核反应中的人工转变

核反应中的人工转变
核反应中的人工转变

核反应中的人工转变及核反应方程

教学目标:

(一)知识与技能目标:

1.知道原子核的人工转变、核反应的概念和规律.

2.理解核能的概念,知道核反应中的质量亏损.

3.知道爱因斯坦的质能方程,理解质量与能量的关系.

4.会根据质能方程和质量亏损计算核反应中释放的核能.

(二)过程与方法目标:

1.通过质疑、释疑的思维过程,提高分析探究问题的能力

2.学习归纳、推理、迁移的科学方法

(三)情感态度与价值观目标:

1.领略自然界的奇妙与和谐

2.体会探索自然规律的乐趣,感悟大自然的博大精深

3.激发使命感与责任感,培养将科学服务于人类的意识

教学重点:

1.核反应中的人工转变及核反应方程

2.核能的概念.爱因斯坦的质能方程.计算核能.

教学难点:纠正核能是质量转化为能量的错误理解.正确理解质量亏损

教学方法:以讲授为主,辅之以学生课堂练习.先从原子核的天然衰变引出原子核的人工转变,进而引入核反应的概念,总结出核反应遵从的规律;从核反应中的γ辐射引入核能的概念,再从核反应中的质量亏损引出爱因斯坦质能关系,最后说明在核反应中释放能量

与质量亏损密切相关,给出公式△mc 2,再通过学生的课堂练习加以巩固.

教学手段:无特殊教学手段

教学过程:㈠创设情境、激趣导入 ㈡自主、合作、探究 ㈢板书设计

一、核反应

1.核反应:在核物理学中,原子核在其他粒子的轰击下产生新原子核的过程,称为核反应。

说明:10核反应既不是化学变化,也不是物理变化,核反应是核变化。

20核变化包括原子核的衰变和核反应

30核反应包括原子核的人工转化、核裂变、轻核的聚变(有时把衰变也称作核反应) 这节课学习原子核的人工转化:在1919年,卢瑟福用α粒子轰击氮原子核,产生了氧的一种同位素——氧17和一个质子,第一次实现了原子核的人工转变。

2.原子核的人工转变:用α粒子(或H 1

1或n 10……)轰击原子核使之发生变化的过程,

叫做原子核的人工转变。(或说:用人工方法使原子核发生变化的过程,叫做原子核的人

工转变)(原子核的人工转变是核反应中的一种。)

(1)质子的发现(1919年):H O He N 111784214

7+→+ 卢瑟福

(2)中子的发现(1932年):n C He Be 10126429

4+→+ 查德威克

3.核反应的规律:在核反应中,质量数和电荷数都守恒

[教师点拨]科学家们发现,虽然质量数守恒,但反应前的原子核的总质量.......

与反应后的原子核的总质量.......并不守恒.(但反应前后的物质的总质量......是守恒的。造成反应前后原子核的....总质量...不守恒的原因:是生成物中的光子或其它粒子带走了一些质量.........

) 4.核反应的特点:核反应前后存在质量亏损

?质量亏损:核反应前的原子核的总质量.......减去核反应后的原子核的总质量.......

叫做质量亏损,用Δm 表示: 后前m m m -=?

[教师点拨]科学家们还发现:一个中了和一个质子结合成氘核时,要放出2.2MeV 的能量,这个能量以γ光子的形式辐射出去。由此可见,核反应能够释放能量。

二、核能

1.核能:核反应中放出的能量称为核能

说明:10核能与原子核的变化相联系,只有在核反应中释放的能量,才叫做核能。

20核能是非常巨大的,核能属于非常规能源。

30核能与原子能是两回事(原子能是原子中电子的动能和原子核与电子间相互作用的电势能的总和)

[教师点拨]在核反应中,既伴随巨大的能量释放,又伴随一定的质量亏损。这说明质量与能量之间有某种联系。是什么关系呢?爱因斯坦的相对论回答了这种联系。

2.爱因斯坦质能联系方程,简称为质能方程:

爱因斯坦的相对论指出,物体的能量(E )和质量(m )之间存在着密切的联系,

它们之间的关系是 2mc E = 或写成 2mc E ?=? 式中c 为真空中的光速

关于质能方程的理解:

(1)在2mc E =中,m 是运动物体的质量220

C V

1m m -=、E 是物体的总能量、

20k c m E E +=、0m 是静止质量、20c m 叫做静止能量。

(2)静止能量20c m ,是物体的内能总和。它包括:构成物体的分子动能、分子间相互作用的势能、分子内原子的动能、原子能、原子间相互作用的势能、以及原子内部、电子内部、质子内部、中子内部……构成物体的所有最基本粒子的所有能量的总和为20c m 。

(3)2mc E =不含物体与物体之间相互作用的势能

3.正确认识质量亏损:(不板书)

在谈到核能与质量亏损时,有人错误地认为:核反应释放核能,有质量亏损,放出核能的过程是质量转化为能量的过程(错的)。或错误地认为:有质量亏损,核反应前后物质的总质量是不守恒的(错的)或错误地认为:质量亏损是质量消失了(错的)

①按相对论,运动物体的质量与速度有关还与物体的静质量有关220

C V

1m m -=。物体的速度越大,物体的质量就越大。当物体以远小于光速运动时,质量

的变化很不明显,可认为质量不变。当物体的速度接近光速时,物体的质量变化很大,质量的变化不可忽略。但此公式也不是万能的。若求光子的质量,公式220

C V

1m m -=不适用了,

因为光子的静质量是0,用此公式不能求出光子的质量。为了求出光子的质量,就不得不求助于爱因斯坦的质能方程:运动的光子能量是νh ,由质能方程有:νh mc 2= 求得光子的质量2c h m ν= (进而可求出动量 c

h mc P ν==) ②质量亏损,是核反应前的原子核的总质量.......减去核反应后的原子核的总质量.......

叫做质量亏损, 后前m m m -=?。造成反应前后原子核的总质量.......

不守恒的原因是:产物中的光子或其它粒子带走了一些质量.......

。 ?质量亏损不是质量转化为能量,也不是质量的消失。

?核反应前后的总质量是守恒的。只是核反应前后的核的总质量.....

不守恒了。 ?核反应前后守恒的量有:①质量数守恒、②电荷数守恒、③总质量守恒、④能量守恒、⑤动量守恒(有时忽略光子的动量)

4.核反应中核能的计算:用爱因斯坦的质能方程2

mc E ?=?求核能

说明:10质量为一个原子质量单位对应的能量是:931.5MeV [教材:73页(2)] 20若m ?的单位是kg ,直接利用2mc E =

30若m ?的单位是原子质量单位,则可用以原子质量为单位的数乘以931.5MeV 。 这时核能的单位是MeV (通常,核能的单位是MeV )

[例题1]:已知质子和中子结合成氘核时的质量亏损为0.0040×10-27kg ,则此过程中

释放的能量为多少?已知:c=2.9979×108m/s 1eV=1.6022×10-19J

解:由质能方程:

MeV eV mc E 2.2106022.1)109979.2(100040.0198272=????==--??

[例题2]:静止的锂核Li 5

3在俘获一个中子后,生成一个氘核和一个α粒子,并释放

4.8MeV 的能量.(1)写出核反应方程式 (2)计算反应过程中的质量亏损

解:(1)核反应方程:He H n Li 4221105

3+=+

(2)由质能方程:2mc E ??= 得 kg

1053.8kg )

100.3(106.1108.4c

E m 302819

62--?=????==?? [例题3]:计算2个质子和2个中子结合成氦核时释放的能量

m p =1.007277 u , m n =1.008665 u.,氦核的质量为=αm 4.001509 u.

解:核反应方程:He n 2H 242101

1→+ (核子参与的反应也可以叫做核反应)

质量亏损Δm=αm )m 2m 2(n p -+=0.030375 u.

由质能方程:ΔE=Δm c 2=0.030375×931.5 MeV =28.3 MeV.

[练习](由学生自己完成):氘核的质量为m D =2.013553 u ,中子质量

m n =1.008665 u ,质子质量m p =1.007277 u 。。计算一个中子和一个质子结合成氘核时释放的核能. (释放核能ΔE=Δmc2=0.002388×931.5 MeV =2.22 MeV )

三、小结:原子核既可以发生天然衰变,也可以人工转变。原子核在其他粒子的轰击下产生新原子核的过程,称为核反应。在核反应中存在质量亏损,同时伴随巨大能量的释放。这是因为自然界中物体的质量和能量间存在着一定关系:E=mc 2。可见物质世界贮藏着巨大能量。如何使物质贮藏的能量释放出来呢。

人类以前,利用的是燃料燃烧时释放的化学能。在发生化学反应时,是原子外层电子的得失,这种情况下,人类获取的能量可以说是属于原子表层的“皮能”。在核反应时,可以产生较大一些的质量亏损,从而使人类获得更多的能量。这时的变化,属于原子核的变化,相应的能量称作原子核能。

然而,核反应中的质量亏损也是十分有限的。换句话说,物体贮藏的能量是巨大的。迄今为止,人类所利用的能量还只是其中很小的一部分。如果人类在探索中,能掌握新的方式,以产生更大的质量亏损,也就必然能够获得更为可观的能量。

四、布置作业73页:(3)、(4)

第四代核反应堆系统简介

第四代核反应堆系统简介 绪言 第四代核反应堆系统(Gen IV)是当前正在被研究的一组理论上的核反应堆,其概念最先是在1999年6月召开的美国核学会年会上提出的。美国、法国、日本、英国等核电发达国家在2000年组建了Gen-IV国际论坛(GIF),并完成制定Gen IV研发目标计划。预期在2030年之前,这些设计方案一般不可能投入商业运行。核工业界普遍认同将,目前世界上在运行中的反应堆为第二代或第三代反应堆系统,以区别已于不久前退役的第一代反应堆系统。在八项技术指标上,第四代核能系统国际论坛已开始正式研究这些反应堆类型。这项计划主要目标是改善核能安全,加强防止核扩散问题,减少核燃料浪费和自然资源的利用,并降低建造和运行这些核电站的成本。并在2030年左右,向商业市场提供能够很好解决核能经济性、安全性、废物处理和防止核扩散问题的第四代核反应堆。 图1 从第一代到第四代核能系统的时间跨越 第一代核反应堆产生于上个世纪70 年代前,其主要目的是生产用于军事目的的铀;第二代核反应堆出现于70 年代,是目前大部分核电站使用的堆型,其目的是降低对石油国家的能源供应依赖;第三代核反应堆是在1979 年美国长岛和1986 年乌克兰切尔诺贝利核电站事故后出现的,主要是增加了安全性,但它并不能很好地解决核废料问题;第四代核反应堆则可以同时很好地解决安全和废料问题。对于第四代核能系统标准且可靠的经济评价,一个完整的核能模式显得十分重要。对于采用新型核能系统的第四代核电站的经济评估,人们需要采用新的评价手段,因为它们的特性大大不同于目前的第二代和第三代核电站。目前的经济模式不适合于比较不同的核技术或核电站,而是用于比较核能和化石能源。 第四代核反应堆的堆型 最初,人们设想过多种反应堆类型。但是经过筛选后,重点选定了几个技术上很有前途且最有可能符合Gen IV的初衷目标的反应堆。它们为几个热中子核反应堆和三种快中子反应

核反应堆物理分析习题答案-第三章

第三章 1.有两束方向相反的平行热中子束射到235U 的薄片上,设其上某点自左面入射的中子束强度为122110cm s --?。自右面入射的中子束强度为1221210cm s --??。计算: (1)该点的中子通量密度; (2)该点的中子流密度; (3)设2119.210a m -∑=?,求该点的吸收率。 解:(1)由定义可知:1221310I I cm s φ+---=+=? (2)若以向右为正方向:1221110J I I cm s +---=-=-? 可见其方向垂直于薄片表面向左。 (3)2122133119.21031010 5.7610a a R cm s φ---=∑=????=? 2.设在x 处中子密度的分布函数是:0(,,)(1cos )2x aE n n x E e e λμπ -Ω=+u r 其中:,a λ为常数, μ是Ωu r 与x 轴的夹角。求: (1) 中子总密度()n x ; (2) 与能量相关的中子通量密度(,)x E φ; (3) 中子流密度(,)J x E 。 解:由于此处中子密度只与Ωu r 与x 轴的夹角相关,不妨视μ 为视角,定义Ωu r 在Y Z -平面影上与Z 轴的夹角?为方向角,则有: (1) 根据定义: 004()(1cos )2x aE n n x dE e e d πμπ+∞ -=+Ω??u r 20000(1cos )sin 2x aE n dE d e e d ππ?μμμπ +∞-=+??? 00 (1cos )sin x aE n e e dE d π λμμμ+∞-=+?? 可见,上式可积的前提应保证0a <,则有: 0000()()(sin cos sin )aE x e n x n e d d a π πλ μμμμμ-+∞=?+?? 0002(cos 0)x x n e n e a a λλπ μ--=--?+=- (2)令 n m 为中子质量,则2/2()n E m v v E =?= 04(,)(,)()(,,)2x x E n x E v E n x E d n e e λπ φ-==ΩΩ=u r u r (等价性证明:如果不做坐标变换,则依据投影关

核反应堆

核反应堆物理分析 第一章核反应堆的核物理基础 1、反应堆:能够实现可控、自续链式核反应的装置。 2、反应堆物理:研究反应堆内中子行为的科学。有时称neutronics。或:研究、设计反应堆使得裂变反 应所产生的中子与俘获反应及泄露所损失的中子相平衡。 3、在反应堆物理中,除非对于能量非常低的中子,都将中子视为粒子,不考虑其波动性及中子的不稳定性。 4、反应堆内,按中子与原子核的相互作用方式可分为三大类:势散射、直接相互作用和复合核的形成; 按中子与原子核的相互作用可分为两大类:散射和吸收。 5、σ :微观截面表示平均一个入射中子与一个靶核发生相互作用的几率大小的一种量度, 6、宏观截面:表征一个中子与单位体积内所有原子核发生核反应的平均概率;表征一个中子在介质中穿行 单位距离与核发生反应的概率。单位:1/m 7、平均自由程λ: 中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离。或:平均每 飞行λ距离发生一次碰撞。λ= 1/ 8、核反应率:单位时间、单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。

9、中子通量密度:表示1立方米内所有的中子在1秒钟内穿行距离的总和。 10、中子能谱分布:在核反应堆内,中子并不具有同一速度v或能量E,中子数关于能量E的分布称为中子 能谱分布。 11、平均截面(等效截面): 12、截面随中子能量的变化: 一、微观吸收截面: ①低能区(E<1eV)::中、重核在低能区有共振吸收现象 ②高能区(1eV

反应堆安全分析整理资料

核反应堆安全分析 英文缩写 ABWR Advanced Boiling Water Reactor 先进沸水堆 APWR Advanced Pressurized Water Reactor 先进压水堆 AP Advanced Passive Plant 先进非能动厂 ADS Accelerator driven system 加速器驱动机构 AFP Auxiliary Feed-water Pump 辅助给水泵 ASME American Society of Mechanical Engineers 美国机械工程师协会ASCOT assessment of safety culture organizational teams 安全文化组织机构评价ATWS Anticipated Transient Without Screen 未能停堆的预期瞬态ANSI American National Standards Institute 美国标准协会 ALARA as low as reasonably achievable 合理可行尽量低原则BWR boiling water reactor 沸水堆 BDBA Beyond Design Basic Accident 超设计基准事故 BOL Beginning Of Life 寿期初 CEFR China Experimental Fast Reactor 中国实验快堆 CSS Containment Spray System 安全壳喷淋系统 CVCS Chemical and Volume Control System 化学容积控制系统CNNC china national nuclear corporation 中国核工业集团CSRDM Control and Safety Rod Drive Mechanism 控制棒安全棒驱动机构CHF Critical Heat Flux 临界热流密度

核反应堆工程

2008年上海交通大学研究生入学考试课程《核反应 堆工程》 考试大纲 1.该课程考试内容包括核反应堆物理和核反应堆热工两部分 2.主要参考书目: 核反应堆物理: 谢仲生主编,《核反应堆物理分析(上册)》,原 子能出版社,1994。 谢仲生、张少泓,《核反应堆物理理论与计算方 法》,西安交通大学出版社,2000。 核反应堆热工: 于平安等编著,《核反应堆热工分析》,原子能出 版社,1986。 于平安等编著,《核反应堆热工分析》,上海交通 大学出版社,2001。

核反应堆物理基础 1.核反应堆的核物理基础 1.中子与原子核的相互作用 相互作用的机理、中子吸收和中子散射 2.中子截面和核反应率 截面、自由程、中子通量密度、核反应率的概念 宏观截面的计算,各类型截面随中子能量的变化规律 3.共振现象与多普勒效应 4.核裂变过程 裂变能的释放、反应堆功率和中子通量密度之间的关系、裂变中子、裂变产物 5.链式裂变反应 临界条件、四因子模型 2.中子慢化与慢化能谱 1.中子的弹性散射过程 弹性散射动力学、慢化剂的选择 2.无限均匀介质的慢化能谱 慢化方程、含氢无吸收介质的慢化谱 3.热中子堆的近似能谱 3.中子扩散理论 1.单能中子扩散方程 斐克定律、单能中子扩散方程 2.非增殖介质扩散方程的解 4.均匀反应堆的临界理论 1.均匀裸堆的单群临界理论 均匀裸堆的单群扩散方程、单群临界条件及临界时的中子通量密度分布 2.双区反应堆的单群临界理论 双区反应堆的单群扩散方程、临界条件及临界时的中子通量密度分布 3.双群扩散方程 5.非均匀反应堆 1.栅格的非均匀效应 6.反应性随时间的变化 1.核燃料中铀-235的消耗、钚-239的积累 2.氙-135中毒 平衡氙中毒、最大氙中毒、功率瞬变过程中的氙中毒、氙震荡 3.钐-149中毒 4.燃耗深度与堆芯寿期 5.核燃料的转换与增殖 7.温度效应与反应性控制 1.反应性温度效应 反应性温度效应及其成因、堆芯内各种成分的反应性温度系数、温度反馈对反应堆安全的意义 2.反应性控制的任务 剩余反应性、控制棒价值、停堆深度

核反应堆物理分析课后习题参考答案

核反应堆物理分析答案 第一章 1-1.某压水堆采用UO 2作燃料,其富集度为2.43%(质量),密度为10000kg/m3。试计算:当中子能量为0.0253eV 时,UO 2的宏观吸收截面和宏观裂变截面。 解:由18页表1-3查得,0.0253eV 时:(5)680.9,(5)583.5,(8) 2.7a f a U b U b U b σσσ=== 由289页附录3查得,0.0253eV 时:()0.00027b a O σ= 以c 5表示富集铀内U-235与U 的核子数之比,ε表示富集度,则有: 5 55235235238(1) c c c ε=+- 151 (10.9874(1))0.0246c ε -=+-= 25528 3 222M(UO )235238(1)162269.91000()() 2.2310() M(UO ) A c c UO N N UO m ρ-=+-+?=?==? 所以,26 352(5)() 5.4910()N U c N UO m -==? 28352(8)(1)() 2.1810()N U c N UO m -=-=? 28 32()2() 4.4610()N O N UO m -==? 2112()(5)(5)(8)(8)()() 0.0549680.9 2.18 2.7 4.460.0002743.2()()(5)(5)0.0549583.532.0() a a a a f f UO N U U N U U N O O m UO N U U m σσσσ--∑=++=?+?+?=∑==?= 1-2.某反应堆堆芯由U-235,H 2O 和Al 组成,各元素所占体积比分别为0.002,0.6和0.398,计算堆芯的总吸收截面(E=0.0253eV)。 解:由18页表1-3查得,0.0253eV 时: (5)680.9a U b σ= 由289页附录3查得,0.0253eV 时:112() 1.5,() 2.2a a Al m H O m --∑=∑=,()238.03,M U = 33()19.0510/U kg m ρ=? 可得天然U 核子数密度28 3()1000()/() 4.8210()A N U U N M U m ρ-==? 则纯U-235的宏观吸收截面:1(5)(5)(5) 4.82680.93279.2()a a U N U U m σ-∑=?=?= 总的宏观吸收截面:120.002(5)0.6()0.398()8.4()a a a a U H O Al m -∑=∑+∑+∑= 1-6 11 7172 1111 PV V 3.210P 2101.2510m 3.2105 3.210φφ---=∑???===?∑????

核反应堆安全分析复习内容

核反应堆安全分析 Ch1: 1.1安全总目标与两个辅助目标 1.2安全设计的基本原则 1.3核安全文化的定义和含义 1.4不要求 Ch2: 2.1四种安全性因素 2.2反应堆的三种安全功能及其如何实现 2.3专设安全设施的功能及设计原则 Ch3:不要求 Ch4: 4.1:四类运行工况的定义,八种典型始发事故,核电厂运行状态示意图 4.2:看看吧 4.3:P66页的图看懂,反馈的作用 4.4—4.8:主要是事故过程分析,解释事故曲线的变化趋势。(个人认为4.6,4.7两节最重要)4.9:单老师说这一节不会考读图题,看看概念吧 4.10:大体看看吧 Ch5: 5.1:高压熔堆与低压熔堆的特点 5.2—5.4:大体了解堆芯的融化过程及压力容器与安全壳内的过程 5.5---5.6:大体看看吧,好好看看应急计划区 Ch7: 单老师说可能考PSA的三个等级,同时会有故障树分析的大题,选了PSA的同学窃喜,没选的就好好看看吧 答疑情报:题型有填空,简答与读图题,1.4与第三章不考,失水事故不考读图题,带公式的都不用看,最后他说他出题很随意,卷子还没出,那就最后出成啥样就只有天知地知他知了。先把重点的看完了,时间充裕的话那些非安全级的也大体看看吧,有点印象就行了,好好复习吧。 安全的总的目标:在核电厂里建立并维持一套有效的防护措施,以保证工作人员、社会及环境免遭放射性危害。 辅助目标: 辐射防护目标:确保在正常运行时核电厂及从核电厂释放出的放射性物质引起的辐射照射保持在合理可行尽量低的水平,并且低于规定的限值,还确保事故引起的辐射照射的程度得到缓解。 技术安全目标:有很大把握预防核电厂事故的发生;对于核电厂设计中考虑的所有事故,甚至对于那些发生概率极小的事故都要确保其放射性后果(如果有的话)是小的;确保那些会带来严重放射性后果的严重事故发生的概率非常低。 核设施的设计基准事故:每项专设安全设施都有其特定控制的事故,对其控制效率进行确定性分析来决定这些设施的设计参量,要求安全设施达到最极端设计参量的事故称为核设施的设计基准事故。 安全分析的内容:所有计划的正常运行模式;在预计运行事件下的核电厂性能;设计基准事

核反应堆物理分析名词解释及重要概念整理

第一章—核反应堆的核物理基础 直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里发射出来,而中子却留在了靶核内的核反应。 中子的散射:散射是使中于慢化(即使中子的动能减小)的主要核反应过程。 非弹性散射:中子首先被靶核吸收而形成处于激发态的复合核,然后靶核通过放出中子并发射γ射线而返回基态。 弹性散射:分为共振弹性散射和势散射。 111001 100[]A A A Z Z Z A A Z Z X n X X n X n X n +*+→→++→+ 微观截面:一个粒子入射到单位面积内只含一个靶核的靶子上所发生的反应概率,或表示一个入射粒子同单位面积靶上一个靶核发生反应的概率。 宏观截面:表征一个中子与单位体积内原子核发生核反应的平均概率大小的一种度量。也是一个中子穿行单位距离与核发生相互作用的概率大小的一种度量。 平均自由程:中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离叫作平均自由程。 核反应率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。 中子通量密度:某点处中子密度与相应的中子速度的乘积,表示单位体积内所有中子在单位时间内穿行距离的总和。 多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也逐渐减小,这种现象称为多普勒效应或多普勒展宽。 瞬发中子和缓发中子:裂变中,99%以上的中子是在裂变的瞬间(约10-14s)发射出来的,把 这些中子叫瞬发中子;裂变中子中,还有小于1%的中子是在裂变碎片衰变过程中发射出来的,把这些中子叫缓发中子。 第二章—中子慢化和慢化能谱 慢化时间:裂变中子能量由裂变能慢化到热能所需要的平均时间。 扩散时间:无限介质内热中子在自产生至被俘获以前所经过的平均时间。 平均寿命:在反应堆动力学计算中往往需要用到快中子自裂变产生到慢化成为热中子,直至最后被俘获的平均时间,称为中子的平均寿命。 慢化密度:在r 处每秒每单位体积内慢化到能量E 以下的中子数。 分界能或缝合能:通常把某个分界能量E c 以下的中子称为热中子, E c 称为分界能或缝合能。 第三章—中子扩散理论 中子角密度:在r 处单位体积内和能量为E 的单位能量间隔内,运动方向为Ω的单位立体角内的中子数目。 慢化长度:中子从慢化成为热中子处到被吸收为止在介质中运动所穿行的直线距离。 徙动长度:快中子从源点产生到变为热中子而被吸收时所穿行的直线距离为r M 。 第四章—均匀反应堆的临界理论 反射层的作用: 1. 减少芯部中子泄漏,从而使得芯部的临界尺寸要比无反射层时的小,节省一部分燃料;

五种反应堆

吴锴:请您先介绍一下世界上已出现的几种潜艇反应堆的工作原理? 张金麟:美国从1948年开始对三种热交换型式的反应堆,即压水堆、气冷堆和液态金属冷却反应堆进行研究。最初美国考虑将反应堆装在Φ5.5×92米的潜艇壳内,其排水量在2 000吨左右,对反应堆的技术要求是:高浓缩铀的堆芯,用热中子或接近热能的中子;在铀燃料一定时,反应堆结构材料吸收中子要少,堆芯功率密度高、结构要紧凑。 根据此技术要求,美国首先发展了压水堆和液态金属冷却堆。接着苏联也发展了这两种反应堆。这两种堆都经过陆上模式堆的考核试验后才将同型堆安装在它们的早期核潜艇上。 作为舰船核动力,曾经产生过五种反应堆的方案设想,构成五种不同的舰船推进装置型式,它们分别是: 压水反应堆由压水堆、一回路系统和设备、二回路系统和设备及推进轴系组成。反应堆和一回路均在高压下运行。所以作为反应堆的载热剂和慢化剂的水在约300℃时亦不会沸腾,故此类型反应堆称为压水堆。 载热剂在反应堆中被加热送到蒸汽发生器,将其热经传热管传给蒸汽发生器二次侧水(二回路一侧的水)并使其变成饱和蒸汽,从蒸汽发生器流出的载热剂经由主泵又被回送到反应堆再加热,形成一回路循环。饱和蒸汽送至主推进蒸汽轮机作功,从汽轮机排出的乏汽在冷凝器中冷凝后经给水泵再送至蒸汽发生器,形成二回路。主推进蒸汽轮机经减速齿轮带动螺旋桨推进艇航行。 反应堆和一回路因具有放射性,所以需要布置在屏蔽内。蒸汽发生器产生的蒸汽由于被传热管壁与一回路隔开,因此二回路系统和设备同常规蒸汽动力装置一样没有放射性,所以不需屏蔽。 液态金属反应堆由反应堆、一回路、中间回路、二回路和推进轴系所组成。 液态金属堆用石墨和铍作慢化剂,用中能中子维持链式反应,其优点是燃料的消耗比热中子反应堆低。早期的载热剂采用熔融的金属如钠、钾、铋、铅及其合金。 在一回路中用熔融金属钠循环载热,运行压力只有5~7大气压,就可获得较高的温度,装置效率较高。一回路主泵采用电磁泵,由于没有转动部件,故可靠性高。 中间回路采用钠、钾作载热剂。一回路向中间回路传热是通过中间热交换器,中间回路将反应堆的热量再通过蒸汽发生器传给二回路,在蒸汽发生器中产生过热蒸汽(由饱和蒸汽进一步加热而得)。 液态金属堆的缺点是核燃料的初装量相对较多。金属钠吸收中子蜕变为钠-21,半衰期约为15小时,并生成发射高能γ的钠同位素,所以一回路的设备和管道都要屏蔽。为防止液态的金属钠在管道和设备内凝结,反应堆停堆后还需保温和加热。此外,金属钠具有强烈的腐蚀性,与水会发生剧烈反应,可能会引起爆炸和火灾。 气冷反应堆气冷堆是用气体作为载热剂的反应堆,一般使用的载热剂有He、N2、CO2。因为这几种气体制取很容易,且化学性质稳定。其中He的载热效率较高,它不吸收中子,无感生放射性,不与结构材料发生化学反应,传热性能良好。此外,它还有较高的转换比和较深的燃耗。 气冷堆推进装置的循环系统有两种形式:单回路循环系统和双回路循环系统。在单回路循环系统中,封闭的He回路作为一回路,蒸汽回路作为二回路。 比如,一个功率为24.3MW的船用单回路He冷却反应堆燃气轮机推进装置,它是由一个He冷却高温反应堆和一台双轴燃气轮机组成。高压燃气轮机作为压气机的

核反应堆安全分析考试要点

一、安全的总目标:核电厂里建立并维持一套有效的防护措施,以保证工作人员、居民及环境免遭放射性危害。 辐射防护目标:确保在正常运行时核电厂及从核电厂释放出的放射性物质引起的辐射照射保持在合理可行尽量低的水平,并且低于规定的限值,还确保事故引起的辐射照射的程度得到缓解。 纵深防御原则:在核电厂设计中要求提供多层次的设备和规程,用以防止事故,或在未能防止事故时保证适当的防护 纵深防御目的1:防止偏离正常运行及系统故障 2:检测和纠正偏离正常运行状态,以防止预计运行事件升级为事故工况3:限制事故的放射性后果,保障公众的安全。 4:应付可能已超出设计基准事故的严重事故,并使放射性后果合理可行尽量低。 5、减轻事故工况下可能的放射性物质释放后果 三道屏障:1燃料元件包壳:2一回路压力边界3安全壳 安全设计的基本原则:单一故障准则(在其任何部位发生单一随机故障时,仍能保持所赋予的功能)多样性原则(通过多重系统或部件中引入不同属性来提高系统的可靠性)独立性原则(功能隔离或实体分离,防止发生共因故障或共模故障)故障安全原则(核系统或部件发生故障时,电厂应能在毋需任何触发动作的情况下进入安全状态)定期试验维护检查的措施、充分采用固有安全性的设计原则、运行人员操作优化的设计。 四确保反应堆安全的四种安全性要素:(1) 自然的安全性。2非能动的安全性。 (3) 能动的安全性。。(4) 后备的安全性。固有安全性:当反应堆出现异常工况时,不依靠人为操作或外部设备的强制性干预,只是由堆的自然安全性和非能动安全性,控制反应性或移出堆芯热量,使反应堆趋于正常运行和安全停闭。四、反应堆安全设施有特定的安全功能:在所有情况下,正常运行或反应堆停闭状态1有效地控制反应性,2确保堆芯冷却,3包容放射性产物 五、专设安全设施的原因及功能 原因,当反应堆运行发生异常或事故工况下,仅仅依靠正常的控制保护系统仍不足以保障堆芯的冷却在压水堆核电厂中,一旦发生因冷却系统管道破裂的失水事故是及时反应堆紧急停闭也可以是燃料包壳烧毁,甚至熔化同时会危及安全壳的完整性。功能:1发生失水事故时,向堆芯注入含硼水;2. 阻止放射性物质向大气释放3.阻止氢气在安全壳中浓集4向蒸汽发生器应急供水。

反应堆安全分析期末考试复习资料

冗余度:核电厂完成安全功能的系统采用多个同样类型的系统连接起来,用以防止在某一个系统失效后余下的系统能够保证其安全功能。 多样性:采用两个或者多个独立的方法或系统来完成同一个功能。 独立性:系统设计中通过功能隔离或实体隔离,实现系统布置和设计的独立性。 故障安全:核系统或部件发生故障时,电厂应能在毋需任何触发动作的情况下进入安全状态。单一故障:导致某一部件不能执行其预定安全功能的随机故障,包括由该故障引起的所有继发故障。 单一故障准则:满足单一故障准则的设备组合,在其任何部位发生单一故障时仍能保持所赋予的功能。 核安全文化:安全文化是存在于单位和个人的种种特性和态度的总和,它建立在一种超出一切之上的观念,即核电站安全问题由于它的重要性要保证得到应有的重视。 始发事件:能导致放射性核素向环境释放的所有起因事件,都可作为核电厂概率安全评价的始发事件。 初因事件::造成核电厂扰动并且有可能导致堆芯损害的事件。 固有安全性:当反应堆出现异常工况时,不依靠人为操作或外部设备的强制性干预,只是由堆的自然安全性和非能动的安全性,控制反应性或移出堆芯热量,使反应堆趋于正常运行和安全停闭。 停堆余量(深度):全部毒物都投入堆芯时,反应堆芯达到的负反应性。 热流量:单位时间传递的热量。 热通量(热流密度):单位时间通过单位面积传递的热量。 传热系数:单位时间、单位面积、温度差为1℃时传递的热量,即单位传热量。 对流换热系数h:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。 大容器沸腾:由浸没在具有自由表面原来静止的大容积液体内的受热面所产生的沸腾 饱和沸腾:液体主体温度达到饱和温度,壁面温度高于饱和温度所发生的沸腾称为饱和沸腾。热管:在堆芯中集中了所有关于核的和合理的不利工程因素的具有最大积分功率输出、最小冷却剂流量和最大冷却剂焓升的冷却剂通道。 热点:堆芯集中了所有关于核的和合理的不利工程因素,在堆热工设计准则中定义为限制条件的点。在堆芯内最危险的燃料元 件上的点。 偏离泡核沸腾:冷却剂通道中燃料元件表面某一点的临界热流量qDNB与该点的实际热流量的比值 子通道模型:认为相邻通道是相互关联的,沿着整个堆芯高度,相邻通道的冷却剂间发生着质量、动量和热量交换。 比放射性活度:单位质量或体积的放射性核素的放射性活度。 核燃料线功率密度:单位长度的核燃料棒所释放的功率。 热阱:接受反应堆排除余热的场所。 核应急:是需要立即采取某些超出正常工作程序的行动以避免核事故发生或减轻核事故后果的状态,又称“核紧急状态”。 应急计划:又称应急响应计划。在应急计划中规定核设施营运单位、地方破府等向国家和公众所承担的应急准备和响应的任务。

核反应堆类型简介

核反应堆类型简介 核反应堆(Nuclear Reactor),又称原子反应堆或反应堆,是装配了核燃料以实现大规模可控制裂变链式反应的装置,是一种启动、控制并维持核裂变或核聚变链式反应的装置。在反应堆之中,核变的速率可以得到精确的控制,其能量能够以较慢的速度向外释放,供人们利用。核反应堆,是一种启动、控制并维持核裂变或核聚变链式反应的装置。相对于核武爆炸瞬间所发生的失控链式反应,在反应堆之中,核变的速率可以得到精确的控制,其能量能够以较慢的速度向外释放,供人们利用。 核反应堆分类有: 按时间分可以分为四代: 第一代核电站是早期的原型堆电站,即1950年至1960年前期开发的轻水堆核电站,如美国的希平港压水堆、德累斯顿沸水堆以及英国的镁诺克斯石墨气冷堆等。 第二代核电站是1960年后期到1990年前期在第一代核电站基础上开发建设的大型商用核电站,如、加拿大坎度堆、苏联的压水堆等。目前世界上的大多数核电站都属于第二代核电站。 第三代是指先进的轻水堆核电站,即1990年后期到2010年开始运行的核电站。第三代核电站采用标准化、最佳化设计和安全性更高的非能动安全系统,如先进的沸水堆、系统80+、AP600、欧洲压水堆等。 第四代是待开发的核电站,其目标是到2030年达到实用化的

程度,主要特征是经济性高(与天燃气火力发电站相当)、安全性好、废物产生量小,并能防止核扩散。 按用途分:动力核反应堆;研究核反应堆;生产核反应堆(快滋生反应器)。 按反应堆慢化剂和冷却剂分: 轻水堆(压水反应堆、沸水反应堆):轻水型反应堆使用相对分子质量为18的轻水作为慢化剂和冷却剂; 重水堆:重水堆可按结构分为压力容器式和压力管式两类。两者都使用重水做慢化剂,但前者只能用重水做冷却剂,后者却可用重水、轻水、气体等物质做冷却剂; 石墨气冷堆;石墨液冷堆。 按反应堆中中子的速度分:热中子堆;快中子堆。 核反应堆有许多用途,最重要的用途是产生热能,用以代替其他燃料,产生蒸汽发电或驱动航空母舰等设施运转。 按用途分:将中子束用于实验或利用中子束的核反应,包括研究堆、材料实验等;生产放射性同位素的核反应堆;生产核裂变物质的核反应堆,称为生产堆;提供取暖、海水淡化、化工等用的热量的核反应堆,比如多目的堆;为发电而发生热量的核反应,称为发电堆;用于推进船舶、飞机、火箭等到的核反应堆,称为推进堆。 如此多的反应堆种类,意味着很多的人才空缺,让我感觉到核电事业亟待人才的加入,我决心努力学习,将来为我国核电事业作出一番贡献。

《核反应堆热工分析》复习资料大全

第一章绪论(简答) 1. 核反应堆分类: 按中子能谱分快中子堆、热中子堆 按冷却剂分轻水堆(压水堆,沸水堆)、重水堆、气冷堆、钠冷堆 按用途分研究试验堆:研究中子特性、生产堆: 生产易裂变材料、动力堆:发电舰船推进动力2.各种反应堆的基本特征: 3.压水堆优缺点: 4.沸水堆与压水堆相比有两个优点:第一是省掉了一个回路,因而不再需要昂贵的蒸汽发生器。第二是工作压力可以降低。为了获得与压水堆同样的蒸汽温度,沸水堆只需加压到约72个大气压,比压水堆低了一倍。 5.沸水堆的优缺点: 6.重水堆优缺点:优点: ●中子利用率高(主要由于D吸收中子截面远低于H) ●废料中含235U极低,废料易处理 ●可将238U 转换成易裂变材料 238U + n →239Pu 239Pu + n →A+B+n+Q(占能量一半)

缺点: ●重水初装量大,价格昂贵 ●燃耗线(8000~10000兆瓦日/T(铀)为压水堆1/3) ●为减少一回路泄漏(因补D2O昂贵)对一回路设备要求高 7.高温气冷堆的优缺点:优点: ●高温,高效率(750~850℃,热效率40%) ●高转换比,高热耗值(由于堆芯中没有金属结构材料只有核燃料和石墨,而石墨吸收中子截面小。转换比0.85,燃耗10万兆瓦日/T(铀)) ●安全性高(反应堆负温度系数大,堆芯热容量大,温度上升缓慢,采取安全措施裕量大) ●环境污染小(采用氦气作冷却剂,一回路放射性剂量较低,由于热孝率高排出废热少)●有综合利用的广阔前景(如果进一步提高氦气温度~900℃时可直接推动气轮机;~1000℃时可直接推动气轮机热热效率大于50%;~1000-1200℃时可直接用于炼铁、化工及煤的气化) ●高温氦气技术可为将来发展气冷堆和聚变堆创造条件 8.钠冷快堆的优缺点:优点: ●充分利用铀资源 239Pu + n →A+B+2.6个n 238U + 1.6个n →1.6个239Pu (消耗一个中子使1.6个238U 转换成239Pu )●堆芯无慢化材料、结构材料,冷却剂用量少 ●液态金属钠沸点为895℃堆出口温度可高于560 ℃ 缺点: ●快中子裂变截面小,需用高浓铀(达~33%) ●对冷却剂要求苛刻,既要传热好又不能慢化中子,Na是首选材料,Na是活泼金属,遇水会发生剧烈化学反应,因此需要加隔水回路 9.各种堆型的特点、典型运行参数 第二章堆芯材料选择和热物性(简答) 1.固体核燃料的5点性能要求:教材14页 2.常见的核燃料:金属铀和铀合金、陶瓷燃料、弥散体燃料 3.选择包壳材料,必须综合考虑的7个因素:包壳材料的选择 ?中子吸收截面要小 ?热导率要大 ?材料相容性要好

核反应堆工程---复习参考题-资料讲解

核反应堆工程复习参考题 1、压水堆与沸水堆的主要区别是什么? 沸水堆采用一个回路,压水堆有两个回路;沸水堆由于堆芯顶部要安装汽水分离器等设备,故控制棒需从堆芯底部向上插入,控制棒为十字形控制棒,压水堆为棒束型控制棒,从堆芯顶部进入堆芯;沸水堆具有较低的运行压力(约为70个大气压),冷却水在堆内以汽液形式存在,压水堆一回路压力通常达150个大气压,冷却水不产生沸腾。 2、简要叙述一种常用堆型的基本工作原理? 沸水堆(Boiling Water Reactor)字面上来看就是采用沸腾的水来冷却核燃料的一种反应堆,其工作原理为:冷却水从反应堆底部流进堆芯,对燃料棒进行冷却,带走裂变产生的热能,冷却水温度升高并逐渐气化,最终形成蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,利用分离出的蒸汽推动汽轮进行发电。 压水堆(Pressurized Water Reactor)字面上看就是采用高压水来冷却核燃料的一种反应堆,其工作原理为:主泵将120~160个大气压的一回路冷却水送入堆芯,把核燃料放出的热能带出堆芯,而后进入蒸汽发生器,通过传热管把热量传给二回路水,使其沸腾并产生蒸汽;一回路冷却水温度下降,进入堆芯,完成一回路水循环;二回路产生的高压蒸汽推动汽轮机发电,再经过冷凝器和预热器进入蒸汽发生器,完成二回路水循环。 3、重水堆的燃料富集度为什么可以比压水堆的低,哪种堆型对燃料的燃尽性更 好? 因为卸料燃耗较浅,用重水(D2O,D为氘)作慢化剂,其热中子吸收截面约

为轻水(H2O)的1/700,慢化中子能力不如后者,需要更多的碰撞次数,可直接利用天然铀作核燃料。 4、快中子堆和热中子堆相比有哪些优缺点? 优:快中子堆没有慢化剂,所以体积小,功率密度高。 缺:快中子堆必须有较高的核燃料富集度,初装量也大。快中子堆燃料元件加工及乏燃料后处理要求高,快中子辐照通量率大,对材料要求苛刻。平均寿命比热中子堆短,控制困难。 5、压水堆堆芯中水主要起什么作用? 作冷却剂和慢化剂。 6、气冷堆与压水堆相比有何优缺点? 优:能在不高的压力下得到较高的出口温度,可提高电站二回路蒸汽温度,从而提高热效率。 缺:镁合金包壳不能承受高温,限制了二氧化碳气体出口温度,限制了反应堆热工性能的进一步提高。 7、什么是原子核的结合能及比结合能,如何计算? 结合能:是将若干个核子结合成原子核放出的能量或将原子核的核子全部分散开来所需的能量,ΔE=ΔmC2 定义:是原子核的结合能与该原子核的核子数之比(ΔE/A) 8、什么是核反应截面,分哪几类,其物理意义是什么? 如果某种物质受到中子的作用,则发生特定核反应的概率取决于中子的数目和速度,以及该物质中核的数目和性质。“截面”是中子与核相互作用概率的一种量度

反应堆保护系统(RPR)

186 §1.6.4 反应堆保护系统(RPR ) 一、 系统功能 反应堆保护系统(RPR )是指由所有电器件、机械器件和线路(从传感器一直到执行机构的输入 端)组成的产生保护信号的系统,它必须满足以下要求: (1) 能自动触发有关的系统(需要时包括停堆系统)动作,以保证发生预计运行事件时,核 电厂的主要参数不超过规定的限值; (2) 能检测事故工况并触发为减轻这些事故工况后果所需的系统动作; (3) 能抑制控制系统的不安全动作。 图(1)示出反应堆保护系统(RPR )在整个反应堆安全系统的位置。 图(1) 反应堆安全系统组成图 RPR 系统与全体保护仪表组件的联系可分为 热工仪表 和核仪表两部分,这些仪表组件从模拟测量 中触发逻辑信号,因此, RPR 系统的上游端与以下主要系统相连: 保护系统 保护执行系统 反应堆安全系统(紧急停堆系统工程安全设施系统)

RPN系统的下游端与给出停堆或保护动作安全命令的传递系统相连,安全命令的种类有:停闭反应堆停闭 反应堆冷却剂泵跳闸 汽机脱扣 保护信号蒸汽管隔离 安全壳隔离状态A,B 安全注射 安全壳喷淋 给水隔离 辅助给水启动 柴油发电机组启动 保护系统的安全作用是: 在下面两种情况下: 1、当控制系统失效而导致产生错误指令时 187

2、在异常的事件情况下,包括故障(incidents)和事故(accidents)状态 保护三大核安全屏障(即燃料包壳、一回路压力边界和安全壳)的完整性,当运行参数达到危及三大屏障完整性的阈值时,紧急停闭反应堆和启动专设安全设施。 二、系统描述 1、系统设计准则 双重二取一 M=A(A+B)(C+D) 三取二 M=A C+AB+BC 四取二 M=AB+AC+AD+BC+BD+CD 图(2) 逻辑符合电路例(断电方式) 188

核反应堆物理期末重点

1、在热中子反应堆中为什么要使用慢化剂?慢化剂的工作原理是什么?并举出几种常用 的慢化剂。 ①反应堆内产生的中子能量相当高,其平均值约为2MeV;而微观裂变截面在热能区较大, 热中子反应堆内的裂变反应基本上都是发生在这一能区,所以在热中子反应堆中使用慢化剂。 ②在热中子反应堆中,慢化过程中弹性散射起主要作用,因为裂变中子经过与慢化剂和其 他材料核的几次碰撞,中子能量便很快降低到非弹性散射的阈能一下,这是中子的慢化主要靠中子与慢化剂核的弹性散射进行。 ③水、重水、石墨等。 2、缓发中子是如何产生的?在反应堆动力学分析计算中,份额不足1%的缓发中子与份额 超过99%的瞬发中子相比是否可以忽略不计?为什么? ①缓发中子是在裂变碎片衰变过程中发射出来的,占裂变中子的不到1% ②缓发中子不可以忽略不计 ③缓发中子份额虽然很少,但它的发射时间较长,缓发效应大大增加了两代中子之间的平 均时间间隔,从而滞缓了中子密度的变化率。反应堆的控制实际上正是利用了缓发中子的作用才得以实现的。 3、解释碘坑现象和强迫停堆时间。船用反应堆要求不能出现强迫停堆现象,请问在设计上 应如何考虑。 ①刚停堆时,135Xe不再吸收中子消失,而一段时间内,135I衰变成135Xe的速率高 于135Xe的衰变速率,因此135Xe核密度随着时间增长,即毒性随时间上升;但在9-10小时后,堆内135I浓度已明显降低,氙的生成速率低于衰变速率,所以毒性随时间降低,这种现象称为碘坑现象。 ②在碘坑时间内,若剩余反应性小于或等于0,则反应堆无法启动,这段时间称为强 迫停堆时间。 ③船用反应堆要求不能出现强迫停堆现象,在设计上应留有足够的后备反应性,按照 最大氙中毒设计。 4、为什么沸水堆中控制棒是从底部插入堆芯的? 沸水堆中水密度在高度方向上变化非常剧烈,堆芯下部的水密度要远高于堆芯上部的水密度,故堆芯的下部中子通量密度要比上部大,控制棒由下向上插入可以提高控制棒的效率,同时还可以展平轴向功率。 5、如何保证压水堆慢化剂温度系数为负值?举例说明负温度系数对反应堆安全运行作用。 ①为了保证慢化剂温度系数为负值,设计时要注意水铀比,保证处于欠慢化区;运时 要注意控制硼浓度不要超过最大值。 ②例如,由于误操作或其他原因,在运行过程中控制棒突然上提了一段,致使k突然 上升,这时中子通量密度将骤然增加,温度也将突然上升,若反应堆具有负温度系数,则随着温度升高,k值将变小,从而使中子通量密度下降,有自动降温以利于安全的趋势。 6、反应堆堆芯燃料管理的主要任务是什么? 反应堆堆芯燃料管理的主要任务是在满足电力系统能量需求和在电厂设计规范和安全的要求下,为电厂的运行循环做出其经济安全运行的全部决策。主要包括下列变量的确定:新燃料的富集度,批料数或一批换料量,循环长度,循环功率水平,燃料组件装载方案,控制毒物的布置和控制方案。 7、简述热中子反应堆中子循环过程,并写出四因子公式。

核反应堆物理分析习题答案 第三章

第三章 1.有两束方向相反的平行热中子束射到235U 的薄片上,设其上某点自左面入射的中子束强度为122110cm s --?。自右面入射的中子束强度为1221210cm s --??。计算: (1)该点的中子通量密度; (2)该点的中子流密度; (3)设2119.210a m -∑=?,求该点的吸收率。 解:(1)由定义可知:12 21 310I I cm s φ+ - --=+=? (2)若以向右为正方向:12 21 110J I I cm s + - --=-=-? 可见其方向垂直于薄片表面向左。 (3)2122133119.21031010 5.7610a a R cm s φ---=∑=????=? 2.设在x 处中子密度的分布函数是:0(,,)(1cos )2x aE n n x E e e λμπ -Ω= + 其中:,a λ为常数, μ是Ω与x 轴的夹角。求: (1) 中子总密度()n x ; (2) 与能量相关的中子通量密度(,)x E φ; (3) 中子流密度(,)J x E 。 解:由于此处中子密度只与Ω与x 轴的夹角相关,不妨视μ为视角,定义Ω在Y Z -平面影上与Z 轴的夹角?为方向角,则有: (1) 根据定义: 004()(1cos )2x aE n n x dE e e d λπμπ +∞ -= +Ω?? 20000(1cos )sin 2x aE n dE d e e d ππλ?μμμπ +∞-=+??? 00 (1cos )sin x aE n e e dE d π λ μμμ+∞ -=+? ? 可见,上式可积的前提应保证0a <,则有: 0000()()(sin cos sin )aE x e n x n e d d a π πλ μμμμμ-+∞=?+?? 0002(cos 0)x x n e n e a a λλπ μ--=--?+=- (2)令n m 为中子质量,则2 /2()n E m v v E =?= 04(,)(,)()(,,)2x x E n x E v E n x E d n e e λπ φ-==ΩΩ= (等价性证明:如果不做坐标变换,则依据投影关系可得: cos sin cos μθ?= 则涉及角通量的、关于空间角的积分: 240 (1cos )(1sin cos )sin d d π π μθ?θθ+Ω=+?? 2220 sin cos sin d d d d π πππ ?θθ??θθ= +? ??? 00 2(cos )(2sin cos )404d π π πθπ μμμππ =- +=+=?

核反应堆及发展

核反应堆的类型 核电站中的反应堆设计具有多样性,也就是说,核反应堆具 有不同类型,相应形成不同的核电站。可以利用下列三个特点表征不同类型的反应堆。第一,所用的核燃料可以是天然铀或浓缩铀、钚或钍;第二,使用不同类型的冷却剂,可以是水、二氧化碳、氦气或钠;第三,用于控制链式反应中释放的中子能量的慢化剂,可以是石墨、重水或轻水(即普通水)。 下面就是迄今国际上核电站常用的4种核反应堆型。 压水堆是以加压轻水作为慢化剂和冷却剂,且水在堆内不沸 腾的核反应堆。目前以压水堆为热源的核电站,在核电站机组数量和装机容量方面都处于领先地位。 沸水堆是以沸腾轻水为慢化剂和冷却剂并在反应堆压力容 器内直接产生饱和蒸汽的核反应堆。沸水堆与压水堆同属轻水堆,都具有结构紧凑、安全可靠、建造费用低和负荷跟随能力强等优点。它们都需使用低富集铀作燃料。以沸水堆为热源的核电站在未来市场中仍将占有显著的地位。 重水堆是以重水作为慢化剂,轻水或重水作为冷却剂的核反应堆,可以直接利用天然铀作为核燃料。重水堆分压力容器式和压力管式两类。重水堆核电站是发展较早的核电站,但已实现工业规模的只有加拿大发展起来的坎杜型压力管式重水堆核电站。

快堆是由快中子引起链式裂变反应的核反应堆。快堆在运行中既消耗裂变材料,又生产新裂变材料,而且所产可多于所耗,能实现核裂变材料的增殖。专家预计,快堆未来的发展将会加快起来。 前景看好的快堆 现在世界上所运行的绝大多数反应堆是热中子堆,或者说是非增殖堆型,利用的只是铀-235,而天然铀将近99.3%是难裂变的铀-238,所以这些堆型对铀资源的利用率只有1%~2%。但在快堆中,铀-238原则上都能通过核反应转变成易裂变的钚-239而得以使用。即使考虑到各种损耗,快堆总体上可将铀资源的利用率提高到60%~70%,也可使核废料产生量得到最大程度的降低,实现放射性废物最小化。 具体点说,在堆芯燃料钚-239的外围再生区里放置铀-238,通过钚-239产生的裂变反应时放出来的快中子,使铀-238吸收一个中子后,发生连续两次β衰变后,铀-238很快被转变成钚-239,同时产生了能量,如此核反应下去,能够源源不断地将铀-238转变成可用的燃料钚-239。因为快堆再生速度高于消耗速度,即所生成的钚-239比消耗的铀-235来得多,如此核燃料越烧越多,快速迅速增殖起来,因此这种反应堆又称“快中子增殖堆”。除了现行的钠冷快堆外,还在发展气冷快堆、铅冷快堆等。 早在1951年,美国就建造了实验快中子堆。现阶段,基本掌握快中子堆技术的国家有美国、法国、日本、俄罗斯、印度和中国等。中国核工业集团公司2010年7月21宣布:由中核集团中国原子能

相关文档
最新文档