冷热电三联供简介及其优化措施

冷热电三联供简介及其优化措施
冷热电三联供简介及其优化措施

冷热电三联供简介及其优化措施

一、冷热电三联供的概念

分布式能源系统(Distributed Energy System)是指将冷热电系统以小规模。小容量(几千瓦至50MW、模块化、分散式的方式布置在用户附近,可独立的输出冷、热、电能的系统,减少了能源输送系统的投资和能量损失。分布式能源的先进技术包括太阳能利用、风能利用、燃料电池和燃气冷热电三联供等多种形式。

冷热电三联供,即CCHP (Combined Cooling, Heating and Power) 是指以天然气为主要燃料带动燃气轮机或内燃机发电机等燃气发电设备运行,产生的电力用于满足用户的电力需求,系统所排出的废热通过余热回收利用设备(余热锅炉或者余热直燃机等)向用户进行供热、供冷经过对能源的梯级利用使能源的利用效率从常规发电系统的40%左右提高到80%左右,能源梯级利用效率达到60%?80%,大量节约一次能源。因此说,燃气冷热电三联供系统是分布式能源的先进技术之一,也是最具实用性和发展活力的系统。典型的燃气冷热电三联产系统一般包括动力系统和发电机、余热回收装置、制冷或供热系统等组成部分,主要用到的发电设备有小型和微型燃气轮机、燃气内燃机、燃料电池等;空调设备有余热锅炉、余热吸收式制冷机以及以蒸汽为动力的压缩式制冷机等。针对不同的用户需求,冷热电联产系统可以有多种多样的组织方式,方案的可选择范围较大。

二、冷热电三联供的优点

①提高能源綜合利用率

传统火电的综合能源利用效率低,燃气冷热电三联供供能系统的综合能源利用效率可达到60%-80%.燃气锅炉直接供热的效率虽然能达到90%,但是它的最终产出能量形式为低品位的热能,而燃气冷热电三联供供能系统中有45%左右的高品位电能产出.因此燃气冷热电三联供供能系统的能源综合利用效率比传统的大电网供电和燃气锅炉直接供热的传统供能方式有大幅度提高。

②电力燃气消耗双重削峰填谷、改善城市能源结构

在传统的能源结构中,夏季大量电空调的使用和冬季大量燃气锅炉采暖的使用造成了夏季用电量远高于冬季、冬季用气量远高于夏季的情况,这种不合理的能源结构导致了相关市政设施的低投资效率,造成了资源浪费。而对燃气冷热电三联供供能系统来说,一方面分布式发电系统和吸收式空调技术的应用可降低夏季大电网的最大负荷,另一方面全年的连续运行使得冬夏燃气用量较为均衡,因此发展燃气冷热电三联供供能系统是改善区域能源结构的最佳途径之一。

③提高供能安全性

大电网供电安全性问题近年来一直得到关注,与大电网互为补充和支播的区域分布式供能系统可以灵活分布,就近建设。对用户来说,在提高能源利用率的同时.相当于在常规的供能形式之外为用户增加了一路供电供冷和供热的途径,提高了用户用能的安全性。

④显著的环保效应

燃气冷热电三联供供能系统采用清洁燃料天然气作为一次能源,为淸洁产能系统,其系统排放指标均达到相关环保标准,与传统热电分供方式相比,由于节省了大量火力发电所消耗的标煤,C02减排效果明显.具有显著的环保效益。

⑤较好的经济性

燃气冷热电三联供供能系统实现供冷供热的同时还能产生高品位的电能.其能源产品的多样性和较高的能源利用效率使得分布式供能系统对于燃气、电力价格的波动具有较强的适应性,相对于传统供能系统可节省一定的年能源消耗费用。

三、优化冷热电联供的主要措施

在规划、设计冷热电三联供时,如何采取措施优化“联供”系统和设备匹配?真正做到节约能源、改善环境和得到显著的经济效益,根据“三联供”的特点。其主要措施如下所述。

①按原则设计

冷热电三联供的规划、设计的原则应该是:夏季有一定的冷负荷、冬季有一定的热负荷,燃机的发电能力以冷(热)定电、不足电力由电网供应;所需冷量由燃机的余热利用溴化锂制冷机制冷,不足冷量由电制冷补充;所需热量由燃机的余热供应,不足热量可由热泵或燃气锅炉补充。“三联供”系统按此进行规划设计,就是为了使其在全年各季度的实际运行过程中,燃气通过燃机发电、余热回收利用,充分做到梯级利用,尽力做到不要发生发电量过剩或余热量过剩的情况,确保燃机和相关设备的全年高负荷率和能源利用率,从而获得显著的经济效益。在规划设计中,不应按规划区域或建筑群的大部分电力负荷甚至以电力负荷确定燃机的发电能力,如果这样作将使燃机的负荷率降低,严重时还会因负荷很低不能运转;另外,根据我国的实际情况,当燃机的余热量用于制冷或供热不足时,不宜采用补燃方式增加制冷量或供热量,应该在夏季采用电制冷补充、调节冷耗量;冬季可采用燃气锅炉获得蒸汽或热水补充、调节供热量,若条件合适冬季可采用热泵获得部分或全部补充供热量,这样既节能又可降低成本,并可使燃机能源系统具有一定的电力负荷。

②实事求是地计算供冷、供热负荷,认真分析冷、热负荷的变化情况

通常在进行工程设计时,各类建筑的冷、热负荷都是按标准、规范规定的室外气象条件和各个功能区的技术要求分别计算各建筑物或功能区的冷、热耗量,然后叠加为某一建筑群的计算冷、热负荷,有时为了“可靠”地供冷、供热。还要附加一定的“富裕量”。乘以大于1.0的附加系数。而标准、规范规定的室外气象条件并不是实际运行的供冷期、供热期的每日、每月的温度、湿度;并且各类建筑的不同功能区的实际使用情况也在不断变化,比如设备数量、发热量、人员数量都在变化。因此,根据调查目前各类建筑群装设的供冷机组、供热机组的能力普遍偏大,有的制冷设备安装20余年,运行负荷均在60%以下。为此,在进行冷热电联产的燃机能源系统的冷、热负荷计算时应该做到:

1.认真地、实事求是地绘制负荷曲线:负荷曲线包括建筑群的每天的冷负荷曲线、热负荷曲线和供冷期冷负荷虚线、供热期热负荷曲线。绘制这些曲线时,既要考虑室外气象参数变化,更要认真、仔细地分析各建筑物、各功能区的使用情况的变化;如果可能,最好应该绘制供冷期、供热期以取大负荷日和最小负荷日的冷(热)负荷曲线。

2.建筑群冷(热)负荷的同时使用系数:目前工程设计中一般都没有计算整个建筑群或一个大型建筑物内各功能区的冷(热)负荷的同时使用系数,实际上各类建筑群或大型建筑物内各功能区因其功能的不同,使用时间的不同等因素。各建筑物、各功能区按规范要求计算的冷(热)负荷不可能在同一时间都处于使用状态,必然存在有一个适宜的同时使用系数。这个同时使用系数应该是多少?一般的说,应该根据具体工程项目的各建筑物、功能区的实际情况作出估计。

③合理进行冷热电三联供燃机能源系统中供冷供热设备的选择、匹配

为确保冷热电三联供燃机能源系统的经济效益,提高一次锈探利用效率至关重要。要保持冷热电三联供燃机能源系统在全年经济运行的条件是:一次能源利用率在80%以上,燃机发电的负荷率应在70%以上,并且夏季、冬季均应运转。在具体工程项目中要达到上述要求,必须做到合理的供冷、供热设备选型及其能力的匹配,绝不能简单地按建筑群的电负荷和冷(热)负荷选择燃机和以补燃方式满足供热、供冷负荷;应以前述的以冷(热)负荷定电为基础,首先以燃机的余热量作为供冷、供热的基本的、稳定的供应能力,再以具体工程的冷(热)负荷变化曲线,合理匹配电制冷机或热泵型电制冷机、燃气锅炉等作为补充冷(热)源或调节冷(热)源。

热电冷三联供原理讲解

热电冷三联供原理 1.3 BCHP的组成方式 根据热源的类型可以将BCHP分为两种:第一种是直接利用烟气, 也就是将尾气直接输送到烟气型制冷机中进行制冷。第二种是将高温尾气进行二次换热,用热水或是蒸汽输送到蒸汽机或是热水机中制冷。具体形式如下: 1?微型涡轮发电机加尾气再燃/热交换并联型吸收式制冷机-工作原理: 燃气涡轮发电机排气余热一部分被溴化锂制冷机的稀溶液回收,另一部分参与二次燃烧,对外提供制冷、采暖和卫生热水。电力、空调、采暖和卫生热水几种负荷容量搭配灵活,可以满足不同场合的需要。 2燃气轮机加吸收式烟气机-工作原理: 燃气轮机中高温高压气体带动发电机发电后排出,这时还保持着相当的温度(一般在400 C以上),并具有较咼的含氧量。溴化锂制冷机可以直接回收排气余热进行制冷,也可以将排气作为助燃空气进行第二次燃烧,二次燃烧回收热效率更高,达95 %以上。使用建筑物: 燃气轮机电厂或燃气轮机自备电站的改造,特别适合于简单循环的燃气轮机电(站),其经济性特别显著。 3.微型涡轮发电机加吸收式烟气机-工作原理: 燃气涡轮发电机的排气送入单效烟气机,余热用于制冷或采暖适用于小

型建筑场合使用。系统流程图: 4.微型涡轮发电机加烟气机-工作原理: 燃气涡轮发电机高温富氧排气(温度250 C,含氧量18%)进入冷温水机直接进行燃烧利用,提供制冷、采暖和卫生热水。 5.蒸汽轮机加溴化锂冷机-工作原理: 锅炉燃烧产生的高温高压蒸汽进入蒸汽轮机推动涡轮旋转,带动发电机发电,发电后的乏汽或从蒸汽轮机中的抽出一部分蒸汽进入蒸汽制冷机制冷,另外一部分进入热交换器采暖或提供卫生热水。根据对热电厂以热定电”的要求,适合于各个规模的火电厂或热电厂。 6.燃气轮机前置循环加溴化锂制冷机-工作原理: 燃气轮机发电后排出的高温烟气通过余热锅炉回收,产生的蒸汽供蒸汽吸收式制冷机制冷,其余通过热交换器提供采暖/卫生热水或供工业用户使用。夏季采暖/热水负荷最小的时候,蒸汽溴化锂制冷机可以充分利用燃气轮机余热制冷,保证较高的系统综合能源利用效率。适合于燃气轮机电厂或燃气轮机热电厂。 7.内燃发电机加余热利用型直燃机-工作原理:

热电冷三联供溴化锂吸收式制冷原理

热电冷三联供溴化锂吸收式制冷原理 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

“热电冷三联供”溴化锂吸收式制冷原理 溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。 输入热能(蒸汽、直燃机、废烟气)使溴化锂溶液在发生器中受到热源加热,溶液温度提高直至沸腾,溶液中的水份逐渐蒸发出来,而溶液浓度不断增大。 发生器中蒸发出来的冷剂水蒸气向上经挡液板进入冷凝器,挡液板起汽液分离作用,防止液滴随蒸汽进入冷凝器。冷凝器的传热管内通入冷却水,所以管外冷剂水蒸气被冷却水冷却,冷凝成水,此即冷剂水。 冷剂水进入蒸发器后,由于压力降低首先闪蒸出部分冷剂水蒸气。因蒸发器为喷淋式热交换器,喷啉量要比蒸发量大许多倍,故大部分冷剂水是聚集在蒸发器的水盘内的,然后由冷剂水泵升压后送入蒸发器的喷淋管中,经喷嘴喷淋到管簇外表面上,在吸取了流过管内的冷媒水的热量后,蒸发成低压的冷剂水蒸气。由于蒸发器内压力较低,故可以得到生产工艺过程或空调系统所需要的低温冷媒水,达到制冷的目的。例如蒸发器压力为872Pa时,冷剂水的蒸发温度为5℃,这时可以得到7℃的冷媒水。 蒸发出来的冷剂蒸汽经挡液板将其夹杂的液滴分离后进入吸收器,被由吸收器泵送来并均匀喷淋在吸收管簇外表的中间溶液所吸收,溶液重新变稀。中间溶液是由来自溶液热交换器放热降温后的浓溶液和吸收器液囊中的稀溶液混合得到的。为保证吸收过程的不断进行,需将吸收过程所放出的热量由传热管内的冷却水及时带走。中间溶液吸收了一定量的水蒸气后成为稀溶液,聚集在吸收器底部液囊中,再由发生器泵送到发生器,如此循环不已。 溴化锂吸收式制冷原理图

简介冷热电三联供在数据中心的应用

简介冷热电三联供在数据中心的应用 中国移动上海传输动力维护中心沈嘉琪黄赟 引言 随着电讯业务的发展,数据中心的业务量迅速增加。为保证数据中心设备正常安全的运行,环境因素是不可或缺的。对环境影响最直接就是通信行业的供电系统以及制冷系统。在建立数据中心初期,考虑到通信行业稳定运营带来的业务高可靠性,在其配套动力系统上投入的成本很高。冷热电三联供系统作为分布式能源的一种衍生形式,成为控制通信行业能源运营成本,同时成为通信行业数据中心供电可靠性和制冷需求的良好方案之一。 1冷热电三联供系统用于数据中心的优势 冷热电三联供系统是将制冷、供热(采暖和供热水)、发电三者合而为一的设施。通过发电机充分燃烧燃料输出电力(例如:天然气),同时采用吸收式制冷机组回收发电机排放蒸汽和余热,成为较为环保地转为电能、热能的一种能源利用方式。 1.1减少通信行业运营成本 由于数据中心需要非常高的用电量,为了数据中心稳定安全的运行,运营商需要花费高昂的电力运营成本;而采用了吸收制冷的冷热电三联供系统可以在数据中心现场输出比市电更便宜的电力能源(获取城市天然气或其他清洁能源补贴);另外,发电机的余热可以驱动吸收制冷机组从而替代普通空调系统,通过降低运营成本为运营商创造经济价值。 1.2提升通信系统运行稳定性 数据中心要求高质量和高稳定度的不间断电源。特别是,在数据中心运营高峰时期,发生诸如停电或供电失误,将直接造成巨大的经济损失。尤其是在各项电源输出特性参数比较上,冷热电三联供系统采用的燃气轮机发电机组相对于通信行业传统的应急备用发电机组(外网市电中断时启用)更加地稳定可靠。随着冷热电三联供系统稳定性的提高,运营商可以在设计阶段减少通常为优质安全的电源系统设计的电池备份数量,从而减少投资成本。 1.3利于通信设备扩容 燃气轮机发电机组现场发电的模式,在扩容和新设施设计方面给数据中心运营商很大便利。这主要体现在:通过增加新设备升级旧的数据中心,往往外网市电可能在短期内无法满足新增设备大-168-

燃气冷热电三联供工程技术规程

燃气冷热电三联供工程技术规程 6 电力系统 6.1 冷热电三联供电站与电网系统的连接 6.1.1燃气冷热电三联供是“以热定电”为设计原则,采用“联网不上网”的并网方式。冷热电三联供电站发电量仅占规划电负荷容量的1/3 ~1/2为宜,供电负荷容量不足部分由外网供给。因此,电站的系统联络线采取“逆功率保护”措施和分别计量电量的方式,确保联供电站只受电,不向系统送电的原则。 6.1.2三联供电站选择在10KV电压系统接入电网,在10KV电网上实现电力平衡,损耗最小,运行最经济。 发电机10KV母线或直配线可直供<1/2总规划电负荷的容量,其余负荷全部由系统供给。 如果规划负荷容量>15000千瓦,若地区10KV供电系统满足不了规划供电负荷需求,则三联供电站需建设110KV/10KV或35KV/10KV降压变电站,发电机仍在10KV系统实现电力平衡。 实际工程中的二个接线实例:

图1 某CHP站电气主接线图 图2 某CHP站电气主接线图 6.1.3由于中、小型热电厂属于分布式电源等级的区网容量,当电厂联网运行后,发电机组将”跟随”区网系统运行,即其电压、频率等主要参数均取决于电力系统,除按区网调度和调峰需要外,不必随时进行调整,从而提高了运行的稳定性。6.1.4在联网运行的同时,必须考虑“解列”措施,以保证电力系统或发电机组发生故障时,能将故障限制在最小的范围内。为此,电业部门往往要求把发电机出口断路器或进线断路器作为解列点,以便使电厂不会影响到系统;而用户为了

提高规划区域的供电可靠性,往往根据不同的外供电系统考虑适当的联网点(即解列点)。 6.1.5当发电机电压母线上的容量最大的一台发电机停机,或因供热负荷变动限制发电机组出力时,外网容量能满足发电机电压母线上的最大负荷需求。 6.1.6当CHP站含联网变电站时,电压等级、容量、调节方式需经区网所在地的供电部门认定。 6.1.7接线方案的选择。 1)拟定2~3个可行的接线方案,并列出各方案中的主要电气设备进行经济比较,并从供电的可靠性、供电的质量、运行和维护的方便性以及建设速度等方面,进行充分的技术比较,最后确定一个最合理的方案。 2)对确定的接线方案,一般考虑联网运行,按正常运行(包括最大和最小运行方式)和短路故障条件选择和校验主要设备及继电保护和自动化装置等方面的要求。 6.2电能质量 6.2.1用电单位的供电电压偏差、谐波百分数、与周波偏差应根据用电容量、用电设备特性、供电距离、供电线路的回路数、区网现状及其发展规划等因素,经技术经济比较和区网所在供电部门认定。 6.2.2正常运行情况下,用电设备端子处电压偏差允许值(以额定电压的百分数表示)宜符合下列要求: 一、电动机为±5%。 二、照明:在一般工作场所为±5%;对于远离变电所的小面积一般工作场所,难以满足上述要求时,可为+5%、-10%;应急照明、道路照明和警卫照明等

冷热电三联供简介及其优化措施

冷热电三联供简介及其优化措施 一、冷热电三联供的概念 分布式能源系统(Distributed Energy System)是指将冷热电系统以小规模。小容量(几千瓦至50MW、模块化、分散式的方式布置在用户附近,可独立的输出冷、热、电能的系统,减少了能源输送系统的投资和能量损失。分布式能源的先进技术包括太阳能利用、风能利用、燃料电池和燃气冷热电三联供等多种形式。 冷热电三联供,即CCHP (Combined Cooling, Heating and Power) 是指以天然气为主要燃料带动燃气轮机或内燃机发电机等燃气发电设备运行,产生的电力用于满足用户的电力需求,系统所排出的废热通过余热回收利用设备(余热锅炉或者余热直燃机等)向用户进行供热、供冷经过对能源的梯级利用使能源的利用效率从常规发电系统的40%左右提高到80%左右,能源梯级利用效率达到60%?80%,大量节约一次能源。因此说,燃气冷热电三联供系统是分布式能源的先进技术之一,也是最具实用性和发展活力的系统。典型的燃气冷热电三联产系统一般包括动力系统和发电机、余热回收装置、制冷或供热系统等组成部分,主要用到的发电设备有小型和微型燃气轮机、燃气内燃机、燃料电池等;空调设备有余热锅炉、余热吸收式制冷机以及以蒸汽为动力的压缩式制冷机等。针对不同的用户需求,冷热电联产系统可以有多种多样的组织方式,方案的可选择范围较大。 二、冷热电三联供的优点 ①提高能源綜合利用率 传统火电的综合能源利用效率低,燃气冷热电三联供供能系统的综合能源利用效率可达到60%-80%.燃气锅炉直接供热的效率虽然能达到90%,但是它的最终产出能量形式为低品位的热能,而燃气冷热电三联供供能系统中有45%左右的高品位电能产出.因此燃气冷热电三联供供能系统的能源综合利用效率比传统的大电网供电和燃气锅炉直接供热的传统供能方式有大幅度提高。 ②电力燃气消耗双重削峰填谷、改善城市能源结构 在传统的能源结构中,夏季大量电空调的使用和冬季大量燃气锅炉采暖的使用造成了夏季用电量远高于冬季、冬季用气量远高于夏季的情况,这种不合理的能源结构导致了相关市政设施的低投资效率,造成了资源浪费。而对燃气冷热电三联供供能系统来说,一方面分布式发电系统和吸收式空调技术的应用可降低夏季大电网的最大负荷,另一方面全年的连续运行使得冬夏燃气用量较为均衡,因此发展燃气冷热电三联供供能系统是改善区域能源结构的最佳途径之一。 ③提高供能安全性 大电网供电安全性问题近年来一直得到关注,与大电网互为补充和支播的区域分布式供能系统可以灵活分布,就近建设。对用户来说,在提高能源利用率的同时.相当于在常规的供能形式之外为用户增加了一路供电供冷和供热的途径,提高了用户用能的安全性。 ④显著的环保效应 燃气冷热电三联供供能系统采用清洁燃料天然气作为一次能源,为淸洁产能系统,其系统排放指标均达到相关环保标准,与传统热电分供方式相比,由于节省了大量火力发电所消耗的标煤,C02减排效果明显.具有显著的环保效益。 ⑤较好的经济性 燃气冷热电三联供供能系统实现供冷供热的同时还能产生高品位的电能.其能源产品的多样性和较高的能源利用效率使得分布式供能系统对于燃气、电力价格的波动具有较强的适应性,相对于传统供能系统可节省一定的年能源消耗费用。

热电冷三联供

热电冷三联供 热电冷联供的基本概念 热电冷联供是指燃料(燃气、燃油等)为能源,能同时满足区域建筑物内的冷(热)、电需求的能源供应系统,通常由发电机组、溴化锂吸收式冷(热)水机组和换热设备组成。热电冷联供系统将高品位能源用于发电,发电机组排放的低品位能源(烟气余热、热水余热)用于供热或制冷,实现能源的梯级利用,提高能源的综合利用率。概括起来,热电冷联系统具备如下优点: 节能:热电冷联供系统将发电过程中产生的废热用来供热或制冷,充分利用了一次能源。 环保:热电冷联供系统采用天然气作为能源,燃烧排放物对环境无污染。 安全:区域建筑物采用热电冷联供系统后,其供电不受电网限制,确保了用户的供电安全。 平衡能源消费:热电冷联供系统减少了小区或建筑物对城市电网的电力消耗,并增加了燃气消费,对缓解电力紧张,平衡能源消费者具有积极作用。 热电冷联供系统可以广泛应用于同时具有电力和空调需求的场所,如工厂、医院、大型商场、生活小区和工业园等。 中华人民共和国《节约能源法》第39条明确规定:国家鼓励发展"热电冷联产"技术的法律,是实施可持续发展战略、落实环保基本国策和提高资源综合利用率的重要行政规章。2000年由国家发展计划委员会、国家经济贸易委员会、建设部和国家环保总局联合下发了计基础[2000]1268号《关于发展热电联产的规定》,旨在推进热电冷联供的运用。 热电冷联供系统的常见模式及配置 根据热电冷联供系统中发电机组的不同及系统主要功能的不同,热电冷联供系统可分为以下三类: □以蒸汽轮机为发电机组的热电冷联供系统,其主要功能为供热和供电(如热电厂),夏季将一部分(或全部)供热能力转换成供冷能力,从而实现热电冷联供。

天然气冷、热、电三联供系统简介

天然气冷、热、电三联供系统简介 1、背景 天然气是洁净能源,在其完全燃烧后及采取一定的治理措施,烟气中NOx等有害成分远低于相关指标要求,具有良好的环保性能。美国有关专家预测如果将现有建筑实施冷、热、电三联供(Combined cooling heating and power,简称CCHP)的比例从4%提高到8%,到2020年CO2的排放量将减少30%。 2、概念与优势 燃气冷、热、电三联供简单地说即为:天然气发电、余热供热、余热制冷。相比于常规供能燃煤发电、燃气供热、电制冷,具有能源梯级利用,综合能源利用率高;清洁环保,减少排放CO2,SO2;与大型电网互相支撑,供能安全性高的优势及对燃气和电力有双重削峰填谷作用。 以天然气为燃料的动力装置,例如燃气轮机、燃气内燃机、斯特林发动机、燃料电池等,在发电的同时,其排放的余热被回收,用于供热或驱动空调制冷装置,如吸收式制冷机或除湿装置等,这种以天然气为燃料,同时具备发电、供热和供冷功能的能源转换和供应系统,就是天然气冷、热、电联供系统。 相比传统的集中式供能,天然气冷、热、电三联供系统是建立在用户侧的小型的、模块化的能源供给系统,避免了长距离能源输送的损失,为能源供应增加了安全性、可靠性和灵活性。 3、天然气冷、热、电三联供分类

天然气冷、热、电三联供系统应用于商业、工业等各个领域,一般分为楼宇型和区域型两种。楼宇型冷、热、电三联供系统,规模较小,主要用于满足单独建筑物的能量需求(如医院、学校、宾馆、大型商场等公共设施)。单独建筑物一天内的负荷变化较大,会出现高峰或低谷的情况,而系统的运行需要不断进行调整,与负荷需求相匹配。因此,楼宇型冷、热、电三联供系统对设备的启停机及变工况运行性能有较高的要求,同时在系统集成方面,发电设备、热源设备、蓄能设备之间的优化设计以及与电网配合的优化运行模式也十分必要。 区域型分布式冷、热、电三联供系统主要应用于一定区域内的由多栋建筑物组成的建筑群。区域内建筑物用途具有多样性,各个建筑物对用能需求的时间段也不同,由于不同用途建筑物负荷之间的相互荆合,使得区域能源需求虽然比较大,但是供能曲线相对比较平稳,设备的变工况运行要求不高。当规模较大时,一般采用高效的燃气蒸汽联合循环机组。 4、供能形式 下图为常规的冷、热、电三联供系统图,该系统主要由原动机为核心的发电设备和余热回收设备组成,与电网并网运行。建筑物的基础负荷一般由电力负荷、制冷负荷、采暖负荷、热水负荷组成,其中电力负荷优先由原动机发的电来提供,当原动机的发电量不能满足需求时,从电网买电。发电过程中产生的余热被蒸汽型、热水型吸收式嗅化铿制冷机等余热吸收式热源设备所利用来制冷制热,或者通过热

冷热电三联供系统选型

沼气发电机组外形图: 原理图:

BCHP系统运行后,系统运行成本较低,与市场能源价格竞争,因此,其具备很好的经济性,有极好的商业应用价值,另外BCHP系统对机房无特殊要求,能达到常规直燃机机房设计规范和燃气发电机组机房设计规范即可。系统运行以后,系统低成本运行有可靠保障。 水源热泵选型及使用方案 现垃圾处理工艺过程中产生一定量的中水,而处理车间又需要冬季供暖,夏季制冷,规划拟采用中水水源热泵进行供热制冷。 热源条件: 中水(垃圾渗出液处理后产生的中水)水温:夏季27 度;冬季20度(根据已有项目经验选取)。 负荷情况

车间内温度要求冬季保持8-10℃,冬季热负荷为92kW,夏季负荷:122kW 设备选型及流程 根据现场的实际情况选择我公司的水源热泵机组型号为:QYHP-150C 设备标准工况: (1)制热工况: ?一次水(中水)水温16/9℃ ?供热水水温:45/40℃ ?制热量:157kw 输入功率:38kw ?一次水(中水)流量:15t/h ?供热水流量:15t/h (2)制冷工况: ?冷却水(中水)水温20/29℃ ?冷冻水水温: 12/7℃ ?制冷量:139kw 输入功率:28kw ?冷却水(中水)流量:15t/h ?冷冻水流量:24t/h

沼气发电机组与BCHP系统联合运行后,系统运行成本大大降低,与市场能源价格竞争力明显增强,因此,其具备很好的经济性,有极高的商业应用价值,另外集装箱型沼气发电机组和BCHP系统对机房无特殊要求,能达到常规直燃机机房设计规范和燃气发电机组机房设计规范即可。系统安装简洁方便,系统运行以后,低成本运行有可靠保障。

燃气冷热电三联供技术及其应用情况

燃气冷热电三联供技术及其应用情况 信息来源:互联网更新日期:09-05-25 分布式能源系统(DistributedEnergySystem)在许多国家、地区已经是一种成熟的能源综合利用技术,它以靠近用户、梯级利用、一次能源利用效率高、环境友好、能源供应安全可靠等特点,受到各国政府、企业界的广泛关注、青睐。分布式能源系统有多种形式,区域性或建筑群或独立的大中型建筑的冷热电三联供(CombinedCoolingheatingandpowe r,简称CCHP)是其中一种十分重要的方式。 燃气冷热电三联供系统是一种建立在能量的梯级利用概念基础上,以天然气为一次能源,产生热、电、冷的联产联供系统。它以天然气为燃料,利用小型燃气轮机、燃气内燃机、微燃机等设备将天然气燃烧后获得的高温烟气首先用于发电,然后利用余热在冬季供暖;在夏季通过驱动吸收式制冷机供冷;同时还可提供生活热水,充分利用了排气热量。提高到80%左右,大量节省了一次能源。 燃气气冷热电三联供系统按照供应范围,可以分为区域型和楼宇型两种。区域型系统主要是针对各种工业、商业或科技园区等较大的区域所建设的冷热电能源供应中心。设备一般采用容量较大的机组,往往需要建设独立的能源供应中心,还要考虑冷热电供应的外网设备。楼宇型系统则是针对具有特定功能的建筑物,如写字楼、商厦、医院及某些综合性建筑所建设的冷热电供应系统,一般仅需容量较小的机组,机房往往布置在建筑物内部,不需要考虑外网建设。 燃气热电冷三联供的特点 1)与集中式发电-远程送电比较,燃气热电冷三联供可以大大提高能源利用效率:大型发电厂的发电效率一般为30%~40%;而经过能源的梯级利用cchp使能源利用效率从常规发电系统的40%左右提高到80~90%,且没有输电损耗。 热电产生过程就是天然气燃烧产生热量,然后通过能量转换得到电能或机械能。天然气在燃气轮机或发动机中燃烧产生电能或机械能用于空气调节或压缩空气,泵水等,在这个过程中,热能没有浪费而被利用,并被广泛应用。废热回收锅炉生产蒸汽用于工艺加热、空气调节、空间加热及工商业蒸炉等。从发动机回收的热量用于加热液体,供工艺使用或其他用途,例如:空间加热系统、吸收式空调装置或满足热水需求等。燃气轮机排放的烟气是洁净的且含有不饱和的水蒸汽。排放温度大约500℃,烟气适用于蒸炉或干燥器。对于卫生要求高的情况下,例如食品工业,烟气通过燃气——空气热交换器间接加热。通过利用原本要浪费的热量,天然气的热电联产可以达到75%—80%的效能。当热能和电能需求达到平衡时,热电联产是最经济的。如下图(来源:https://www.360docs.net/doc/6913996832.html,/news/news_show.aspx?id=751)

热电冷三联供的供冷方式的可行性分析与评价

热电冷三联供的供冷方式的可行性分析与评价 山东建筑大学戎卫国孟繁晋 摘要依据热力学第二定律的火用分析方法,从能量利用的全过程出发,考虑输送能耗的影响,利用能源火用效率代替设备的能量利用效率对热电冷三联供的集中供冷和常规的电供冷方式进行了比较,从而得出了更客观、合理的结论。为合理采用热电冷三联供的集中供冷方式提供了判断依据。 关键词集中供冷火用分析能源火用效率 1 引言 近几年来,国内一些城市开始酝酿建设热电冷联供系统,通常是在原有热电联供系统基础上增设吸收式制冷机装置,利用供热汽轮机组的抽汽或背压排汽耗热制冷,实现夏季向用户集中供冷。由于热电冷联供系统规模和投资大,系统复杂;运行期间能源消耗多,对空调系统的节能和经济运行有着举足轻重的影响,因此如何对集中供冷方式进行全面、科学的评价,做出合理的选择,更显示出其紧迫性和重要性[1]。但是以往对热电冷联供的供冷方式的分析与评价中存在着以下不足[2]: (1)确定热电厂输出的蒸汽和电能各自所消耗的能量时,通常依据输出蒸汽和电能所占的能量数量比例来分配消耗的能量,没有考虑两种能量质量上的差别,存在着明显的不合理性。 (2)对输送能耗的影响重视不够。即使考虑也是仅考虑了输送过程中的热量损失,却对阻力损失考虑较少;只反映了能量利用过程中的外部损失,没有反映能量利用过程中的内部损失。而后者的损失的机械能却是比前者损失的热能更高级的高品质能量。 (3)只反映局部设备的能量利用效率,而未反映从一次能源投入到用户的全面过程的能源利用效率,以偏盖全。随着供冷规模的扩大,输送能耗将越来越大,因此不反映输送能耗和全部过程影响的评价与分析也显的越来越不科学、不合理。 为弥补以上不足,本文利用热力学第二定律的火用分析方法,在考虑能量质量上的差别和输送能耗影响的情况下,对常采用蒸汽溴化锂吸收式制冷机的热电冷三联供的供冷方式与分散的电压缩式冷水机组供冷方式进行了分析与比较,提出了对热电冷三联供的供冷方式进行分析与合理评价的理论依据。 2 供冷方式分析模型的建立 随着技术的不断更新,供冷方式也越来越多,供冷方式的能量传递、转换和利用过程的组成和方式各有不同。为便于分析与比较,依据热力学分析方法,可以建立一个概括性的供冷热力学系统分析模型[3][4],见图1所示。 图1 概括性的供冷方式的热力学系统 对照图中所示,概括性的供冷热力学系统由以下子系统组成: 能量发生系统(A)—即指消耗一次能源的功源和热源系统。例如热电厂、锅炉、燃气轮机等设备;

冷热电三联供系统中设备容量的配置方法的制作流程

本技术公开了一种冷热电三联供系统中设备容量的配置方法,属于分布式能源系统设计技术领域,包括:步骤S1,建立冷热电三联供系统中以年总成本最低为目标的目标函数;步骤S2,利用改进型分段线性化模型建立燃气内燃机模型;步骤S3,建立冷热电三联供系统的等式约束条件和不等式约束条件;步骤S4,根据等式约束条件、不等式约束条件和燃气内燃机模型对目标函数进行求解,确定冷热电三联供系统中设备的容量;有益效果是:更加准确的满足用户的实际需求,且通过对现有的分段线性化化算法的改进,解决了分段线性化算法在用于线性规划过程中特殊点计算不出结果的问题。 权利要求书 1.一种冷热电三联供系统中设备容量的配置方法,其特征在于,包括以下步骤: 步骤S1,建立冷热电三联供系统中以年总成本最低为目标的目标函数; 步骤S2,利用改进型分段线性化模型建立燃气内燃机模型; 步骤S3,建立冷热电三联供系统的等式约束条件和不等式约束条件; 步骤S4,根据所述等式约束条件、所述不等式约束条件和所述燃气内燃机模型对所述目标函数进行求解,确定冷热电三联供系统中设备的容量。 2.根据权利要求1所述的冷热电三联供系统中设备容量的配置方法,其特征在于,所述冷热电三联供系统中设备包括:燃气内燃机设备、溴冷机设备、电制冷设备和电锅炉设备; 所述目标函数为: 其中,Ctotal用于表示所述年总成本,用于表示所述燃气内燃机设备的年均化投资成本,用

于表示所述溴冷机设备的年均化投资成本,用于表示所述电锅炉设备的年均化投资成本,用于表示所述电制冷设备的年均化投资成本,用于表示所述溴冷机设备的运行维护成本,用于表示所述电制冷设备的运行维护成本,用于表示所述电锅炉设备的运行维护成本,用于表示所述燃气内燃机设备的运行维护成本,用于表示购买所述燃气内燃机设备使用的燃料的年均化成本,用于表示所述冷热电三联供系统从电网购买电能的年均化成本,用于表示所述冷热电三联供系统发电出售的年均化收益。 3.根据权利要求2所述的冷热电三联供系统中设备容量的配置方法,其特征在于,所述目标函数还满足如下公式: 其中,用于表示所述燃气内燃机设备的额定功率,用于表示所述溴冷机设备的额定功率;用于表示所述电锅炉设备的额定功率;用于表示所述电制冷设备的额定功率;Pchp用于表示所述燃气内燃机设备的出力;CAbsc用于表示所述溴冷机设备的制冷功率;Heb用于表示所述电锅炉设备的热功率;Cec用于表示所述电制冷设备的功率;Qchp用于表示燃气的能量;用于表示所述冷热电三联供系统从电网购买电能的买电功率;用于表示所述冷热电三联供系统发电出售的卖电功率;c1用于表示所述燃气内燃机设备初始投资的年均化成本系数;c2用于表示所述溴冷机设备初始投资的年均化成本系数;c3用于表示所述电锅炉设备初始投资的年均化成本系数;c4用于表示所述电制冷设备初始投资的年均化成本系数;a1用于表示所述燃气内燃机设备的运行维护系数;a2用于表示所述溴冷机设备的运行维护系数;a3用于表示所述电锅炉设备的运行维护系数;a4用于表示所述电制冷设备的运行维护系数;b1为燃气费用的系数;e1用于表示所述冷热电三联供系统从电网购买电能的买电电价;e2用于表示所述冷热电三联供系统发电出售的卖电电价。 4.根据权利要求1所述的冷热电三联供系统中设备容量的配置方法,其特征在于,所述步骤S2中,所述燃气内燃机模型满足如下公式: 其中,Pchp用于表示燃气内燃机的发电功率,Hchp用于表示燃气内燃机的热功率,Qchp用于表示燃气的能量,用于表示燃气内燃机的额定功率;x2、x3、x4、x5、x6分别用于表示分段线性化模型中燃气内燃机电功率出力的5个分段的值,C2、C3、C4、C5、C6分别用于表

工业园区的分布式冷热电三联供能源系统

工业园区的分布式冷热电联供能源系统---中国低碳发展之路

主要内容 引言、新历史条件下中国工业化面临的挑战与机遇 ?中国工业和建筑物用能存在的问题 ?、低碳发展对中国一次能源和终端用能的约限 三、分布式冷热电三联供能源系统--进展、问题、关键 四、工业三联供能源系统的类型与工业节能的关系 五、建筑物冷热电三联供能源系统及与建筑节能的协同优化

引言:新历史条件下中国工业化面临的挑战与机遇

世界经济发展在21世纪初期的最大事件之一是中国的崛起。从连续8年两位数的高速增长到2008年金融危机中对世界经济回稳发挥巨大的作用;使得中国在世界经济中的地位和影响力骤然提升。然而,冷静地思考和分析可以看出,由于起步晚了一、二百年,中国目前还处于工业化的中期。完全赶上发达国家的水平,还需二三十年年的努力。而当前,却正是面临最大挑战和机遇的历史时刻。

欧美和东亚发达国家的工业化,大都是在能源价格低、基础环境状况好,制成品和原材料价格剪刀差大的条件下完成的。而中国工业化面临的却是高能源价格、严峻的环境,制成品与原材料价格倒挂的局面。中国已经为前期的工业化付出了“三高一低”的巨大代价;而这却是不可持续的了:气候变化对二氧化碳减排的约束,给占世界燃煤42%、世界CO2排放21%的中国,施加了新的压力。中国工业的发展和能源构成的转型面临严峻挑战。

引言:新历史条件下中国工业化面临的挑战与机遇挑战总是与机遇并存。与百多年前相比,当前最大的机遇,是和平与发展的历史条件,全球化,和日新月异的科技进步。这决不是三个空洞的概念,而是在一切具体发展课题上可以充分享用的实实在在的好处。能不能抓住这些机遇在挑战中胜出,考验着一个民族的智慧。在如何解决工业化所面临的能源困局问题上,就是中国必须清醒面对的一个重大的考验。结合国情,采用成熟的,清洁、高效的工业和建筑物冷热电联供能源集成供应系统技术,实现跨越式发展;是其中最重要的一环。

冷热电三联供的形式及成本分析

冷热电三联供的形式: 内燃机+余热利用系统; 燃气轮机+余热发电机组; 燃气轮机+余热利用系统; 微燃机+余热利用系统。 内燃机+余热利用系统: 内燃机:四冲程内燃机; 吸气冲程、压缩冲程、做功冲程、排气冲程。内燃机余热:烟气、缸套水; 余热利用系统:热水烟气直燃机、板式换热器。余热利用系统: 制冷: 烟气→烟气热水型直燃机中烟气高发; 缸套水→烟气热水直燃机中热水发生器。 制热: 烟气→烟气热水型直燃机中烟气高发; 缸套水→板式换热器。 设计参数及原则 设计参数: 对象:办公楼,建筑面积:2万平 冷负荷:50w/m2,热负荷:56w/m2 电负荷:30-67w/m2

采暖期:11月-4月,128天 制冷期:6月-9月,88天 每个工作日,机组运行10小时7:30-17:30 周六日不起动,采用市网运行 设计原则:以办公楼最低电负荷为标准选配发电机,产生的余热即烟气和缸套水进入烟气热水型直燃机和板式换热器制冷制热。 机组选型: 电负荷:0.03×20000=600KW 冷负荷:0.05×20000=1000KW 热负荷:0.056×20000=1120KW 发电机选型:J312 额定发电功率:635KW 发电效率:40.4% 额定余热功率:744KW 排热效率:46.5% 可利用烟气:3400kg/h,402KW,500℃

可利用热水:26.6m3/h,342KW,79-95℃ :发电机组参数采用颜巴赫系列 利用的余热主要为:烟气和缸套水 余热机组选型:BZHE125型 出力系数为:100%燃气、50%烟气、23%热水 出力系数:在多能量源的条件下,某一能量源的额定功率占额定总功率的比例。 额定制冷量:1454KW 天然气:106m3/h 额定制热量:1121KW 天然气:120m3/h 烟气量:4873m3/h,热水量:41.1m3/h :余热机组参数采用远大系列。 负荷计算: 制冷:该直燃机烟气出力最多为满负荷的50%,出力系数为0.5。 计算公式:制冷量=排烟量/额定排烟量×额定制冷功率×出力系数×发电机负荷比例。 烟气制冷量为: 3400/4783×1454×0.5×600/635=485.8KW 热水制冷量为: 26.6/41.1×1454×0.23×600/635=203.4KW 总制冷量为:485.8+203.4=689KW 需补充冷量为:1000-689=311KW→天然气需补充能量为311/1.36=229KW,COP=1.36。 余热制冷效率为:689/744×100%=92.6% 余热制冷的总效率为:92.6%×46.5%=43%

关于热电冷三联供系统环保节能问题的探究

关于热电冷三联供系统环保节能问题的探究 发表时间:2015-05-29T11:39:39.613Z 来源:《工程管理前沿》2015年第7期供稿作者:付会欣[导读] 随着经济的不断发展,天然气作为一种清洁气体能源逐步替代了以煤炭为主的能源。 付会欣 河北建筑设计研究院有限责任公司050011 【摘要】热电冷三联供系统是一种利用一次天然气能源的高品位热能发电,同时,将高温尾气中的低品位热能用于供暖或驱动吸收式制冷机供冷的能源系统。该系统最大的特点就是不同品质的能源被最合理的逐级利用,具有良好的社会效益,已被越来越多的人所青睐。 【关键词】热电冷三联;节能;环保;经济随着经济的不断发展,天然气作为一种清洁气体能源逐步替代了以煤炭为主的能源。天然气在使用过程中与煤炭及其他燃料相比,燃烧容易、燃烧效率高、燃烧时产生的热量高,并且在燃烧时清洁干净,不会产生灰渣和烟尘,也不会产生含有大量有害物SO2、NOx、CO2、CO等的有害废气。因此,天然气作为一种天然优质的洁净、高能燃料,已被越来越多的人所使用。热电冷三联供系统夏季在发电的同时可进行热力制冷,有效地减少人们对电能的需求量,可起到填气谷、削电峰的作用。冬季在发电的同时可以有效利用高温烟气中的余热,减少冬天天然气的用量,减少环境污染。 一、热电冷三联供系统的组成及工作原理 热电冷三联供系统主要是由燃气发电系统、余热交换系统和冷、热站系统组成。首先,天然气在燃气发电系统内燃烧进行发电,燃气发电系统在发电过程中产生的高温尾气将余热交换器内的水加热为蒸汽。在冬季将该蒸汽供给热交换器,用于采暖或提供生活热水。在夏季则可以通过吸收式制冷机进行制冷。热电冷三联供系统原理如图1所示。 (图1热电冷三联供原理图) 二、热电冷三联供的优点 热电冷三联供系统有利于控制有害气体的排放、能够减少氟造成的温室效应,在环境方面具有较好的效益,符合国家的环保要求。结合各地情况,大力发展热电冷三联供,提高能源利用水平,对我国国民经济的发展是具有重要意义的。 1、减少有害气体 燃料在燃烧过程中,会产生CO,CO2,SOx等有害气体,CO进入人体之后会和血液中的血红蛋白结合,进而使能与氧气结合的血红蛋白数量急剧减少,从而引起机体组织出现缺氧,导致人体窒息死亡。CO2排放在大气中会导致温室效应,SOx则是形成酸雨的主要物质,热电冷三联供使用循环硫化床锅炉技术,可以提高CO的燃烬度,从而降低CO的排放量。同时,循环硫化床锅炉技术采用低温燃烧、分段燃烧等技术,并可以在燃烧过程中填加石灰石来进行锅炉炉内脱硫,这样便可控制SOx的排放。 2、减少氟污染 传统压缩式制冷采用氟利昂(CFC)作为制冷剂会引起臭氧层破坏而导致温室效应。热电冷三联供采用吸收式制冷,采用水作为冷剂,溴化锂作为吸收剂,运行时无氟污染,具有良好的环境效益。 三、热电冷三联供系统节能性分析 下面将通过制冷系统的当量热力系数并通过采用不同型号燃汽轮机的总能耗这两个方面,对热电冷三联供系统与热电联产冷分产系统进行比较,来分析热电冷三联供系统的节能性。 1、通过制冷系统的当量热力系数进行节能性分析 比较同种类型制冷机的制冷效果,通常可以用制冷机的性能系数进行比较。电压缩式制冷机的性能系数为而吸收式制冷机的性能系数为。热电冷三联供系统一般采用的是吸收式制冷机,而热电联产冷分产系统采用的则是电压缩式制冷机。但对于不同类型的制冷机来说,由于输入能源的种类和品质不同,因此,不同类型的制冷机不能简单地用制冷机的性能系数仅仅从量上进行比较,还要从能源品质上进行比较,以便更有效地进行节能性分析。当量热力系数就是从能源品质的方面进行考虑,把不同种类、品质的能源均转换为一次能源进行比较。因此,对热电冷三联供系统与热电联产冷分产系统进行比较,应该用当量热力系数将能源全部转换为一次能源进行比较,这样才更加准确。 将制冷量为950kW的热电冷三联供吸收式制冷系统与热电联产冷分产电压缩式制冷系统的节能性进行分析比较,如表1和表2所示。根据吸收式制冷系统和电压缩式制冷系统的当量热力系数表达式,将表1中的能耗转换为一次能耗进行比较。计算结果如表2。从表1和表2中可以看出:热电冷三联供系统比热电联产冷分产系统节能。制冷量为950kW的热电联产冷分产系统的一次能耗为979.38kW,而制冷量为950kW的热电冷三联供系统的一次能耗只有896.22kW,可节约一次能耗量为979.38-896.22=83.16kW,节约率为83.16kW÷950kW=8.6%。

热电冷三联供

热电冷三联供 热电冷三联供项目 一、热电冷三联供发展现状圾前景 1、分布式能源系统(,,,,,,,,,,, ,n,,,, ,,,,,,)。分布式能源系统在许多 国家、地区已经是一种成熟的能源综合利用技术,它以靠近用户、梯级利用、一次能源利用效率高、环境友好、能源供应安全可靠等特点,受到各国政府、企业界的广泛关注、青睐。分布式能源系统有多种形式,区域性或建筑群或独立的大中型建筑的冷热电三联供(,,,,,,,, ,,,,,,, ,,,,,,, ,,, ,,,e,,简称,,,,)是其中一种十分重要的方式。 燃气冷热电三联供系统是一种建立在能量的梯级利用概念基础上,以天然气为一次能源,产生热、电、冷的联产联供系统。它以天然气为燃料,利用小型燃气轮机、燃气内燃机、微燃机等设备将天然气燃烧后获得的高温烟气首先用于发电,然后利用余热在冬季供暖;在夏季通过驱动吸收式制冷机供冷;同时还可提供生活热水,充分利用了排气热量。提高到80%左右,大量节省了一次能源。燃气气冷热电三 联供系统按照供应范围,可以分为区域型和楼宇型两种。区域型系统主要是针对各种工业、商业或科技园区等较大的区域所建设的冷热电能源供应中心。设备一般采用容量较大的机组,往往需要建设独立的能源供应中心, 供应的外网设备。楼宇型系统则是针对具有特定功能的建筑物,还要考虑冷热电 如写字楼、商厦、医院及某些综合性建筑所建设的冷热电供应系统,一般仅需容量较小的机组,机房往往布置在建筑物内部,不需要考虑外网建设。 2、燃气热电冷三联供的特点。

1)与集中式发电-远程送电比较,燃气热电冷三联供可以大大提高能源利用效率:大型发电厂的发电效率一般为30,,40,;而经过能源的梯级利用cchp使能源利用效率从常规发电系统的40%左右提高到80,90,,且没有输电损耗。 热电产生过程就是天然气燃烧产生热量,然后通过能量转换得到电能或机械能。天然气在燃气轮机或发动机中燃烧产生电能或机械能用于空气调节或压缩空气,泵水等,在这个过程中,热能没有浪费而被利用,并被广泛应用。废热回收锅炉生产蒸汽用于工艺加热、空气调节、空间加热及工商业蒸炉等。从发动机回收的热量用于加热液体,供工艺使用或其他用途,例如:空间加热系统、吸收式空调装置或满足热水需求等。燃气轮机排放的烟气是洁净的且含有不饱和的水蒸汽。排放温度大约500?,烟气适用于蒸炉或干燥器。对于卫生要求高的情况下,例如食品工业,烟气通过燃气——空气热交换器间接加热。通过利用原本要浪费的热量,天然气的热电联产可以达到75%—80%的效能。当热能和电能需求达到平衡时热电联产是最经济的。 2)燃气热电冷三联供在降低碳和污染空气的排放物方面具有很大的潜力:据有 关专家估算,如果将现有建筑实施燃气热电冷三联供比例从4,提高到8,,到2020 年CO2的排放量将减少30,,有利于环境保护。 分布式冷热电三联供贴近用户进行能量转换,将温度向下利用,利用发电后的余热,而不是用电来交换,通过提高能源的综合利用效率来弥补发电效率的降低。虽然分布式热电联产设备的发电效率一般在28,43%左右,但综合利用效率在 75,90%之间。而且,气体燃烧生成氮氧化物量极小,排放量也很小,极易被周围植被吸收,是改善大气环境的有效措施。 3)缓解电力短缺,平衡电力峰谷差。燃气热电冷三联供采用自发电,可以避开电网用电高峰,并且大大提高了建筑供电可靠性和安全性。 4)扩大了燃气使用量,平衡燃气峰谷差。

热电冷三联供材料简述

热电冷三联供的简述 热电冷联供的基本概念 热电冷联供是指燃料(燃气、燃油等)为能源,能同时满足区域建筑物内的冷(热)、电需求的能源供应系统,通常由发电机组、溴化锂吸收式冷(热)水机组和换热设备组成。热电冷联供系统将高品位能源用于发电,发电机组排放的低品位能源(烟气余热、热水余热)用于供热或制冷,实现能源的梯级利用,提高能源的综合利用率。概括起来,热电冷联系统具备如下优点: 节能:热电冷联供系统将发电过程中产生的废热用来供热或制冷,充分利用了一次能源。 环保:热电冷联供系统采用天然气作为能源,燃烧排放物对环境无污染。 安全:区域建筑物采用热电冷联供系统后,其供电不受电网限制,确保了用户的供电安全。 平衡能源消费:热电冷联供系统减少了小区或建筑物对城市电网的电力消耗,并增加了燃气消费,对缓解电力紧张,平衡能源消费者具有积极作用。 热电冷联供系统可以广泛应用于同时具有电力和空调需求的场所,如工厂、医院、大型商场、生活小区和工业园等。 中华人民共和国《节约能源法》第39条明确规定:国家鼓励发展"热电冷联产"技术的法律,是实施可持续发展战略、落实环保基本国策和提高资源综合利用率的重要行政规章。2000年由国家发展计划委员会、国家经济贸易委员会、建设部和国家环保总局联合下发了计基础[2000]1268号《关于发展热电联产的规定》,旨在推进热电冷联供的运用。 热电冷联供系统的常见模式及配置 根据热电冷联供系统中发电机组的不同及系统主要功能的不同,热电冷联供系统可分为以下三类: □以蒸汽轮机为发电机组的热电冷联供系统,其主要功能为供热和供电(如热电厂),夏季将一部分(或全部)供热能力转换成供冷能力,从而实现热电冷联供。

能源站燃气冷热电三联供制冷系统节能分析

能源站燃气冷热电三联供制冷系统节能分析 发表时间:2017-07-27T15:50:33.043Z 来源:《基层建设》2017年第10期作者:阚海丽[导读] 摘要:燃气冷热电联供系统是分布式能源系统的主要形式,是一种建立在能量梯级利用基础上的综合产能、用能分布式系统。 新奥泛能网络科技股份有限公司 065000 摘要:燃气冷热电联供系统是分布式能源系统的主要形式,是一种建立在能量梯级利用基础上的综合产能、用能分布式系统。系统安装于最终用户端附近,首先利用一次能源驱动发电机发电,再通过各种余热利用设备对余热进行回收利用,从而向用户同时提供电力、制冷、采暖、生活热水等。燃气冷热电联供系统以其节能、削峰填谷、环保、电力可靠性高等优点而受到广泛重视。燃气冷热电联供系统是 一个复杂的能源系统,存在冷、热、电多种能量输出,受到可燃性气体价格、电价、建筑负荷波动等多种因素影响,不同的容量配置和运行方式也会直接影响系统的性能。因此结合项目具体情况,从节能性与经济性的角度对具体的燃气冷热电联供系统进行分析,就更显得必要。 关键词:冷热电三联供;制冷系统;发电效率;节能冷热电三联供是实现能源梯级利用的高效能源利用形式,它可将发电之后的低品位热能用于制冷供热,以提高能源的综合利用效率。冷热电联供发展较迅速的主要有英国、美国、加拿大、法国等国家;早在上世纪 30 年代,美国就建成了第一个冷热电联供系统,现如今分布式能源站总数已超过6000 座。关于冷热电联系统的节能性问题,各方意见不一,多数认为系统是节能的,某些认为节能是有条件的,而另一些认为不节能。文章从一次能耗的角度出发,通过计算制冷工况的吸收式制冷系统和电压缩式制冷系统的一次能耗,分析冷热电三联供制冷系统的节能性。 一、燃气冷热电三联供制冷系统的背景 我国1998年起实施的《中华人民共和国节约能源法》明确指出:“推广热电联产、集中供热,提高热电机组的利用率,发展热能梯级利用技术,热、电、冷联产技术和热、电、煤气三联供技术,提高热能综合利用率”。2000年原国家计委、原国家经贸委、建设部、国家环保总局联合发布的《关于发展热电联产的规定》指出:“以小型燃气发电机组和余热锅炉等设备组成的小型热电联产系统,适用于厂矿企业、写字楼、宾馆、商场、医院、银行、学校等较分散的公用建筑。它具有效率高、占地小、保护环境、减少供电线损和应急突发事件等综合功能,在有条件的地区应逐步推广”。2005年起实施的国家标准《公共建筑节能设计标准》规定:“具有充足的天然气供应的地区,宜推广应用分布式热电冷联供和燃气空气调节技术,实现电力和天然气的削峰填谷,提高能源的综合利用率”。大量采暖锅炉导致冬季天然气高峰,季节性峰谷差造成设备和管网利用率低,运行成本提高。发展燃气空调和冷热电三联供可降低电网夏季高峰负荷,填补夏季燃气的低谷,同时降低电力和燃气的峰谷差,平衡能源利用负荷,实现资源的优化配置。分布式天然气冷热电三联供技术是以小型燃气发电机组为核心,配以余热锅炉及吸收式制冷机的系统。它首先利用天然气燃烧产生的高温烟气在燃机中做功,将一部分热能转变为高品位的电能,再利用发电后的余热制冷和供热。三联供系统为建筑或区域提供电力、供冷、供热三种需求,实现天然气能源的梯级利用,能源利用效率可达到80%以上,大大减少二氧化硫、固体废弃物、温室气体的排放,减少占地面积和耗水量,还可应对突发事件确保安全供电,在国际上已经得到广泛应用。近年来国内在上海、北京等城市已有少量天然气冷热电三联供项目投入运行,为开发天然气资源合理利用的途径进行了一些尝试。 二、冷热电三联供的特点 1.冷热电三联供CCHP可以大大提高能源利用效率:大型发电厂的发电效率一般为30%~40%;而CCHP的能源利用率可达到80%~90%,且没有输电损耗; 2.降低碳和污染物排放方面具有很大的潜力:据专家估算,如果将现有建筑实施CCHP的比例从4%提高到8%,到2020年CO2的排放量将减少30%,有利于环境保护; 3.缓解电力短缺,平衡电力峰谷差:三联产系统采用自发电,可以避开电网用电高峰,并且大大提高了建筑供电可靠性和安全性; 4.扩大了燃气使用量,平衡燃气峰谷差; 5.投资回报率高,具有良好的经济性。 三、热电冷三联供系统常见的几种配置模式 与燃气轮机相比,内燃机的发电效率高,因而内燃机冷热电联产系统的电量输出比例高,冷电比(或热电比)通常为1.0~1.5。此外,相对于燃气轮机,内燃机的价格比较便宜,因此内燃机被广泛用于三联供系统的原动机。内燃机可回收的热量主要包括排烟余热、缸套水余热以及润滑油余热等三部分。缸套水出口温度一般略低于100℃,这部分能量品位低,但数量较大,随缸套水排出的余热量占燃料燃烧产热的30%~40%,而且即可以用于直接供热,也可以驱动吸收式除湿设备或者单效吸收式制冷机组。内燃机排烟温度一般为350~450℃,这部分烟气余热既能满足供暖需求或提供生活热水,也可以通过驱动制冷机组将热量转化为冷量,以满足供冷需求。内燃机可回收的热量组成使其在冷热电联产系统的余热利用及系统集成方面,有着自己的特点。燃料在内燃机的气缸中燃烧,产生高温高压的气体,气体在气缸内膨胀做功被转换为发电所需的动能,排气余热驱动制冷机组或者通过热交换器进行供热。内燃机的缸套水余热量大而温度较低,通常用于供生活热水。 1.分类 (1)蒸汽轮机+蒸汽型溴化锂吸收式冷热水机组利用发电后的乏汽驱动蒸汽型溴化锂吸收式冷热水机组,进入汽水换热器换热,可以对外供热水或者直接对外供热蒸汽; (2)燃气轮机+烟气(补燃型)溴化锂吸收式冷热水机组燃料进入燃气轮机燃烧产生高温、高压烟气,推动燃气轮机发电机组发电,排烟进入烟气补燃型溴化锂吸收式冷热水机组,驱动机组制冷(制热),对外提供空调冷(热)水。当排烟量较小时可以启动补燃系统,由补燃提供机组热量; (3)燃气轮机+(补燃型)余热锅炉+蒸汽轮机+蒸汽型溴化锂吸收式冷热水机组燃料进入燃气轮机燃烧产生高温、高压烟气推动燃气轮机发电机组发电,排烟进入(补燃型)余热锅炉,产生高温、高压蒸汽,推动蒸汽轮机发电机组发电,发电后的乏汽用于驱动蒸汽型溴化锂吸收式冷热水机组,进入汽水换热器换热对外供热水或者直接对外供蒸汽;

相关文档
最新文档