精选例题

精选例题
精选例题

一.改错题

7.改正图2-1中各项形位公差标注上的错误(不得改变形位公差项目)。

图2-1

8.改正图2-2中各项形位公差标注上的错误(不得改变形位公差项目)。

图2-2

9.改正图2-3中各项形位公差标注上的错误(不得改变形位公差项目)。

图2-3

10.改正图2-4中各项形位公差标注上的错误(不得改变形位公差项目)。

图2-4

11.改正图2-5中各项形位公差标注上的错误(不得改变形位公差项目)。

图2-5

12.改正图2-6中各项形位公差标注上的错误(不得改变形位公差项目)。

图2-6

13.改正图2-7中各项形位公差标注上的错误(不得改变形位公差项目)。

图2-7

14.改正图2-8中各项形位公差标注上的错误(不得改变形位公差项目)。

D

图2-8

二.标注题

15.将下列技术要求标注在图2-9上。

(1)φ100h6圆柱表面的圆度公差为0.005mm。

(2)φ100h6轴线对φ40P7孔轴线的同轴度公差为φ0.015mm。

(3)φ40P7孔的圆柱度公差为0.005mm。

(4)左端的凸台平面对φ40P7孔轴线的垂直度公差为0.01 mm。

(5)右凸台端面对左凸台端面的平行度公差为0.02 mm。

图2-9

16.将下列技术要求标注在图2-10。

(1)圆锥面的圆度公差为0.01 mm,圆锥素线直线度公差为0.02 mm。(2)圆锥轴线对φd1和φd2两圆柱面公共轴线的同轴度为0.05 mm。

(3)端面Ⅰ对φd1和φd2两圆柱面公共轴线的端面圆跳动公差为0.03 mm。(4)φd1和φd2圆柱面的圆柱度公差分别为0.008 mm和0.006 mm。

图2-10

17.将下列技术要求标注在图2-11上。

(1)左端面的平面度公差为0.01 mm,右端面对左端面的平行度公差为0.04 mm。

(2)φ70H7孔的轴线对左端面的垂直度公差为0.02mm。

(3)φ210h7轴线对φ70H7孔轴线的同轴度公差为φ0.03mm。

(4)4-φ20H8孔的轴线对左端面(第一基准)和φ70H7孔轴线的位置度公差为φ0.15mm。

图2-11

18.试将下列技术要求标注在图2-12上。

(1)2-φd轴线对其公共轴线的同轴度公差为φ0.02mm。

(2)φD轴线对2-φd公共轴线的垂直度公差为100 :0.02 mm。

(3)槽两侧面对φD轴线的对称度公差为0.04 mm。

图2-12

19.试将下列技术要求标注在图2-13上。

(1)圆锥面a的圆度公差为0.1 mm。

(2)圆锥面a对孔轴线b的斜向圆跳动公差为0.02mm。

(3)基准孔轴线b的直线度公差为0.005mm。

(4)孔表面c的圆柱度公差为0.0lmm。

(5)端面d对基准孔轴线b的端面全跳动公差为0.01mm。

(6)端面e对端面d的平行度公差为0.03mm。

图2-13

20.试将下列技术要求标注在图2-14上。

(1)φ30K7和φ50M7采用包容原则。

(2)底面F的平面度公差为0.02mm;φ30K7孔和φ50M7孔的内端面对它们的公共轴线的圆跳动公差为0.04 mm。

(3)φ30K7孔和φ50M7孔对它们的公共轴线的同轴度公差为0.03mm。

(4) 6-φ11H10对φ50M7孔的轴线和F面的位置度公差为0.05mm,基准要素的尺寸和被测要素的位置度公差应用最大实体要求。

图2-14

21.试将下列技术要求标注在图2-15上。

(l)φ5+0.05

mm的圆柱度误差不大于0.02mm,圆度误差不大于0.0015 mm。

-0.03

mm的轴线的端面圆跳动不大于(2)B面的平面度误差不大于0.001mm,B面对φ5+0.05

-0.03

0.04 mm,B面对C面的平行度误差不大于0.02mm。

mm轴线的端面圆跳动不大于0.04 mm。

(3)平面F对φ5+0.05

-0.03

mm内孔轴线的同轴度误差不大于0.2 mm。

(4)φ18d11外圆柱面的轴线对φ5+0.05

-0.03

(5)φ12b11外圆柱面轴线对φ5+0.05

mm孔轴线的同轴度误差不大于φ0.16 mm。

-0.03

mm孔轴线的同轴度误差不大于φ0.16 mm。

(6) 90°30″密封锥面G对φ5+0.05

-0.03

(7)锥面G 的圆度误差不大于0.002 mm 。

图2-15

22.试将下列技术要求标注在图2-16上。 (1)大端圆柱面的尺寸要求为φ45 0 -0.02,并采用包容要求。

(2)小端圆柱面轴线对大端圆柱面轴线的同轴度公差为0.03mrn 。

(3)小端圆柱面的尺寸要求为φ25土0.007mrn ,素线直线度公差为0.01mrn ,并采用包容要求。

(4)大端圆柱面的表面粗糙度R a 值不允许大于0.8μrn ,其余表面R a 值不允许大于1.6μrn 。

图2-16

23.试将下列技术要求标注在图2-17上。 (1)φd 圆柱面的尺寸为φ30 0 -0.025 mm ,采用包容要求,φD 圆柱面的尺寸为φ50 0 -0.039 mm ,采用独立原则。 (2)φd 表面粗糙度的最大允许值为R a =1.25μm ,φD 表面粗糙度的最大允许值为R a =2μm 。

(3)键槽侧面对φD 轴线的对称度公差为0.02 mm 。 (4)φD 圆柱面对φd 轴线的径向圆跳动量不超过0.03 mm ,轴肩端平面对φd 轴线的端面圆跳动不超过0.05 mm 。

图2-17

三.计算题:

43.若某零件的同轴度要求如图2-37所示,今测得实际轴线与基准轴线的最大距离为+0.04mm,最小距离为-0.01mm,求该零件的同轴度误差值,并判断是否合格。

37.如图2-31所示,被测要素采用的公差原则是__,最大实体尺寸是__mm,最小实体尺寸是__mm,实效尺寸是__mm。,垂直度公差给定值是__mm,垂直度公差最大补偿值是__mm。设孔的横截面形状正确,当孔实际尺寸处处都为φ60mm时,垂直度公差允许值是__mm,当孔实际尺寸处处都为φ60.10mm时,垂直度公差允许值是__mm。

28.按表2-5中的内容,说明图2-22中形位公差代号的含义。

表2-5

代 号解释代号含义公差带形状

两处两处

计数原理与排列组合经典题型

计数原理与排列组合题型解题方法总结 计数原理 一、知识精讲 1、分类计数原理: 2、分步计数原理: 特别注意:两个原理的共同点:把一个原始事件分解成若干个分事件来完成。 不同点:如果完成一件事情共有n类办法,这n类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理。分类时应不重不漏(即任一种方法必须属于某一类且只属于这一类) 如果完成一件事情需要分成n个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。各步骤有先后,相互依存,缺一不可。 3、排列 (1)排列定义,排列数 (2)排列数公式: (3)全排列列: 4.组合 (1)组合的定义,排列与组合的区别; (2)组合数公式: (3)组合数的性质 二、.典例解析 题型1:计数原理 例1.完成下列选择题与填空题 (1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。 A.81 B.64 C.24 D.4 (2)四名学生争夺三项冠军,获得冠军的可能的种数是( ) A.81 B.64 C.24 D.4 (3)有四位学生参加三项不同的竞赛, ①每位学生必须参加一项竞赛,则有不同的参赛方法有; ②每项竞赛只许有一位学生参加,则有不同的参赛方法有;

③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。 例2(1)如图为一电路图,从A 到B 共有 条不同的线路可通电。 例3: 把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢? 例4、某城在中心广场造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 ________ 种.(以数字作答) 例5、 四面体的顶点和各棱的中点共10个,在其中取4个不共面的点,问共有多少种不同的取法? 例6、(1)电视台在”欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现有主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果? (2)三边均为整数,且最大边长为11的三角形的个数是 D C B A

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法? 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种? 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法? 例77名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法? (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法? (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法? 例8计算下列各题: (1) 215 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法? 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有 例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ). 例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). 例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重 复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

排列组合练习题及答案精选

排列组合习题精选 一、纯排列与组合问题: 1. 从9人中选派2人参加某一活动,有多少种不同选法? 2. 从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法? 3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态” 和“环保”三个夏令营活动,已知共有 90种不同的方案,那么男、女同学的人数是( ) A.男同学2人,女同学6人 B. 男同学3人,女同学5人 C.男同学5人,女同学3人 D. 男同学6人,女同学2人 4. 一条铁路原有m 个车站,为了适应客运需要新增加n 个车站(n>1),则客运车票增加了58 种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有() A.12个 B.13 个 C.14 个 D.15 个 答案:1、 2 2 72 3 、选 B. 设男生n 2 1 3 2 2 9 9 n 8 n3 。、mn m C 362、A 人,则有C C A 904 A A58 选 C. 二、相邻问题: 1. A 、B 、C 、D 、E 五个人并排站成一列,若A 、B 必相邻,则有多少种不同排法? 2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这 些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为() A.720 B.1440 C.2880 D.3600 答案:1. 2 4 3 2 5 2 4 3 2 5 AA 48(2)选BAAA1440 三、不相邻问题: 1. 要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法? 1

二元一次方程组应用题归类及精选例题

二元一次方程组精选应用题库 二元一次方程组是最简单的方程组, 其应用广泛, 尤其是生活、 生产实践中的许多问题,大多需要通过设元、列二元一次方程组来加以解决。 列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即: ( 1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数; ( 2)找:找出能够表示题意两个相等关系; ( 3)列:根据这两个相等关系列出必需的代数式,从而列出方程组; ( 4)解:解这个方程组,求出两个未知数的值; ( 5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案 . 现将中考中常见的几种题型归纳如下: 一、市场营销问题 例 1(2005 年河南省实验区)某商场购进甲、乙两种服装后,都加价 40%标价出售 . “春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八 折和九折出售 . 某顾客购买甲、乙两种服装共付款 182 元,两种服装标价之和为 210 元. 问这两种服装的进价和标价各是多少元? 解:设甲种服装的标价为 x 元,则进价为 x 元;乙种服装的标价为 y 元, 则进价为 y 元. 由题意,得 1.4 1.4 x y 210, 解得, x 70, 0.8x 0.9 y 182. y 140. 所以, x =50(元), y =100(元) . 1.4 1.4 故甲种服装的进价和标价分别为 50 元、 70 元,乙种服装的进价和标价分别 为 100 元、 140 元. 二、生产问题 例 2(2005 年长沙市实验区)某工厂第一季度生产两种机器共 480 台. 改进 生产技术后,计划第二季度生产两种机器共 5544 台,其中甲种机器产量要比第 一季度增产 10%,乙种机器产量要比第一季度增产 20%. 该厂第一季度生产甲、 乙两种机器各多少台? 解:设该厂第一季度生产甲种机器 x 台,乙种机器 y 台. x y 480, 由题意,得 10%x 20% y 540 480. 解得, x 220, y 260.

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

排列组合的21种例题

高考数学复习 解排列组合应用题的21种策略 排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 A 、60种 B 、48种 C 、36种 D 、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是 A 、24种 B 、60种 C 、90种 D 、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有 A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是 A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有 A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、4441284 3 3 C C C A 种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 7.名额分配问题隔板法: 例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?

7.1力精选练习题(带答案)

7.1精选练习 1.(2019春?新密市期中)如图所示,人在水平路面上骑车,以下关于物体受力的描述正确的是() A.一个物体也能产生力的作用 B.相互接触的两个物体一定产生力的作用 C.路面受到人的压力 D.自行车受到路面的支持力 2.(2019?桂林)“梅西在发任意球时,能使足球由静止绕过人墙钻入球门。”该现象说明() A.力的作用是相互的 B.力可以改变物体的形状 C.力可以改变物体的运动状态 D.以上说法都不对 3.(2019?湘潭)《流浪地球》电影中描述到了木星。木星质量比地球大得多,木星对地球的引力大小为F1,地球对木星的引力大小为F2,则F1与F2的大小关系为() A.F1<F2B.F1>F2C.F1=F2D.无法确定 4.(2019?广州校模拟)下列关于力的说法中不正确的是() A.力是物体对物体的作用,不仅仅是人对物体的作用 B.如果有一个力产生,一定同时产生一个相互作用力

C.两个物体不接触也能产生力 D.人推墙,墙没有运动起来,也没有发生形变,因此墙没有受到力的作用 5.(2019?邵阳)俗话说“鸡蛋碰石头﹣﹣自不量力”,从物理学角度看() A.石头对鸡蛋的作用力更大 B.先有石头对鸡蛋的作用力 C.鸡蛋对石头的没有作用力 D.石头和鸡蛋间同时有等大的相互作用力 6.(2019?宜昌)在射箭运动中,以下关于力的作用效果的描述,其中一个与另外三个不同的是()A.瞄准时,手的拉力把弓拉弯 B.松手后,弓的弹力把箭射出 C.飞行中,重力让箭划出一道弧线 D.中靶时,靶的阻力让箭停止运动 7.(2019?内江)如图所示,坐在船上的人,用力推另只船,船就相互远离而去,这个现象表明力的作用是的,力可以改变物体的状态。 8.(2018?朝阳)观察图中的情况,可以明显说明力能改变物体运动状态的三个图是,明显说明力能使物体发生形变的三个图是。 9.(2017?德州)2017年4月20日,“天舟一号”货运飞船发射升空,22日与“天宫二号”太空舱顺利对接。,对接过程中,“天舟一号”多处向外“喷气”,调节运行姿态,此过程利用的力学知识:。10.(2019?哈尔滨)如图所示,请你画出静止在水平桌面上的茶壶所受力的示意图。(画图时用实心点O表示力的作用点)

因式分解精选例题(附答案)

因式分解例题讲解及练习 【例题精选】: (1) 评析:先查各项系数(其它字母暂时不瞧),确定5,15,20得最大公因数就是5,确定系数就是5 ,再查各项就是否都有字母X,各项都有时,再确定X得最低次幂就是几,至此确认提取X2,同法确定提Y,最后确定提公因式5X2Y。提取公因式后,再算出括号内各项。 解: = (2) 评析:多项式得第一项系数为负数,应先提出负号,各项系数得最大公因数为3,且相同字母最低次得项就是X2Y 解: = = = (3)(y-x)(c-b-a)-(x-y)(2a+b-c)-(x-y)(b-2a) 评析:在本题中,y-x与x-y都可以做为公因式,但应避免负号过多得情况出现,所以应提取y-x 解:原式=(y-x)(c-b-a)+(y-x)(2a+b-c)+(y-x)(b-2a) =(y-x)(c-b-a+2a+b-c+b-2a) =(y-x)(b-a) (4)(4)把分解因式 评析:这个多项式有公因式2x3,应先提取公因式,剩余得多项式16y4-1具备平方差公式得形式 解:=2=2= (5)(5)把分解因式 评析:首先提取公因式xy2,剩下得多项式x6-y6可以瞧作用平方差公式分解,最后再运用立方与立方差公式分解。

对于x6-y6也可以变成先运用立方差公式分解,但比较麻烦。 解: =xy2(x6-y6)= xy2[]= = (6)把分解因式 评析:把(x+y)瞧作一个整体,那么这个多项式相当于(x+y)得二次三项式,并且为降幂排列,适合完全平方公式。对于本例中得多项式切不可用乘法公式展开后再分解,而要注意观察分析,善于把(x+y)代换完全平方公式中得a,(6Z)换公式中得 解: ==(x+y-6z)2 (7)(7)把分解因式 评析:把x2-2y2与y2瞧作两个整体,那么这个多项式就就是关于x2-2y2与y2得二次三项式,但首末两项不就是有理数范围内得完全平方项,不能直接应用完全平方公式,但注意把首项系数提出后,括号里边实际上就就是一个完全平方式。 解: = = = (8)(8)分解因式a2-b2-2b-1 评析:初瞧,前两项可用平方差公式分解。采用“二、二”分组,原式=(a+b)(a-b)-(2b+1),此时无法继续分解。再仔细瞧,后三项就是一个完全平方式,应采用“一、三”分组。 解:a2-b2-2b-1= a2-(b2-2b+1)=a2-(b+1)2=[a+(b+1)][a-(b+1)]=(a-b-1)(a+b+1) 一般来说,四项式“一、三”分解,最后要用“平方差”。四项式“二、二”分组,只有前后两组出现公因式,才就是正确得分组方案。 (9)(9)把a2-ab+ac-bc分解因式

高考排列组合典型例题

高考排列组合典型例题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

排列组合典型例题 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个; 当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ??(个). ∴ 没有重复数字的四位偶数有 2296179250428181439 =+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有39A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千 位数是“0”排列数得:)(283914 A A A -?个 ∴ 没有重复数字的四位偶数有 22961792504)(28391439 =+=-?+A A A A 个.

排列组合专题复习与经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

初中精选数学计算题200道

计算题 c l 1.3 3 +(π+3)o- 3 27 +∣ 3 -2∣ 2. 5x+2 x2+x = 3 x+1 3. 3-x x-4+ 1 4-x=1 4. x2-5x=0 5. x2-x-1=0 6. 化简2 39x +6 x 4-2x 1 x 7. 因式分解x4-8x2y2+16y4 8. 2 2x+1+ 1 2x-1= 5 4x2-1 9. 因式分解(2x+y)2-(x+2y)2 10. 因式分解-8a2b+2a3+8ab2 11. 因式分解a4-16 12. 因式分解3ax2-6axy+8ab2 13. 先化简,再带入求值(x+2)(x-1)-x2-2x+1 x-1,x= 3 14. ( - 3 )o-∣-3∣+(-1)2015+(1 2) -1 15. ( 1 a-1- 1 a2-1 )÷ a2-a a2-1 16. 2(a+1)2+(a+1)(1-2a)

17. (2x-1 x+1-x+1)÷ x-2 x2+2x+1 18. (-3-1)×(- 3 2)2-2 -1÷(- 1 2)3 19. 1 2x-1=2 4 3 - 2 1 x 20. (x+1)2-(x+2)(x-2) 21. sin60°-∣1- 3 ∣+(1 2) -1 22.(-5)16×(-2)15 (结果以幂的形式表示) 23. 若n为正整数且(m n)2=9,求(1 3m 3n)3(m2)2n 24. 因式分解a2+ac-ab-bc 25. 因式分解x2-5x+6 26. 因式分解(x+2)(x+3)+x2-4 27. 因式分解(a2+1)2-4a2 28. -12016+18÷(-3)×∣-1 2∣ 29. 先化简,再求值3(x2+xy-1)-(3x2-2xy),其中x=1,y= - 1 5 30. 计算3-4+5-(-6)-7 31. 计算-12+(-4)2×∣-1 8∣-82÷(-4)3 32.计算20-(-7)-∣-2∣ 33.计算(1 3- 5 9+ 11 12)×(-36)

排列组合典型例题

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 A个; 9 当个位上在“2、4、6、8”中任选一个来排,

则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有2 8181 4 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296 179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9 A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:) (28391 4 A A A -?个 ∴ 没有重复数字的四位偶数有 2296 1792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 2 81 515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有 2 81414A A A ??个 ∴ 没有重复数字的四位偶数有

高中排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; ' (3)111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10=n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 " 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; ) (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

模电基础例题精选

二极管 1?. 本征半导体热激发时的两种载流子分别是、。 2. ?N型半导体多数载流子是 ,少数载流子是。 3.P型半导体多数载流子是 ,少数载流子是。 4.在常温下硅二极管的开启电压约为 V,导通后的正向压降 为, 5.在常温下锗二极管的开启电压约为V,导通后的正向压降 为 , 6.当PN结外加正向电压时,扩散电流漂移电流,耗尽层 ;当PN结外加反向电压时,扩散电流漂移电流,耗尽层 ; A.大于 B.小于 C. 等于D.变宽E.变窄F. 不变 7.PN结的空间电荷区有哪些称谓?为何这样称谓? 二极管有哪些特性?其中最重要的特性是。 1、在本征半导体中掺入三价元素后的半导体称为 B、P型半导体 2、N型半导体中少数载流子为 B、空穴 3、P型半导体是C、中性 4、PN结加正向电压时,其正向电流是 A、多数载流子扩散形成的 8、稳压二极管是利用PN结的 B、反向击穿特性 9、PN结反向电压的数值增大(小于击穿电压)C、其反向电流不变 1.15 试判断图1.40中的二极管是否导通,还是截止,并求出两端电压u AO

U0 =8v D的导通电压为0.7v u0=1V

6.5电路如图P6.5(a)所示,其输入电压v i1和vi2的波形如图(b)所示,二极管导通电压V D=0.7V。试画出输出电压v O的波形,并标出幅值。 v i1/V

解:u O 的波形如解图P1.2所示。 6.8二极管电路如图6.8所示,试判断各图中的二极管是导通还是截止,并求出AB 两端电压V AB ,设二极管是理想的。 解: 图a :将D断开,以O 点为电位参考点,D 的阳极电位为-6 V,阴极电位为-12 V,故 D 处 于正向偏置而导通,V AO =–6 V。 图b:对D 1有阳极电位为 0V,阴极电位为-12 V,故D1导通,此后使D 2的阴极电位为 0V, 而其阳极为-15 V,故D 2反偏截止,VAO =0 V 。 图c:对D 1有阳极电位为12 V,阴极电位为0 V,对D 2有阳极电位为12 V,阴极电位为 -6V.故D2更易导通,此后使VA =-6V;D 1反偏而截止,故V AO =-6V。 图P6.5 v R D 1 +V CC (5V ) D 2 v t t v i2/V (a) (b) v o 0.3 0.3 图P6.8 _ V AB D _ R 5k Ω D 2 6V 1212V D 1 + + A A V A B 15V _ D 2 12V D 1 + A V AB 6V R 5k Ω R 5k Ω (a) (b) (c)

(完整版)立体几何典型例题精选(含答案)

F E D C B A 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形, EF ∥平面ABCD , 1EF =,,90FB FC BFC ?=∠=,3AE =. (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值. 变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示. (1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2. (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个; 当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理 有281814 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296179250428181439 =+=??+A A A A 个. 典型例题二 例2 三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法 (2)如果女生必须全分开,可有多少种不同的排法 (3)如果两端都不能排女生,可有多少种不同的排法 (4)如果两端不能都排女生,可有多少种不同的排法 解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=?A A 种不同的排法. (2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都 有36A 种方法,因此共有144003655 =?A A 种不同的排法. (3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都 有66A 种排法,所以共有1440066 25=?A A 种不同的排法. (4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位 就不再受条件限制了,这样可有7715A A ?种不同的排法;如果首位排女生,有13A 种 排法,这时末位就只能排男生,有15A 种排法,首末两端任意排定一种情况后,

排列&组合计算公式及经典例题汇总

排列组合公式/排列组合计算公式 排列A------和顺序有关 组合 C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示. A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示. c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为 c(m+k-1,m). 排列(Anm(n为下标,m为上标)) Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n

相关文档
最新文档