高考数学总复习教案:基本不等式

高考数学总复习教案:基本不等式
高考数学总复习教案:基本不等式

第六章不等式第3课时基本不等式(对应学生用书(文)、(理)89~90页

)

考情分析考点新知

掌握基本不等式,能利用基本不等式推导不

等式,能利用基本不等式求最大(小)值.

了解基本不等式的证明过程.

②会用基本不等式解决简单的最大(小

)值问

题.

1. (必修5P91习题7改编)若x>0,则x+

2

x的最小值为________.

答案:2 2

解析:∵ x>0,∴x+

2

x≥2x·

2

x=22,当且仅当x=2时等号成立.

2. (必修5P94复习题8改编)设x<0,则y=3-3x-

4

x的最小值为________.

答案:3+4 3

解析:∵x<0,∴y=3-3x-

4

x=3+(-3x)+?

?

?

?

4

x≥3+2(-3x)·?

?

?

?

4

x=3+43,当且仅当x=-

23

3时等号成立,故所求最小值为3+4 3.

3. (必修5P88例2改编)若x>-3,则x+

2

x+3的最小值为________.

答案:22-3

解析:∵ x+3>0,∴x+

2

x+3=(x+3)+

2

x+3-3≥2(x+3)×

2

x+3-3=22-3.

4. (必修5P91练习题2改编)设x,y∈R,且x+y=5,则3x+3y的最小值是________.

答案:18 3

解析:3x+3y≥23x·3y=23x+y=235=183,当且仅当x=y=

5

2时等号成立.

5. (必修5P88例2改编)已知函数f(x)=x+

a

x-2(x>2)的图象过点A(3,7),则此函数的最小值是________.

答案:6

解析:∵函数f(x)=x+

a

x-2(x>2)的图象过点A(3,7),即7=3+a,∴a=4.∵ x-2>0,

∴f(x)=(x-2)+

4

x-2+2≥2(x-2)·

4

x-2+2=6,当且仅当x=4时等号成立,故此函数的最小值是6.

1. 算术平均数与几何平均数

对于正数a ,b ,我们把a +b

2称为a 、b 的算术平均数,ab 称为a 、b 的几何平均数. 2. 基本不等式ab ≤a +b

2

(1) 基本不等式成立的条件:a>0,b>0;

(2) 等号成立的条件:当且仅当a =b 时取等号;

(3) 结论:两个非负数a ,b 的算术平均数不小于其几何平均数. 3. 拓展:若a >0,b >0,2

1a +1b ≤ab ≤a +b 2≤

a2+b2

2,当且仅当a =b 时等号成立.

[备课札记]

题型1 利用基本不等式证明不等式

例1 已知x>0,y>0,求证:1x +1y ≥4

x +y

.

证明:原不等式等价于(x +y)2≥4xy ,即(x -y)2≥0,显然成立.故原不等式得证. 变式训练

(1) 若a>b>c ,求证:1a -b +1b -c ≥4

a -c ;

(2) 若a>b>c ,求使得1a -b +1b -c ≥k

a -c

恒成立的k 的最大值.

证明:(1) 令a -b =x ,b -c =y ,则a -c =x +y.原不等式等价于1x +1y ≥4

x +y ,由作差法可证该

不等式成立,故原不等式成立.

(2) 由(1)可知,1a -b +1b -c ≥4a -c 恒成立,而1a -b +1b -c ≥k

a -c ,k 的最大值为4.

题型2 利用基本不等式求最值 例2 (1) 已知x<54,求函数y =4x -2+1

4x -5的最大值;

(2) 已知x>0,y>0且1x +9

y =1,求x +y 的最小值. 解:(1) x<5

4,∴ 4x -5<0.

∴ y =4x -5+14x -5+3=-[(5-4x)+1

(5-4x )]+3

≤-2

(5-4x )1(5-4x )

+3=1,ymax =1.

(2) ∵ x>0,y>0且1x +9

y =1,

∴ x +y =(x +y)????1x +9y =10+9x y +y x ≥10+29x y ·y

x =16,即x +y 的最小值为16.

备选变式(教师专享) 已知函数f(x)=x2+2x +a

x

,x ∈[1,+∞). (1) 当a =4时,求函数f(x)的最小值;

(2) 若对任意x ∈[1,+∞),f(x)>0恒成立,试求实数a 的取值范围.

解:(1) 由a =4,∴f(x)=x2+2x +4x =x +4

x +2≥6,当x =2时,取得等号.即当x =2时,f(x)min =6.

(2) x ∈[1,+∞),x2+2x +a x

>0恒成立,即x ∈[1,+∞),x2+2x +a>0恒成立.

等价于a>-x2-2x ,当x ∈[1,+∞)时恒成立, 令g(x)=-x2-2x ,x ∈[1,+∞),

∴a>g(x)max =-1-2×1=-3,即a>-3. ∴a 的取值范围是()-3,+∞.

题型3 利用基本不等式解应用题

例3 如图,动物园要围成相同面积的长方形虎笼四间.一面可利用原有的墙,其他各面用钢筋网围成.

(1) 现有可围成36m 长的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼的面积最大? (2) 若使每间虎笼的面积为24m2,则每间虎笼的长、宽各设计为多少时,可使围成的四间虎笼的钢筋网总长最小?

解:(1) 设每间虎笼长为xm ,宽为ym , 则????

?4x +6y =36,x>0,y>0,

面积S =xy. 由于2x +3y≥22x·3y =26xy ,所以26xy ≤18,得xy≤272,即S≤272,当且仅当2x =3y 时取等号.

则?

??

??2x =3y 2x +3y =18?

????x =4.5,

y =3, 所以每间虎笼长、宽分别为4.5m 、3m 时,可使面积最大.

(2) 设围成四间虎笼的钢筋网总长为lm ,则l =4x +6y ,且xy =24,所以l =4x +6y =2(2x +3y)≥2×22x·3y =46xy =4×6×24=48(m),当且仅当2x =3y 时取等号.

?

??

??xy =242x =3y ?

????x =6,

y =4.故每间虎笼长、宽分别为6m 、4m 时,可使钢筋网的总长最小为48m. 备选变式(教师专享)

某造纸厂拟建一座平面图形为矩形且面积为162 m2的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/m2,中间两道隔墙建造单价为248元/m2,池底建造单价为80元/m2,水池所有墙的厚度忽略不计.

(1) 试设计污水处理池的长和宽,使总造价最低,并求出最低总造价; (2) 若由于地形限制,该池的长和宽都不能超过16 m ,试设计污水池的长和宽,使总造价最低,并求出最低总造价.

解:(1) 设污水处理池的宽为x m ,则长为162

x m.

总造价为f(x)=400×???

?2x +2·162x +248×2x +80×162=1 296x +1 296×100x

+12 960=1

296????x +100x +1 2960≥1 296×2x·100x +12 960=38 880元.当且仅当x =100

x (x>0),即x =10

时取等号.∴ 当长为16.2 m ,宽为10 m 时总造价最低,最低总造价为38 880元.

(2) 由限制条件知?????0

知g(x)在????1018,16上是增函数,∴ 当x =1018时(此时162x =16),g(x)有最小值,即f(x)有最小

值1 296×????1018+80081+12 960=38 882(元).∴ 当长为16 m ,宽为1018 m 时,总造价最低,为38 882元.

1. (2013·上海)设常数a>0,若9x +a2

x ≥a +1对一切正实数x 成立,则a 的取值范围为________.

答案:???

?15,+∞

解析:9x +a2x ≥2

9x·a2x =6a ,所以6a≥a +1,即a≥15.

2. 已知正实数x 、y 、z 满足2x(x +1y +1z )=yz ,则????x +1y ???

?x +1z 的最小值为________.

答案: 2

解析:∵ 2x ???

?x +1y +1z =yz ,∴ 1y +1z =yz 2x -x ,

∴ ?

???x +1y ?

??

?x +1z =x2+x ?

??

?1y +1z +1yz =yz 2+1

yz ≥ 2.

3. 已知P 是△ABC 的边BC 上的任一点,且满足AP →=xAB →+yAC →

,x 、y ∈R ,则1x +4y 的最小值是________. 答案:9

解析:因为B 、C 、P 三点共线且AP →=xAB →+yAC →

,故x >0,y >0且x +y =1,所以1x +4y =???

?1x +4y

(x +y)=5+y x +4x

y ≥9.

4. 若不等式4x2+9y2≥2kxy 对一切正数x 、y 恒成立,则整数k 的最大值为________. 答案:3

解析:原不等式可化为4x y +9y x ≥2k 而4x y +9y

x ≥12,∴ 2k ≤12,则整数k 的最大值为3. 5. 设正项等差数列{an}的前2 011项和等于2 011,则1a2+1

a2 010的最小值为________. 答案:2

解析:由题意得S2 011=2 011(a1+a2 011)

2

=2 011,

∴ a1+a2 011=2.

又a2+a2 010=a1+a2 011=2,

∴ 1a2+1a2 010=12???

?1a2+1a2 010(a2+a2 010)=12(a2 010a2+a2

a2 010)+1≥2.

1. a2+b2≥2ab 成立的条件是a ,b ∈R ,而a +b

2≥ab 成立的条件是a≥0,b ≥0,使用时要注意公式成立的前提条件.

2. 在运用基本不等式时,要特别注意“拆、拼、凑“等技巧,使其满足基本不等式中的”一正“(即条件中字母为正数),”二定“(不等式的另一边必须为定值),”三相等“(等号取得的条件).

3. 正确理解定理:“和一定,相等时积最大;积一定,相等时和最小“.

4. 连续使用公式两次或以上,要求同时满足任何一次的字母取值存在且一致.

5. 函数y =ax +b

x (a>0,b>0)的单调性要掌握,特别是运用基本不等式不能满足“三相等“时.

请使用课时训练(A )第3课时(见活页).

[备课札记]

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

《基本不等式》教案

《基本不等式》教案 教学三维目标: 1、知识与能力目标:掌握基本不等式及会应用基本不等式求最值. 2、过程与方法目标:体会基本不等式应用的条件:一正二定三相等;体会应用基本不等式求最值问题解题策略的构建过程;体会习题的改编过程. 3、情感态度与价值观目标:通过解题后的反思,逐步培养学生养成解题反思的习惯;通过变式练习,逐步培养学生的探索研究精神. 教学重点、难点: 重点:基本不等式在解决最值问题中的应用. 难点:利用基本不等式失效(等号取不到)的情况下采用函数的单调性求解最值. 学情分析与学法指导: 基本不等式是求最值问题中的一种很重要的方法,但学生在运用过程中“一正、二定、三相等”的应用条件一方面容易被忽视,另一方面某些问题看似不符合前面的三个条件,但经过适当的变形又可以转化成运用基本不等式的类型学生解决起来有一定的困难。在本节高三复习课中,结合学生的实际编制了教学案,力求在学生的“最近发展区”设计问题,逐步启发、引导学生课前自主预习、小组合作学习. 教学过程: 一、基础梳理 基本不等式:如果a,b 是正数,那么2a b + (当且仅当a b 时取""=号 ) 代数背景:如果22a b + 2ab (,,a b R ∈当且仅当a b 时取""=号 )(用代换思 想得到基本不等式) 几何背景:半径不小于半弦。 常见变形: (1)ab 22 2a b + (2)222a b + 2 2a b +?? ??? (3)b a a b + 2(a ,b 同号且不为0) 3、算术平均数与几何平均数

如果a 、b 是正数,我们称 为a 、b 的算术平均数,称 的a 、b 几何平均数. 4、利用基本不等式求最值问题(建构策略) 问题: (1)把4写成两个正数的积,当这两个正数取什么值时,它们的和最小? (2)把4写成两个正数的和,当这两个正数取什么值时,它们的积最大? 请根据问题归纳出基本不等式求解最值问题的两种模式: 已知x ,y 都大于0则 (1)“积定和最小”:如果积xy 是定值P ,那么当 时,和x +y 有最小值 ; (2)“和定积最大”:如果和x +y 是定值S ,那么当 时,积xy 有最大值 . 二、课前热身 1、已知,(0,1)a b a b ∈≠且,下列各式最大的是( ) A. 22a b + B. C. 2ab D. a b + 2、已知,,a b c 是实数,求证222a b c ab bc ac ++≥++ 3、.1,0)1(的最小值求若x x x +> .)1(,10)2(的最大值求若x x x -<< 4、大家来挑错 (1)2121=?≥+ x x x x 21的最小值是x x +∴ (2)2121,2=?≥+ ≥x x x x x 则 21,2的最小值是时x x x +≥∴ 5、的最小值求若31,3-+ >a a a 三、课堂探究 1、答疑解惑 方法:小组提交预习中存在的疑问,由其他组学生或教师有针对性地答疑。 2、典例分析 例1、设02,x <<求函数y =. 例2、41,3lg lg x y x x >=++ 设求函数的最值. 变式1:将条件改为01x << 变式2:去掉条件1x > 变式3:将条件改为1000≥x 例3、若正数,3,a b ab a b ab =++满足则的取值范围是 . 变式:求a b +的取值范围.

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高考数学真题分类汇编专题不等式理科及答案

高考数学真题分类汇编专题不等式理科及答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?? ???? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=- -.据题意,当2m >时,8 22 n m --≥-即212m n +≤.226,182 m n m n mn +?≤ ≤∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤.281 29,22 n m n m mn +?≤ ≤∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为 ( ) A .0 B .1 C .32 D .2 【答案】D

高中数学基本不等式及其应用教案设计

实用标准 文档大全基本不等式及其应用教案 教学目的 (1)使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和a3+b3+c3≥3abc(a、b、c∈R+,当且仅当a=b=c时取“=”号)及其推论,并能应用它们证明一些不等式. (2)通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力. 教学过程一、引入新课 师:上节课我们学过证明不等式的哪一种方法?它的理论依据是什么? 生:求差比较法,即 师:由于不等式复杂多样,仅有比较法是不够的.我们还需要学习一些有关不等式的定理及证明不等式的方法. 如果a、b∈R,那么(a-b)2属于什么数集?为什么? 生:当a≠b时,(a-b)2>0,当a=b时,(a-b)2=0,所以(a-b)2≥0.即(a-b)2∈ R+∪{0} .. 师:下面我们根据(a-b)2∈R+∪{0}这一性质,来推导一些重要的不等式,同时学习一些证明不等式的方法. 实用标准 文档大全二、推导公式 1.奠基 师:如果a、b∈R,那么有 (a-b)2≥0. ① 把①左边展开,得 a2-2ab+b2≥∴a2+b2≥2ab .. ② ②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,它是一个很重要的绝对不等式,对任何两实数a、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢? 师:充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号).

数学苏教版必修5基本不等式(教案)

基本不等式(一) 教学目标: 1. 学会推导并掌握均值不等式定理; 2. 能够简单应用定理证明不等式并解决一些简单的实际问题。 教学重点:均值不等式定理的证明及应用。 教学难点:等号成立的条件及解题中的转化技巧。 教学过程: 重要不等式:如果a 、b ∈R ,那么a 2+b 2 ≥2ab (当且仅当a =b 时取“=”号) 证明:a 2+b 2-2ab =(a -b )2 当a ≠b 时,(a -b )2>0,当a =b 时,(a -b )2=0 所以,(a -b )2≥0 即a 2+b 2 ≥2ab 由上面的结论,我们又可得到 定理:如果a ,b 是正数,那么 a +b 2 ≥ab (当且仅当a =b 时取“=”号) 证明:∵(a )2+(b )2≥2ab 4a +b ≥2ab 即 a +b 2 ≥ab 显然,当且仅当a =b 时,a +b 2 =ab 说明:1)我们称a +b 2 为a ,b 的算术平均数,称ab 为a ,b 的几何平均数,因而, 此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数. 2)a 2+b 2≥2ab 和a +b 2 ≥ab 成立的条件是不同的:前者只要求a ,b 都是实数,而后者要求a ,b 都是正数. 3)“当且仅当”的含义是充要条件. 4)数列意义 问:a ,b ∈R -? 例题讲解: 例1 已知x ,y 都是正数,求证: (1)如果积xy 是定值P ,那么当x =y 时,和x +y 有最小值2P ; (2)如果和x +y 是定值S ,那么当x =y 时,积xy 有最大值14 S 2 证明:因为x ,y 都是正数,所以 x +y 2 ≥xy (1)积xy 为定值P 时,有x +y 2 ≥P ∴x +y ≥2P 上式当x =y 时,取“=”号,因此,当x =y 时,和x +y 有最小值2P . (2)和x +y 为定值S 时,有xy ≤S 2 ∴xy ≤ 14 S 2 上式当x=y 时取“=”号,因此,当x=y 时,积xy 有最大值14 S 2.

2020年高考数学复习题:基本不等式及其应用

基本不等式及其应用 [基础训练] 1.下列结论中正确的个数是( ) ①若a >0,则a 2 +1 a 的最小值是2a ; ②函数f (x )=sin 2x 3+cos 2x 的最大值是2; ③函数f (x )=x +1 x 的值域是[2,+∞); ④对任意的实数a ,b 均有a 2+b 2≥-2ab ,其中等号成立的条件是a =-b . A .0 B .1 C .2 D .3 : 答案:B 解析:①错误:设f (a )=a 2 +1 a ,其中a 是自变量,2a 也是变化的,不能说2a 是f (a )的最小值; ②错误:f (x )=sin 2x 3+cos 2 x ≤sin 2x +3+cos 2x 2 =2, 当且仅当sin 2x =3+cos 2x 时等号成立,此方程无解, ∴等号取不到,2不是f (x )的最大值; ③错误:当x >0时,x +1 x ≥2 x ·1x =2, 当且仅当x =1 x ,即x =1时等号成立; 当x <0时,-x >0,x +1 x =-? ?? ??-x +1-x ≤-2 -x ·1 -x =-2, ¥ 当且仅当-x =-1 x ,即x =-1时等号成立. ∴f (x )=x +1 x 的值域是(-∞,-2]∪[2,+∞); ④正确:利用作差法进行判断.

∵a 2+b 2+2ab =(a +b )2≥0,∴a 2+b 2≥-2ab , 其中等号成立的条件是a +b =0,即a =-b . 2.[2019河北张家口模拟]已知a +2b =2,且a >1,b >0,则 2 a -1+1 b 的最小值为( ) A .4 B .5 C .6 D .8 答案:D 解析:因为a >1,b >0,且a +2b =2, \ 所以a -1>0,(a -1)+2b =1, 所以2a -1+1b =? ????2 a -1+1 b ·[(a -1)+2b ] =4+4b a -1 +a -1b ≥4+2 4b a -1·a -1 b =8, 当且仅当4b a -1=a -1 b 时等号成立, 所以2a -1 +1b 的最小值是8,故选D. 3.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2] ! 答案:D 解析:∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立), ∴2 x +y ≤12,∴2x +y ≤14, 得x +y ≤-2.故选D. 4.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) B .2 2 D .2 答案:D 解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy ,

高考数学不等式专题

基本不等式专题 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) (4)若R b a ∈,,则2 )2(222b a b a ab +≤ +≤ (5)若*,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ (6),、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; (7))(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时, “ =”号成立. (1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++

基本不等式及其应用-沪教版必修1教案

基本不等式是每年的高考热点,主要考察命题的判定,不等式的证明以及求 最值问题。特别是求最值问题往往在基本不等式的使用条件上设置一些问题。 考 察学生恒等变形的能力,运用基本不等式的和与积转化作用的能力。 教学目标 1. 知识与技能 理解基本不等式,了解变式结构;理解基本不等式的“和”、“积”放缩作用。 会运用基本不等式解决相关的问题。 2. 过程与方法 通过师生互动、学生主动的探究过程,让学生体会研究数学问题的基本思想 方法,学会学习,学会探究。 3. 情感态度与价值观 鼓励学生大胆探索,增强学生的信心,获得探索问题的成功情感体验。逐步 养成学生严谨的科学态度及良好的思维习惯。 重点:运用基本不等式求最值 难点:恰当变形转化,构建出满足运用基本不等式的条件 教学过程: 一、 要点梳理 1、基本不等式 若a 、b € R,则a 2+b 2> 2ab,当且仅当a=b 时取“=” b 2(a 、b 同号) a 3、求最大值、最小值问题 (1) __________________________________________________________ 如果x 、y € (0,+ g ),且xy=p(定值),那么当x=y 时,x+y 有 _______________ (2) __________________________________________________________ 如果x 、y € (0,+ g ),且x+y=s(定值),那么当x=y 时,xy 有 _______________ 例题精讲 例1、若正数a 、b 满足ab=a+b+3,求ab 的取值范围, 1 9 例2、已知x>0、y>0,且一 一 1,求x+y 的最小值 x y 2、 若 a 、b € R',则 常用变形形式: 宁,ab ,当且仅当a=b 时取 ■- ab 2 b 2 ——b a 0,b 0 ④ 2 b 2 2ab ab 2 a 2 b 2 2 概括为:

【新教材】 新人教A版必修一 基本不等式 教案

基本不等式 1.了解基本不等式的证明过程,理解基本不等式及等号成立的条件. 2.会用基本不等式证明简单的不等式及解决简单的最大(小)值问题. 知识梳理 1.基本不等式错误!≥错误! (1)基本不等式成立的条件:a〉0,b〉0 . (2)等号成立的条件:当且仅当a=b时不等式取等号. 2.几个重要不等式 (1)a2+b2≥2ab(a,b∈R); (2)错误!+错误!≥ 2 (a,b同号); (3)ab≤(错误!)2(a,b∈R); (4)错误!≥(错误!)2。 3.基本不等式求最值 (1)两个正数的和为定值,当且仅当它们相等时,其积最大. (2)两个正数的积为定值,当且仅当它们相等时,其和最小. 利用这两个结论可以求某些函数的最值,求最值时,要注意“一正、二定、三相等”的条件. 热身练习 1.若a,b∈R,且ab〉0,则下列不等式中,恒成立的是(D) A.a2+b2>2ab B.a+b≥2错误! C。错误!+错误!〉错误! D。错误!+错误!≥2 A、C中,a=b时不成立,B中,当a与b均为负数时不成立,而对于D,利用基本不等式x+y≥2错误!(x>0,y〉0)成立,故选D. 2.已知a,b为正数,则下列不等式中不成立的是(D) A.ab≤错误! B.ab≤(错误!)2 C。错误!≥错误! D。错误!≥错误! 易知A,B成立,

对于C ,因为a 2+b 2≥2ab ,所以2(a 2+b 2)≥(a +b )2, 所以错误!≥(错误!)2,所以错误!≥错误!,故C 成立. 对于D,取a =4,b =1,代入可知,不等式不成立,故D 不成立. 由以上分析可知,应选D. 3.周长为60的矩形面积的最大值为(A) A .225 B .450 C .500 D .900 设矩形的长为x ,宽为y , 则2(x +y )=60,所以x +y =30, 所以S =xy ≤(x +y 2)2 =225,即S max =225. 当且仅当x =y =15时取“=",故选A 。 4.设函数f (x )=2x +错误!-1(x <0),则f (x )(A) A .有最大值 B .有最小值 C .是增函数 D .是减函数 f (x )=-[(-2x )+(-错误!)]-1≤-2错误!-1, 当且仅当x =-错误!时,等号成立, 所以函数f (x )有最大值,所以选A 。 5.(2017·山东卷)若直线x a +错误!=1(a >0,b 〉0)过点(1,2),则2a +b 的最小值为 8 。 因为直线错误!+错误!=1(a >0,b 〉0)过点(1,2), 所以1a +错误!=1, 所以2a +b =(2a +b )(错误!+错误!)=4+错误!+错误!≥4+2错误!=8, 当且仅当b a =4a b ,即a =2,b =4时,等号成立. 故2a +b 的最小值为8. 利用基本不等式判断大小关系 下列不等式一定成立的是

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

高中数学《基本不等式》优质课教学设计

《基本不等式》教学设计 一、教学内容解析: 1、本节内容选自《普通高中课程标准实验教科书》(人教A版教材)高中数学必修5第三章第4节基本不等式,是在学习了不等式的性质、一元二次不等式的解法、线性规划的基础上对不等式的进一步的研究,本节是教学的重点,学生学习的难点,内容具有条件约束性、变通灵活性、应用广泛性等的特点; 2、本节主要学习基本不等式的代数、几何背景及基本不等式的证明和应用,为选修4-5进一步学习基本不等式和证明不等式的基本方法打下基础,也是体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养的良好素材; 3、在学习了导数之后,可用导数解决函数的最值问题,但是,借助基本不等式解决某些特殊类型的最值问题简明易懂,仍有其独到之处; 4、在高中数学中,不等式的地位不仅特殊,而且重要,它与高中数学很多章节都有联系,尤其与函数、方程联系紧密,因此,不等式才自然而然地成为高考中经久不衰的热点、重点,有时也是难点. 二、学情分析: 1、学生已经掌握的不等式的性质和作差比较法证明不等式对本节课的学习有很大帮助; 2、学生逻辑推理能力有待提高,没有系统学习过证明不等式的基本方法,尤其对于分析法证明不等式的思路以前接触较少; 3、对于最值问题,学生习惯转化为一元函数,根据函数的图像和性质求解,对于根据已知不等式求最值接触较少,尤其会忽略取等号的条件。 三、教学目标: 1、知识与技能:会从不同角度探索基本不等式,会用基本不等式解决简单的最值问题; 2、过程与方法:经历基本不等式的推导过程,体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养; 3、情感态度价值观:培养学生主动探索、勇于发现的科学精神,并在探究的过

2019高考数学不等式:基本不等式

基本不等式 【考点梳理】 1.基本不等式ab ≤ a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2 +b 2 ≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号且不为零); (3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)? ?? ??a +b 22≤a 2 +b 2 2(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a +b 2 ,几何平均数为ab ,基本不等式可叙述为: 两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). 【考点突破】 考点一、配凑法求最值 【例1】(1)若x < 54,则f (x )=4x -2+145 x -的最大值为________. (2)函数y = x -1 x +3+x -1 的最大值为________. [答案] (1) 1 (2) 1 5 [解析] (1)因为x <5 4 ,所以5-4x >0,

=-2+3=1. 当且仅当5-4x =1 5-4x ,即x =1时,等号成立. 故f (x )=4x -2+1 4x -5的最大值为1. (2)令t =x -1≥0,则x =t 2 +1, 所以y = t t 2 +1+3+t = t t 2 +t +4 . 当t =0,即x =1时,y =0; 当t >0,即x >1时,y = 1 t +4t +1 , 因为t +4 t ≥24=4(当且仅当t =2时取等号), 所以y = 1t +4t +1 ≤1 5, 即y 的最大值为1 5(当t =2,即x =5时y 取得最大值). 【类题通法】 1.应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件. 2.在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. 【对点训练】 1.若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a 等于( ) A .1+2 B .1+3 C .3 D .4 [答案] C [解析] 当x >2时,x -2>0,f (x )=(x -2)+ 1 x -2 +2≥2(x -2)× 1 x -2 +2=4,当

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1。若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A 。? ? ???1,43 B 。? ???? 12,43 C 。? ? ???1,74 D 。? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4。 综上,12<a <7 4,故选D 。 2。已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A 。(a -1)(b -1)<0 B 。(a -1)(a -b )>0 C 。(b -1)(b -a )<0 D 。(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D 。 3。设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A 。(-3,1)∪(3,+∞) B 。(-3,1)∪(2,+∞) C 。(-1,1)∪(3,+∞) D 。(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3。由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33。 4。 若a ,b ,c 为实数,则下列命题为真命题的是( ) A 。若a >b ,则ac 2>bc 2 B 。若a <b <0,则a 2>ab >b 2

(word完整版)高中数学基本不等式及其应用教案

基本不等式及其应用教案 教学目的 (1)使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和a3+b3+c3≥3abc(a、b、c∈R+,当且仅当a=b=c时取“=”号)及其推论,并能应用它们证明一些不等式. (2)通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力. 教学过程 一、引入新课 师:上节课我们学过证明不等式的哪一种方法?它的理论依据是什么? 生:求差比较法,即 师:由于不等式复杂多样,仅有比较法是不够的.我们还需要学习一些有关不等式的定理及证明不等式的方法. 如果a、b∈R,那么(a-b)2属于什么数集?为什么? 生:当a≠b时,(a-b)2>0,当a=b时,(a-b)2=0,所以(a-b)2≥0.即(a-b)2∈ R+∪{0}. 师:下面我们根据(a-b)2∈R+∪{0}这一性质,来推导一些重要的不等式,同时学习一些证明不等式的方法. 二、推导公式

1.奠基 师:如果a、b∈R,那么有 (a-b)2≥0. ① 把①左边展开,得 a2-2ab+b2≥0, ∴a2+b2≥2ab. ② ②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,它是一个很重要的绝对不等式,对任何两实数a、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢? 师:充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号). 以公式①为基础,运用不等式的性质推导公式②,这种由已知推出未知(或要求证的不等式)的证明方法通常叫做综合法.以公式②为基础,用综合法可以推出更多的不等式.现在让我们共同来探索. 2.探索 师:公式②反映了两个实数平方和的性质,下面我们研究两个以上的实数的平方和,探索可能得到的结果.先考查三个实数.设a、b、c∈R,依次对其中的两个运用公式②,有 a2+b2≥2ab; b2+c2≥2bc;

基本不等式教案第一课时

第 周第 课时 授课时间:20 年 月 日(星期 ) 课题: §3.4 2 a b + 第1课时 授课类型:新授课 【学习目标】 1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2.过程与方法:通过实例探究抽象基本不等式; 3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣 【能力培养】 培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。 【教学重点】 2 a b +≤的证明过程; 【教学难点】 2 a b +≤等号成立条件 【板书设计】

【教学过程】 1.课题导入 2 a b +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据 中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风 车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不 等关系吗? 教师引导学生从面积的关系去找相等关系或不等关 系。 2.讲授新课 1.问题探究——探究图形中的不等关系。 将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。设直角三角 形的两条直角边长为a,b 。这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。 2.总结结论:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 结论的得出尽量发挥学生自主能动性,让学生总结,教师适时点拨引导。 3.思考证明:你能给出它的证明吗? 证明:因为 2 22)(2b a ab b a -=-+ 当22,()0,,()0,a b a b a b a b ≠->=-=时当时 所以,0)(2≥-b a ,即.2)(22ab b a ≥+

高考数学之基本不等式

基本不等式 基础梳理 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R ); (4)a 2+b 22≥????a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a + b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 22 ab ≤????a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥????a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们.

三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 双基自测 1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1x 2+1≥1,其中正确的个数是( ). A .0 B .1 C .2 D .3 解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1 -1≥2-1=1. 答案 B 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12 B .1 C .2 D .4 解析 ∵a >0,b >0,a +2b =2, ∴a +2b =2≥22ab ,即ab ≤12 . 答案 A 4.(2011·重庆)若函数f (x )=x +1x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2 +2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2 (x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 答案 C 5.已知t >0,则函数y =t 2-4t +1t 的最小值为________. 解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号. 答案 -2

2018年高考数学—不等式专题

不等式 (必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________. 解析 由题意知Δ=[(m +1)]2+4m >0.即m 2+6m +1>0, 解得m >-3+22或m <-3-2 2. 答案 (-∞,-3-22)∪(-3+22,+∞) (2016·全国Ⅱ卷)若x ,y 满足约束条件???x -y +1≥0, x +y -3≥0,x -3≤0, 则 z =x -2y 的最小值为 ________. 解析 画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y 得到-5. 答案 -5 (2016·全国Ⅲ卷)设x ,y 满足约束条件???2x -y +1≥0, x -2y -1≤0,x ≤1, 则z =2x +3y -5的最小值为_____. 解析 画出不等式组表示的平面区域如图中阴影部分所示.由题意可知, 当直线y =-23x +53+z 3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.

(2017·西安检测)已知变量x ,y 满足???2x -y ≤0, x -2y +3≥0,x ≥0, 则z =(2)2x +y 的最大值为________. 解析 作出不等式组所表示的平面区域,如图阴影部分所示.令m =2x +y ,由图象可知当直线y =-2x +m 经过点A 时,直线y =-2x +m 的纵截距最大,此时m 最大,故z 最大.由?????2x -y =0,x -2y +3=0,解得?????x =1,y =2, 即A (1,2).代入目标函数z =(2)2x +y 得,z =(2)2×1+2=4. 答案 4 (2016·北京卷)若x ,y 满足???2x -y ≤0,x +y ≤3,x ≥0, 则2x +y 的最大值为( ) A.0 B.3 C.4 D.5 解析 画出可行域,如图中阴影部分所示, 令z =2x +y ,则y =-2x +z ,当直线y =-2x +z 过点A (1,2)时,z 最大,z max =4. 答案 C (2016·山东卷)若变量x ,y 满足???x +y ≤2, 2x -3y ≤9,x ≥0, 则x 2+y 2的最大值是( )

基本不等式完整版(非常全面)教案资料

基本不等式完整版(非 常全面)

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则2 2?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取 “=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时 取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时 取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若*,R b a ∈,则2 2111 22b a b a ab b a + ≤+≤≤+ (1)若,,,a b c d R ∈,则 22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:2221 3 a b c ++≥ 4、已知,,a b c R +∈,且1a b c ++=,求证: abc c b a 8)1)(1)(1(≥--- 5、

相关文档
最新文档