考研高数:泰勒公式求极限

考研高数:泰勒公式求极限
考研高数:泰勒公式求极限

考研高数:泰勒公式求极限

凯程教育:

凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。

凯程考研的宗旨:让学习成为一种习惯;

凯程考研的价值观口号:凯旋归来,前程万里;

信念:让每个学员都有好最好的归宿;

使命:完善全新的教育模式,做中国最专业的考研辅导机构;

激情:永不言弃,乐观向上;

敬业:以专业的态度做非凡的事业;

服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

如何选择考研辅导班:

在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方

面来考察辅导班,或许能帮你找到适合你的辅导班。

师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。还要深入了解教师的学术背景、资料著述成就、辅导成就等。凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。

对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。最好的办法是直接和凯程老师详细沟通一下就清楚了。

建校历史:机构成立的历史也是一个参考因素,历史越久,积累的人脉资源更多。例如,凯程教育已经成立10年(2005年),一直以来专注于考研,成功率一直遥遥领先,同学们有兴趣可以联系一下他们在线老师或者电话。

有没有实体学校校区:有些机构比较小,就是一个在写字楼里上课,自习,这种环境是不太好的,一个优秀的机构必须是在教学环境,大学校园这样环境。凯程有自己的学习校区,有吃住学一体化教学环境,独立卫浴、空调、暖气齐全,这也是一个考研机构实力的体现。此外,最好还要看一下他们的营业执照。

2020年考研高数知识点:极限中的“极限”

2020年考研高数知识点:极限中的“极限” 说到极限应该是我们三大计算中的第一大计算,每年考研真题必出,无论是数一数二数三还是经济类数学,能够出选择题也能够出填 空题,更能够出解答题,题目类型不同,分值也不同,4分或者10分,极限的思想也就更是重要之重了,原因就是后来所有的概念都是以极 限的形式给出的。 第一,极限的定义。理解数列极限和函数极限的定义,记住其定义。 第二,极限的性质。性,有界性,保号性和保不等式性要理解, 重点理解保号性和保不等式性,在考研真题里面经常考查,而性质的 本身并不难理解,关键是在做题目的时候怎么能想到,所以同学们在 做题目的时候能够看看什么情况下利用了极限的保号性,例如:题目 中有一点的导数大于零或者小于零,或者给定义数值,能够根据这个 数值大于零或小于零,像这样的情况,就能够写出这个点的导数定义,利用极限的保号性,得出相对应的结论,切记要根据题目要求来判断 是否需要,但首先要有这样的思路,希望同学们在做题时多去总结。 第三,极限的计算。这个部分是重中之重,这也是三大计算中的 第一大计算,每年必考的题目,所以需要同学们能够熟练地掌握并会 计算不同类型的极限计算。首先要知道基本的极限的计算方法,比如:四则运算、等价无穷小替换、洛必达法则、重要极限、单侧极限、夹 逼定理、单调有界收敛定理,除此之外还要泰勒展开,利用定积分定 义求极限。其次还要掌握每一种极限计算的注意事项及拓展,比如: 四则运算中掌握“抓大头”思想(两个多项式商的极限,是无穷比无穷 形式的,分别抓分子和分母的次计算结果即可),等价无穷小替换中要 掌握等价无穷小替换只能在乘除法中直接应用,加减法中不能直接应用,如需应用必须加附加条件,计算中要掌握基本的等价无穷小替换 公式和其推广及凑形式,进一步说就是第一要熟练掌握基本公式,第 二要知道怎么推广,也就是将等价无穷小替换公式中的x用f(x)来替

洛必达法则泰勒公式

洛必达法则泰勒公式 一、洛必达法则在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存在也不能用商的极限运算法则去求解.而由无穷大与无穷小的关系知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之比的极限和无穷大之比的极限称为未定式,并分别简记为和.由于在讨论上述未定式的极限时,不能应用商的极限运算法则,这或多或少地都会给未定式极限的讨论带来一定的困难.今天在这里我们应用导数的理论推出一种既简便又重要的未定式极限的计算方法,并着重讨论当时,型未定式极限的计算,关于这种情形有以下定理.定理1设(1) 当时,函数及都趋于零;(2)在点的某去心邻域内,及都存在,且;(3)存在(或为无穷大),则.也就是说,当存在时,也存在,且等于;当为无穷大时,也是无穷大.这种在一定条件下,通过分子分母分别求导,再求极限来确定未定式极限的方法称为洛必达(L' Hospita 1)法则.下面我们给出定理1的严格证明:分析由于上述定理的结论是把函数的问题转化为其导数的问题,显然应考虑微分中值定理.再由分子和分母是两个不同的函数,因此应考虑应用柯西中值定理.证因为求极限与及的取值无关,所以可以假定.于是由条件(1)和(2)知,及在点的某一邻域内是连续的.设是这邻域内一点,则在以及为端点的区间上,函数和满足柯西中值定理的条件,因此在和之间至少存在一点,使得等式(在与之间)成立.对上式两端求时的极限,注意到时,贝叽又因为极限存在(或为无穷大),所以.故

定理1成立.注若仍为型未定式,且此时和能满足定理1中和所要满足的条件,则可以继续使用洛必达法则先确定,从而确定和,即.且这种情况可以继续依此类推.例1求.分析当时,分子分母的极限皆为零,故属于型不定式,可考虑应用洛必达法则.解、注最后一个求极限的函数在处是连续的.例2求.解、注例2中我们连续应用了两次洛必达法则.例3求.解、例4求、解、注(1) 在例4中,如果我们不提出分母中的非零因子,则在应用洛必达法则时需要计算导数,从而使运算复杂化.因此,在应用洛必达法则求极限时,特别要注意通过提取因子,作等价无穷小代换,利用两个重要极限的结果等方法,使运算尽可能地得到简化.课后请同学们自己学习教材136页上的例10?(2) 例4中的极限已不是未定式,不能对它应用洛必达法则,否则要导致错误的结果.以后在应用洛必达法则时应特别注意,不是未定式,不能应用洛必达法则.对于时的未定式有以下定理.定理2设(1)当时,函数及都趋于零;(2) 当时,与都存在,且;(3)存在(或为无穷大),则.同样地, 对于(或)时的未定式,也有相应的洛必达法则.定理3设(1)当(或)时,函数及都趋于无穷大;(2)在点的某去心邻域内(或当时),及都存在,且;(3)存在(或为无穷大),则.例5求、解、例6求、解、事实上,例6中的不是正整数而是任何正数其极限仍为零.注由例5和例6可见,当时,函数都是无穷大,但三个函数增大的“速度”是不一样的,最快,其次是,最慢的是.除了和型未定式外,还有型的未定式.这些未定式

§6.3 泰勒公式 数学分析课件(华师大四版) 高教社ppt 华东师大教材配套课件

带有拉格朗日型余项的泰勒公式 在近似计算中的应用 )(x f 设 在 0x x =处可导, 0000()()()()().f x f x f x x x o x x '=+-+-当 ||0x x -充分小时, )(x f 可以由一次多项式 ) )(()(000x x x f x f -'+其误差为 0().o x x -带有佩亚诺型余项的泰勒公式 )(0x x o -是不够的, 而要考虑用较高次 误差仅为 的多项式来逼近 f , 使得误差更小, 0(()).n o x x -如由有限增量公式 近似地代替, 但在许多情况下, 后退 前进 目录 退出 §3 泰勒公式 带有佩亚诺型余项的泰勒公式

问题: 是否存在一个 n 次多项式 ),(x P n 使得 ? ))(()()(n o n x x o x P x f -=-答案: 当 f (x )在点 x 0 有n 阶导数时, 这样的 n 次多 设 0100()()(),n n n P x a a x x a x x =+-++-则 有什么关系? 现在来分析这样的多项式与 f (x ) 项式是存在的. ,!)(0) (n n n a n x P =,)(00a x P n =,)(10a x P n =',!2)(20a x P n ='',

即 () 0().! n n n P x a n =上式表明 P n (x ) 的各项系数是由其在点 x 0 的各阶 设 f (x ) 在 x 0 处 n 阶可导. 导数所确定的. ),(00x P a n =,!1)(01x P a n '=,! 2)(02x P a n ''=, 即 00()()lim 0,() n n x x f x P x x x →-=-), )(()()(0n n x x o x P x f -=-如果

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

考研数学极限知识点全解

2017考研数学极限知识点全解 来源:文都图书 极限是高数中的重要知识点,也是考研数学的重要考点,我们一起来了解一下极限在考研大纲中的相关考点,及其题型等。 一、极限在考研数学中的要求 根据考研大纲,极限需要理解和掌握的是:极限的概念,函数左右极限的概念以及函数极限存在与左右极限的关系,极限的性质及四则运算法则,极限存在的两个准则,利用两个重要极限计算极限的方法,无穷小量、无穷大量的概念,无穷小的比较方法。 要求会求和了解的是:利用极限存在的两个准则求极限,用等价无穷小量求极限。 二、极限是高等数学的基础 1、极限是高数三大基本工具(极限、微分、积分)中最基本的工具,也是微分与积分的基础。另外高等数学中很多概念都是通过极限来定义的,如连续的概念,导数的概念,定积分的概念以及级数的概念都是通过极限来定义的。考研数学虽然大多数题目是计算题,但是只记住计算步骤,死记硬背,是万万不行的。要想考高分,需要对基本概念的理解到位,否则你学的知识就如同浮光掠影,很难取得好成绩。因此,我们从最基础的极限开始就要学习到位,基本概念理解好,极限计算要熟练,为以下各章节的学习打好基础。 2、考研中的很多题目也间接与极限有联系,尤其是极限的计算一定要过关,因为很多题目的计算都会用到极限的计算。如判断函数的连续性,找函数的间断点的类型,求渐近线,求函数一点数的导数,级数的敛散性的判别,求幂级数的收敛半径和收敛域,这些问题都会用到极限,如果极限不会求这些题目就无法做出来。所以考生在复习极限这章的时候一定要到位,计算尤其要过关,否则后患无穷。 三、极限在考研数学中的常见题型

极限这部分不计间接命题,直接命题的分值一般是一道小题(4分)和一道大题(10分左右),足见本章内容的重要性。 直接命题常见题型: (1)考查极限的概念,常见于选择题; (2)求极限式中的未知参数; (3)直接计算函数的极限; (4)考查极限的概念,常见于选择题; (5)利用收敛准则,求数列极限,常见于数一、数二。 (6)结合无穷小的比较考查极限的计算; 上面总结归纳了考研数学极限知识点的相关知识点,并且对题型进行了分析,考生们认真学习吧,希望对你们的备考有帮助,汤家凤编写的《2017考研数学硕士研究生入学考试高等数学辅导讲义》这本书按照考研大纲所编写,并且附有相关练习题,基础、强化、巩固一体,可以好好利用哦,加油。

泰勒公式及其在解题中的应用

本科生毕业设计(论文) ( 2014届) 设计(论文)题目泰勒公式及其在解题中应用 作者周立泉 分院理工分院用数学1001班 指导教师(职称)徐华(讲师) 专业班级数学与应用数学) 论文字数 8000 论文完成时间 2014年4月3日 杭州师范大学钱江学院教学部制

泰勒公式及其在解题中应用 数学与应用数学1001班周立泉指导教师徐华 摘要:泰勒公式是数学分析中的一个重要公式,它的基础思想是运用多项式来逼近一个已知函数,而该多项式的系数由给定的函数的各阶导数决定.本文主要归纳了其在证明不等式、等式,求极限,求近似值等各方面的应用. 关键词:泰勒公式;数学分析;导数 Taylor Formula and Its Application in Solving Problem Mathematics and Applied Mathematics class 1001 ZhouLiQuan Instructor: XuHua Abstract:Taylor's formula is an important equation of mathematical analysis, it is the basic idea is to use polynomial approximation to a known function, and the polynomial coefficients given by the derivatives of the function determined. This paper describes the method to prove the Taylor formula,summarized in inequalities, find the limit,the approximate value and the other applications. Keyword:Taylor's formula;Mathematical analysis; derivative.

高数公式大全11415

高等数学公式 导数公式: 基本积分表: kdx kx C =+?(k 为常数) 1 1u u x x dx C u +=++? 1ln dx x C x =+? 21 arctan 1dx x C x =++? arcsin x C =+ cos sin xdx x C =+? sin cos xdx x C =-+? 2 21sec tan cos dx xdx x C x ==+?? 2 21csc cot sin dx xdx x C x ==-+?? sec tan sec x xdx x C =+? csc cot csc x xdx x C =-+? x x e dx e C =+? ln x x a a dx C a =+? 两个重要极限: 三角函数公式: sin 22sin cos ααα= 2222cos 22cos 112sin cos sin ααααα=-=-=- 22sin cos 1αα+= 22sec 1tan αα=+ 22(tan )sec (cot )csc (sec )sec tan (csc )csc cot ()ln 1 (log )ln x x a x x x x x x x x x x a a a x x a '='=-'=?'=-?'=' = 2 2 (arcsin )(arccos )1 (arctan )11 (arccot )1x x x x x x '= '='= +'=- +0sin lim 11 lim(1)x x x x x e x →→∞=+=

零点定理: 设函数()f x 在闭区间[],a b 上连续,且()()0f a f b ?<,那么在开区间(),a b 上至少一点ε,使()0f ε=。 (考点:利用定理证明方程根的存在性。当涉及唯一根时,还需证明方程对应的函数的单调性) 罗尔定理:如果函数()f x 满足三个条件: (1)在闭区间[],a b 上连续; (2)在开区间(),a b 内可导; (3)在区间端点处的函数值相等,即()()f a f b =, 那么在(),a b 内至少有一点()a b εε<<,使得()'0f ε=。(选择题:选择符合罗尔定理条件的函数;证明题) 拉格朗日中值定理:如果函数()f x 满足 (1)在闭区间[],a b 上连续; (2)在开区间(),a b 内可导, 那么在(),a b 内至少有一点()a b εε<<,使等式()()()()f b f a f b a ε'-=-成立。(证明题) 定积分应用相关公式 函数的平均值()1b a y f x dx b a =-? 空间解析几何和向量代数: 空间两点的距离 12d M M == 向量b r 在向量a r 方向上的投影() Pr j cos ,a b b a b =r r r r 设(),,x y z a a a a =r ,(),,x y z b b b b =r ,则 两向量的数量积cos x x y y z z a b a b a b a b a b θ?=?=++r r r r 是一个数,θ为a r 与b r 的夹角; a r 与 b r 的夹角 cos a b a b a b θ++= 。 两向量的向量积x y z x y z i j k a b a a a b b b ?=r r ,sin a b a b θ?=?r r r r 。(考点:利用向量积求三角形的面积)

考研数学:教你如何轻松求解数列极限

考研数学:教你如何轻松求解数列极限 [摘要]极限是考研数学每年必考的内容,所占比重相当大,在此整理求数列极限的方法教大家轻松解决此理问题。极限平均每年在考研数学中所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。极限的计算是核心考点,考题所占比重最大。熟练掌握求解极限的方法是得高分的关键。 一、极限无外乎出这三个题型:求数列极限、求函数极限、已知极限求待定参数。熟练掌握求解极限的方法是的高分地关键,极限的运算法则必须遵从,两个极限都存在才可以进行极限的运算,如果有一个不存在就无法进行运算。以下我们就极限的内容简单总结下。 二、极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。 四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效;夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限。 三、与极限计算相关知识点包括: 1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限; 2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在; 3、渐近线,(垂直、水平或斜渐近线); 4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在。 下面我们重点讲一下数列极限的典型方法。

2016考研数学:求极限的一般题型

2016考研数学:求极限的一般题型 下面总结一下,求极限的一般题型: 1、求分段函数的极限,当函数数含有绝对值符号时,就很有可能是有分情况讨论的了!当X趋近无穷时候存在e的x次方的时候,就要分情况讨论应为E的x次方的函数正负无穷的结果是不一样的! 2、极限中含有变上下限的积分如何解决嘞?说白了,就是说函数中现在含有积分符号,这么个符号在极限中太麻烦了你要想办法把它搞掉! 解决办法: 1、求导,边上下限积分求导,当然就能得到结果了,这不是很容易么?但是!有2个问题要注意!问题1:积分函数能否求导?题目没说积分可以导的话,直接求导的话是错误的!!!!问题2:被积分函数中既含有t又含有x的情况下如何解决? 解决1的方法:就是方法2微分中值定理!微分中值定理是函数与积分的联系!更重要的是他能去掉积分符号!解决2的方法:当x与t的函数是相互乘的关系的话,把x看做常数提出来,再求导数!!当x与t是除的关系或者是加减的关系,就要换元了!(换元的时候积分上下限也要变化!) 3、求的是数列极限的问题时候:夹逼或者分项求和定积分都不可以的时候,就考虑x趋近的时候函数值,数列极限也满足这个极限的,当所求的极限是递推数列的时候:首先:判断数列极限存在极限的方法是否用的单调有界的定理。判断单调性不能用导数定义!!数列是离散的,只能用前后项的比较(前后项相除相减),数列极限是否有界可以使用归纳法最后对xn与xn+1两边同时求极限,就能出结果了! 4、涉及到极限已经出来了让你求未知数和位置函数的问题。 解决办法:主要还是运用等价无穷小或者是同阶无穷小。因为例如:当x趋近0时候f(x)比x=3的函数,分子必须是无穷小,否则极限为无穷,还有洛必达法则的应用,主要是因为当未知数有几个时候,使用洛必达法则,可以消掉某些未知数,求其他的未知数。 5、极限数列涉及到的证明题,只知道是要构造新的函数。 1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。 2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋

(完整版)泰勒公式求极限部分资料

关于用泰勒公式求极限的部分讲解 1. 用奏勒必丸求收曝 【例2. 23】求械般liml ;―J —L - —U1 . 工 < 111(1 一 工?) SHL - X ) 【分析与解苔】请对照若本眩的解答过理去看题斥的【注】并棒刻题佥* 申极炭=恤号吟 「呼1+于> —一 ?泄!二!坦丄土4 O (.T X )] + 卜'—-J-J* —◎(*)] ........ .... ......... ..... ......... . 1 lim zT lll( 1 + J- >- Sin J- .2 MJ —lin

(2〉若所展園数为丙个以上审数的代数和■应展开到鼻为几次穿?原则圧:分别展 开到它们的系数消不掉的丁次数展低项为止.例如山一"2=工- 4-T 3+O (J 3)即町? 0 呆话需要宙出无穷小的运算规则:讼为正能数?则 (Do(r-) ±。(*) =/>(./) ? / = (加减法时低阶-吸收?'角阶) ②o(广)? o(j n ) = o(x^) x R ?o(x -) =o(工f)(義除法时阶数-累加”) Oo(JLr-) =▲ ?。(二?)一 o(J)M H 0,为計数(非冬常敷不影响阶数) /解了乗勒公式的使用?接下来我们去处理常见的泰勒公式?去休脸其魅力?熟记下而 一组公 式’ '十?(j?) ln( 1+工)=工一? r 2~o(j 2) ⑤ 【拄】(1)対以上公式踐坝?可以鮒到一纠爭函敎的尊价无穷小. 依次可彳孕: 二】< —r 1 ?arcsitkr — 4-./* ? i :m :—』■-寺“"■ ?r —srctanx ?寺工'■ x hi(l t 丄〉~ ? (2)變学会对这组叢旳数的尊价尢穷小公式广义化?例如:当 LC 时?若柯-0?则 ill x — stnor P ■可得,狗— bin 向 豹' ■迸咅自己去举一反二. 【分析与解答】因 x-^Otftinjr-^Ot 由狗一Nn 殉?*(殉)珂狗~0) 丄 故原极^ = lim- sin.r=.r — -^-T 3 4-n( r*) 6 arcsinx —JC -討+心)② 【例2.2J 】求lim Mnr[:sirKr-Bin?eirxr)] 4/ sin.r —sin(sinj-) —(sirvr)3 b (sinr)1 丄 7* taiu -? J

泰勒公式及其应用典型例题

泰勒公式及其应用 常用近似公式,将复杂函数用简单的一次多项式函数近似地表示,这是一个进步。当然这种近似表示式还较粗糙(尤其当较大时),从下图可看出。 上述近似表达式至少可在下述两个方面进行改进: 1、提高近似程度,其可能的途径是提高多项式的次数。 2、任何一种近似,应告诉它的误差,否则,使用者“心中不安”。 将上述两个想法作进一步地数学化: 对复杂函数,想找多项式来近似表示它。自然地,我们希望尽可能多地反映出函数所具有的性态——如:在某点处的值与导数值;我们还关心的形式如何确定;近似所产生的误差。 【问题一】

设在含的开区间内具有直到阶的导数,能否找出一个关于的次多项式 近似 【问题二】 若问题一的解存在,其误差的表达式是什么一、【求解问题一】 问题一的求解就是确定多项式的系数。

…………… 上述工整且有规律的求系数过程,不难归纳出: 于是,所求的多项式为: (2) 二、【解决问题二】 泰勒(Tayler)中值定理

若函数在含有的某个开区间内具有直到阶导数,则当时,可以表示成 这里是与之间的某个值。 先用倒推分析法探索证明泰勒中值定理的思路: 这表明: 只要对函数及在与 之间反复使用次柯西中值定理就有可能完成该定理的证明工作。【证明】

以与为端点的区间或记为,。 函数在上具有直至阶的导数, 且 函数在上有直至阶的非零导数, 且 于是,对函数及在上反复使用次柯西中值定理,有

三、几个概念 1、 此式称为函数按的幂次展开到阶的泰勒公式; 或者称之为函数在点处的阶泰勒展开式。 当时,泰勒公式变为 这正是拉格朗日中值定理的形式。因此,我们也称泰勒公式中的余项。 为拉格朗日余项。 2、对固定的,若 有 此式可用作误差界的估计。 故

考研数学:极限计算方法——利用单侧极限

考研数学:极限计算方法——利用单侧极限 今天给大家带来极限计算方法中的利用单侧极限来求极限。为什么会有单侧极限这种极限的计算方法呢,我们知道极限存在的充要条件要求函数左右两侧的极限同时存在且相等才表示函数极限存在,那么在极限计算中出现哪些“信号”是要分左右极限计算呢? 第一,当分段函数的分段点两侧表达式不同时,求分段点处的极限利用单侧极限。例如,讨论函数1,0arcsin(tan )()2,0ln(1arctan )0121 x e x x f x x x x ?-+-在0=x 处的极限。 分析:在做这道题时我们发现0=x 处左右两侧的解析式是不同的,所以计算0=x 处的极限要分左右来求解,也即 1lim 22 1arctan lim 121)arctan 1ln(lim 000==?=-+++++→→→x x x x x x x x x ,1tan lim )arcsin(tan 1lim 00==---→→x x x e x x x ,左右两侧的极限同时存在且相等,所以1)(lim 0=→x f x 。 有一些特殊的分段函数,如 ,[],max{},min{},sgn x x x ,当题目中出现这几个函数时需要考虑单侧极限。 第二,如果出现(),arctan e a ∞∞∞,求极限是要分左右的,例如,???? ? ??+++→x x e e x x x sin 12lim 410分析:这道题让我们求解0=x 处的极限,我们发现它有x ,在脱绝对值时会出现负号,同

时出现了e ∞,故分单侧计算极限, 11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x e x e x e x x x x e e e ++++→→→→????+++ ? ?+=+== ? ? ? ?+++????,11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ----→→→→????+++ ? ?+=-=-= ? ? ? ?+++????,所以1sin 12lim 410=???? ? ??+++→x x e e x x x 。上述几种情况原理比较简单,但是需要同学们在做题目中多去总结,掌握其具体的解题思路,也要将知识点和不同类型的题目建立联系,提高自己的解题能力。

2021年洛必达法则 泰勒公式

*欧阳光明*创编
2021.03.07
第三章 微分中值定理与导数的应用
欧阳光明(2021.03.07)
第二讲 洛必达法则 泰勒公式
目的 1.使学生掌握用洛必达法则求各种类型未定式极限的方法; 2.理解泰勒中值定理的内涵;
3. 了解
等函数的麦克劳林公式;
4.学会泰勒中值定理的一些简单应用.
重点 1.运用洛必达法则求各种类型未定式极限的方法;
2.使学生理解泰勒中值定理的内涵.
难点 使学生深刻理解泰勒中值定理的精髓.
一、洛必达法则
在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已
经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存
在也不能用商的极限运算法则去求解.而由无穷大与无穷小的关系
知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之
比的极限和无穷大之比的极限称为未定式,并分别简记为 和 . 由于在讨论上述未定式的极限时,不能应用商的极限运算法
则,这或多或少地都会给未定式极限的讨论带来一定的困难.今天
*欧阳光明*创编
2021.03.07

*欧阳光明*创编
2021.03.07
在这里我们应用导数的理论推出一种既简便又重要的未定式极限的
计算方法,并着重讨论当 时, 型未定式极限的计算,关于这
种情形有以下定理.
定理 1 设
(1) 当 时,函数 及 都趋于零;
(2)在点 的某去心邻域内, 及 都存在,且

(3) 则
存在(或为无穷大),

也就是说,当
存在时,
也存在,且等于
;当
为无穷大时,
也是无穷大.这种在一定条件下,通
过分子分母分别求导,再求极限来确定未定式极限的方法称为洛必
达(L’Hospital)法则.
下面我们给出定理 1 的严格证明:
分析 由于上述定理的结论是把函数的问题转化为其导数的问
题,显然应考虑微分中值定理.再由分子和分母是两个不同的函
数,因此应考虑应用柯西中值定理.
证 因为求极限
与 及 的取值无关,所以可以假定
.于是由条件(1)和(2)知, 及 在点 的某一邻
域内是连续的.设 是这邻域内一点,则在以 及 为端点的区间
*欧阳光明*创编
2021.03.07

高数知识点公式大全

高等数学公式 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) 积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, 两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

大学高数常用公式大全

高等数学公式 导数公式: 基本积分表: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '

三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  一些初等函数: 两个重要极限: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππx x arshx e e e e chx shx thx e e chx e e shx x x x x x x x x ++=+-==+= -= ----1ln(:2 :2:22) 双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x x x x x x

考研数学:求极限的16种方法.doc

考研数学:求极限的16种方法 考研频道为大家提供考研数学:求极限的16种方法,赶紧学习一下吧!更多考研资讯我们网站的更新! 考研数学:求极限的16种方法 假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。 首先对极限的总结如下。极限的保号性很重要就是说在一定区间内函数的正负与极限一致。 1、极限分为一般极限,还有个数列极限 (区别在于数列极限是发散的,是一般极限的一种)。 2、解决极限的方法如下 1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记。(x趋近无穷的时候还原成无穷小) 2)洛必达法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提。必须是X趋近而不是N趋近。(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x 趋近的一种情况而已,是必要条件。还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0,无穷大比无穷大!当然还要注意分母不能为0。 洛必达法则分为三种情况

1)0比0无穷比无穷时候直接用 2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3)0的0次方,1的无穷次方,无穷的0次方 对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln(x)两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln(x)趋近于0) 3、泰勒公式 (含有e^x的时候,尤其是含有正余旋的加减的时候要特变注意!)e^x 展开,sinx展开,cos展开,ln(1+x)展开对题目简化有很好帮助 4、面对无穷大比上无穷大形式的解决办法 取大头原则最大项除分子分母!看上去复杂处理很简单。 5、无穷小与有界函数的处理办法 面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了! 6、夹逼定理 (主要对付的是数列极限)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。 7、等比等差数列公式应用 (对付数列极限)(q绝对值符号要小于1) 8、各项的拆分相加

求极限的方法总结

求极限的方法总结 1.约去零因子求极限 例1:求极限11lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】4)1)(1(lim 1) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x 习题:2 33 lim 9x x x →-- 22121lim 1x x x x →-+- 2.分子分母同除求极限 例2:求极限13lim 3 2 3+-∞→x x x x 【说明】∞∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323=+-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除........x .的最高次方;......且一般...x .是趋于无穷的...... ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 习题 3232342 lim 753x x x x x →∞+++- 2324n 1lim n n n n n →∞+++- 1+13l i m 3n n n n n +→∞++(-5)(-5) n n n n n 323)1(lim ++-∞→

3.分子(母)有理化求极限 例1:求极限) 13(lim 22+-++∞→x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】 1 3) 13)(13(lim )13(lim 2222222 2+++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x 例2:求极限30 sin 1tan 1lim x x x x +-+→ 【解】 x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 习题:2 lim 1 x x x x →∞ +-+ 12 13lim 1 --+→x x x 4.用函数的连续求极限(当函数连续时,它的函数值就是它的极限值................... ) 22 034lim 2x x x x →+++ 【其实很简单的】 5.利用无穷小与无穷大的关系求极限 例题 3 3lim 3x x x →+- 【给我最多的感觉,就是:当取极限时,分子不为 0而分母为0时 就取倒数!】 6. 有界函数与无穷小的乘积为无穷小 例题 s i n l i m x x x →∞ , arctan lim x x x →∞

考研数学:求极限的16个方法

考研数学:求极限的16个方法 极限问题一直是考研数学中的考察重点,很多考研er在面对题型的变化时,会觉得有些无从下手,下面给大家盘点一下求极限的16个方法,让你轻松应对各种情况。 首先对极限的总结如下。极限的保号性很重要就是说在一定区间内函数的正负与极限一致。 1、极限分为一般极限,还有个数列极限(区别在于数列极限是发散的,是一般极限的一种) 2、解决极限的方法如下1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a 次方-1等价于Ax等等。全部熟记。(x趋近无穷的时候还原成无穷小) 2)洛必达法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提。必须是X趋近而不是N趋近。(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存 在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0,无穷大比无穷大!当然还要注意分母不能为0.洛必达法则分为三种情况1)0比0无穷比无穷时候直接用2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了3)0的0次方,1的无穷次方,无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln(x)两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln(x)趋近于0) 3、泰勒公式(含有e^x的时候,尤其是含有正余旋的加减的时候要特变注意!)e^x展开,sinx展开,cos展开,ln(1+x)展开对题目简化有很好帮助 4、面对无穷大比上无穷大形式的解决办法。 取大头原则最大项除分子分母!看上去复杂处理很简单。 5、无穷小与有界函数的处理办法面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了! 6、夹逼定理(主要对付的是数列极限)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。 7、等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)

相关文档
最新文档