKP_CR的TPAL 位),会产生一个侵入检测事件。侵入检测事件将所有数据备份寄存器内容清除。然而为了避免丢失侵入事件,侵入检测信号是边沿检测的信号与侵入检测允许位的逻辑与,从而在侵入检测引脚被允许前发生的侵入事件也可以被检测到。 ●当 TPAL=0 时:如果在启动侵入检测TAMPER引脚前(通过设置TPE位)该引脚已经为高电平,一旦启动侵入检测功能,则会产生一个额外的侵入事件(尽管在TPE位置’1’后并没有出现上升沿)。 ●当 TPAL=1 时:如果在启动侵入检测引脚TAMPER前(通过设置TPE位)该引脚已经为低电平,一旦启动侵入检测功能,则会产生一个额外的侵入事件(尽管在TPE位置’1’后并没有出现下降沿)。 设置BKP_CSR寄存器的TPIE位为’1’,当检测到侵入事件时就会产生一个中断。 在一个侵入事件被检测到并被清除后,侵入检测引脚TAMPER应该被禁止。然后,在再次写入备份数据寄存器前重新用TPE位启动侵入检测功能。这样,可以阻止软件在侵入检测引脚上仍然有侵入事件时对备份数据寄存器进行写操作。这相当于对侵入引脚TAMPER进行电平检测。 注:当V DD电源断开时,侵入检测功能仍然有效。为了避免不必要的复位数据备份寄存器,TAMPER引脚应该在片外连接到正确的电平。 显然,Tamper需要硬件与之配合。以上数据手册描述了硬件配置时的一些注意事项。 (1)可以是把引脚由低电平到高电平认为是一次侵入,也可以把引脚从高电平变到低电平认为是一次侵入,这通过TPAL来设置。

STM32自学笔记

一、原子位操作: 原子位操作定义在文件中。令人感到奇怪的是位操作函数是对普通的内存地址进行操作的。原子位操作在多数情况下是对一个字长的内存访问,因而位号该位于0-31之间(在64位机器上是0-63之间),但是对位号的范围没有限制。 原子操作中的位操作部分函数如下: void set_bit(int nr, void *addr)原子设置addr所指的第nr位 void clear_bit(int nr, void *addr)原子的清空所指对象的第nr位 void change_bit(nr, void *addr)原子的翻转addr所指的第nr位int test_bit(nr, void *addr)原子的返回addr位所指对象nr位int test_and_set_bit(nr, void *addr)原子设置addr所指对象的第nr位,并返回原先的值 int test_and_clear_bit(nr, void *addr)原子清空addr所指对象的第nr位,并返回原先的值 int test_and_change_bit(nr, void *addr)原子翻转addr所指对象的第nr位,并返回原先的值 unsigned long word = 0; set_bit(0, &word); /*第0位被设置*/ set_bit(1, &word); /*第1位被设置*/ clear_bit(1, &word); /*第1位被清空*/ change_bit(0, &word); /*翻转第0位*/ 二、STM32的GPIO锁定: 三、中断挂起: 因为某种原因,中断不能马上执行,所以“挂起”等待。比如有高、低级别的中断同时发生,就挂起低级别中断,等高级别中断程序执行完,在执行低级别中断。四、固文件: 固件(Firmware)就是写入EROM(可擦写只读存储器)或EEPROM(电可擦可编程只读存储器)中的程序。 五、固件库:包含各个外设或者内核的驱动头文件和C文件。 六、TIx的输入捕获滤波器(消抖): 采样频率fSAMPLING,采样次数N,如果以采样频率对一脉冲进行采样时,如果在N个采样方波里该脉宽不变,则视为一次有效的脉冲,否则视为无效的脉冲。 七、高级定时器的PWM互补输出: 常用于X相电机驱动,其中的互补输出则防止电机的死区出现。

STM32超强笔记

STM32学习笔记 1、 AHB系统总线分为APB1(36MHz)和APB2(72MHz),其中2>1,意思是APB2接高速设备 2、相当于(里面有基本的位操作定义),另一个为专门控制外围器件的配置,也就是开关头文件的作用 3、 HSE Osc(High Speed External Oscillator)高速外部晶振,一般为8MHz,HSI RC(High Speed InternalRC)高速内部RC,8MHz 4、 LSE Osc(Low Speed External Oscillator)低速外部晶振,一般为,LSI RC(Low Speed InternalRC)低速内部晶振,大概为40KHz左右,提供看门狗时钟和自动唤醒单元时钟源 5、 SYSCLK时钟源有三个来源:HSI RC、HSE OSC、 PLL 6、 MCO[2:0]可以提供4源不同的时钟同步信号,PA8

7、 GPIO口貌似有两个反向串联的二极管用作钳位二极管。 8、总线矩阵采用轮换算法对系统总线和DMA进行仲裁 9、 ICode总线,DCode总线、系统总线、DMA总线、总线矩阵、AHB/APB桥 10、在使用一个外设之前,必须设置寄存器RCC_AHBENR来打开该外设的时钟 11、数据字节以小端存储形式保存在存储器中 12、内存映射区分为8个大块,每个块为512MB 13、 FLASH的一页为1K(小容量和中容量),大容量是2K。 14、系统存储区(SystemMemory)为ST公司出厂配置锁死,用户无法编辑,用于对FLASH 区域进行重新编程。所以我们烧写程序务必选择BOOT1 = 0,这样通过内嵌的自举程序对FLASH进行烧写,比如中断向量表和代码 15、STM32核心电压为 16、STM32复位有三种:系统复位、上电复位、备份区域复位。其中系统复位除了RCC_CSR 中的复位标志和BKP中的数值不复位之外,其他的所有寄存器全部复位。触发方式例如外部复位、看门狗复位、软件复位等;复位由于外部电源的上电/掉电复位或者待机模式返回。复位除了BKP中的寄存器值不动,其他全部复位;备份区域复位的触发源为软件复位或者VDD和VBAT全部掉电时。 17、复位后所有I/O口均为浮空输入状态

STM32学习LCD的显示

STM32学习LCD的显示 1.LCD/LCM的基本概念 液晶显示器(Liquid Crystal Display: LCD)的构造是在两片平行的玻璃当中放置液态的晶体,两片玻璃中间有许多垂直和水平的细小电线,透过通电与否来控制杆状水晶分子改变方向,将光线折射出来产生画面。 LCM(LCD Module)即LCD显示模组、液晶模块,是指将液晶显示器件,连接件,控制与驱动等外围电路,PCB电路板,背光源,结构件等装配在一起的组件。 在平时的学习开发中,我们一般使用的是LCM,带有驱动IC和LCD屏幕等多个模块。 2.FSMC的基本概念 在STM32上开发LCD显示,可以有两种方式来对LCD进行操作,一种是通过普通的IO 口,连接LCM的相应引脚来进行操作,第2种是通过FSMC来进行操作。 可变静态存储控制器(Flexible Static Memory Controller: FSMC) 是STM32系列中内部集成256 KB以上FlaSh,后缀为xC、xD和xE的高存储密度微控制器特有的存储控制机制。之所以称为“可变”,是由于通过对特殊功能寄存器的设置,FSMC能够根据不同的外部存储器类型,发出相应的数据/地址/控制信号类型以匹配信号的速度,从而使得STM32系列微控制器不仅能够应用各种不同类型、不同速度的外部静态存储器,而且能够在不增加外部器件的情况下同时扩展多种不同类型的静态存储器,满足系统设计对存储容量、产品体积以及成本的综合要求。 FSMC有很多优点: 1.支持多种静态存储器类型。STM32通过FSMC可以与SRAM、ROM、PSRAM、NOR Flash和NANDFlash存储器的引脚直接相连。 2.支持丰富的存储操作方法。FSMC不仅支持多种数据宽度的异步读/写操作,而且支持对NOR、PSRAM、NAND存储器的同步突发访问方式。 3.支持同时扩展多种存储器。FSMC的映射地址空间中,不同的BANK是独立的,可用于扩展不同类型的存储器。当系统中扩展和使用多个外部存储器时,FSMC会通过总线悬空延迟时间参数的设置,防止各存储器对总线的访问冲突。 4.支持更为广泛的存储器型号。通过对FSMC的时间参数设置,扩大了系统中可用存储器的速度范围,为用户提供了灵活的存储芯片选择空间。 5.支持代码从FSMC扩展的外部存储器中直接运行,而不需要首先调入内部SRAM。FSMC包含两类控制器: 1.1个NOR闪存/SRAM控制器,可以与NOR闪存、SRAM和PSRAM存储器接口。 2.1个NAND闪存/PC卡控制器,可以与NAND闪存、PC卡,CF卡和CF+存储器接口。控制器产生所有驱动这些存储器的信号时序: 1.16位数据线,用于连接8位或16位的存储器; 2.26位地址线,最多可连续64MB的存储器(这里不包括片选线); 3.5位独立的片选信号线; 4.1组适合不同类型存储器的控制信号线: -控制读/写操作 -与存储器通信,提供就绪/繁忙信号和中断信号 -与所用配置的PC卡接口:PC存储卡、PC I/O卡和真正的IDE接口 从FSMC的角度看,可以把外部存储器划分为固定大小为256MB的4个存储块 · 存储块1用于访问最多4个NOR闪存或者PSRAM存储设备。这个存储区被划分为4个

相关文档
最新文档