年产10000吨石墨烯项目可行性研究报告

年产10000吨石墨烯项目可行性研究报告
年产10000吨石墨烯项目可行性研究报告

年产10000吨石墨烯项目

可行性研究报告

第一章石墨烯项目总论

第二章石墨烯项目建设背景及必要性

第三章石墨烯报告编写说明

第四章石墨烯建设规模及产品方案

第五章石墨烯项目节能分析

第六章石墨烯环境保护

第七章石墨烯项目进度规划

第八章石墨烯投资估算与资金筹措

第九章石墨烯经济效益分析

第十章石墨烯项目评价

第一章项目总论

一、项目提出理由

中国特色社会主义进入了新时代,我国社会经济发展也进入了新时代,其基本特征就是我国经济已由高速增长阶段转向高质量发展阶段。也就是说,不注重高质量,而一味地追求高速度,是不符合这个发展阶段的基本要求的,这就是阶段性变化带来的目标变化。这个判断非常重要。

从实践看,传统的产品仍可以通过持续创新,不断开拓市场。全球造船业遭遇“寒潮”,大家都说“船大掉头慢”,大部分船企半路“抛锚”,而我市仍有造船厂“顶住风浪”接到订单,造出数万吨巨轮逆势远航,其成功关键在于优化技术、强化质量,捕捉细化后的市场。“四换”工程特别强调“机器换人”、技术创新,它不仅给企业换出空间、节省资源、提高效率,还能提高品质、增加利润、赢得市场。各地要乘贯彻落实全国科技创新大会精神的东风,抓紧进行智能化和互联网化的科技改革,将新一代信息技术与制造业深度融合,有针对性地突破现阶段我市制造业发展中的技术瓶颈和薄弱环节,把转型升级往纵深推进。

二、项目基本情况

(一)项目名称

年产10000吨石墨烯项目

(二)项目选址

xxx新兴产业示范区

肇庆市位于广东省中西部,西江干流中下游,东部和东南部与佛山市、江门市接壤,西南与云浮市相连,西及西北与广西壮族自治区梧州市和贺州市交界,北部和东北部与清远市相邻。秦始皇三十三年(公元前214年)境域内设置的四会县,是广东省4个最早建制县之一。西汉元鼎六年(公元前111年)设高要县;隋朝开皇九年(公元589年)置端州;宋元符三年(1100年)改端州为兴庆军,重和元年(1118年)易名肇庆府,意为"开始吉庆"。1988年1月设立地级市。享有地方立法权。肇庆是远古岭南土著文化的发祥地之一。考古发现表明,距今14万年左右,肇庆已有人类活动;距今1万年左右,这里已开始向新石器时代过渡;大约5000年前,肇庆的先民已有锄耕农业、家畜饲养业、编织业以及较先进的制陶业。境内的春秋晚期至战国墓葬出土的青铜器,有受中原商周文化和长江流域楚越文化影响的痕迹,也有岭南文化的显著特征。从汉代到清代,肇庆多次成为岭南政治、经济、文化中心,是中原文化与岭南文化,中国传统文明与西方文明交汇较早的地区之一。建于明万历二十七年的楼阁式的砖砌宝塔德庆三元塔被当今古建筑界列为中国“古塔四绝”之—。江滨公园北回归线标志塔为中国大陆第一座北回归线标志塔。

(三)项目承办单位

某某某有限责任公司

通过持续快速发展,公司经济规模和综合实力不断增长,企业贡献力和影响力大幅提升。本公司集研发、生产、销售为一体。公司拥有雄厚的技术力

量,先进的生产设备以及完善、科学的管理体系。面对科技高速发展的二十一世纪,本公司不断创新,勇于开拓,以优质的产品、广泛的营销网络、优良的售后服务赢得了市场。产品不仅畅销国内,还出口全球几十个国家和地区,深受国内外用户的一致好评。

2015-2017年主要财务指标一览表

三、项目建设方案

(一)项目产品

该项目产品为石墨烯。

(二)项目建设原则

制造业是国民经济的支柱产业,是衡量一个国家或地区综合经济实力和国际竞争力的重要标志,它的兴衰印证着国家的兴衰。历史上中国曾是制造业第一大国,1850年前后旁落他国。经历了150年后,2010年我国再次成为制造业“世界第一”。在此背景下出台的《中国制造2025》,无疑为实现“从制造大国向制造强国的跨越”指明了方向。

可以预计,随着战略性新兴产业的进一步加速发展,这些顺应经济转型需要的新兴产业,正在成为中国经济蓄势前行的新动力。

(三)项目建设方案

项目拟定建设区域属于工业项目建设占地规划区,建设区总用地面积50446.92平方米(折合约75.67亩),代征公共用地面积2068.32平方米,净用地面积48378.6平方米(红线范围折合约72.57亩),土地综合利用率100%;项目建设遵循“合理和集约用地”的原则,按照石墨烯行业生产规范和要求进行科学设计、合理布局,符合石墨烯制造和经营的规划建设要求。

该工程规划建筑系数71.31%,建筑容积率1.02,建设区域绿化覆盖率6.86,办公及生活服务设施用地所占比重4.8%,固定资产投资强度3794.54万元/公顷,建设场区土地综合利用率100%;根据测算,本期工程项目建设完全符合《工业项目建设用地控制指标》(国土资发【2008】24号)文件规定的具体要求。

本期工程项目净用地面积48378.6平方米,建筑物基底占地面积34498.76

平方米,总建筑面积49399.36平方米,其中:规划建设主体工程37580.48平方米,仓储设施面积6434.35平方米(其中:原辅材料仓储设施3773.53平方米,成品贮存设施2660.82平方米),办公用房2902.71平方米,职工宿舍1112.71平方米,其他建筑面积1369.11平方米(含部分公用工程和辅助工程);根据测算:本期工程项目不计容建筑面积0平方米,计容建筑面积49399.36平方米;项目规划绿化面积3318.77平方米,场区停车场和道路及场地硬化占地面积9166.32平方米;土地综合利用面积48378.6平方米。

建筑工程投资一览表

四、投资计划

根据谨慎财务测算,项目总投资33675.7万元,其中:固定资产投资18357.98万元,占项目总投资的54.51%;流动资金15317.72万元,占项目总投资的45.49%。在固定资产投资中,建设投资18118.41万元,占项目总投资的53.8%;其中:建筑工程投资6600.33万元,占项目总投资的19.6%;设备购置费9817.52万元,占项目总投资的29.15%;安装工程费294.53万元,占项目总投资的0.87%;工程建设其他费用1138.27万元,占项目总投资的3.38%(其中:土地使用权费793.78万元,占项目总投资的2.36%);预备费267.76万元,占项目总投资的0.8%。建设期固定资产借款利息239.57万元,占项目总投资的0.71%。某某某有限责任公司计划自筹资金(资本金)25884.78万元,占项目总投资的76.86%;申请银行借款总额7790.92万元,占项目总投资的23.14%(项目建设期申请银行固定资产借款7790.92万元,占项目总投资的23.14%。

该项目建设期约为8个月,计划分两期进行建设。第一期:建设周期4个月,计划投资20205.421000万元;第二期:建设周期4个月,计划投资13470.28万元。

五、经济效益分析

项目建成投入正常运营后主要生产石墨烯类产品,根据谨慎财务测算,预期达纲年营业收入120611.93万元,总成本费用110509.85万元,税金及附加434.41万元,利润总额9667.67万元,利税总额14155.89万元,税后净利润7250.75万元,达纲年纳税总额6905.14万元;达纲年投资利润率28.71%,投资利税率42.04%,投资回报率21.53%,项目盈亏平衡点66.61%,全部投资财务内部收益率26.18%,财务净现值7067.816.286.28年,总投资收益率29.75%,资本金净利润率37.35%;提供就业职位1206个,达纲年综合节能量22.96吨标准煤/年,项目总节能率19.97%,具有显著的经济效益、社会效益和节能效益。

六、节能分析

“石墨烯项目”在设计过程中,对生产工艺、电气设备、建筑等方面采取有效节能措施,年用电量736035.45千瓦?时,年总用水量18013.97立方米,年消耗天然气10标准立方米,项目年综合总耗能量(当量值)92.01吨标准煤/年;工业产值综合能耗0.76千克标准煤/万元,单位现价增加值综合能耗4.88千克标准煤/万元,单位营业收入电耗6.1千瓦?时/万元,低于2017年某某某、某某某单位GDP能耗和单位现价增加值能耗。根据测算,与其他备选生产工艺技术相比,达纲年综合节能量22.96吨标准煤/年,项目总节能率19.97%,因此,该项目属于能源利用效果较好的项目。

七、环保和清洁生产

逐步建立体系完善的典型行业准入规范和典型装备绿色制造标准,把握好

绿色制造标准中国家、行业和团体标准等的区别定位和分级管理,突出行业特点,推进重点绿色标准制定。强化标准实施,通过开展标准培训、评价和监督,加强标准实施中的指导,发挥企业在标准实施中的主体作用,建设标准化信息服务平台,全面提升标准化服务能力。

八、项目综合评价

本期工程项目总投资33675.7万元,其中:建设投资18118.41万元,建设期固定资产借款利息239.57万元,流动资金15317.72万元;经测算分析,项目建成投产后达纲年营业收入120611.93万元,总成本费用110509.85万元,年利税总额14155.89万元,其中:税后净利润7250.75万元;纳税总额6905.14万元,其中:增值税4053.81万元,税金及附加434.41万元,年缴纳企业所得税2416.92万元;年利润总额9667.67万元,税后财务内部收益率26.18%,全部投资回收期6.28年,固定资产投资回收期3.42年,本期工程项目可以取得较好的经济效益。

本期工程项目通过对主要生产工艺和设备从投资经济性和先进性两方面进行综合比较、分析,选用的设备均具有当今国内外先进水平,具有生产效率高、性能稳定可靠等优点。

过去一年,国际环境扑朔迷离,复杂多变,国内发展任务繁重,异常艰巨。我们能够确保经济运行处于合理区间,经济结构调整出现积极变化,实现经济社会持续稳步发展,说到底,与全面深化改革取得重大进展密不可分。一年来,行政体制改革、财税体制改革、户籍制度改革、国有企业混合所有制改革、央

企负责人薪酬制度改革、考试招生制度改革、司法体制改革等亮点频频;一批与经济社会密切相关的商品和服务价格有序放开,进一步激发了市场活力;持续推进的简政放权措施和“负面清单”管理,极大地激发了全民创业兴业和带动就业的内在动力。

九、项目主要经济指标分析

主要经济指标一览表

第二章项目建设背景及必要性

一、项目建设背景

传统支柱产业面临的严峻困境,既有经济环境的外因,又有产业自身缺陷

的内因。综合来看造成这种困境的原因有以下三个方面:结构性问题突出。从产业结构看,传统支柱产业比重大、产业投资规模大、转型升级沉淀成本高,是我省传统支柱产业转型升级进展缓慢的一个主要制约因素。从产品结构看,总体上产品层次低,高端和终端产品少,高附加值产品不多。从企业结构看,大型龙头企业数量少,辐射带动力弱,导致产业链接度低,分工合作网络尚未形成。发展路径偏于保守。我省传统支柱产业基于投资和规模扩张的发展模式根深蒂固,大多数产品处于产业链前端和价值链中低端,产品附加值低。整体上产业链位置偏上游,价值链偏低端,发展方式偏传统,产业发展版图仍被固定在狭窄的空间内。自主创新能力不足。我省传统支柱产业长期以来走的是高投入、高消耗、低产出的发展模式,专注于发展能源原材料行业以及为能源原材料提供装备的重型制造业,这些传统产业企业专注于生产加工环节,在资本、技术、信息及人才等高端生产要素积累方面比较薄弱,重引进模仿、轻研发创新,创新能力不强,新产业、新产品更新换代缓慢,传统竞争优势正在逐渐丧失,新的竞争优势难以形成。

经济理论和实践也证明,虽然经济增长在一定程度上能够“水涨船高”式辐射到后发展地区,但同样也会产生“吸血式”虹吸效应,并不必然改善、甚至反而加剧“不平衡、不充分”的问题。说到底,将今年GDP增长目标设定为6.5%,尽显务实与前瞻视角。这不是在发展指标上松懈,而恰对应着对“高质量发展”的更加注重。而高质量发展是以人均福利增长为导向的,所以这也意味着,将更多关注经济带给国民的福利水平,这于社会于民众而言,堪称利好。近年来,中国新经济快速发展超出预期,移动支付、大数据、云计算、“互联

网+”等带动产业革命与产品创新。然而可以观察到,现有统计往往是适用于传统商业模式,并大多以法人单位(包括企业、事业行政单位)和个体经营户为主要调查对象。对新产业、新业态、新型商业模式等统计有所遗漏,同样容易造成GDP的低估。近两年中国新周期与旧模式并行,新经济的蓬勃发展或在统计中被忽视,未来应尽快就新经济的统计进行修正与改进,以使统计数据更准确地反映经济运行情况,为政策决策提供依据。

二、项目建设必要性分析

《中小企业促进法》完全符合新时期中国经济发展的实际,是时代的需要,历史的必然,它顺应了中小企业改革与发展的客观要求,中小企业的快速发展和提高从此有了强有力的法律保障。立法是基础,但关键在于付诸实施。因此,要动员社会各界认真学习、宣传和贯彻《中小企业促进法》,提高全社会促进中小企业发展的法律意识和思想观念,形成全社会关心和支持中小企业发展的良好氛围。各地区、各部门要按照“三个代表”要求,认真贯彻《中小企业促进法》,切实维护中小企业的合法权益,落实好中小企业扶持政策。要以《中小企业促进法》为基础,加快制定与之配套的法规和实施办法,并根据《中小企业促进法》规定的促进中小企业改革与发展的基本方针、政策和原则,尽快制定相应的地方性法规,使我国中小企业立法形成一个科学、完备、有序的体系。

我国制造业总体上处于产业链中低端,产品资源能源消耗高,劳动力成本优势不断削弱,加之当前经济进入中高速增长阶段,下行压力较大,在全球“绿

色经济”的变革中,要建设制造强国,统筹利用两种资源、两个市场,迫切需要加快制造业绿色发展,大力发展绿色生产力,更加迅速地增强绿色综合国力,提升绿色国际竞争力。这就要求我们形成节约资源、保护环境的产业结构、生产方式,改变传统的高投入、高消耗、高污染生产方式,建立投入低、消耗少、污染轻、产出高、效益好的资源节约型、环境友好型工业体系,这既是强国制造的基本特征,也是制造强国的本质要求。只有制造业实现了绿色发展,才能既为社会创造“金山银山”的物质财富,又保持自然环境的“青山绿水”,实现制造强国的梦想。

加快推动再生资源高效利用及产业规范发展。围绕废钢铁、废有色金属、废纸、废橡胶、废塑料、废油、废弃电器电子产品、报废汽车、废旧纺织品、废旧动力电池、建筑废弃物等主要再生资源,加快先进适用回收利用技术和装备推广应用。建设一批再生资源产业集聚区,推进再生资源跨区域协同利用,构建区域再生资源回收利用体系。落实生产者责任延伸制度,在电器电子产品、汽车领域等行业开展生产者责任延伸试点示范。促进行业秩序逐步规范,定期发布符合行业规范条件的企业名单,培育再生资源行业骨干企业。

第三章报告编写说明

投资可行性报告咨询服务分为政府审批核准用可行性研究报告和融资用可行性研究报告。审批核准用的可行性研究报告侧重关注项目的社会经济效益和影响;融资用报告侧重关注项目的盈利能力。具体概括为:政府立项审批、产

业扶持、银行贷款、融资投资、投资建设、境外投资、上市融资、中外合作、股份合作、组建公司、征用土地、申请高新技术企业等各类可行性报告。

第四章建设规模及产品方案

一、建设规模及主要内容

本期工程项目规划总用地面积50446.92平方米(折合约75.67亩),其中:代征公共用地面积2068.32平方米,净用地面积48378.6平方米(红线范围折合约72.57亩);计划建设主体工程和办公等配套设施,项目建(构)筑物主要包括:主体工程、辅助工程、公用工程和仓储、供配电、总图、服务、绿化、环境保护安全及消防设施等,预计场区规划总建筑面积49399.36平方米,其中:规划建设主体工程37580.48平方米,仓储设施面积6434.35平方米(其中:原辅材料仓储设施3773.53平方米,成品贮存设施2660.82平方米),办公用房2902.71平方米,职工宿舍1112.71平方米,其他建筑面积1369.11平方米(含部分公用工程和辅助工程);根据测算,本期工程项目不计容建筑面积0平方米,计容建筑面积49399.36平方米;预计建筑工程投资6600.33万元。

项目用地功能及建设指标平衡一览表

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

项目名称生物基石墨烯宏量制备及石墨烯在功能纤维中的产

项目名称:生物基石墨烯宏量制备及石墨烯在功能纤维中的产业化应用 提名意见: 石墨烯具有高导电性、高强度、高韧度等特点。将石墨烯与纺织纤维进行复合将赋予材料诸多优异性能。现有制备石墨烯方法面临着成本高,产量低,对环境产生严重污染等问题,亟待发展简单、安全无毒、低成本、厚度均一、高产率的工业化生产石墨烯材料的方法。 该项目发明了以玉米芯纤维素为原料,采用“基团配位组装”法制备石墨烯材料的新方法,突破了生物基石墨烯配位组装析炭、催化热裂解、精制分散关键技术;研发了石墨烯表面改性及在聚合物中的分散技术,解决了石墨烯在再生纤维素纤维、涤纶短纤维与锦纶 6 纺丝过程中易团聚、品质控制困难等问题;开发了专用组件过滤技术,制备了石墨烯改性再生纤维素纤维、涤纶短纤维与锦纶6 长丝,开发了石墨烯改性纤维高效纺纱系列加工技术、织物与染整技术,建立了石墨烯功能纺织品成型加工技术体系。项目授权国家发明专利26项,具有完整的知识产权体系,整体技术达到国际先进水平。 该项目建立了年产200 吨生物基石墨烯材料的生产线,年产2000 吨的石墨烯功能聚合物母粒生产线。在服饰、家纺、轻工等领域得到了广泛的应用。经济效益和社会效益显著。 提名该项目为国家技术发明二等奖。 项目简介: 石墨烯是一种技术含量非常高、应用潜力非常广泛的碳纳米材料,具有高导电性、高强度、高韧度等多种特点,在军工、航天、锂离子电池、新能源、新材料等新兴领域和传统领域,都将带来革命性的技术进步。将石墨烯与纺织纤维进行复合将赋予材料诸多优异性能。石墨烯包括了单层石墨烯、双层石墨烯、少层石墨烯,不同层数的石墨烯应用领域大相径庭。现有制备石墨烯包括了微机械剥离、SiC 高温热解、CVD 外延、化学还原等方法,这些方法面临着成本高,产量低,对环境产生严重污染等问题,亟待发展简单、安全无毒、低成本、厚度均一、高产率的工业化生产石墨烯材料的方法。 本项目发明了以玉米芯纤维素为原料,采用“基团配位组装”法制备石墨烯材

石墨烯介绍

1石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中,如图1所示。每个碳原子除了以σ键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,如图2所示,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。 图1 石墨烯的结构示意图 图2石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维 碳纳米管,也可堆叠形成三维的石墨 1.2石墨烯的性质 石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π 电子,这些电子可形成与平面垂直的π轨道,π 电子可在这种长程π 轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V·s),相当于光速的1/300,在特定条件,如液氦的温度下,更是可达到250000cm2/(V·s),远远超过其他半导体材料,如锑化铟、砷化镓、硅半

导体等。这使得石墨烯中的电子的性质和相对论性的中微子非常相似。并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ 键,因此石墨烯同样表现出优异的力学性能。最近,哥伦比亚大学科学家利用原子力显微镜直接测试了单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100 倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m·K), 优于碳纳米管,更是比一些常见金属,如金、银、铜等高10 倍以上。除了优异的传导性能及力学性能之外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。由于石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使石墨烯在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。 图3石墨烯的应用 2石墨烯聚酯复合材料的制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为聚合物纳米填料被广泛报道。为了获得优异性能的聚合物/石墨烯复合材料,首先要保证石墨烯在聚合物基体中均匀分散。石墨烯的分散与制备方法、石墨烯表面化学、橡胶种类以及石墨烯-橡胶界面有着密切关系。聚合物/石墨烯复合材料的制备方法主要有溶液共混、熔体加工、原位聚合和乳液共混四种方法。 2.1 溶液共混法 溶液共混法主要是采用聚合物本身聚合体系的有机溶剂,充分分散石墨烯于体系中,随着体系聚合反应进行,最后石墨烯均匀分散并充分结合于聚合物基体中,得到石墨烯/聚合物复合材料的一种方法。通常先制备氧化石墨烯作为前驱体,对其进行功能化改性使之能在聚合体系溶剂中分散,还原后与聚合物进行溶液共混,从而制备石墨烯/聚合物复合材料。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解聚合物的溶剂中。

石墨烯触摸屏技术应用初探

石墨烯触摸屏技术应用初探 【摘要】石墨烯凭借其高导电性、高韧度、高强度、高透明度、超大比表面积等优势成为新兴产业中的新兴材料,技术含量高,应用前景广,可以大幅提升原产品的优异性能。由石墨烯替代ITO制作而成的柔性触摸屏能够实现手机与平板电脑的完美统一,将带来消费电子领域划时代的变革。但触摸屏对石墨烯的面积要求大,目前大规模制备技术尚不成熟,且成本较高。本文分析了石墨烯的结构和性质,给出了石墨烯触摸屏的制备流程、工作机理、性能及发展现状。我们期待随着对其研究的深入,降低制备成本,提高生产效率,加快商业化进程。 【关键词】石墨烯;触摸屏;CVD;ITO;电阻式;电容式;发展现状 1.引言 人类对石墨烯的认识有一个发展变化的过程。传统理论曾一度错误地认为“石墨烯是假设性的结构,无法单独稳定地存在”。直至2004年,英国曼彻斯特大学安德烈·海姆和康斯坦丁·诺沃肖洛夫两位物理学家成功地在实验中从石墨中分离出石墨烯,而证实石墨烯可以单独存在,并非假设性的结构。两人也因此项杰出研究成果共同荣获2010年诺贝尔物理学奖。石墨烯从此进入大众视野,成为新材料家族中耀眼的明珠,甚至有人预言石墨烯将成为“改变21世纪的材料”。 近年来,众多科研人员对石墨烯的应用开展了广泛而深入的研究。由石墨烯替代ITO制作而成的柔性触摸屏能够实现手机与平板电脑的完美统一,使人机交互更加人性化。在不久的将来,如能实现石墨烯的低成本批量生产,石墨烯触摸屏将会凭借其优异的性能和适中的价格进入市场走向千家万户,将带来消费电子领域划时代的变革。 2.石墨烯概述 2.1 结构 石墨烯(Graphene)是一种由碳原子构成的单层片状结构的二维纳米新材料,是由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,看上去近似一张六边形网格构成的平面,如图1所示。 图1 2.2 机械特性 石墨烯是迄今为止世界上已知的最薄、最坚硬的二维纳米材料,比钻石还要坚硬,强度比世界上最优质的钢材还要高上百倍。石墨烯因其拥有完美的对称正六边形结构,非常稳定,而且各个碳原子之间的连接很柔韧,所以即使受到外力

石墨烯及其复合材料在水处理中的研究

石墨烯及其复合材料在水处理中的研究 摘要:石墨烯作为一种新型碳纳米材料,具有巨大的比表面积、较高的机械强度和稳定的化学性质等优点,在诸多领域有广泛的应用。石墨烯因具有巨大的比表面积和高的反应活性,作为一种优异的吸附材料在水处理方向具有较好的应用前景。本文概述了石墨烯及其复合材料在水处理方面的研究进展。石墨烯及其复合材料对于处理重金属离子和有机污染物质的吸附效果好,吸附容量高。最后对其在水处理中的应用前景做了展望。关键词:石墨烯;复合材料;吸附;水处理 引言 石墨烯(graphene,GN)自2004年发现以来,由于具有独特的结构与性能,很快成为新材料研究领域的热点。石墨烯是一种sp2杂化的碳原子以六边形排列的周期性蜂窝状二维碳质新材料[1]。石墨烯具有独特的物理化学性质[2],除强度较高外,其理论比表面积竟高达2630m2/g,孔隙结构较丰富,这一点使其成为良好吸附材料的基础[3]。除此之外,还具有良好热导率和电导率[4]~[5],可在传感器、电极材料、储氢材料等应用[6]。 石墨烯作为水处理材料,在环保领域拥有广阔的应用前景。这主要是因为,它具有二维的平面结构、开放的孔结构、良好的柔韧性、稳定的化学特性、巨大的比表面积等优点;石墨烯的比表面积比碳纳米管更大,吸附能力更强。从而应用石墨烯的优异性能,可将其加工成催化材料、吸附材料和过滤材料等,可以有效吸附水中的多种污染物。同时,由于制造石墨烯的石墨来源比较广泛,且石墨烯相比碳纳米管价格比较低廉,制备过程简单,许多学者开始研究石墨烯在水处理中的应用[7]~[8]。 本文介绍了石墨烯与水处理相关的主要性能,综述了石墨烯及其复合材料在水处理中的研究进展,并对当今石墨烯材料在水处理研究中遇到的挑战和问题做了进一步分析,对今后这一领域的研究作了展望。 1石墨烯及其复合材料在水处理中的研究 1.1石墨烯 石墨烯因其吸附原理简单、费用低及处理效果好等优点广泛应用在水环境治理中。巨大的比表面积使石墨烯成为良好的吸附材料。作为吸附剂在水处中的相关研究主要集中在吸附两类污染物:有机物与无机阴离子[9]。水中的有机污染物易与石墨烯表面发生相互作用,形成稳定的复合物,进一步得到去除。因而许多学者主要研究了石墨烯吸附去除水中的有机染料。 Liu 等人研究了石墨烯在不同温度、pH值、接触时间和浓度下对亚甲基蓝的吸附,研究发现石墨烯最大吸附量高达到153.85mg/g,吸附等温线符合Langmu模型[10]。Wu 等人研究了石墨烯对丙烯腈、甲苯磺酸及甲基蓝的吸附,与其他碳纳米材料相比,石墨烯表现出较强的吸附能力,甲基蓝因为有苯环和大分子,从而使石墨烯的吸附速度更快,吸附容量更大[11]。Li等人研究了石墨烯在不同温度、pH值、反应时间下对氟化物的吸附性能,结果发现在298K下,当氟化物的初始浓度为25mg/L时,石墨烯的吸附量可达17.65 mg/g[12]。石墨烯对无机污染物的吸附研究使其在水处理领域的研究进一步扩大。

石墨烯在触摸屏领域的应用

石墨烯在触摸屏领域的应用 摘要:石墨烯实质上是一种透明、良好的导体,适合用来制造透明触摸屏、光板、太阳能电池等产品,是一种用途非常广泛地材料。这里,着重介绍替代金属铟的材料石墨烯在未来触摸屏市场的应用前景,并提出杭州驰飞超声波设备有限公司(以下简称“驰飞超声波”)的新型石墨烯制备方法。 关键词:驰飞超声波;超声波纳米制备装置;石墨烯;触摸屏 随着全球电子设备触摸屏总面积的不断增长,生产触摸屏的稀有金属铟材料将被耗尽。因为现代触摸屏的表面都会用到一层铟锡氧化物,具有较好的透明性和导电性,所以广泛应用于显示产业领域。然而铟金属属于稀有金属,全球存量非常稀少,随着智能手机、平板电脑和其他现代电子设备需求量大增,未来铟金属将会告罄,而目前寻找铟金属的替代性材料成为全球各地热门的研发项目。 在未来几年内,全球触摸屏市场或许将出现铟金属的替代材料和技术,由于石墨烯具有极好的电导性和透光性,作为透明导电电极材料,在触摸屏、液晶显示等方面有很好的应用。故此,石墨烯被认为是触摸屏制造中最有潜力替代氧化铟锡的材料。 石墨烯的制成需要有尖端的制备工艺,目前业内主要有四种制备方法,分别是机械剥离法、外延生长法、氧化石墨还原法、和气相沉积法。从制造工艺来看,目前业内的四种方法均有各自的优势和缺陷;从实际情况看来,这四种方法制造工艺不稳定、成本居高不下,仍是石墨烯走向产业化最需要解决的问题。 驰飞超声波提出将超声波技术引入石墨烯制备过程中,研发超声波纳米制备装置。在石墨液体中,当声波的功率相当大,液体受到的负压力足够强时,石墨分子间的平均距离就会增大并超过极限距离。而超声波在石墨液体中会产生空化作用,使石墨粒子运动速度大大加快,达到剥离石墨形成单层或多层石墨烯。

年产一万吨味精发酵工厂设计讲课教案

年产一万吨味精发酵工厂设计 摘要:味精是一种家常调味品,它采用面筋或淀粉用微生物发酵的方法制成。别名又叫:味素、味粉、谷氨酸钠。味精又称味素,是调味料的一种,主要成分为谷氨酸钠。 一.设计的任务及主要设计内容 1.生产工艺阶段 味精生产全过程可划分为四个工艺阶段:(1).原料的预处理及淀粉水解糖的制备(2).种子扩大培养及谷氨酸发酵(3).谷氨酸的提取(4).谷氨酸制取味精及味精成品加工 2.设计内容 主要设计内容包括(1).工艺流程设计(2).物料衡算(3).设备的设计与选型(4).车间布置设计及物料管道设计 二.工艺流程设计

三.物料衡算 1.计算指标 主要技术指标见下表 (1)主要原材料质量指标 淀粉原料的淀粉含量为80%。含水14% (2)二级种子培养基(g/L ):水解糖50m ,糖蜜20,磷酸二铵钾1.0,硫酸镁0.6,玉米浆8,泡敌0.6,生物素0.02mg ,硫酸锰2mg/L ,硫酸亚铁2mg/L 。 (3)发酵初始培养基(g/L ):水解糖150,糖蜜4,硫酸镁0.6,氯化钾 0.8,磷酸0.2,生物素2μg ,泡敌1.0,接种量为8%。 2.物料衡算 首先计算生产1000Kg 纯度为100%的味精需耗用的原材料及其他物料量。 (1)设发酵初糖和流加高浓糖最终发酵液总糖浓度为220kg/m 3,则发酵液量为: 31 6.55m 122% 99.8%95%60%2201000 v =????= (2)发酵液配置需水解糖量 以纯糖计算:)(1441220m 11kg V == (3)二级种液量)(312m 0.5248%v v ==

(4)二级种子培养液所需水解糖总量)(kg 26.250v m 22== (5)生产1000kg 味精需水解糖总量)(kg 1467.2m m m 21=+= (6)耗用淀粉原料量 理论上,100kg 淀粉转化生成葡萄糖量为111kg ,故耗用淀粉量为: ) (淀粉kg 1529.9111% 108%80%1467.2 m =??= (7)液氨耗用量 发酵过程用液氨调pH 和补充氮源,耗用260-280kg ;此外,提取过程耗用160-170kg ,合计每吨味精消耗420-450kg 。 (8)甘蔗糖蜜耗用量 二级种液耗用糖蜜量为:)(kg 10.4820v 2= 发酵培养基耗糖蜜量为:)(kg 26.24v 1= 合计耗糖蜜36.68kg (9)氯化钾耗量)(24.58.0m 1k cl kg v == (10)磷酸镁用量)(kg 0.5241.0V m 23== (11)硫酸镁用量)()(kg 4.24v v 0.621=+ (12)消泡剂(泡敌)耗用量)(kg 6.551.0V 1= (13)玉米浆耗用量(8g/L ))(kg 4.198V m 24== (14)生物素耗用量)(g 0.02360.002V 0.02V m 125=+= (15)硫酸锰耗用量)(g 1.0480.002V m 26== (16)硫酸亚铁耗用量)(g 1.0480.002V m 27==

石墨烯与水制氢开发项目简介

石墨烯与水制氢开发项目简介 目前主要开发建设的石墨烯与水制氢,二氢斛皮素,桦树茸菌项目有6个,分别介绍如下: 一、石墨烯润滑油项目 本项目最早于2011年由俄罗斯引进,最初在国家科技部立项名称为:“军民两用陶瓷基金属磨损自修复技术”,经改进后称为:“石墨烯基金属磨损智能修复材料”,但从其功能老说:称为“石墨烯润滑油”比较易懂易记。 经黑龙江省环保局实际检测,对选定的13台柴油载重车添加本品前后对比,得出以下结论:平均污染颗粒物降低10.9倍;CH(碳氢化和物)排放污染物平均下降2.18倍;CO(一氧化碳)排放污染物平均降低35%;NO(一氧化氮)排放污染平均降低1.88倍。 同时对添加本品后发动机缸压变化结果进行对比,得出:单行程缸压提高41%、四行程缸压提高48%、多行程缸压提高42%的结果。 缸压的提高说明发动机的密封性和动力性明显改善,达到了减排增效的目的。 本品实际上最大的功能是:新车、新机械的磨合。早在1964年苏联学者就提出:磨合程度不同,磨合工况不同,车辆、机械的寿命也不同。而本项目生产的产品具有相当好的修复功能,可以使纳米级石墨烯颗粒,在润滑油中稳定分散,根据不同工况自调节沉积,促进

车辆机械的最佳磨合,延长使用寿命。 石墨烯润滑油可以减少环境污染、提高设备的寿命,是绿色、环保、节能、增效,促进社会稳定发展的好产品。 目前全世界每年消耗润滑油4000多万吨,中国每年消耗润滑油在600万吨左右,但大多数生产厂家生产的是低档次润滑油,采用石墨烯润滑油的仅万吨左右,因此市场前景良好。 本项目预计建设万吨石墨烯润滑油的生产企业需要投资2亿元左右,投资回收期在2-3年左右。 二、石墨烯防霾口罩项目 利用石墨烯过滤性好,热传导性能好的特点进行开发,以满足人们对在雾霾天气下使用的需求。 本项目利用石墨烯纳米纤维纺纱技术,通过该技术制作的口罩,可有效过滤99%纳米以下的微观物质。防霾石墨烯口罩用料轻薄,就像餐巾纸一样,在高效过滤有害物质的同时,令穿戴者呼吸轻松。 三、石墨烯创伤敷料: 利用石墨烯吸附力强的特点,可以对创伤或者手术刀口使用的敷料采用石墨烯,(经高温灭菌消毒)可以较空的吸取伤口的渗液,达到创伤表面干燥,促进医疗康复的作用。 四、水制氢清洁能源 用电解的方法,将水分解成氢气和氧气,这是一个众所周知的原

石墨烯文献检索

《文献检索与科技论文写作》作业 学生姓名 年级专业 班级学号 指导教师职称

目录 第一部分文献查阅练习 (1) 第二部分文献总结练习 (7) 第三部分科技论文图表练习 (8) 第四部分心得体会 (11)

第一部分文献查阅练习 1、黄毅,陈永胜.石墨烯的功能化及其相关应用.中国科学B辑:化学2009年第39卷第9期:887-896 摘要:石墨烯是2004年才被发现的一种新型二维平面纳米材料,其特殊的单原子层结构决定了它具有丰富而新奇的物理性质.过去几年中,石墨烯已经成为了备受瞩目的国际前沿和热点.在石墨烯的研究和应用中,为了充分发挥其优良性质,并改善其成型加工性(如分散性和溶解性等),必须对石墨烯进行功能化,研究人员也在这方面开展了积极而有效的工作.但是,关于石墨烯的功能化方面的研究还处在探索阶段,对各种功能化的方法和效果还缺乏系统的认识.如何根据实际需求对石墨烯进行预期和可控的功能化是我们所面临的机遇和挑战.本文重点阐述了石墨烯的共价键和非共价键功能化领域的最新进展,并对功能化石墨烯的应用作了介绍,最后对相关领域的发展趋势作了展望. 关键词:功能化应用 2、胡耀娟,金娟.石墨烯的制备、功能化及在化学中的应用. 物理化学学报(Wuli Huaxue Xuebao)Acta Phys.-Chim.Sin.,2010,26(8):2073-2086 摘要:石墨烯是最近发现的一种具有二维平面结构的碳纳米材料,它的特殊单原子层结构使其具有许多独特的物理化学性质.有关石墨烯的基础和应用研究已成为当前的前沿和热点课题之一.本文仅就目前石墨烯的制备方法、功能化方法以及在化学领域中的应用作一综述,重点阐述石墨烯应用于化学修饰电极、化学电源、催化剂和药物载体以及气体传感器等方面的研究进展,并对石墨烯在相关领域的应用前景作了展望。 关键词:制备功能化应用. 3、杨永岗,陈成猛,温月芳.新型炭材料.第23卷第3期 2008年9月:193-200 摘要:石墨烯是单原子厚度的二维碳原子晶体,也是性能优异的新型纳米复合填料。近三年来,石墨烯从概念上的二维材料变成现实材料,在化学和物理学界均引起轰动。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合

石墨烯分散方法

石墨烯分散方法 石墨烯具有优良的性能,科研工作者考虑将其作为增强体加入到基体材料中以提高基体材料的性能。但是,由于其较大的比表面积,再加上片层与片层之间容易产生相互作用,极易出现团聚现象,而且团聚体难以再分开,不仅降低了自身的吸附能力而且阻碍石墨烯自身优异性能的发挥,从而影响了石墨烯增强复合材料性能的改进。为了得到性能优异的石墨烯增强复合材料,科研工作者在克服石墨烯团聚、使其分散方面做了诸多研究。分散方法简介如下: 1、机械分散发 利用剪切或撞击等方式改善石墨烯的分散效果。吴乐华等以纯净石墨粉为原料,无水乙醇为溶剂,采用湿法球磨配合超声、离心等方式得到石墨烯分散液,通过扫描电镜、透射电镜和拉曼光谱分析均证明石墨烯为几个片层分散。 2、超声分散发 利用超声的空化作用,以高能高振荡降低石墨烯的表面能,从而达到改善分散效果的目的。Umar等将石墨在N-甲基吡咯烷酮(NMP)中采用低功率超声处理,随着超声时间的延长,石墨烯分散液的浓度随之升高,当超声时间超过462h后,石墨烯分散液浓度能够达到1.2mg/mL,这

是由于超声所产生的溶剂与石墨烯之间的能量大于剥离石墨烯片层所需要的能量,进而实现了石墨烯的分散。3、微波辐射发 采用微波加热的方式产生高能高热用以克服石墨烯片层间的范德华力。Janowska等采用氨水作为溶剂,利用微波辐射处理在氨水中的膨胀石墨以制备石墨烯分散液,透射电镜观测结果表明制得的石墨烯主要为单、双和少层(少于十层)石墨烯,并且能够在氨水中稳定分散,研究证实微波辐射产生的高温能够使氨水部分气化,产生的气压对克服石墨烯片层间的范德华力具有显著的作用。 4、表面改性 通过离子液体对膨胀石墨进行表面改性来提高石墨烯的分散性。这种改性属于物理方法,它能降低改性过程对石墨烯结构和官能团的影响。经过改性的石墨烯片层粒径小,呈现出褶皱的状态;通过离子液体改性后的石墨烯可以长时间在丙酮溶液中保持均匀的分散状态,并且能够均匀分布在硅橡胶基体中,离子液体链长增加使得样品更加均匀地分散。 采用具有强还原能力的没食子酸作为稳定剂和还原剂,制得了具有高分散性的石墨烯。由于分子中苯环结构和石墨烯之间形成了π—π共轭相互作用,从而作为稳定剂吸附在石墨烯表面,这使得石墨烯片层具有较强的负电性,

氧化石墨烯改性玄武岩纤维及其增强环氧树脂复合材料性能_叶国锐

复合材料学报第31卷 第6期 12月 2014年Acta Materiae Comp ositae SinicaVol.31 No.6 December 2 014文章编号:1000-3851(2014)06-1402-07 收稿日期:2013-09-27;录用日期:2013-11-07;网络出版时间:2014-01-2 0 09:42网络出版地址:www.cnki.net/kcms/detail/10.13801/j .cnki.fhclxb.20141202.001.html基金项目:深圳市战略性新兴产业发展专项(ZD SY20120619141411025)通讯作者:曹海琳,教授,研究方向为复合材料性能设计及开发。 E-mail:caohl@h it.edu.cn引用格式:叶国锐,晏义伍,曹海琳.氧化石墨烯改性玄武岩纤维及其增强环氧树脂复合材料性能[J].复合材料学报,20 14,31(6):1402-1408.Ye Guorui,Yan Yiwu,Cao Hailin.Basalt fiber modified with graphene oxide and properties of its reinforced epoxy  compos-ites[J].Acta Materiae Comp ositae Sinica,2014,31(6):1402-1408.氧化石墨烯改性玄武岩纤维及其增强环氧树脂 复合材料性能 叶国锐1,晏义伍1,曹海琳*1,2 (1.深圳航天科技创新研究院深圳市复合材料重点实验室,深圳518057;2.哈尔滨工业大学化工学院,哈尔滨15 0001)摘 要: 为了改善玄武岩纤维/环氧树脂复合材料的界面性能,通过偶联剂对氧化石墨烯进行改性,并将改性后的氧化石墨烯引入到上浆剂中对玄武岩纤维进行表面涂覆改性,同时制备了氧化石墨烯-玄武岩纤维/环氧树脂复合材料。采用FTIR表征了氧化石墨烯的改性效果;运用SEM分析了改性上浆剂处理对玄武岩纤维表面及复合材料断口形貌的影响和作用机制。结果表明:偶联剂成功接枝到氧化石墨烯表面; 玄武岩纤维经氧化石墨烯改性的上浆剂处理后,表面粗糙度及活性官能团含量增加,氧化石墨烯-玄武岩纤维/环氧树脂界面处的机械齿合作用及化学键合作用增强,界面黏结强度得到改善,玄武岩纤维的断裂强力提高了30.8%,氧化石墨烯-玄武岩纤维/环氧树脂复合材料的层间剪切强度提高了10.6%。 关键词: 氧化石墨烯;表面改性;玄武岩纤维;力学性能;复合材料中图分类号: TB332 文献标志码: A Basalt fiber modified with graphene oxide and properties of its reinforced epoxy  compositesYE Guorui 1, YAN Yiwu1,CAO Hailin*1, 2(1.Shenzhen Key Laboratory of Composite Materials,Shenzhen Academic of Aerospace Technology,Shenzhen 518057,China;2.School of Chemical Engineering and Technology,Harbin Institute of Technology,Harbin 150001,China)Abstract: To improve the interfacial properties of basalt fiber/epoxy composites,the graphene oxide modified withcoupling agent was introduced into sizing agent,and the modified sizing agent was used to modify basalt fiber andthe graphene oxide-basalt fiber/epoxy composites were prepared.The modification effect of graphene oxide wascharacterized by FTIR.The effect of modified sizing modification on surface of basalt fiber and composites cross-sectional morphologies and reaction mechanism were investigated using SEM.The results show that coupling agentis successfully grafted onto the surface of graphene oxide.Surface roughness and reactive functional groups are in-creased after basalt fiber being infiltrated in sizing agent modified by graphene oxide,and the mechanical interlockingand chemical bonding of the graphene oxide-basalt fiber/epoxy interface are enhanced,the interface bonding strengthis improved,the fracture strength of basalt fibers is improved by 30.8%and the interlaminar shear strength of gra-phene oxide-basalt fiber/epoxy  composites is improved by 10.6%.Key words: graphene oxide;surface modification;basalt fiber;mechanical properties;composites 玄武岩纤维是以天然玄武岩矿石作为原料,经 高温熔融、拉丝、冷却而得到的一种新型无机纤 维[1] ,具有突出的力学性能、耐高温、高耐腐蚀与化 学稳定性、吸湿性低等优点。以其为增强相的复合材料制品被广泛应用于航空航天、汽车制造、建筑、化工和医学等领域,被认为是21世纪最具发展潜 力的新型材料之一[ 2- 4]。复合材料的性能很大程度上依赖于复合材料的界面性能,而界面性能除了取

【CN209730391U】一种带石墨烯屏蔽的HDMI线【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920553019.7 (22)申请日 2019.04.23 (73)专利权人 东莞市仓盛通讯科技有限公司 地址 523000 广东省东莞市黄江镇田美工 业北区盛业路永泰一街2号 (72)发明人 龚华明  (74)专利代理机构 东莞市浩宇专利代理事务所 (普通合伙) 44460 代理人 陈凯玉 (51)Int.Cl. H01R 31/06(2006.01) H01B 7/17(2006.01) H01B 7/04(2006.01) H01B 11/06(2006.01) (54)实用新型名称 一种带石墨烯屏蔽的HDMI线 (57)摘要 本实用新型公开了一种带石墨烯屏蔽的 HDMI线,包括线体和位于该线体两端的接线端 子,所述线体包括外护套、 信号线和控制线,所述信号线共设置有5根,所述控制线共设置有4根, 所述信号线和所述控制线均设置于所述外护套 内,所述外护套内壁设置有石墨烯导电膜,所述 外护套内侧还设置有总地线。有益效果在于:通 过将传统的屏蔽层替换为石墨烯导电膜,提高了 HDMI线的电磁屏蔽性能,降低HDMI线线材的线 径、降低线材重量,并且提高线材的弯曲性能,提 高HDMI线的柔韧性,从而延长HDMI线的使用寿 命。权利要求书1页 说明书2页 附图2页CN 209730391 U 2019.12.03 C N 209730391 U

权 利 要 求 书1/1页CN 209730391 U 1.一种带石墨烯屏蔽的HDMI线,其特征在于,包括线体(7)和位于该线体(7)两端的接线端子(8),所述线体(7)包括外护套(2)、信号线(4)和控制线(5),所述信号线(4)共设置有5根,所述控制线(5)共设置有4根,所述信号线(4)和所述控制线(5)均设置于所述外护套(2)内,所述外护套(2)内壁设置有石墨烯导电膜(3),所述外护套(2)内侧还设置有总地线 (1)。 2.根据权利要求1所述一种带石墨烯屏蔽的HDMI线,其特征在于:所述外护套(2)内设置有填充线(6),所述信号线(4)和所述控制线(5)均设置于所述填充线(6)外围。 3.根据权利要求1所述一种带石墨烯屏蔽的HDMI线,其特征在于:所述信号线(4)由导线、绝缘套和地线组成,所述地线和所述导线包裹在所述绝缘套内侧。 4.根据权利要求1所述一种带石墨烯屏蔽的HDMI线,其特征在于:所述石墨烯导电膜(3)厚度为10nm-20nm。 2

年产一万吨味精发酵工厂设计

年产一万吨味精发酵工厂设计摘要:味精是一种家常调味品,它采用面筋或淀粉用微生物发酵的方法制 成。别名又叫:味素、味粉、谷氨酸钠。味精又称味素,是调味料的一种,主要成分为谷氨酸钠。 一.设计的任务及主要设计内容 1.生产工艺阶段 味精生产全过程可划分为四个工艺阶段:(1).原料的预处理及淀粉水解糖的制备(2).种子扩大培养及谷氨酸发酵(3).谷氨酸的提取(4).谷氨酸制取味精及味精成品加工 2.设计内容 主要设计内容包括(1).工艺流程设计(2).物料衡算(3).设备的设计与选型(4).车间布置设计及物料管道设计 二.工艺流程设计

三.物料衡算 1.计算指标 (2)二级种子培养基(g/L ):水解糖50m ,糖蜜20,磷酸二铵钾1.0,硫酸镁0.6,玉米浆8,泡敌0.6,生物素0.02mg ,硫酸锰2mg/L ,硫酸亚铁2mg/L 。 (3)发酵初始培养基(g/L ):水解糖150,糖蜜4,硫酸镁0.6,氯化钾0.8,磷酸0.2,生物素2μg ,泡敌1.0,接种量为8%。 2.物料衡算 首先计算生产1000Kg 纯度为100%的味精需耗用的原材料及其他物料量。 (1)设发酵初糖和流加高浓糖最终发酵液总糖浓度为220kg/m 3,则发酵液量为: 31 6.55m 122% 99.8%95%60%2201000 v =????= (2)发酵液配置需水解糖量 以纯糖计算:)(1441220m 11kg V == (3)二级种液量) (312m 0.5248%v v == (4)二级种子培养液所需水解糖总量)(kg 26.250v m 22== (5)生产1000kg 味精需水解糖总量) (kg 1467.2m m m 21=+= (6)耗用淀粉原料量 理论上,100kg 淀粉转化生成葡萄糖量为111kg ,故耗用淀粉量为: )(淀粉kg 1529.9111% 108%80%1467.2 m =??= (7)液氨耗用量 发酵过程用液氨调pH 和补充氮源,耗用260-280kg ;此外,提取过程耗用160-170kg ,合计每吨味精消耗420-450kg 。 (8)甘蔗糖蜜耗用量 二级种液耗用糖蜜量为:)(kg 10.4820v 2= 发酵培养基耗糖蜜量为:) (kg 26.24v 1=

石墨烯疏水性能研究

文章编号:1001G9731(2018)09G09156G04 石墨烯疏水性能研究? 洪一跃1,李多生1,叶一寅1,Q i n g h u aQ i n2,邹一伟1,林奎鑫1 (1.南昌航空大学材料科学与工程学院,南昌330063; 2.R e s e a r c hS c h o o l o fE n g i n e e r i n g,A u s t r a l i a nN a t i o n a lU n i v e r s i t y,A c t o nA C T2601,A u s t r a l i a) 摘一要:一通过化学气相沉积(C V D)方法在蓝宝石衬底表面生长石墨烯,探究生长时间对石墨烯疏水性能和微结构的影响.利用接触角测量仪二傅里叶红外光谱仪二拉曼光谱仪二场发射扫描电镜研究石墨烯的疏水性能和微结构.发现生长时间是30m i n时,石墨烯的接触角最大,为129.96?,表现出疏水性,红外测试表明只有C C,拉曼分析发现在10~30m i n的生长时间下,石墨烯都出现了3个特征峰.较大的接触角使石墨烯有望作为疏水材料,甚至可以通过对其疏水改性让它在超疏水领域存在潜在应用. 关键词:一石墨烯;疏水性;接触角;半高宽 中图分类号:一O647文献标识码:A D O I:10.3969/j.i s s n.1001G9731.2018.09.029 0一引一言 1966年,M e r m i n和W a g n e r提出的M e r m i nGW a g n e r理论,指出二维晶体材料不能稳定存在[1],导致二维碳材料的研究一直处于空白阶段.2004年,英国曼彻斯特大学N o v o s e l o v和G e i m等[2]用机械剥离的方法制备石墨烯,打破了二维晶体材料在常温中无法稳定存在的预言.石墨烯具有优良的导电性二机械性能二电化学性能和催化性能,在电容材料二电极材料二催化剂二生物传感器和润滑添加剂等方面具有很高的应用价值[3G6].但是到目前为止,人们的研究主要集中在石墨烯的光学二电学性质,对其表面性质研究较少.根据W e n z e l[7]和C a s s i e[8]理论,石墨烯薄膜的表面浸润性质由两个因素决定:薄膜表面粗糙度和表面自由能.L e e n a e r t s等[9]用密度泛函理论计算得出:石墨烯薄膜表面的水分子之间的结合能大于其与石墨烯的吸附能,使得水分子团聚为水滴,石墨烯表现为疏水性. Y o u n g等[10]制备的外延石墨烯薄膜的接触角为92?, S h i n等[11]制备的还原石墨烯薄膜的接触角为127?.当材料的接触角>150?时,材料表现为超疏水,此时材料可以通过超疏水表面的构建实现表面自清洁效应.因此,石墨烯的疏水性有望在不久的将来用于疏水甚至超疏水材料的领域[12G13].蓝宝石作为一种窗口材料,在其表面制备出疏水性较高的石墨烯有利于窗口表面的清洁和光的透过,增强了窗口的光学性能.石墨烯在金属衬底[14G15]上的生长相较于绝缘衬底[16G17]上的生长来说更为容易一些,在目前制备石墨烯的众多方法中,化学气相沉积[18](C V D)法是制备石墨烯的一种重要的生长方法.因此本文采用C V D法在蓝宝石衬底上制备石墨烯,研究生长时间对石墨烯接触角和石墨烯生长质量的影响. 1一实一验 1.1一石墨烯的制备 以尺寸为10mm?10mm的蓝宝石(0001)作为生长的衬底材料,然后经丙酮二无水乙醇二去离子水超声清洗20m i n,待衬底吹干后通过推杆将衬底送入刚玉管中心区域,最后将刚玉反应室抽至真空,检查气密性,开启装置加热程序进行实验,石墨烯C V D生长过程示意图如图1所示.在实验中采用C H4作为碳源气体,H2作为刻蚀气体,A r作为载气,C H4流量为6m L/m i n,H2流量为40m L/m i n,A r流量为100m L/m i n,生长温度为1300?,生长压力约为10T o r r,生长时间为10~30m i n,生长完成后,关闭加热程序,待衬底冷却至室温,关闭气体流量. 图1一C V D生长过程示意图 F i g1C V D g r o w t h p r o c e s s d i a g r a m 6519 02018年第9期(49)卷 ?基金项目:国家自然科学基金资助项目(51562027,11772145);江苏省精密与微细制造技术重点实验室基金资助项目(J K L2015001) 收到初稿日期:2018G02G27收到修改稿日期:2018G04G26通讯作者:李多生,EGm a i l:d u o s h e n g.l i@n c h u.e d u.c n 作者简介:洪一跃一(1993-),男,安徽安庆人,在读硕士,师承李多生副教授,从事石墨烯材料研究.

石墨烯到底有哪些作用

谈到近年来的新型材料,让人感兴趣的不多,但石墨烯肯定不在此列,其火爆程度令人咋舌。为何石墨烯如此火爆,难道它真有传说中的那么神奇吗?今天我们就一起来探讨石墨烯的作用到底有哪些方面。 1、石墨烯生物器件。由于石墨烯的可修改化学功能、大接触面积、原子尺寸厚度、分子闸极结构等等特色,应用于细菌侦测与诊断器件,石墨烯是个很优良的选择。 科学家希望能够发展出一种快速与便宜的快速电子DNA定序科技。它们认为石墨烯是一种具有这潜能的材料。基本而言,他们想要用石墨烯制成一个尺寸大约为DNA宽度的纳米洞,让DNA分子游过这纳米洞。由于DNA的四个碱基(A、C、G、T)会对于石墨烯的电导率有不同的影响,只要测量DNA分子通过时产生的微小电压差异,就可以知道到底是哪一个碱基正在游过纳米洞。这样,就可以达成目的。 2、单分子气体侦测。石墨烯独特的二维结构使它在传感器领域具有光明的应用前景。巨大的表面积使它对周围的环境非常敏感。即使是一个气体分子吸附或释放都可以检测到。这类检测可以分为直接检测和间接检测。通过穿透式电子显微镜可以直接观测到单原子的吸附和释放过程。通过测量霍尔效应方法可以间接检测单原子的吸附和释放过程。当一个气体分子被吸附于石墨烯表面时,吸附位置会发生电阻的局域变化。当然,这种效应也会发生于别种物质,但石墨烯具有高电导率和低噪声的优良品质,能够侦测这微小的电阻变化。

3、作为导热材料或者热界面材料。2011年, 美国佐治亚理工学院(Georgia Institute of Technology)学者首先报道了垂直排列官能化多层石墨烯三维立体结构在热界面材料中的应用及其超高等效热导率和超低界面热阻。

从石墨烯到柔性显示屏教学提纲

从石墨烯到柔性显示屏智能穿戴设备新科技盘点 2014-12-25 从大型的科技企业巨擘到犄角旮旯里的各种创业公司,每个人都在遐想新材料石墨烯在智能穿戴设备的无限应用潜力。从众筹资金到小批量制造再到原型产品快速试制,每个人都在努力让石墨烯应用的梦想阳光照进现实!就目前而言,智能穿戴设备技术在未来的发展唯一的障碍貌似就是我们人类自己的想象力了,千万不要低估新技术发展的潜力! 好消息在于一系列或将改变我们对事物看法的新科技突破已初 见端倪,这的确有助于智能穿戴设备走进我们的日常生活并成为中心。随着 2015 年的临近,让我们期待着新年的曙光,展望一下即将改变下一代智能穿戴设备的新科技。 柔性显示屏 即便尺寸变得越来越大,显示屏依然是智能手机上的制约因素,毕竟是硬件设备上最大的一个部件,在用户体验上扮演了极为重要的作用。手机显示屏也是智能手机厂商征战软件沙场的一个重要原因。 相较于智能手机而言,显示屏之于智能穿戴设备的作用则更显重要,显示屏尺寸和柔性是产品的重要限制因素,毕竟智能腕表和健康手环的显示屏都太小了,而人的身体则不是一个木头桩,每个人都有特定的身形,有的凹凸有致、有的圆润丰满,而有的则棱角分明。穿衣戴帽则是一回事,而对于内置芯片疙瘩的智能穿戴设备而言则,要想迎合每个人的身体则挑战十足。

智能手机厂商一致认为并坚信柔性显示屏技术会在将来某个时候彻底革新手机领域,而对智能穿戴设备而言也存在同样的判断。人的体型差别巨大,想制造出一款迎合所有人身材的平台设备,其难度可想而知。当前市面上绝大部分智能穿戴设备远未达到上述目标,柔性显示屏技术或许能解决这个难题! 柔性电池 同柔性显示屏一样,柔性电池同样也是让智能穿戴设备更为贴身舒适的利器。柔性电池技术的发展能让厂商更为轻易地定制智能穿戴设备的外观,韩国消费电子巨头目前正在做这方面的尝试。 除了电池的尺寸和形状之外,续航能力也是一个大难题。每当智能设备新增其他新特性,电池的续航能力将会经受新的考验。就拿能跟踪人体运动和睡眠状态的智能腕带产品而言,一次充电究竟能带来的电池续航时间还是太有限。 也许厂商们都忽略了免充电太阳能技术的应用。毕竟不像智能手机那样总是被放在口袋或者被保护套所覆盖,穿戴在人体上的设备总是会有充足的时间见到阳光,而柔性的太阳能充电器也已成型。 此外另一种可能的方案就是利用人体机械运动所产生的的能量来为穿戴设备供电,虽说基于人体热量的自充电方案也是一种选择,但是考虑到这种设备需要持久贴合在人体皮肤上,所以在舒适感上会大打折扣。 织物传感器

相关文档
最新文档