路璐.数据完整性案例

数据挖掘实验报告

《数据挖掘》Weka实验报告 姓名_学号_ 指导教师 开课学期2015 至2016 学年 2 学期完成日期2015年6月12日

1.实验目的 基于https://www.360docs.net/doc/678326975.html,/ml/datasets/Breast+Cancer+WiscOnsin+%28Ori- ginal%29的数据,使用数据挖掘中的分类算法,运用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。 2.实验环境 实验采用Weka平台,数据使用来自https://www.360docs.net/doc/678326975.html,/ml/Datasets/Br- east+Cancer+WiscOnsin+%28Original%29,主要使用其中的Breast Cancer Wisc- onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 3.实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size (均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。 该数据的数据属性如下: 1. Sample code number(numeric),样本代码; 2. Clump Thickness(numeric),丛厚度;

数据挖掘及决策树

昆明理工大学信息工程与自动化学院学生实验报告 (2016 —2017 学年第学期) 课程名称:数据仓库与数据挖掘开课实验室:信自楼444 2017 年 06 月 01 日 一、上机目的及内容 目的: 1.理解数据挖掘的基本概念及其过程; 2.理解数据挖掘与数据仓库、OLAP之间的关系 3.理解基本的数据挖掘技术与方法的工作原理与过程,掌握数据挖掘相关工具的使用。 内容: 给定AdventureWorksDW数据仓库,构建“Microsoft 决策树”模型,分析客户群中购买自行车的模式。 要求: 利用实验室和指导教师提供的实验软件,认真完成规定的实验内容,真实地记录实验中遇到的 二、实验原理及基本技术路线图(方框原理图或程序流程图) 请描述数据挖掘及决策树的相关基本概念、模型等。 1.数据挖掘:从大量的、不完全的、有噪音的、模糊的、随机的数据中,提取隐含在其中的、 人们事先不知道的、但又潜在有用的信息和知识的过程。

预测:利用历史数据建立模型,再运用最新数据作为输入值,获得未来 变化趋势或者评估给定样本可能具有的属性值或值的范围 聚类分析根据数据的不同特征,将其划分为不同数据类 偏差分析对差异和极端特例的描述,揭示事物偏离常规的异常现象,其基本思想 是寻找观测结果与参照值之间有意义的差别 3.决策树:是一种预测模型,它代表的是对象属性与对象值之间的一种映射关系。树中每个 节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从 根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输 出,可以建立独立的决策树以处理不同输出。 算法概念 ID3 在实体世界中,每个实体用多个特征来描述。每个特征限于在一 个离散集中取互斥的值 C4.5 对ID3算法进行了改进: 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选 择取值多的属性的不足;在树构造过程中进行剪枝;能够完成对 连续属性的离散化处理;能够对不完整数据进行处理。 三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及Microsoft SQL Server套件 四、实验方法、步骤(或:程序代码或操作过程) (一)准备Analysis Services 数据库 1.Analysis Services 项目创建成功 2.更改存储数据挖掘对象的实例

数据挖掘报告

哈尔滨工业大学 数据挖掘理论与算法实验报告(2016年度秋季学期) 课程编码S1300019C 授课教师邹兆年 学生姓名汪瑞 学号 16S003011 学院计算机学院

一、实验内容 决策树算法是一种有监督学习的分类算法;kmeans是一种无监督的聚类算法。 本次实验实现了以上两种算法。在决策树算法中采用了不同的样本划分方式、不同的分支属性的选择标准。在kmeans算法中,比较了不同初始质心产生的差异。 本实验主要使用python语言实现,使用了sklearn包作为实验工具。 二、实验设计 1.决策树算法 1.1读取数据集 本次实验主要使用的数据集是汽车价值数据。有6个属性,命名和属性值分别如下: buying: vhigh, high, med, low. maint: vhigh, high, med, low. doors: 2, 3, 4, 5more. persons: 2, 4, more. lug_boot: small, med, big. safety: low, med, high. 分类属性是汽车价值,共4类,如下: class values:unacc, acc, good, vgood 该数据集不存在空缺值。

由于sklearn.tree只能使用数值数据,因此需要对数据进行预处理,将所有标签类属性值转换为整形。 1.2数据集划分 数据集预处理完毕后,对该数据进行数据集划分。数据集划分方法有hold-out法、k-fold交叉验证法以及有放回抽样法(boottrap)。 Hold—out法在pthon中的实现是使用如下语句: 其中,cv是sklearn中cross_validation包,train_test_split 方法的参数分别是数据集、数据集大小、测试集所占比、随机生成方法的可

数据挖掘课程报告

数据挖掘课程报告 学习“数据挖掘”这门课程已经有一个学期了,在这十余周的学习过程中,我对数据挖掘这门技术有了一定的了解,明确了一些以前经常容易混淆的概念,并对其应用以及研究热点有了进一步的认识。以下主要谈一下我的心得体会,以及我对数据挖掘这项课题的见解。 随着数据库技术和计算机网络的迅速发展以及数据库管理系统的广泛应用,

人们积累的数据越来越多,而数据挖掘(Data Mining)就是在这样的背景下诞生的。 简单来说,数据挖掘就是从大量的数据中,抽取出潜在的、有价值的知识、模型或规则的过程。作为一类深层次的数据分析方法,它利用了数据库、人工智能和数理统计等多方面的技术。从某种角度上来说,数据挖掘可能并不适合进行科学研究,因为从本质上来说,数据挖掘这个技术是不能证明因果的,以一个最典型的例子来说,例如数据挖掘技术可以发现啤酒销量和尿布之间的关系,但是显然这两者之间紧密相关的关系可能在理论层面并没有多大的意义。不过,仅以此来否定数据挖掘的意义,显然就是对数据挖掘这项技术价值加大的抹杀,显然,数据挖掘这项技术从设计出现之初,就不是为了指导或支持理论研究的,它的重要意义在于,它在应用领域体现出了极大地优越性。 首先有一点是我们必须要明确的,即我们为什么需要数据挖掘这门技术?这也是在开课前一直困扰我的问题。数据是知识的源泉,然而大量的数据本身并不意味信息。尽管现代的数据库技术使我们很容易存储大量的数据,但现在还没有一种成熟的技术帮助我们分析、理解这些数据。数据的迅速增加与数据分析方法的滞后之间的矛盾越来越突出,人们希望在对已有的大量数据分析的基础上进行研究,但是目前所拥有的数据分析工具很难对数据进行深层次的处理,使得人们只能望“数”兴叹。数据挖掘正是为了解决传统分析方法的不足,并针对大规模数据的分析处理而出现的。数据挖掘可以帮助人们对大规模数据进行高效的分析处理,以节约时间,将更多的精力投入到更高层的研究中,从而提高科研工作的效率。 那么数据挖掘可以做些什么呢?数据挖掘的研究领域非常广泛,主要包括数据库系统、基于知识的系统、人工智能、机器学习、知识获取、统计学、空间数据库和数据可视化等领域。具体来说,它可以做这七件事情:分类,估计,预测,关联分析,聚类分析,描述和可视化,复杂数据类型挖掘。在本学期的学习过程中,我们对大部分内容进行了较为详细的研究,并且建立了一些基本的概念,对将来从事相关方向的研究奠定了基础。由于篇幅限制,就不对这些方法一一讲解了,这里只谈一下我在学习工程中的一些见解和心得。 在学习关联规则的时候,我们提到了一个关于“尿布与啤酒”的故事:在一

eviews面板数据实例分析

1、已知1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(cp,不变价格)与人均收入(ip,不变价格)居民,利用数据(1)建立面板数据(panel data)工作文件;(2)定义序列名并输入数据;(3)估计选择面板模型;(4)面板单位根检验。 年人均消费(consume)与人均收入(income)数据以及消费者价格指数(p)分别见表9、1,9、2与9、3。 表9、1 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(元)数据人均消费1996 1997 1998 1999 2000 2001 2002 CONSUMEAH 3607、43 3693、55 3777、41 3901、81 4232、98 4517、65 4736、52 CONSUMEBJ 5729、52 6531、81 6970、83 7498、48 8493、49 8922、72 10284、6 CONSUMEFJ 4248、47 4935、95 5181、45 5266、69 5638、74 6015、11 6631、68 CONSUMEHB 3424、35 4003、71 3834、43 4026、3 4348、47 4479、75 5069、28 CONSUMEHLJ 3110、92 3213、42 3303、15 3481、74 3824、44 4192、36 4462、08 CONSUMEJL 3037、32 3408、03 3449、74 3661、68 4020、87 4337、22 4973、88 CONSUMEJS 4057、5 4533、57 4889、43 5010、91 5323、18 5532、74 6042、6 CONSUMEJX 2942、11 3199、61 3266、81 3482、33 3623、56 3894、51 4549、32 CONSUMELN 3493、02 3719、91 3890、74 3989、93 4356、06 4654、42 5342、64 CONSUMENMG 2767、84 3032、3 3105、74 3468、99 3927、75 4195、62 4859、88 CONSUMESD 3770、99 4040、63 4143、96 4515、05 5022 5252、41 5596、32 CONSUMESH 6763、12 6819、94 6866、41 8247、69 8868、19 9336、1 10464 CONSUMESX 3035、59 3228、71 3267、7 3492、98 3941、87 4123、01 4710、96 CONSUMETJ 4679、61 5204、15 5471、01 5851、53 6121、04 6987、22 7191、96 CONSUMEZJ 5764、27 6170、14 6217、93 6521、54 7020、22 7952、39 8713、08 表9、2 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均收入(元)数据人均收入1996 1997 1998 1999 2000 2001 2002 INCOMEAH 4512、77 4599、27 4770、47 5064、6 5293、55 5668、8 6032、4 INCOMEBJ 7332、01 7813、16 8471、98 9182、76 10349、69 11577、78 12463、92 INCOMEFJ 5172、93 6143、64 6485、63 6859、81 7432、26 8313、08 9189、36 INCOMEHB 4442、81 4958、67 5084、64 5365、03 5661、16 5984、82 6679、68 INCOMEHLJ 3768、31 4090、72 4268、5 4595、14 4912、88 5425、87 6100、56 INCOMEJL 3805、53 4190、58 4206、64 4480、01 4810 5340、46 6260、16 INCOMEJS 5185、79 5765、2 6017、85 6538、2 6800、23 7375、1 8177、64 INCOMEJX 3780、2 4071、32 4251、42 4720、58 5103、58 5506、02 6335、64 INCOMELN 4207、23 4518、1 4617、24 4898、61 5357、79 5797、01 6524、52 INCOMENMG 3431、81 3944、67 4353、02 4770、53 5129、05 5535、89 6051 INCOMESD 4890、28 5190、79 5380、08 5808、96 6489、97 7101、08 7614、36 INCOMESH 8178、48 8438、89 8773、1 10931、64 11718、01 12883、46 13249、8 INCOMESX 3702、69 3989、92 4098、73 4342、61 4724、11 5391、05 6234、36 INCOMETJ 5967、71 6608、39 7110、54 7649、83 8140、5 8958、7 9337、56 INCOMEZJ 6955、79 7358、72 7836、76 8427、95 9279、16 10464、67 11715、6 表9、3 1996—2002年中国东北、华北、华东15个省级地区的消费者物价指数物价指数1996 1997 1998 1999 2000 2001 2002 PAH 109、9 101、3 100 97、8 100、7 100、5 99

数据挖掘实验报告(一)

数据挖掘实验报告(一) 数据预处理 姓名:李圣杰 班级:计算机1304 学号:1311610602

一、实验目的 1.学习均值平滑,中值平滑,边界值平滑的基本原理 2.掌握链表的使用方法 3.掌握文件读取的方法 二、实验设备 PC一台,dev-c++5.11 三、实验内容 数据平滑 假定用于分析的数据包含属性age。数据元组中age的值如下(按递增序):13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70。使用你所熟悉的程序设计语言进行编程,实现如下功能(要求程序具有通用性): (a) 使用按箱平均值平滑法对以上数据进行平滑,箱的深度为3。 (b) 使用按箱中值平滑法对以上数据进行平滑,箱的深度为3。 (c) 使用按箱边界值平滑法对以上数据进行平滑,箱的深度为3。 四、实验原理 使用c语言,对数据文件进行读取,存入带头节点的指针链表中,同时计数,均值求三个数的平均值,中值求中间的一个数的值,边界值将中间的数转换为离边界较近的边界值 五、实验步骤 代码 #include #include #include #define DEEP 3 #define DATAFILE "data.txt" #define VPT 10 //定义结构体 typedef struct chain{ int num; struct chain *next; }* data; //定义全局变量 data head,p,q; FILE *fp; int num,sum,count=0; int i,j; int *box; void mean(); void medain(); void boundary(); int main () { //定义头指针 head=(data)malloc(sizeof(struc t chain)); head->next=NULL; /*打开文件*/ fp=fopen(DATAFILE,"r"); if(!fp) exit(0); p=head; while(!feof(fp)){

《数据挖掘》结课报告

《数据挖掘》结课报告 --基于k-最近邻分类方法的连衣裙属性数据集的研究报告 (2013--2014 学年第二学期) 学院: 专业: 班级: 学号: 姓名: 指导教师: 二〇一四年五月二十四日

一、研究目的与意义 (介绍所选数据反应的主题思想及其研究目的与意义) 1、目的 (1)熟悉weka软件环境; (2)掌握数据挖掘分类模型学习方法中的k-最近邻分类方法; (3)在weka中以“Dress Attribute DataSet”为例,掌握k-最近邻分类算法的相关方法; (4)取不同的K值,采用不同的预测方法,观察结果,达到是否推荐某款连衣裙的目的,为企业未来的规划发展做出依据。 2、意义 此数据集共有14个属性,500个实例,包含了连衣裙的各种属性和根据销售量的不同而出现的推荐情况,按照分类模型学习方法中的k-最近邻分类方法依据各属性推断应推广哪些种类的裙子,对发展市场的扩大及企业的发展战略具有重要意义。 二、技术支持 (介绍用来进行数据挖掘、数据分析的方法及原理) 1、原理:k-最近邻分类算法是一种基于实例的学习方法,不需要事先对训练数据建立分类模型,而是当需要分类未知样本时才使用具体的训练样本进行预测,通过在训练集中找出测试集的K个最近邻,来预测估计测试集的类标号; 2、方法:k-最近邻方法是消极学习方法的典型代表,其算法的关键技术是搜索模式空间,该方法首先找出最近邻即与测试样本相对

接近的所有训练样本,然后使用这些最近邻的类标号来确定测试样本的类标号。 三、数据处理及操作过程 (一)数据预处理方法 1、“remove”属性列:数据集中属性“Dress_ID”对此实验来说为无意义的属性,因此在“Attributes”选项中勾选属性“Dress_ID”并单击“remove”,将该属性列去除,并保存新的数据集; 2、离散化预处理:需要对数值型的属性进行离散化,该数据集中只有第3个属性“rating”和第13个属性“recommendation”为数值型,因此只对这两个属性离散化。 “recommendation”属性只有2个取值:0,1,因此用文本编辑器“Ultra Edit”或者写字板打开数据集并直接修改“Dress Attribute Data Set.arff”文件,把“@attribute recommendation numeric”改为“@attribute recommendation {0,1,}”,并保存;在“Explorer”中重新打开“Dress Attribute Data Set.arff”,选中“recommendation”属性后,右方的属性摘要中“Type”值变为“Nominal”。 在过滤器Filter中单击“choose”,出现树形图,单击“weka”--“Filters”--“unsupervised”--“attribute”--“discretize”,点击“Choose”右边的文本框进行参数设置,把“attribute Indices”右边改成“3”,计划将该属性分成3段,于是把“bins”改成“3”,其它参数不更改,点“OK”回到“Explorer”,单击“Apply”离散化后的数据如下所示:

Eviews面板大数据之固定效应模型

Eviews 面板数据之固定效应模型 在面板数据线性回归模型中,如果对于不同的截面或不同的时间序列,只是模型的截距项是不同的,而模型的斜率系数是相同的,则称此模型为固定效应模型。固定效应模型分为三类: 1.个体固定效应模型 个体固定效应模型是对于不同的纵剖面时间序列(个体)只有截距项不同的模型: 2 K it i k kit it k y x u λβ==++∑ (1) 从时间和个体上看,面板数据回归模型的解释变量对被解释变量的边际影响均是相同的,而且除模型的解释变量之外,影响被解释变量的其他所有(未包括在回归模型或不可观测的)确定性变量的效应只是随个体变化而不随时间变化时。 检验:采用无约束模型和有约束模型的回归残差平方和之比构造F 统计量,以检验设定个体固定效应模型的合理性。F 模型的零假设: 01231:0N H λλλλ-===???== ()1 (1,(1)1)(1) RRSS URSS N F F N N T K URSS NT N K --= ---+--+ RRSS 是有约束模型(即混合数据回归模型)的残差平方和,URSS 是无约束模型ANCOVA 估计的残差平方和或者LSDV 估计的残差平方和。 实践: 一、数据:已知1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(cp ,不变价格)和人均收入(ip ,不变价格)居民,利用数据(1)建立面板数据(panel data )工作文件;(2)定义序列名并输入数据;(3)估计选择面板模型;(4)面板单位根检验。年人均消费(consume )和人均收入(income )数据以及消费者价格指数(p )分别见表1,2和3。 表1 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(元)数据

数据挖掘报告(模板)

第一章:数据挖掘基本理论 数据挖掘的产生: 随着计算机硬件和软件的飞速发展,尤其是数据库技术与应用的日益普及,人们面临着快速扩张的数据海洋,如何有效利用这一丰富数据海洋的宝藏为人类服务业已成为广大信息技术工作者的所重点关注的焦点之一。与日趋成熟的数据管理技术与软件工具相比,人们所依赖的数据分析工具功能,却无法有效地为决策者提供其决策支持所需要的相关知识,从而形成了一种独特的现象“丰富的数据,贫乏的知识”。 为有效解决这一问题,自二十世纪90年代开始,数据挖掘技术逐步发展起来,数据挖掘技术的迅速发展,得益于目前全世界所拥有的巨大数据资源以及对将这些数据资源转换为信息和知识资源的巨大需求,对信息和知识的需求来自各行各业,从商业管理、生产控制、市场分析到工程设计、科学探索等。数据挖掘可以视为是数据管理与分析技术的自然进化产物。自六十年代开始,数据库及信息技术就逐步从基本的文件处理系统发展为更复杂功能更强大的数据库系统;七十年代的数据库系统的研究与发展,最终导致了关系数据库系统、数据建模工具、索引与数据组织技术的迅速发展,这时用户获得了更方便灵活的数据存取语言和界面;此外在线事务处理手段的出现也极大地推动了关系数据库技术的应用普及,尤其是在大数据量存储、检索和管理的实际应用领域。 自八十年代中期开始,关系数据库技术被普遍采用,新一轮研究与开发新型与强大的数据库系统悄然兴起,并提出了许多先进的数据模型:扩展关系模型、面向对象模型、演绎模型等;以及应用数据库系统:空间数据库、时序数据库、 多媒体数据库等;日前异构数据库系统和基于互联网的全球信息系统也已开始出现并在信息工业中开始扮演重要角色。

数据挖掘案例分析--啤酒与尿布讲课稿

前言 “啤酒与尿布”的故事是营销届的神话,“啤酒”和“尿布”两个看上去没有关系的商品摆放在一起进行销售、并获得了很好的销售收益,这种现象就是卖场中商品之间的关联性,研究“啤酒与尿布”关联的方法就是购物篮分析,购物篮分析曾经是沃尔玛秘而不宣的独门武器,购物篮分析可以帮助我们在门店的销售过程中找到具有关联关系的商品,并以此获得销售收益的增长! 商品相关性分析是购物篮分析中最重要的部分,购物篮分析英文名为market basket analysis(简称MBA,当然这可不是那个可以用来吓人的学位名称)。在数据分析行业,将购物篮的商品相关性分析称为“数据挖掘算法之王”,可见购物篮商品相关性算法吸引人的地方,这也正是我们小组乐此不疲的围绕着购物篮分析进行着研究和探索的根本原因。 购物篮分析的算法很多,比较常用的有A prior/ ?’ p r i ?/算法、FP-tree结构和相应的FP-growth算法等等,上次课我们组的邓斌同学已经详细的演示了购物篮分析的操作流程,因此在这里我不介绍具体的购物篮分析算法,而是在已经获得的结果的基础上剖析一下数据身后潜藏的商业信息。目前购物篮分析的计算方法都很成熟,在进入20世纪90年代后,很多分析软件均将一些成熟的购物篮分析算法打包在自己的软件产品中,成为了软件产品的组成部分,客户购买了这些软件产品后就等于有了购物篮分析的工具,比如我们正在使用的Clementine。 缘起 “啤酒与尿布”的故事可以说是营销界的经典段子,在打开Google搜索一下,你会发现很多人都在津津乐道于“啤酒与尿布”,可以说100个人就有100个版本的“啤酒与尿布”的故事。故事的时间跨度从上个世纪80年代到本世纪初,甚至连故事的主角和地点都会发生变化——从美国跨越到欧洲。认真地查了一下资料,我们发现沃尔玛的“啤酒与尿布”案例是正式刊登在1998年的《哈佛商业评论》上面的,这应该算是目前发现的最权威报道。 “啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。 在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒,这样就会出现啤酒与尿布这两件看上去不相干的商品经常会出现在同一个购物篮的现象。如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店,直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布”故事的由来。 当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal (个人翻译--艾格拉沃)提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提出了商品关联关系的计算方法——A prior算法。沃尔玛从上个世纪90年代尝试将A prior算法引入到POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。 “啤酒和尿布”的故事为什么产生于沃尔玛超市的卖场中

数据挖掘实验报告

数据挖掘实验报告 ——加权K-近邻法 一、 数据源说明 1. 数据理解 数据来自于天猫对顾客的BuyOrNot(买与不买),BuyDNactDN(消费活跃度),ActDNTotalDN(活跃度),BuyBBrand(成交有效度),BuyHit(活动有效度)这五个变量的统计。 数据分成两类数据,一类作为训练数据集,一类为测试数据集。 2.数据清理 现实世界的数据一般是不完整的、有噪声的和不一致的。数据清理例程试图填充缺失的值,光滑噪声并识别离群点,并纠正数据中的不一致。 a) 缺失值:当数据中存在缺失值是,忽略该元组 b) 噪声数据:本文暂没考虑。 二、 基于变量重要性的加权K-近邻法[1] 由于我们计算K-近邻法默认输入变量在距离测度中有“同等重要”的贡献,但情况并不总是如此。我们知道不同的变量对我们所要预测的变量的作用是不一定一样的,所以找出对输出变量分类预测有意义的重要变量对数据预测具有重要作用。同时也可以减少那些对输出变量分类预测无意义的输入变量,减少模型的变量。为此,采用基于变量重要性的K-近邻法,计算加权距离,给重要的变量赋予较高的权重,不重要的变量赋予较低的权重是必要的。 (1)算法思路: 我们引进1w 为第i 个输入变量的权重,是输入变量重要性(也称特征重要性),FI 函数,定义为:∑== p j i FI FI 1 ) i ()((i)w 。其中(i)FI 为第i 个输入变量的特征重要性, ∑=<1,1w )((i)i w 这里,(i)FI 依第i 个输入变量对预测误差的影响定义。设输入 变量集合包含p 个变量:p x x x x ,...,,,321。剔除第i 个变量后计算输入变量

大数据挖掘商业案例

1.前言 随着中国加入WTO,国金融市场正在逐步对外开放,外资金融企业的进入在带来先进经营理念的同时,无疑也加剧了中国金融市场的竞争。金融业正在快速发生变化。合并、收购和相关法规的变化带来了空前的机会,也为金融用户提供了更多的选择。节约资金、更完善的服务诱使客户转投到竞争对手那里。即便是网上银行也面临着吸引客户的问题,最有价值的客户可能正离您而去,而您甚至还没有觉察。在这样一种复杂、激烈的竞争环境下,如何才能吸引、增加并保持最好的客户呢? 数据挖掘、模式(Patterns>等形式。用统计分析和数据挖掘解决商务问题。 金融业分析方案可以帮助银行和保险业客户进行交叉销售来增加销售收入、对客户进行细分和细致的行为描述来有效挽留有价值客户、提高市场活动的响应效果、降低市场推广成本、达到有效增加客户数量的目的等。 客户细分―使客户收益最大化的同时最大程度降低风险 市场全球化和购并浪潮使市场竞争日趋激烈,新的管理需求迫切要求金融机构实现业务革新。为在激烈的竞争中脱颖而出,业界领先的金融服务机构正纷纷采用成熟的统计分析和数据挖掘技术,来获取有价值的客户,提高利润率。他们在分析客户特征和产品特征的同时,实现客户细分和市场细分。 数据挖掘实现客户价值的最大化和风险最小化。SPSS预测分析技术能够适应用于各种金融服务,采用实时的预测分析技术,分析来自各种不同数据源-来自ATM、交易、呼叫中心以及相关分支机构的客户数据。采用各种分析技术,发现数据中的潜在价值,使营销活动更具有针对性,提高营销活动的市场回应率,使营销费用优化配置。 客户流失―挽留有价值的客户 在银行业和保险业,客户流失也是一个很大的问题。例如,抵押放款公司希望知道,自己的哪些客户会因为竞争对手采用低息和较宽松条款的手段而流失;保险公司则希望知道如何才能减少取消保单的情况,降低承包成本。 为了留住最有价值的客户,您需要开展有效的保留活动。然而,首先您需要找出最有价值的客户,理解他们的行为。可以在整个客户群的很小一部分中尽可能多地找出潜在的流失者,从而进行有效的保留活动并降低成本。接着按照客户的价值和流失倾向给客户排序,找出最有价值的客户。 交叉销售 在客户关系管理中,交叉销售是一种有助于形成客户对企业忠诚关系的重要工具,有助于企业避开“挤奶式”的饱和竞争市场。由于客户从企业那里获得更多的产品和服务,客户与企业的接触点也就越多,企业就越有机会更深入地了解客户的偏好和购买行为,因此,企业提高满足客户需求的能力就比竞争对手更有效。 研究表明,银行客户关系的年限与其使用的服务数目、银行每个账户的利润率之间,存在着较强的正相关性。企业通过对现有客户进行交叉销售,客户使用企业的服务数目就会增多,客户使用银行服务的年限就会增大,每个客户的利润率也随着增大。 从客户的交易数据和客户的自然属性中寻找、选择最有可能捆绑在一起销售的产品和服务,发现有价值的产品和服务组合,从而有效地向客户提供额外的服务,提高活期收入并提升客户的收益率。

EViews面板数据模型估计教程

EViews 6.0 beta在面板数据模型估计中的应用 来自免费的minixi 1、进入工作目录cd d:\nklx3,在指定的路径下工作是一个良好的习惯 2、建立面板数据工作文件workfile (1)最好不要选择EViews默认的blanaced panel 类型 Moren_panel (2)按照要求建立简单的满足时期周期和长度要求的时期型工作文件

3、建立pool对象 (1)新建对象 (2)选择新建对象类型并命名 (3)为新建pool对象设置截面单元的表示名称,在此提示下(Cross Section Identifiers: (Enter identifiers below this line )输入截面单元名称。,建议采用汉语拼音,例如29个省市区的汉语拼音,建议在拼音名前加一个下划线“_”,如图

关闭建立的pool对象,它就出现在当前工作文件中。 4、在pool对象中建立面板数据序列 双击pool对象,打开pool对象窗口,在菜单view的下拉项中选择spreedsheet (展开表) 在打开的序列列表窗口中输入你要建立的序列名称,如果是面板数据序列必须在序列名后添加“?”。例如,输入GDP?,在GDP后的?的作用是各个截面单元的占位符,生成了29个省市区的GDP的序列名,即GDP后接截面单元名,再在接时期,就表示出面板数据的3维数据结构(1变量2截面单元3时期)了。

请看工作文件窗口中的序列名。展开表(类似excel)中等待你输入、贴入数据。 (1)打开编辑(edit)窗口

(2)贴入数据 (3)关闭pool窗口,赶快存盘见好就收6、在pool窗口对各个序列进行单位根检验 选择单位根检验 设置单位根检验

数据挖掘期末实验报告

数据挖掘技术期末报告 理学院 姓名: 学号: 联系电话:

专业班级: 评分:优□|良□|中□|及格□|不及格□

一、实验目的 基于从UCI公开数据库中下载的数据,使用数据挖掘中的分类算法,用Weka 平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。二、实验环境 实验采用Weka平台,数据使用来自从UCI公开数据库中下载,主要使用其中的Breast Cancer Wisc-onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 三、实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size(均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。

数据挖掘实验报告一

数据预处理 一、实验原理 预处理方法基本方法 1、数据清洗 去掉噪声和无关数据 2、数据集成 将多个数据源中的数据结合起来存放在一个一致的数据存储中 3、数据变换 把原始数据转换成为适合数据挖掘的形式 4、数据归约 主要方法包括:数据立方体聚集,维归约,数据压缩,数值归约,离散化和概念分层等二、实验目的 掌握数据预处理的基本方法。 三、实验内容 1、R语言初步认识(掌握R程序运行环境) 2、实验数据预处理。(掌握R语言中数据预处理的使用) 对给定的测试用例数据集,进行以下操作。 1)、加载程序,熟悉各按钮的功能。 2)、熟悉各函数的功能,运行程序,并对程序进行分析。 对餐饮销量数据进统计量分析,求销量数据均值、中位数、极差、标准差,变异系数和四分位数间距。 对餐饮企业菜品的盈利贡献度(即菜品盈利帕累托分析),画出帕累托图。 3)数据预处理 缺省值的处理:用均值替换、回归查补和多重查补对缺省值进行处理 对连续属性离散化:用等频、等宽等方法对数据进行离散化处理 四、实验步骤 1、R语言运行环境的安装配置和简单使用 (1)安装R语言 R语言下载安装包,然后进行默认安装,然后安装RStudio 工具(2)R语言控制台的使用 1.2.1查看帮助文档

1.2.2 安装软件包 1.2.3 进行简单的数据操作 (3)RStudio 简单使用 1.3.1 RStudio 中进行简单的数据处理 1.3.2 RStudio 中进行简单的数据处理

2、R语言中数据预处理 (1)加载程序,熟悉各按钮的功能。 (2)熟悉各函数的功能,运行程序,并对程序进行分析 2.2.1 销量中位数、极差、标准差,变异系数和四分位数间距。 , 2.2.2对餐饮企业菜品的盈利贡献度(即菜品盈利帕累托分析),画出帕累托图。

数据挖掘技术期末报告

. 数据挖掘技术期末报告 评分:优□|良□|中□|及格□|不及格□

一、实验目的 基于从UCI公开数据库中下载的数据,使用数据挖掘中的分类算法,用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。 二、实验环境 实验采用Weka平台,数据使用来自从UCI公开数据库中下载,主要使用其中的Breast Cancer Wisc-onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 三、实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size(均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal

Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。 该数据的数据属性如下: 1. Sample code number(numeric),样本代码; 2. Clump Thickness(numeric),丛厚度; 3.Uniformity of Cell Size(numeric)均匀的细胞大小; 4. Uniformity of Cell Shape(numeric),均匀的细胞形状; 5.Marginal Adhesion(numeric),边际粘连; 6.Single Epithelial Cell Size(numeric),单一的上皮细胞大小; 7.Bare Nuclei(numeric),裸核; 8.Bland Chromatin(numeric),平淡的染色质; 9. Normal Nucleoli(numeric),正常的核仁; 10.Mitoses(numeric),有丝分裂; 11.Class(enum),分类。 3.2数据分析 由UCI公开数据库得到一组由逗号隔开的数据,复制粘贴至excel表中,选择数据——分列——下一步——逗号—

大数据应用案例

四大经典大数据应用案例解析 什么是数据挖掘(Data Mining)?简而言之,就是有组织有目的地收集数据,通过分析数据使之成为信息,从而在大量数据中寻找潜在规律以形成规则或知识的技术。在本文中,我们从数据挖掘的实例出发,并以数据挖掘中比较经典的分类算法入手,给读者介绍我们怎样利用数据挖掘的技术解决现实中出现的问题。 数据挖掘是如何解决问题的? 本节通过几个数据挖掘实际案例来诠释如何通过数据挖掘解决商业中遇到的问题。下面关于“啤酒和尿不湿”的故事是数据挖掘中最经典的案例。而Target 公司通过“怀孕预测指数”来预测女顾客是否怀孕的案例也是近来为数据挖掘学者最津津乐道的一个话题。

一、尿不湿和啤酒 很多人会问,究竟数据挖掘能够为企业做些什么?下面我们通过一个在数据挖掘中最经典的案例来解释这个问题——一个关于尿不湿与啤酒的故事。超级商业零售连锁巨无霸沃尔玛公司(Wal Mart)拥有世上最大的数据仓库系统之一。为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行了购物篮关联规则分析,从而知道顾客经常一起购买的商品有哪些。在沃尔玛庞大的数据仓库里集合了其所有门店的详细原始交易数据,在这些原始交易数据的基础上,沃尔玛利用数据挖掘工具对这些数据进行分析和挖掘。一个令人惊奇和意外的结果出现了:“跟尿不湿一起购买最多的商品竟是啤酒”!这是数据挖掘技术对历史数据进行分析的结果,反映的是数据的内在规律。那么这个结果符合现实情况吗?是否是一个有用的知识?是否有利用价值? 为了验证这一结果,沃尔玛派出市场调查人员和分析师对这一结果进行调查分析。经过大量实际调查和分析,他们揭示了一个隐藏在“尿不湿与啤酒”背后的美国消费者的一种行为模式: 在美国,到超市去买婴儿尿不湿是一些年轻的父亲下班后的日常工作,而他们中有30%~40%的人同时也会为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫不要忘了下班后为小孩买尿不湿,而丈夫们在买尿不湿后又随手带回了他们喜欢的啤酒。另一种情况是丈夫们在买啤酒时突然记起他们的责任,又去买了尿不湿。既然尿不湿与啤酒一起被购买的机会很多,那么沃尔玛就在他们所有的门店里将尿不湿与啤酒并排摆放在一起,结果是得到了尿不湿与啤酒的销售量双双增长。按常规思维,尿不湿与啤酒风马牛不相及,若不是

相关文档
最新文档