甲壳素, 壳聚糖开发和研究进展

甲壳素, 壳聚糖开发和研究进展
甲壳素, 壳聚糖开发和研究进展

甲壳素, 壳聚糖开发和研究进展

摘要

作为一种资源丰富, 用途广泛的天然高分子化合物, 甲壳素?壳聚糖的开发研究和应用范围越来越受到重视, 本文对该领域开发和研究进展进行简要评述。

关键词甲壳素; 壳聚糖

甲壳素(Chitin) 又名甲壳质、几丁质、壳多糖、聚乙酰氨基葡萄糖等[ 1 ] , 是1, 4—连接

的2—乙酰基—2—脱氧—B—D —葡萄糖, 广泛存在于昆虫、甲壳纲动物外壳及真菌细胞壁中[ 2 ] , 是自然界中仅次于纤维素的多糖。在甲壳素分子中, 因其内外氢键的相互作用, 形成了有序的大分子结构, 溶解性能很差, 这限制了它在很多方面的应用。就目前的研究情况, 除了少量用作医用敷料外, 在其它方面的应用很少, 而甲壳素经脱乙酰化处理的产物—壳聚糖(Chitosan) , 却由于其分子结构中大量游离氨的存在, 溶解性能大大改观, 具有一些独特的物化性质及生理功能, 在医药、食品、化妆品、农业及环保诸方面具有广阔的应用前景。本文将介绍甲壳素?壳聚糖产品的开发研究进展情况。

1 甲壳素?壳聚糖产品的开发研究概况

自80 年代以来, 在全球范围内形成了甲壳素?壳聚糖的开发研究热潮, 各国都加大了对甲

壳素?壳聚糖的开发研究力度, 其中又以日本走在各国的前列。日本政府曾投资60 亿日元委托数十家高校及科研机构历时10 余年进行甲壳素?壳聚糖产品的开发研究, 取得了大量的科研成果, 并将部分成果实现了产业化, 仅以壳聚糖为主要原料的保健品就有20 个左右的品种上市。

我国早在50 年代就对甲壳素的制备及其应用进行了研究。1958 年起, 国内首先将乙酰化甲壳素应用于印染工业, 从1977 年起, 每隔几年召开一次关于甲壳素及壳聚糖的国际会议, 极大的促进了这方面的研究。进入90 年代, 中国对于甲壳素?壳聚糖资源的开发研究也越来越重视, 如在甲壳素?壳聚糖的酶法降解方面、壳聚糖的溶液性质、壳聚糖净化用作药用絮凝剂、壳聚糖降解制备低聚壳聚糖及更低分子量的水溶性壳聚糖等方面进行研究, 现又将研究领域扩展到甲壳素?壳聚糖在化妆品、医药敷料等方面的应用研究, 尤其是壳聚糖的高分子微包囊药物释放体系, 成为新一轮研究的热点。

2 甲壳素?壳聚糖产品开发的新动向

甲壳素?壳聚糖及其产品的开发研究情况及可能的研究发展方向分述如下:

2. 1 壳聚糖降解

甲壳素经脱乙酰化处理得到的壳聚糖的分子量通常在几十万左右, 因其水不溶性, 限制了它在食品、化妆品等许多方面的应用, 若采用适当的方法将其降解为均分子量为~ 1000的低聚产品, 则可使其水溶性质大为改观, 特别是均分子量低于1500 的低聚壳聚糖产品, 可基本全溶于水。根据目前的研究情况, 用于壳聚糖降解的方法大致可分为酶法降解, 无机酸降解及氧化降解法三种。用无机酸特别是盐酸来对壳聚糖进行降解以制备低至单糖的低分子量壳聚糖是应用最

早的壳聚糖降解方法。现在, 酸降解法已发展有过醋酸法[ 3 ]、酸—亚硝酸法[ 4 ]、浓硫酸法[ 5 ]、氢氟酸法[ 6 ] 等许多种, 不过, 用于工业化生产的主要还是盐酸降解法。酸法降解壳聚糖是一种非特异性的降解过程, 降解过程及降解产物的分子量分布较难控制, 是否可考虑在反应过程中加添某些试剂以控制其降解反应的进行, 以制备限定分子量范围的低聚产品, 值得探讨。酶法降解是用于专一性的壳聚糖酶或非专一性的其它酶种来对壳聚糖进行生物降解的。据研究报道, 已有30 多种的各种酶可用于壳聚糖的降解[ 7 ] , 酶法降解壳聚糖条件温和,

且不对环境造成污染, 是壳聚糖降解的最理想方法。就目前技术而言, 酶法降解尽管也有少量商业应用, 若要以此进行大规模的工业化生产, 却尚有不少困难, 应继续在寻求更廉价的酶种及如何实现工业化生产方面进行更深入研究。氧化降解法是最近几年研究较多的一种降解方法。诸多氧化降解法中, 以过氧化氢氧化法[ 7 ] 开发的最多。这些方法中, 有的已用于低聚壳聚糖的工业化生产, 但大部分仍处于实验室研究阶段。

2. 2 制备甲壳素?壳聚糖衍生物

选用适当的反应试剂对甲壳素?壳聚糖分子内的羟基、氨基进行化学修饰包括甲壳素?壳聚糖的羧甲基化、酰基化、烷基化、硫酸酯化、羟基化等等。通过这些化学修饰作用, 在甲壳素?壳聚糖分子结构中引入了各种功能团, 改善了甲壳素?壳聚糖的物化性质, 从而使其各自具有不同的功能及功效, 可制成各种类型的凝胶、膜、聚电解质及其它水溶性材料, 广泛应用于各种领域。虽然, 中国许多研究机构对甲壳素?壳聚糖的衍生物研究尚处于起步阶段,但该方面的研究进展很快, 不断有新的研究成果见诸报道, 从甲壳素?壳聚糖化学的发展趋势来分析, 在目前的几个研究领域中, 对甲壳素?壳聚糖进行化学修饰的研究是甲壳素?壳聚糖化学最具潜力、最有可能取得突破性进展的研究方向, 也是甲壳素化学能否发展成为

国民经济一大产业的关键所在。目前该研究方向存在的主要问题是对这些衍生物可能的应用范围研究得太少, 在进行甲壳素?壳聚糖化学修饰的同时, 更应该对其可能存在的应用领域进行探索, 使研究得到的每一种甲壳素?壳聚糖衍生物都能产生巨大的社会经济效益。2. 3 壳聚糖微囊的药物控释

用高分子作为载体的高分子微包囊和纳米级包囊药物制剂不仅能控制药物以一定的速度

释放, 而且可对生物体的生理指标变化作出反馈, 因而可以成为靶向药物释放体系。通过

用高分子包囊还可以延长蛋白质和多肽类药物的生理活性, 提高药物稳定性, 使之成为长

效药物, 并使一些难以口服的药物能够制成口服制剂。近年来, 微囊技术被广泛用于微生物、动植物细胞、酶和其它多种生物活性物质和化学药物的固定化方面。常用的微囊为海藻酸?聚赖氨酸微囊, 由于制备技术复杂, 成囊过程时间较长, 对被包埋物质的生物活性有一定影响,而且聚赖氨酸价格昂贵, 因而限制了这种微囊的应用。

在医学上微包囊技术的早期研究大多集中在具有生物相容性的非生物降解型高分子,如硅橡胶、丙烯酸类聚合物等上面。七十年代Ydlles 等[ 9 ] 研究了聚乳酸微包囊, 由此开始了生物降解型高分子微包囊药物释放体系的研究。壳聚糖及其衍生物制成的微包囊在生物体内可降解成为小分子化合物, 从而被机体代谢, 同时药物的释放速度可通过控制材料的降

解速度来予以控制, 因此成为研究最多的包囊用高分子材料。

高分子微包囊药物释放体系的药物释放机制不仅与包裹的高分子材料有关, 而且还与微包裹材料的性能有关。药物的释放机制涉及到: a、聚合物的降解性; b、通过孔的扩散; c、

从微包囊的表面释放等三个方面。以壳聚糖为内核材料喷涂在另一带相反电荷的高聚物上, 靠静电作用制备的不同的胶囊, 可以有效地控制通透性, 有选择的允许不同大小的物质通

过微胶囊。

壳聚糖微囊药物释放体系的给药途径一般分为五类[ 10 ]: ①通过胃肠消化道给药; ②体腔内给药(包括眼内、口腔、舌下、鼻腔、直肠以及阴道、子宫内给药) ; ③透皮给药; ④动脉注射及静脉点滴; ⑤皮下及肌肉注射。

通过合适的给药途径, 可使药物释放达到较为理想的效果。而壳聚糖包裹药物释放体系基本上可以满足理想药物释放体系的要求。与传统的药剂相比, 高分子药物包裹可大大减少服药次数, 屏蔽药物的刺激性气味, 延长药物的活性、控制药物释放剂量、提高药物疗效, 并且可以降低药物的成本、拓宽给药途径等, 因此具有比一般药物制剂明显的优越性。壳聚糖微囊的药物控释已经成为新一轮研究的热点。

2. 4 甲壳素?壳聚糖应用研究

一般工业品甲壳素?壳聚糖的纯度有限, 而经过纯化处理的壳聚糖在食品、医药、生化等方面有着广泛的应用。

2. 4. 1 在化妆品中的应用

壳聚糖在酸性条件下可以成为带正电荷的高分子聚电解质而直接用于香波、洗发精等的配方中, 使乳较稳定化, 以保护胶体; 壳聚糖本身的带电性, 使其具有抑制静电荷的蓄积与中和负电荷的作用, 这种带电防止的效能可以防止脱发; 壳聚糖能在毛发表面形成一层有润滑作用的覆盖膜, 与合成聚合物相比, 壳聚糖与头发角蛋白形成的薄膜在高湿度下性能更稳定。而且, 此膜的形成可减少摩擦, 避免因洗发所引起的对毛发的伤害。壳聚糖的保湿性、带电防止性、减少摩擦性等功能互相结合, 可使毛发柔软, 给人以极大的舒适感。壳聚糖与其他高分子物质复合制备的面膜, 由于壳聚糖这种多糖类物质良好的亲水性、亲蛋白性, 对皮肤无过敏、无刺激、无毒性反应, 而且在成膜过程中使得整个面膜材料与皮肤接触感明显柔和, 所以对皮肤的亲和性明显增加[ 11 ]。

壳聚糖具有免疫调节性, 能有效促进伤口愈合。膏霜类化妆品中适量加入壳聚糖可增加人体对细菌、真菌引起感染的免疫力, 阻碍原菌生长, 对破损的皮肤不但不会引起感染, 还会促使其愈合, 消除面部疾患; 壳聚糖也可与甲醛水溶液混合, 制备含有福尔马林的化妆品, 具有良好的杀菌效果[ 12 ]。

壳聚糖虽然可应用于化妆品中, 但因其不溶于水, 只能溶于酸中, 使得产品呈微酸性, 对皮肤稍有刺激作用, 因而对壳聚糖进行改性以制备水溶性壳聚糖衍生物显得非常有必要。今年来, 改性壳聚糖方面的研究越来越多, 并已将多种壳聚糖衍生物用于制备洁肤液、护肤霜、乳液、护发香波、面膜等。

壳聚糖与酰氯在吡啶—氯仿介质中反应得到的酰化产品可作为指甲上光剂[ 13 ]。与丁二酸酐、顺丁烯二酸酐、缩水甘油等进行酰化反应得到酰化衍生物, 与环氧烷类反应得到的羟基化衍生物都可直接溶于水中, 并且显示了良好的吸湿性和形成水凝胶的保温性[ 14 ]。壳聚糖与一氯乙酸反应制得羧甲基化壳聚糖, 具有乳化稳定、增稠、抗静电作用, 适用于膏、乳、霜、露等各种化妆品配方, 且与配方中各种成分相容性极好。同时羧甲基壳聚糖可用在食品保鲜方面作为防腐剂, 因此用在化妆品方面时, 产品可不用另外加入防腐剂[ 15 ]。羧甲基壳聚糖用于护发用品中, 护发作用明显, 可以防止头发在烫发、染发时破裂, 使头发不发粘、光滑且具有自然光泽。

2. 4. 2 在保健领域中的应用[ 16 ]

对消化系统的保护: 甲壳素及其衍生物在消化系统内停留的时间相对较短, 只有其低分子

量的衍生物才能被消化, 而高分子量的壳聚糖及其衍生物与胃酸作用形成凝胶, 在胃壁上形成一层保护膜, 这层保护膜能有效地阻止胃酸对损伤面的刺激, 促进伤面的修复, 使胃部的溃疡得以保护和治疗。研究表明, 消化系统只吸收部分低分子壳聚糖及其衍生物, 未吸收的部分随大便排出。

减肥、去脂作用: 人体内的脂质由两类物质构成, 即脂肪类和胆固醇类, 壳聚糖对它们的作用均十分有效, 80 年代美国已有关于壳聚糖减肥的专利问世。壳聚糖作为理想的减肥食品的添加剂, 其去脂的机理可能是它能与甘油三脂、脂肪酸、胆汁酸、胆固醇等化合物生成配合物, 该类配合物不易被胃酸水解, 不易被消化系统消化, 阻止了哺乳类动物对这类物质的消化吸收, 促使它排出体外。

高血压的治疗与预防: 过去人们一直认为原发性高血压是由钠离子引发的, 而现在医学界已经确认, 血液中氯离子才是导致高血压的主要因素, 从宏观人体系统上看, 影响人体血压主要有两个因素: 即心脏对血液的博出力和末梢血管对血液的阻力, 而在血液内部, 高浓度氯离子会使血管钛转化酶活化, 促使血管收缩素源A CE 1 转化为A CE 2, 增加了末梢血管的收缩力, 导致血压升高。而带正电的壳聚糖及其部分衍生物能对体内的氯离子有效地“吸附”, 并生成离子型化合物, 从而部分阻止了上述过程的发生, 对高血压进行有效的治疗和预防。

增强免疫功能: 日本学者经体液免疫和细胞性免疫试验发现, 壳聚糖具有增强免疫机能, 用壳聚糖制成的口服散剂、颗粒剂或片剂, 可作为免疫增强剂用于微生物感染及癌症的辅助治疗。国内青岛药物所率先研究成功并获准生产含甲壳素的用于增强人体免疫机能的保健品。

延缓衰老: 关于壳聚糖对延缓衰老性的研究表明, 壳聚糖可以对抗或阻缓自由基对细胞的攻击, 并有加强消除自由基的功能, 以防治因内源性与外源性原因所产生的自由基, 降低机体免遭病理性损害及延缓衰老等方面具有很好的功效。

2. 4. 3 在医学上的应用[ 17 ]

抗肿瘤活性: 甲壳素、壳聚糖及其某些改性的衍生物均表现出较强的抗肿瘤活性, 壳聚糖能有选择地凝聚白血病L 1210 细胞产生致密凝块, 阻止其生长, 而对正常红细胞和骨髓细胞没有影响。

抗菌活性: 甲壳素、壳聚糖具有抑制细霉菌生长的活性的作用。N - 羧甲基壳聚糖- 3, 6 - 二硫酸酯对体外培养的金黄色葡萄球菌、链球菌、奇异变形菌、大肠杆菌等有抑制作用。蒋玉燕等研究发现壳聚糖是抗菌谱较广的天然抗菌物质, 对革兰氏阳性菌、阴性菌及白色

念珠菌均有明显的抑制效果[ 18 ]。

由于甲壳素、壳聚糖有良好的生物相容性及抗菌等特点, 目前已用于制备伤口愈合促进剂、人工皮肤等[ 19 ]。

抗凝血活性: 肝素是应用最广的血液抗凝剂, 但价格昂贵, 甲壳素及壳聚糖经硫酸脂化后, 其结构与肝素相似, 称为类肝素药物。曹农等对壳聚糖进行改性后作抗凝血活性实验, 不同壳聚糖衍生物的抗凝血活性顺序是: 羧甲基壳聚糖> 壳聚糖> 羟乙基壳聚糖> 乙基壳聚糖[ 20 ]。

研制新型医用高分子材料: 由甲壳素制成的膜无毒, 有良好的生物相容性, 可降解、韧性好, 可用于分离、渗透、反渗透及超滤等医用方面, 也可用于制备人工透析膜, 还可制备人工皮肤。应用甲壳素制备外科手术缝合线的研究也有报道。甲壳素缝线柔软, 易打结, 机械度较高, 还有易被机体吸收, 促进伤口愈合的优点, 国外已商品化。有报道羧甲基甲壳素可用于制取脂质体型人工红细胞[ 21 ] , 经环氧丙烷改性后得到的羟丙基化壳聚糖可用于配制人工泪液, 观察该人工泪液对36 例无泪液、干燥性角膜炎和结膜炎患者的疗效, 优于以甲基纤维素

为原料的原人工泪液。

总之, 储量丰富的甲壳素?壳聚糖资源还远没有像淀粉、纤维素那样得到广泛的研究和应用, 甲壳素?壳聚糖及其产品的市场潜力是巨大的, 需要尽早制定该产业的详尽发展规则, 并投入大量的人力、物力进行开发及研究。除此之外, 也要积极开展国际间的合作开发与研究活动, 以促使甲壳素?壳聚糖产业的系列化及规模化, 使甲壳素?壳聚糖化学成为国民

经济发展的又一支柱产业。

改性沥青的研究进展

改性沥青的研究进展 黄 彬,马丽萍,许文娟 (昆明理工大学环境科学与工程学院,昆明650093) 摘要 为了得到性能更优良的改性沥青,越来越多的材料被用作改性沥青改性剂,同时新的评价标准和方法及其他领域的新化学分析方法也被用来更完整准确地评价改性沥青的性能。总结了国内外改性沥青的研究现状及进展,从改性机理、性能影响因素及评价方法等方面来介绍各种改性沥青的概况,并概述了改性沥青的发展方向。 关键词 改性沥青 改性剂 机理 发展Rsearch Development of Modif ied Asphalt HUAN G Bin ,MA Liping ,XU Wenjuan (Faculty of Environmental Science and Engineering ,Kunming University of Science and Technology ,Kunming 650093) Abstract More materials ,as modifier ,are used to improve the properties of modified asphalt.Besides ,the new evaluation standards and methods ,new chemical analysis methods are used to evaluate the properties more com 2pletely and accurately.The situation and development of modified asphalt research at home and abroad are summa 2rized.From the aspcts of modification mechanism ,influencing factors and evaluation methods ,various modified as 2phalts are introduced ,and the development trend of modified asphalt technology is illustrated in the paper. K ey w ords modified asphalt ,modifier ,mechanism ,development  黄彬:女,1986年生,硕士研究生,主要研究方向为固体废物资源化 E 2mail :binbin_huang @https://www.360docs.net/doc/683333091.html, 马丽萍:女,1966年生,教 授,主要研究方向为工业废气污染控制、固废综合开发利用 E 2mail :lipingma22@https://www.360docs.net/doc/683333091.html, 0 前言 普通道路沥青由于自身的组成和结构决定了其感温性能差,弹性和抗老化性能差,高温易流淌,低温易脆裂。而且在过去的10年中,车轴负荷增加、车流量增加、气候条件恶劣,难以满足高级公路的使用要求,必须对其改性以改善使用性能。在沥青或沥青混合料中加入天然或合成的有机或无机材料,熔融或分散在沥青中与沥青发生反应或裹覆在沥青集料表面,可以改善或提高沥青路面性能。 1 改性沥青的分类 在沥青的改性材料中,高分子聚合物是应用最广泛、研究最集中的一种。其他改性材料还有两大类:矿物质填料和添加剂。矿物质填料,如硅藻土、石灰、水泥、炭黑、硫磺、木质素、石棉和炭棉等,对沥青进行物理改性,可提高沥青抗磨耗性、内聚力和耐候性。添加剂,包括抗氧化剂和抗剥落剂,如有机酸皂、胺型或酚型抗氧化剂或阴、阳离子型或非离子型表面活性剂,可提高沥青粘附性、耐老化或抗氧化能力。聚合物改性沥青(PMA 、PMB ),按照改性剂的不同一般可分为3类:①热塑性橡胶类,即热塑性弹性体,主要是嵌段共聚物,如SBS 、SIS 、SE/BS ,是目前世界上最为普遍使用的道路沥青改性剂,并以SBS 最多;②橡胶类,如NR 、SBR 、CR 、BR 、IR 、EP 2DM 、IIR 、SIR 及SR 等,以胶乳形式使用,其中SBR 应用最为广泛;③树脂类,如EVA 、PE 、PVC 、PP 及PS 。 2 各种改性沥青及其发展现状 通过SCI 和EI 分别检索近15年来改性沥青在交通、建筑、材料、能源及环境等学科方面研究的文献情况,检索结果如图1、图2及表1、表2所示。根据表1、表2数据和图1、图2情况可以看出,近几年国内外对改性沥青的研究越来越多,尤其以SBS 和胶粉最为突出,出现了多种新型改性剂。下面 将分别介绍各种改性沥青及其发展现状。 图1 SCI 检索统计表 Fig.1 SCI search results 2.1 矿物质材料改性沥青 矿物质材料作改性剂的研究较少,主要为硅藻土、纳米 碳酸钙、矿渣粉、白炭黑等,可与基质沥青形成均匀、稳定的 共混体系以改善沥青性能[1] 。

有机抗菌剂研究现状及发展趋势

有机抗菌剂研究现状及发展趋势 张葵花1, 2 , 林松柏 1 , 谭绍早 2 (1. 华侨大学材料学院 , 泉州 362000; 2. 暨南大学化 学系 , 广州 510630) 摘要: 综述了国内外天然、低分子、高分子有机抗菌剂的研究现状及应用 , 探讨了不同抗菌剂的结构与性能的关系 , 展望其发展趋势。指出有机 - 无机复合抗菌剂兼有了有机抗菌剂的高效性、持续性及无机抗菌剂的安全性、耐热性 , 将是今后国内研究的热点。 关键词: 天然有机抗菌剂 ; 低分子有机抗菌剂 ; 高分子有机抗菌剂 ; 研究现状 ; 发展趋势 0 引言 随着生活水平的提高, 人们对生活环境的认识和要求在不断提高, 特别是对健康的意识也在不断增强。由于有害细菌在自然界分布非常广泛 , 而且种类繁多 , 数量庞大 , 严重威胁着人类的健康[ 1 ] 。由细菌传播感染产生的疾病 , 已构成了一大社会问题 , 引起广泛关注。有机类抗菌剂具有杀菌速度快 , 抗菌效能高 , 加工方便, 颜色稳定等特点, 使用历史长 , 在某些领域中有着不可替代的作用。近年来, 科研人员致力于发展高效、低毒、环境友好、缓释、长效的有机抗菌剂。 1 天然有机抗菌剂 天然有机抗菌剂主要是从蟹和虾的壳中提炼出来的壳聚糖 , 壳聚糖是一种价廉、具有活性— NH 2 的天然高分子 , 具有广谱抗菌性 , 对霉菌、细菌都有很好的抗菌性能 , 对人体无毒、无刺激。不过壳聚糖的抗菌性能受 pH 值、相对分子质量、脱乙酰度的影响 , 一般 pH 值为 5 . 5 ~ 6 . 5 时抗菌性最强 , 相对分子质量在 10 000 ~100 000 范围内抗菌性能更好 , 随着脱乙酰度的增加而出现极值 [ 2 ] 。为了更好地利用壳聚糖作抗菌剂, J ia Zhishen 等[ 3 ] 在壳聚糖上接上不同长度的烷基季铵盐 , 制备了一系列的壳聚糖衍生物。由于壳聚糖的衍生物在酸性和碱性条件下都可溶 , 因此有着更广泛的应用。对抗菌性能的研究表明经过改性的壳聚糖抗菌活性有所提高 , 而且抗菌活性随着烷基链的增长而增加。 Sun Yun 等[ 4 ] 通过两步法在海藻酸钠 ( SA) 中引入壳聚糖齐聚物 (COS) 支链 , 实验表明SA - COS 中 , 只需含 1 . 8% 的 COS, 就能使金黄色葡萄球菌减少 99 1 9% 。这种抗菌海藻酸盐可以与多价金属离子 ( 通常为Ca 2 + ) 交联形成各种形状的水凝胶。用这种水凝胶做成的伤口覆盖物 , 既能保持有利于伤口愈合的湿度 , 又能防止细菌感染。由于壳聚糖及其衍生物对人体无毒和具有生物相容性 , 被广泛用于食品加工行业及医药行业。但是天然有机抗菌剂的耐热性差 , 不适宜用在塑料等对耐热性要求较高的行业。 2 低分子有机抗菌剂 低分子有机抗菌剂主要有季铵盐类、季鏻盐、双胍类、醇类、酚类、有机金属、吡啶类、咪唑类等。其抗菌机理主要是与细菌和霉菌的细胞膜表面的阴离子相结合 , 或与巯基反应 , 破坏蛋白质和细胞膜的合成系统 , 从而抑制细菌和霉菌的繁殖。 2. 1 季铵盐类抗菌剂 季铵盐类抗菌剂由于价格低廉 , 杀菌速度快 , 已经被人们广泛研究和利用。国际上已经开发出 4 代有典型意义的季铵盐抗菌剂。这类抗菌剂的抗菌能力和毒性随结构变化的一般规律是[ 5 ] : 同类季铵盐抗菌剂含短烷基

壳聚糖的应用研究进展(综述性论文)

绿色原料——壳聚糖的应用研究进展 09化学1班 XXX 指导老师:沈友教授 (惠州学院化学工程系,广东,惠州,516007) 摘要:本文综述了绿色原料壳聚糖的应用研究进展,着重介绍了壳聚糖在食品,水处理,生物药用,造纸业等方面的应用。 关键词:壳聚糖应用食品水处理 前言 原料在化学品的合成中非常重要,其可以成为影响一个化学品的制造、加工与使用的最大因素之一。如果一个化学品的原料对环境有负面的影响,则该化学品也很可能对环境具有净的负面影响。要实现绿色化学,在选择原料时应尽量使用对人体和环境无害的材料,避免使用枯竭或稀有的材料,尽量采用回收再生的原材料,采用易于提取、可循环利用的原材料,使用环境可降解的原材料。 自然界的有机物,数量最大的是纤维素,其次是蛋白质,排在第三位的是甲壳素,估计每年生物合成甲壳素100 亿t。甲壳素N-脱乙酰基的产物壳聚糖就是一种重要的绿色原料。 壳聚糖化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖,壳聚糖的外观为白色或淡黄色半透明状固体, 略有珍珠光泽, 可溶于大多数稀酸如盐酸、醋酸、苯甲酸等溶液, 且溶于酸后,分子中氨基可与质子相结合, 而使自身带正电荷。自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。壳聚糖无毒无害,具有良好的保湿性、润湿性,能防止静电; 化学稳定性良好, 但吸湿性较强, 遇水易分解。对壳聚糖进行化学改性, 得到的壳聚糖衍生物在许多物化性质方面都得到改善,其应用也更加受到关注。本文着重介绍了壳聚糖在食品,医药,水处理方面的应用进展。

壳聚糖改性工艺的研究

壳聚糖改性工艺的研究 壳聚糖[是自然界中唯一大量存在的高分子碱性氨基多糖,与合成高分子材料相比,具有来源广泛、价格低廉、性质稳定、无刺激、无致敏、无致突变、良好的生物相容性和生物可降解性、低免疫原性以及生物活性等优点,已被广泛应用于工业、农业、生物工程、医药、食品、日化、污水处理、纺织印染等领域。壳聚糖不溶于普通溶剂,使其应用受到了一定限制,因此,对壳聚糖进行化学改性,提高其溶解性,并赋予其一些其他功能,扩大其应用领域成为了一个研究热点。 20116壳聚糖的结构和性质 1. 1壳聚糖的结构特性 壳聚糖具有复杂的双螺旋结构,其功能基团有氨基葡萄糖单元上的6位伯经基、3位仲羟基和2位氨基或一些N位乙酰氨基以及糖酐键,其结构式如图1所示。 1. 2.壳聚糖的一般理化性质 壳聚糖是生物界中惟一的一种碱性多糖,它是白色、无定型、半透明、略有珍珠光泽的固体,因原料和制备方法不同,其相对分子质量也从数十万至数百万不等。 1. 3壳聚糖的溶解性质 壳聚糖可溶于稀的盐酸、硝酸、醋酸等无机酸和大多数有机酸但不溶于稀硫酸和稀磷酸。影响壳聚糖溶解的主要因素有脱乙酰度、壳聚糖的相对分子质量、酸的种类等。 2壳聚糖的改性研究 由于壳聚糖自身性能的局限性,科研工作者对其进行了改性研究,通过控制反应条件在壳聚糖上引人其他基团来改变其理化性质[6]。本文将介绍壳聚糖改性的研究进展及应用,并对目前的一些改性方法进行了较全面的总结。 2. 1化学改性 壳聚糖分子上有许多经基和氨基,可通过对其进行分子设计实现可控化学修饰,从而改善壳聚糖本身性能的一些不足。根据壳聚糖的化学性质,可以从酰化、酯化、烷基化等几个方面对其进行化学改性。 2.1.1酸化改性 壳聚糖可与多种有机酸的衍生物如酸酐,酰卤等反应,可引人不同相对分子质量的脂肪族或芳香族的酰基进行改性。酰化反应既可在轻基上反应(O位酰化)生成酯,也可在氨基上反应(N位酞化)生成酰胺。酰化化改性后的产物的溶解度有所改善,它具有良好的生物相容性,是一种潜在的医用生物高分子材料。如脂肪族酰化化产物可作为生物相 容性材料,N一甲酰化产物可增强人造纤维的物理性能。

改性沥青现状及发展前景

改性沥青现状及发展前景 1、改性沥青应用现状 普通道路石油沥青,由于原油成分及炼制:工艺等原因,其含蜡量较高,导致其具有温度敏感性强,与石料的粘附性差,低温延度小等缺点。用其铺筑的沥青路面,夏季较软,易出现明显车辙壅包等病害;冬季较脆,易出现低温开裂等病害;混合料的抗疲劳性能,抗老化性能较差。同时,由于经济的快速发展,普通沥肯混合料已不能满足高等级道路和特殊地点的重交通,大轴载,快速安全运输的需要。 1.1 改性沥青的应用背景和现状 据相关资料,20世纪60年代以前,沥青路面仅用于城市道路和专用公路,沥青材料主要是煤沥青和用进口原油提炼的石油沥青。20世纪70年代前后,在全国范围内曾采用渣油吹氧稠化,掺配特立尼达(TLA)或阿尔巴尼亚稠沥青等改性的方法,提高结合料稠度,配制成200号沥青铺筑以表面处治为主的沥青面层。1985年国内开展 了沥青中掺丁苯,氯丁橡胶,废轮胎粉等改性沥青和掺金属皂等改善混合料性能的研究试验工作,取得了成功的经验。1992年NovophaltPE现场改性技术的引入,对改性沥青的推广应用起到了促进作用,使改性沥青从研究试验逐步发展到生产应用。 1.2影响改性沥青应用的因素 生产施工工艺在聚合物改性沥青的大规模应用中起到了关

键性的作用。无论是聚合物改性,物理改性还是采用不同的沥青加工工艺都会增加较大的工程成本,在国内经济不发达地区的应用会受到一定的制约。 2、改性沥青的研究现状 目前国内的研究重点在新的改性剂和沥青改性剂的加工工艺上还有一部分研究是面向工程应用的,即研究在沥青集料改性剂确定的情况下,找出合适的级配,最佳沥青用量和改性剂用量以满足实际工程的要求。我国研究改性沥青已有多年的历史,也取得了丰富的成果,但至今仍有两个问题没有很好地解决: (1)没有形成对改性沥青和改性性能统一的评价标准; (2)国内没有形成统一的研究体系。 改性沥青的研究是一项长期的复杂的系统工作,要想取得突破性成果必须综合各研究机构的优势,形成统一的研究体系,比如美国l987年~l992年的大型系统工程SHRP计划等等。而相对于国内,研究工作往往由各高等院校,科研院所独立完成,没有统一的研究规划,配套工作滞后。另外由于各部门的利益关系,沥青改性的关键技术往往是秘而不宣的,在一定程度上造成人财物的巨大浪费。 3、改性沥青的应用前景 由于普通沥青已不能适应现代化路面的要求,性能良好的改性沥青必将在高等级路面中起到越来越重要的作用 3.1 SBS改性沥青将获得更广泛的应用 研究表明,SBS改性的优越性突出表现在具有双向改性作用,

利用壳聚糖制作食品包装的探索与研究

利用壳聚糖制作食品包装的探索与研究 【摘要】壳聚糖(chitosan)属含氨基的均态直链多糖衍生物,是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的少数具有荷电性的天然产物之一,也是迄今发现的唯一一种天然碱性多糖。在大多数弱酸条件下壳聚糖可以溶解成胶体,可以制成薄膜。本文就壳聚糖成膜后具有抗菌性,抗氧化性等对食品有保鲜功能展开研究,并证明其利用在食品包装材料上具有广阔的前景。 【关键词】壳聚糖保鲜食品包装 引言 虾壳、蟹壳是水产工业的废弃物,堆放一段时间就会腐坏,造成环境污染;而广泛存在于蟹、虾和昆虫的外壳及菌类、藻类的细胞壁中的甲壳素等物质(还有蛋白质和红色素)可经过1,4键链接而成的线形聚合物――壳聚糖(化学名称为:聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖),是天然多糖中唯一的碱性多糖。壳聚糖具有优良的物理化学性能、生物相容性、抗菌性、生理活性、成膜性,由壳聚糖制得的功能材料且有较强的抗菌性能,可应用于医药、农业、工业、食品及化妆品等行业[1]。 (1)研究发展过程。1811年,法国科学家H.Braconnot

从动物的甲克中提取到甲壳素。1859年,法国一位名叫Rouget的研究者将甲壳素放在浓KOH溶液中煮沸,洗净后溶于有机酸,便得到了壳聚糖。1934年,在美国才首次出现了关于制备壳聚糖及相关物质的专利,并于1941年成功制备壳聚糖人造皮肤和手术缝合线。20世纪90年代,壳聚糖的应用和生产达到了高潮――全球壳聚糖的年产量数万吨。 (2)结构。经研究证实,壳聚糖的空间结构是一个复杂的双螺旋结构,每个螺旋平面有6个糖残基,螺距为 0.515nm。壳聚糖的基本组成单位是氨基葡萄糖,基本结构单元是壳二糖。 (3)物理性质。壳聚糖是一种白色或灰白色固体,没有固定形状,色泽上呈半透明,略带有珍珠光泽。不能溶于水和碱溶液中,可溶于烯酸(pH<6)。壳聚糖在溶液中是带正电荷多聚电解质,具有优良的吸附性、成膜性和通透性、保湿性等。 (4)化学性质。壳聚糖链官能团较多,能发生各种反应,O-酰基化和N-酰基化、含氧无机酸酯化、醚化、N-烷基化、氧化、螯合、酸吸附、接枝共聚和交联反应,其中比较重要的是酰基化和醚化反应[2]。 (5)壳聚糖的制备。壳聚糖的制备有化学制备法、生物降解法、机械加工法,其中化学制备法如下流程:虾壳→稀酸溶液搅拌(1.5h)→加入氢氧化钠水溶液(加热2h)→

壳聚糖改性研究与应用

壳聚糖改性研究与应用 赵朝霞(1142032224)四川大学化学学院2011级本科 摘要:甲壳素是一种天然多糖,脱除乙酰基的产物是壳聚糖,作为新型功能生物材料,它们已在水处理、日用化学品、生物工程和医药等领域得到了应用。本文综述了近年来关于壳聚糖改性研究进展,以及将其应用到医学、食品、化学工业等各个领域的概况,重点介绍了化学和物理修饰方法的应用研究。 关键词:壳聚糖化学改性与修饰物理改性与修饰功能材料 甲壳素的化学名称为(1,4)一2一乙酰氨基一2一脱氧一β—D—葡聚糖,它是通过β-1-4糖苷键相连的线性生物高分子,分子量从几十万到几百万。甲壳素脱除乙酰基后的产物是壳聚糖,其化学名称为(1,4)一2一氨基一2—脱氧—β一D—葡聚糖。甲壳素和壳聚糖具有与纤维素很相近的化学结构,它们的区别仅是在C位上的羟基分别被一个乙酰氨基和氨基所代替(如图) 但它们的化学性质却有较大差别。甲壳素和壳聚糖具有生物降解性、细胞亲和性和生物效应等许多独特的性质,尤其是含有游离氨基的壳聚糖,是天然多糖中唯一的碱性多糖[1-4]。因此,它们已在废水处理、食品工业、纺织、化工、日用化学品、农业、生物工程和医药等方面得到应用。 医药领域 聚乳酸一羟基乙酸共聚物(PLGA)微粒广泛用于蛋白、多肽、核酸等生物大分子给药。由于PL-GA纳米微球表面缺乏可用于共价修饰的基团,所以难以在表面负载生物活性物质如DNA、配体和疫苗等,不易于通过受体或抗体进行靶向给药。因此,人们尝试用不同方法将PLGA 表层包裹不同的聚合物以达到物理改性PLGA微球表面的目的。如阳离子表面修饰是基于PLGA表层负电荷而设计的,这种方式使PLGA的表面活化成为可能。将壳聚糖(CHS)选做纳米微球表面修饰材料是因为它具有阳离子电荷,生物可降解,黏膜黏附性等特性。阎晓霏等以溶菌酶为模型蛋白,将改性PLGA与溶菌酶通过化学键结合并以CHS修饰得到一种新型阳离子纳米微球,达到增大纳米微球的包封率、载药量并促进蛋白类药物吸收的目的[5]。 壳聚糖在医药测定方面也有着十分积极的作用。Zhang等[6]首先制备了壳聚糖包覆的CdSe /ZrKS量子点作为Her2/neu基因小分子干扰RNA(small interfering RNA,siRNA)的载体。并通过跟踪量子点的荧光信号证实药物载体靶向传送到乳腺肿瘤细胞,利用荧光索酶和酶联免疫分析验证导入细胞的siRNA的基因沉默效应。钟文英[7]等壳聚糖包覆的Ccrre量子点为荧光探针,基于荧光猝灭法建立了吉米沙星定量测定方法。以壳聚糖为载体合成新型疏水色谱填料[8],有效分离提纯枯草芽孢杆菌α一淀粉酶、鸡卵粘蛋白、AS 1.398中性蛋白酶以及伪单孢杆菌脂肪酶[9],以壳聚糖为载体的亲和吸附剂和壳聚糖固定化蛋白酶均具有广泛应用价值. 壳聚糖羧甲基化后,与磷酸钙生成螯合物,它可促进骨骼的矿化,在医药上可作为成骨的促进剂[10]。 二、化工领域 武美霞[11]等以壳聚糖为络合剂、稳定剂或保护剂,通过简单的化学还原法制备了具有超小尺寸的非晶态NiB.CS催化剂,并且使活性组分Ni分散均匀。壳聚糖修饰炭黑负载Pt—Au 催化剂,对原电极有相当好的物理极化学性质的改良作用。Sugunan[12]等认为,壳聚糖之所以能够捕获并起到稳定金纳米粒子的作用,一是由于两者之间存在静电作用;二是壳聚糖具有足够大的立体位阻效应,从而避免了金纳米粒子的聚集并能使金纳米粒子功能化。因此,

SBS改性沥青的性能与应用

SBS改性沥青的性能与应用 摘要:我国高速公路建设自改革开放以来,经历了从无到有,从起步到建设成高速公路网的翻天覆地变化。与此同时,传统的普通沥青已经很难适应现代对公路的高标准要求,而改性沥青的研制与应用则较好地解决了这一问题。本文主要通过介绍SBS改性沥青在高温、低温条件下的抗车辙、抗裂性能,与水稳定性,抗滑能力等内容,比较得出其对于传统沥青在工程、经济、社会各方面的优越性,探究了加强对SBS改性沥青的学习,开展对SBS改性沥青深入的研究与推广其广泛应用的长远意义。 关键词:SBS改性沥青;改性沥青性能;改性沥青应用;沥青施工;工程效益;应用前景 1 前言 随着交通流量的增长、车载质量的增加以及高温和低温的作用,为适应道路路面的使用性能的要求,保证路面良好的使用状态,延长路面的使用寿命,就必须探寻更高性能的路面材料。SBS改性沥青混凝土具有很好的高温抗车辙能力,低温抗裂能力,改善了沥青的水稳定性,提高了路面的抗滑能力,增强了路面的承载能力,提高了沥青的抗氧化能力,是比较优良的路面材料。自上世纪40年代以来,国内外学者对各类改性沥青的性能进行了大量的研究工作,改性沥青技术得到了越来越多的重视。现有研究结果表明,与其他改性沥青相比,SBS(苯乙烯一丁二烯一苯乙烯)改性沥青的综合性能[1]更为突出,SBS改性沥青必将在未来很长的一段时间内得到更深入的研究和更广泛的应用。 2 SBS改性沥青简介 SBS属于苯乙烯类热塑性弹性体,是苯乙烯—丁二烯—苯乙烯三嵌段共聚物,SBS改性沥青是以基质沥青为原料,加入一定比例的SBS改性剂,通过剪切、搅拌等方法使SBS均匀地分散于沥青中,同时,加入一定比例的专属稳定剂,形成SBS共混材料,利用SBS良好的物理性能对沥青做改性处理。在良好的设计配合比和施工条件下,用SBS改性沥青铺筑的沥青混凝土路面有着传统沥青路面无法比拟的优越性能,具有很好的耐高温、抗低温能力以及较好的抗车辙能力和抗疲劳能力,并极大地改善沥青的水稳定性,提高了路面的抗滑性能。

壳聚糖及其结构特点

第一章 绪 论 1.1 壳聚糖及其结构特点 壳聚糖(Chitosan)是甲壳素(Chitin)脱乙酰基后的产物,是甲壳素最基本、最重要的衍生物。甲壳素又名甲壳质、几丁质,化学名为(1,4)—2—乙酰胺—2—脱氧—β—D—葡聚糖,主要存在于虾、蟹、蛹及昆虫等动物外壳以及菌类、藻类植物的细胞壁中。节肢类动物的干外壳约含20~50%甲壳素。自然界中甲壳素有三种结构:α、β、γ,其中最为常见、普通的是α型。地球上每年甲壳素的生物合成量为数十亿吨,是产量仅次于纤维素的天然高分子化合物。下图1-1是甲壳素和壳聚糖的结构: 图1-1 甲壳素、壳聚糖分子的结构示意图 Fig.1-1 The configuration schematic of chitin and chitosan 纯净的甲壳素和壳聚糖均为白色片状或粉状固体,比重0.3,常温下能稳定存在。甲壳素分子之间存在强烈的氢键作用,使得甲壳素形成高度的结晶结构,因而甲壳素分子高度难溶。甲壳素不溶于水及绝大多数有机溶剂,也不溶于稀酸、稀浓碱,只溶于浓酸和某些溶剂。壳聚糖分子的活性基团为氨基而不是乙酰基,因而化学性质和溶解性较甲壳素有所改善,可溶于稀酸、甲酸、乙酸,但也不溶于水和绝大多数有机溶剂。由于氨基和羟基比较活泼,壳聚糖的化学性质较甲壳素活泼,可以发生多种化学反应,比如烷基化、酰基化反应等等。 1.2 壳聚糖及其衍生物产品的应用 壳聚糖及其衍生物由于其可再生性、生物相容性以及结构中的多种活性基团,具有多种优良的性质,已经广泛应用于化妆品、食品、医药、农业、环保等多个行业中。 1.2.1 在环保中的应用 壳聚糖及其衍生物能够通过分子中的氨基和羟基与多种金属离子形成稳定的整合物且可帮助微粒凝聚,故广泛用作化工、轻工纺织等废水处理中的吸附剂和絮凝剂。壳聚糖作为吸附剂和絮凝剂,能够有效地捕集溶液中的重金属离子和 有机物,并可以抑制细菌生长,使污水变清,特别是对于汞、铬、铜、铅、钴、3n n 甲壳素壳聚糖

壳聚糖的制备方法及研究进展

龙源期刊网 https://www.360docs.net/doc/683333091.html, 壳聚糖的制备方法及研究进展 作者:张立英 来源:《山东工业技术》2018年第02期 摘要:壳聚糖作为一种碱性多糖被广泛应用于食品、生物、化工、医疗等领域。本文重点介绍了壳聚糖的制备方法及其研究进展,并对其发展趋势进行了展望。 关键词:壳聚糖;碱性多糖;制备方法 DOI:10.16640/https://www.360docs.net/doc/683333091.html,ki.37-1222/t.2018.02.016 壳聚糖本身的分子结构类似于纤维素,因其多了一个带正电荷的胺基,使其化学性质较为活泼。目前壳聚糖正因其优良的生理活性在食品、化妆品、医药、化工、污水处理等方面展现出广阔的应用前景,近十年来国内外对于壳聚糖的开发研究热度一直持续不减,各种新颖的制备方法也是层出不穷。 1壳聚糖的来源 壳聚糖通常是由甲壳素(又名几丁质)经脱乙酰基作用获得,甲壳素在自然界中广泛存在于高等真菌以及节肢动物(虾、蟹、昆虫等)的外壳中,其中虾壳、蟹壳是工业生产壳聚糖的主要原料。由于大分子间的氢键作用,天然存在的甲壳素构造坚固,化学性质稳定,不溶于水、酸碱和一般的有机溶剂,这也使得甲壳素的应用范围非常有限,因此甲壳素只有经脱乙酰基处理成壳聚糖才能获得广泛应用。 2壳聚糖的制备方法 (1)化学降解法。传统的壳聚糖生产多采用化学降解法。作为壳聚糖工业生产最常用的制备方法,化学降解法简便易行,效率高,整个生产过程容易控制,但该法环境污染较为严重,对周边环境具有一定的破坏性。欧阳涟等从蟹壳中获取甲壳素,并通过脱乙酰反应制备出了壳聚糖。试验探究了影响产物壳聚糖脱乙酰反应的各种因素,如反应温度、碱液含量及反应时间等,最终确定制备高脱乙酰度壳聚糖的条件为反应温度70℃,碱液质量分数47%,反应时间10 h。 (2)微生物培养法。微生物发酵法生产壳聚糖起源于美国,我国从上世纪90年代开始研究。其主要原理是利用微生物自身生产的酶进行催化,从而脱去甲壳素中的乙酰基,进而制备壳聚糖。目前该领域研究重点主要集中在优良菌株的选育和培养基的优化上。 贺淹才等首先采用电解法从培养的黑曲霉湿菌体中制得甲壳素,然后采用碱提取法从培养的黑曲霉湿菌体中制备壳聚糖。试验基于黑曲霉细胞壁的主要成分为蛋白质与甲壳素,而蛋白质带有可电离的基团,于溶液中可形成带电荷的阳离子和阴离子,在外加电场作用下发生迁

壳聚糖抗菌剂研究进展

Bioprocess 生物过程, 2017, 7(4), 41-48 Published Online December 2017 in Hans. https://www.360docs.net/doc/683333091.html,/journal/bp https://https://www.360docs.net/doc/683333091.html,/10.12677/bp.2017.74006 Research Progress on Chitosan Antimicrobial Maotao Wu SunRui Marine Environment Engineering Co., ltd, Qingdao Shandong Received: Nov. 20th, 2017; accepted: Dec. 1st, 2017; published: Dec. 7th, 2017 Abstract Chitosan is a nature macromolecule. With the investigation, its applications are broad. The article summarizes the research and application of chitosan as an antimicrobial, the mechanism and the infective factors, and the development foreground of the chitosan antimicrobial is prospected. Keywords Chitosan, Antimicrobial, Mechanism, Prospect 壳聚糖抗菌剂研究进展 吴茂涛 青岛双瑞海洋环境工程股份有限公司,山东青岛 收稿日期:2017年11月20日;录用日期:2017年12月1日;发布日期:2017年12月7日 摘要 壳聚糖是一种天然的高分子,随着研究的深入发展,应用范围越来越广泛。本文概述了壳聚糖在抗菌剂领域的研究应用情况,归纳总结了其抗菌机理及其影响因素,同时展望了壳聚糖抗菌剂的发展前景。 关键词 壳聚糖,抗菌剂,机理,展望

改性壳聚糖的研究进展

改性壳聚糖的研究进展 1壳聚糖的理化性质 壳聚糖(chitosan,(1,4)-2-氨基-2-脱氧-β-D-葡聚糖)是甲壳素(chitin,(1,4)-2-乙酰氨基-2-脱氧-β-D-葡聚糖)部分脱乙酰化的产物。甲壳素广泛存在于蟹、虾以及藻类、真菌等低等动植物中,含量极其丰富,自然界每年产量约在100亿吨,是仅次于纤维素的第二大多糖。它是由葡萄糖结构单元组成的直链多糖,此多糖中含有数千个乙酰己糖胺残基,因此在分子间形成很强的氢键,导致其不溶于水和普通有机溶剂,这就大大限制了其应用范围。 将甲壳素在碱性条件下加热,脱去N-乙酰基后可生成壳聚糖。人们常将N-脱乙酰度和粘度(平均相对分子质量)作为衡量壳聚糖性能的两项指标。N-脱乙酰度是判定壳聚糖溶解性的依据,脱乙酰度越高,分子链上的游离氨基就越多,在酸中的溶解性就越好;而壳聚糖相对分子质量越大,分子之间的缠绕程度就越大,溶解度就越小。壳聚糖是自然界中唯一的一种碱性多糖,它一般是白色无定型、半透明、略有珍珠光泽的固体。壳聚糖可溶于大多数稀酸,如盐酸、醋酸、苯甲酸溶液,且溶于酸后分子中氨基可与质子结合,使自身带上正电荷。甲壳素及壳聚糖的结构式如图1所示:

图1壳寡糖与壳聚糖的结构式 甲壳素和壳聚糖在自然界可以被各种微生物降解。微生物中的甲壳素酶(chitinase)可以随机地水解甲壳素的N-乙酰-β-(1-4)糖苷键。而壳聚糖可以被多种酶水解,包括壳聚糖酶(chitosanase)、麦芽糖酶、脂肪酶、以及各种来源的蛋白酶。在人体内甲壳素酶和壳聚糖酶并非普遍存在,通过测定显示N-乙酰壳聚糖在人血清中可以被人体内普遍存在的溶菌酶(lysozyme)降解。 壳聚糖的主链结构中引入了2-氨基,化学性质区别于3,6-羟基,与甲壳素相比增加了反应选择性的功能基团。由于C6-OH是一级羟基,C3-OH是二级羟基,空间位阻不同反应活性也不同,再加上C2-NH2,壳聚糖就具有三个活性不同的可供修饰的基团。根据不同的需要,被修饰的壳聚糖作为一种功能大分子广泛用于各种领域。由于壳聚糖只在酸性水溶液中溶解,而在中性或碱性水溶液中以及多数有机溶剂中不溶,限制了它的应用范围,因此科学家们采用衍生化的方法对壳聚糖进行改性获得了多种水溶性和可溶解于某些有机溶剂的衍生物,大大扩展了壳聚糖的应用范围。其中包括对壳聚糖进行N-,O-酰化,含氧无机酸酯化,醚化,N-烷基化,C6-OH和C3-OH的氧化,以及鳌合、交联等,在此过程中获得了许多性能良好,甚至是

SBS改性沥青机理研究进展

S BS改性沥青机理研究进展 李双瑞,林 青,董声雄 (福州大学化学化工学院,福州 350002) 摘要:介绍了沥青的特性、苯乙烯2丁二烯2苯乙烯三嵌段共聚物(S BS)的性能,分析了S BS与基质沥青之间 的溶胀性和相容性问题,着重论述了S BS改性沥青机理的研究进展,指出机理主要分为物理共混和化学改性两 类:物理共混———S BS微粒受到沥青组分中油分的作用发生溶胀而均匀分散在沥青中,S BS与沥青之间没有发 生化学作用,只是一种分子间作用力;化学改性———加入添加剂使沥青和S BS之间发生加成、交联或接枝等化 学反应,形成较强的共价键或离子键,改善沥青的化学性质。提出化学改性是提高S BS改性沥青路用性能的重 要手段。 关键词:苯乙烯-丁二烯-苯乙烯嵌段共聚物;S BS改性沥青;改性机理 采用聚合物对道路沥青进行改性是提高和改善沥青混合料路用性能的一种重要措施[1~6]。近年来,在聚合物改性材料中,苯乙烯2丁二烯2苯乙烯三嵌段共聚物(S BS)以其优异的性能,成为世界上使用最为广泛的沥青改性剂[7~12]。对S BS改性沥青路用性能的研究[13~17]表明:采用S BS对沥青改性后,改性沥青的低温柔性和高温性能明显提高,温度敏感性大大降低。关于S BS改性沥青的机理,国内外科技人员进行了大量的研究,但并没有形成统一的理论。本文根据国内外相关文献,介绍了沥青和S BS的性能以及S BS在沥青中的溶胀性和相容性问题,着重论述了S BS改性沥青机理的研究进展。 1 沥青的特性 沥青是由多种化学成分极其复杂的烃类所组成。这些烃类为一些带有不同长短侧链的高度缩合的环烷烃和芳香烃,以及这些烃类的非金属元素衍生物[18]。按生产来源划分,沥青主要可分为地沥青(包括天然沥青与石油沥青)、焦油沥青、煤沥青、页岩沥青等。道路中各国目前生产和最常用的是石油沥青。石油沥青是原油加工的重质产品[19]。石油沥青的组分极为复杂,通常用溶剂将沥青通过色层分析法分成饱和分、芳香分、胶质和沥青质四个组分[18]。Hubbard2Stanfield法将沥青划分为油分、树脂和沥青质3个组分[19]。 油分是石油沥青中最轻的馏分,含量在45%~60%。油分是石油沥青可以流动的主要原因,其含量越多,软化点越低,粘度越小,使沥青具有柔软性和抗裂性。树脂的含量在15%~30%。树脂的存在使石油沥青有一定的可塑性、可流动性和粘结性,直接决定着石油沥青的延伸度和粘结力。沥青质是固体无定形物质,含量在5%~30%。沥青质是高分子化合物,它是石油沥青中分子量最高的组分,决定着石油沥青的塑性状态界限、自固态变为液态的程度、粘滞性、温度稳定性、硬度和软化点。此外,石油沥青中还含有一定数量的沥青酸、沥青酸酐、碳化物和似碳物。 沥青的主要结构为胶体结构,即以沥青质为核,表面层被树脂浸润包裹,而树脂又溶于油分中,形成沥青胶团,无数胶团彼此通过油质结合成胶体结构。当沥青中沥青质含量适当,并有较多的树脂作为保护物质时,它所组成的胶团之间有一定的吸引力,这种结构称之为溶胶-凝胶结构。大多数优质的路用沥青都属于这种胶体结构,具有粘弹性和触变性。当沥青质含量较高时,胶粒相互缠结,粘度大、塑性小、 基金项目:中法先进科技合作项目(PRAMX02208); 作者简介:李双瑞(1977-),女,河南南阳人,博士研究生,从事沥青材料改性的研究; 联系人,E2mail:sxdong2004@https://www.360docs.net/doc/683333091.html,.

壳聚糖的抑菌机理及抑菌特性研究进展

壳聚糖的抑菌机理及抑菌特性研究进展 吴小勇 曾庆孝 阮征 张立彦 (华南理工大学轻工与食品学院,广州510640) 摘 要:本文介绍了壳聚糖的抑菌作用及其在食品防腐保鲜方面的应用,还对壳聚糖的抑菌机理及其影响因素进行了较为全面的讨论。 关键词:甲壳素,壳聚糖,抑菌,防腐保鲜 Progress in the Study of Antimicrobial Activities of Chitosan Xiaoyong Wu,Q ingxiao Z eng,Zhen Ruan,Liyan Zhang (College of Light Industry&Food Science,South China Univ.of Tech.,Guangzhou510640) Abstract:The antimicrobial activities of chitosan and its a pplication in food preservation were introduced in this article. Moreover,the antimicrobial mechanisms and the effect factors of chitosan were com pletely discussed. K ey w ords:Chitin,Chitosan,Antimicrobial activities,Preservation 0 简介 甲壳素是可以再生的生物大分子物质,在自然界中广泛存在,是自然界中存在的数量仅次于纤维素的第二大有机物,估计每年的生物合成量达100亿吨[1]。甲壳素的脱乙酰产物%%壳聚糖,由于存在自由氨基,其溶解性和化学反应活性大大改善,表现出比甲壳素更广泛的应用前景。壳聚糖在食品工业的应用主要有:食品防腐保鲜、酒类除浊和果汁的澄清、功能性食品添加剂、水净化等。Fereidoon Shahidi 等综述了甲壳素和壳聚糖在这方面的应用[2],宋清华等也有类似的介绍[3]。近年来,随着消费者对化学防腐剂的安全性的担忧和对天然防腐剂的喜好,关于壳聚糖在食品防腐保鲜方面的应用的研究也越来越多;但是在壳聚糖的抑菌机理和抑菌特性方面,不同的研究者得出的结论不同,有的结论一致,有的结论不一致,甚至相反;因此,对这些研究成果进行回顾,从中找出一些基本正确的,有规律性的结论是很有必要的。本文将努力在这方面做一些工作,并介绍部分关于壳聚糖的抑菌机理及应用研究方面的最新成果,供读者参考。 1 壳聚糖的抑菌机理 抗微生物的物质,其作用方式主要有以下几种[4]:损伤细胞壁、改变细胞的透性、改变蛋白质和核酸分子、抑制酶的作用、作为抗代谢物、抑制核酸的合成。关于壳聚糖及其衍生物的抑菌机理,从目前的研究结果来看,主要有以下几种可能:(1)分子量小于5000kDa的壳聚糖可以透过细胞膜[5],小分子壳聚糖进入微生物细胞内,与细胞内带负电的物质(主要是蛋白质和核酸)结合,使细胞的正常生理功能(例如DNA的复制和蛋白质的合成等)受到影响,导致微生物死亡[6]。(2)大分子的壳聚糖吸附在微生物细胞表面,形成一层高分子膜,阻止了营养物质向细胞内运输,从而起到杀菌和抑菌作用[5,6]。(3)壳聚糖的正电荷与微生物细胞膜表面的负电荷之间的相互作用,改变了微生物细胞膜的通透性,引起微生物细胞死亡[7]。(4)壳聚糖作为一种螯合剂,选择性地螯合对微生物生长起关键作用的金属离子,从而抑制微生物的生长和产毒; 64

壳聚糖在水处理中的应用

壳聚糖基复合材料在水处理中的应用研究进展 田清源,费梦飞 山东农业大学化学与材料科学学院 摘要:介绍了壳聚糖的结构、性质及其在水处理中的应用原理,综述了壳聚糖与粘土、二氧化硅、无机高分子絮凝剂及其它无机材料复合得到的壳聚糖基复合材料在水处理中的应用研究进展,提出未来的发展应加强处理机理的研究、对重金属离子外的其它无机物和有机物的处理研究以及产业化应用研究。 壳聚糖(Chitosan,CTS)是唯一一种碱性天然多糖,是甲壳素经脱乙酰作用的产物。壳聚糖分子链上存在大量的氨基和羟基,具有很高的反应活性,同时还具有良好的生物相容性、无毒性和生物可降解性,此外,壳聚糖还是天然的高分子絮凝剂,作为吸附剂和絮凝剂在水处理领域具有很好的应用前景。鉴于壳聚糖在酸性溶液中易溶解、沉降慢、稳定性差,片状和粉状的壳聚糖使其再生、贮存很不方便,通常人们将其改性、交联制成如微球、多孔小珠等树脂产品,但是在乳化交联过程中,交联剂的用量直接影响着微球的机械性能和饱和吸附量,两者难以兼顾,因此,壳聚糖树脂微球的性能仍不够理想。近年来,随着聚合物/无机杂化材料研究的发展,壳聚糖/无机物复合材料的制备和性能的研究进展很快。无机物与壳聚糖的复合,一方面改善了壳聚糖材料的机械性能,另一方面又赋予壳聚糖新的功能,对于提高壳聚糖的应用价值意义重大[1]。作者在此对壳聚糖基复合材料在水处理方面的应用研究进展进行了综述。 1壳聚糖的结构和性质 壳聚糖是由β-(1→4)-2-氨基-2-脱氧-D-葡糖胺和β-(1→4)-2-乙酰氨基-2-脱氧-D-葡糖胺两种糖单元间隔连接而成的链状聚合物,分子量根据脱乙酰度的不同从数十万到数百万不等[2]。壳聚糖分子链上分布着大量羟基、N-乙酰氨基和氨基,形成各种分子内和分子间的氢键,不仅是配位作用和反应的位点,同时也形成了壳聚糖大分子的二级结构[3]。壳聚糖的结构式如图1所示。 图1壳聚糖的结构式 壳聚糖分子链上丰富的羟基和氨基基团,使其具有许多独特的化学和物理性质。例如,壳聚糖上的氨基使其呈一定的碱性,可以从溶液中结合氢离子,从而使壳聚糖成为带正电荷的聚电解质而溶于酸;壳聚糖分子中活泼的C2位氨基和C6位羟基,使其易于发生化学反应,可进行多种化学修饰,形成不同结构和性能的衍生物,从而拓宽了其应用领域。另外,作为一种生物高分子化合物,壳聚糖还具有优良的生物相容性和生物可降解性。 评价壳聚糖性能的两项重要指标是脱乙酰度和平均分子量,一般而言,脱乙酰度越高、平均分子量越小,壳聚糖的溶解性就越好[4,5]。壳聚糖独特的结构和性质,使其具有良好的粘合性、生物可降解性、生物相容性、再生性和抗菌性,因此,广泛应用于生物医学、药学、食品、造纸、纺织以及环保等领域。 2壳聚糖在水处理中的应用原理[6] 2.1吸附与絮凝作用 壳聚糖分子链上存在大量的氨基、羟基和N-乙酰氨基,使其可借助氢键、盐键形成网

壳聚糖及其衍生物抗菌性能研究进展

中国实用口腔科杂志2011年7月第4卷第7期 甲壳素(chitin)是N-乙酰基-D-葡萄糖胺以β-l,4键结合而成的多糖,是蟹、虾等甲壳类、甲虫等的外骨骼及蘑菇等菌类的细胞壁成分,广泛存在于自然界。壳聚糖(chitosan)是甲壳素脱去乙酰基的产物,安全无毒具有良好的生物兼容性,与人体细胞有良好的亲和性,无免疫原性,具有抗癌和抗肿瘤的作用。壳聚糖及其衍生物因其特有生物活性对多种细菌、真菌具有广谱抗菌的功能,在口腔抗微生物方面的应用逐渐得到重视。本文就壳聚糖及其衍生物抗菌性能方面研究现状进行综述。 1壳聚糖的抗菌活性 1.1壳聚糖对细菌的抗菌作用壳聚糖具有广谱抗菌作用。近年来研究发现,壳聚糖可抑制大肠杆菌、沙门菌属、金黄色葡萄球菌、绿脓杆菌、李斯特单核细胞增生菌、小肠结肠炎耶尔森菌、链球菌、霍乱弧菌、志贺痢疾杆菌、产气单胞菌属及某些真菌等的生长[1]。 邓婧等[2]采用纸片药敏试验法,在pH6.5时对不同浓度壳聚糖进行抑菌实验,发现其对变形链球菌、金黄色葡萄球菌、白色念珠菌、幽门螺杆菌、牙龈卟啉单胞菌均有抑制作用。2%壳聚糖对变形链球菌、金黄色葡萄球菌的抑制效果最好,1.5%、1.0%、0.5%对变形链球菌、金黄色葡萄球菌、白色念珠菌的抑制效果优于幽门螺杆菌和牙龈卟啉单胞菌。有研究发现,在pH5.5时,1.0%壳聚糖(脱乙酰度为88.7%)对金黄色葡萄球菌、大肠埃希菌有强抑制作用[3]。 由于壳聚糖良好的成膜性和独特的抗菌性,它能有效抑制2种牙周致病菌——伴放线放线杆菌和牙龈卟啉菌的生长。Ikinci等[4]将壳聚糖凝胶或膜与洗必泰联用,证明壳聚糖对牙龈卟啉菌有一定的抑制作用,可避免洗必泰的不良反应,既可延长其作用时间,也能够明显抑制细菌生长。壳聚糖对促进血链球菌生物膜脱落有显著作用,且小分子量壳聚糖的作用效果最佳。壳聚糖对几种常见口腔致病菌不仅有抑制作用,而且经高温处理后其作用也很稳定,所以在治疗口腔感染方面壳聚糖将是有效药物[2]。1.2壳聚糖对真菌的抑制作用壳聚糖还具有抗真菌活性。壳聚糖可有效抑制皮肤浅表真菌的生长。刘晓等[5]研究壳聚糖凝胶对皮肤浅表真菌的抑制作用,发现壳聚糖凝胶剂对红色毛癣菌、断发毛癣菌均有较强抑菌作用,抑菌质量浓度为2.5~5g/L。Rhoades等[1]使用脱乙酰度为89%、质量浓度为1g/L的天然壳聚糖对念珠菌和白色隐球菌进行抑菌实验,发现其对2log cfu/mL念珠菌有明显的抑制作用,而对白色隐球菌却无抑制作用。Muhannad 等[6]在pH5.0条件下,使用0.5%壳聚糖(脱乙酰度92%)的乳剂对白色念珠菌的抗菌效果进行观察,发现24h后能使白色念珠菌数量减少达99%、黑曲霉菌减少达90%。可见壳聚糖对真菌也有很广泛的抑制作用,且作用效果与抗细菌作用类似。 作者单位:中国医科大学口腔医学院牙体牙髓科,沈阳110001 通讯作者:于静涛,电子信箱:Yjtao555@https://www.360docs.net/doc/683333091.html, 综述 壳聚糖及其衍生物抗菌性能研究进展 刘扬,于静涛,孙莹莹,宋雪莲 文章编号:1674-1595(2011)07-0437-03中图分类号:R78文献标志码:A 提要:壳聚糖由天然多糖甲壳素经脱乙酰化处理而成,是生物相容性和水解性较好的低聚糖,具有较好的广谱抗菌性。近年来,壳聚糖及其衍生物的抗菌性是医药、保健、食品和化妆品等领域的研究热点,本文就壳聚糖及其衍生物抗菌性能方面研究进行综述。 关键词:壳聚糖;壳聚糖衍生物;抗菌性;抗菌机制 Research on antibacterial action of chitosan and chitosan derivatives.LIU Yang,YU Jing-tao,SUN Ying-ying,SONG Xue-lian.Department of Endodontics,School of Stomatology,China Medical University,Shenyang 110001,China Summary:Chitosan,made by dehydration of natural polysaccharide chitin,is a biocompatible and soluble oligosaccha?ride and a good broad-spectrum antimicrobial.In recent years,antibacterial activity of chitosan and its derivatives is of special interest of research in the field of medicine,health,food and cosmetics,etc.This paper is a review on anti-bacte?rial performance of chitosan and its derivatives. Keywords:chitosan;chitosan derivatives;antibacterial action;antibacterial mechanism 437

相关文档
最新文档