浅谈压力容器制造的常见缺陷及处理

浅谈压力容器制造的常见缺陷及处理
浅谈压力容器制造的常见缺陷及处理

浅谈压力容器制造的常见缺陷及处理

摘要:压力容器是工业生产中经常使用的器件,在对压力容器进行制造时,不仅要遵循严格的设计要求,更重要的是排除制造过程中压力容器的缺陷影响。常见的缺陷主要体现在容器的计划环节、制作过程中以及安装方面,本文针对压力容器的制造过程进行研究,探讨一下制造过程中常见的缺陷以及缺陷处理的有效措施。

关键词:压力容器;常见缺陷;处理

我国各行各业,压力容器的使用非常普遍,例如:餐饮行业、生物制药行业、石油化工行业等等,随着压力容器的使用越来越频繁,不同样式、不同规模的压力容器逐渐问世,压力容器在制作过程中的缺陷也随之而来,缺陷的存在直接关系到压力容器在使用上的效果,因此需对制造过程中的缺陷进行处理,一方面提高压力容器的制造效率;另一方面提高压力容器的使用效益。

1.压力容器简介

市场上压力容器的产品是多种多样的,为满足不同行业客户的需求,提升了压力容器的制造规模,由于行业需求的不同,促使压力容器的形态、结构朝向多样化的方向发展。

压力容器制造的过程中,涉及到多种规范性的标准,而且制造过程中对标准需要严格遵循。制造过程中,受到多方条件影响,例如:真空、高温等,压力容器在使用上常接触不稳定的物质,因此安全因素是压力容器制造过程中必须考虑的内容,由此,必须对制造过程中出现的缺陷进行控制,采取有效的措施处理,保障压力容器的标准性。

2.压力容器制造缺陷

压力容器的缺陷[1]是贯穿在整体制造过程中的,主要是围绕压力容器的使用材料、焊接工艺以及加工过程产生的,对此进行以下分析:

2.1.材料使用不得当

压力容器在制造时,对材料的选择是非常严格的,材料稍微不得当即会引起制造缺陷,因此在材料选择时,需重点考虑材料的性能,高性能的材料在压力容器制造过程中发挥着关键作用,但是材料是受多方面因素影响的,例如:温度、湿度等等,导致材料的稳定性发生变化,导致制造过程中,压力容器出现缺陷。

2.2.焊接工艺不到位

焊接是压力容器制造过程中的主要工艺,焊接过程中会造成极大的影响,导

常见铸件缺陷分析

常见铸件缺陷分析缺陷种类,缺陷名称生产原因 多肉类飞翅(飞边) 1.砂型表面不光洁,分型面不增整 2.合理操作xx准确 3.砂箱未固紧 4.未放压铁,或过早除去压铁 5.芯头与芯座间有空隙 6.压射前机器调整、操作不正确 7.模具镶块、活块已磨损或损坏,锁紧元件失效8.模具强度不够,发生变形 9.铸件投影面积过大,锁模力不够 10.型壳内层有裂隙,涂料层太薄 毛刺 1.合型操作不准确 2.砂箱未固紧 3.芯头与芯座间有空隙 4.分型面加工精度不够 5.参考飞翅内容 抬箱 1.砂箱未固紧

2.压铁质量不够,或过早除去压铁 胀砂 1.砂型紧实度低: 壳型强度低 2.砂型表面硬度低 3.金属液压头过高 冲砂 1.砂型紧实度不够,型壳强度不够 2.浇注系统设计不合理 3.金属流速过快,充型不稳定 4.压射压力过高,压射速度过快 5.金属液头过高 掉砂 1.合型操作不正确 2.型砂紧实度不够 3.型壳强度不够,发生破裂 铸件缺陷分析 缺陷种类缺陷名称产生原因 多肉类外渗物(外渗豆)内渗物(内渗豆) 1.铸型、型号、型芯发气最大,透气性低,排气不畅2.合金液有偏析倾向

3.凝固温度范围宽或凝固速度过慢 xx类气孔、针孔 1.铸件结构设计不正确,热节过多、过大 2.铸型、型壳、型芯、涂料等发气量大,透气性低,排气不畅 3.凝固温度范围宽,凝固速度数低 4.合金液含气量高,氧化夹杂物多 5.凝固时外压低 6.冷铁表面未清理干净,未挂涂料或涂料烘透 7.铜合金脱氧不彻底 8.浇注温度过高,浇注速度过快 缩孔 1.铸件结构设计不合理,壁厚悬殊,过渡外圆角太小: 热节过多、过大 2.浇注系统、冷铁、冒口安放不合理,不利于定向凝固 3.冒口补缩效率低 4.浇注温度过高 5.压射建压时间长,增压不起作用撮终补压压力不足,或压室的充满度不合理 6.比压太小,余料饼术薄,补压不起作用 7.内浇道厚度过小,溢流槽容量不够 8.熔模的模组分布不合理,造成局部散热困难

压力容器故障及常见事故应急处理措施.

压力容器故障及常见事故应急处理措施 序号 故障 或事故现象 处理方式 预防措施 1 超压 方法和步骤: (1)压力容器操作人员根据具体操作方案,操作相应阀门及排放装置,将压力降到允许范围内; (2)立即通知工艺运行、设备管理部门查明原因,消除隐患; (3)超压情况可能会影响相关设备安全使用,应立即继续降压、直至停车; (4)检查超压所涉及的受压元件、安全附件是否正常;

(5)修理或更换受损部件; (6)详细记录超压情况,受损部件的修理、更换情况。 1、遵守工艺纪律,严格按照压力容器系统的工艺规程进行操作; 2、加强巡查,注意观察、记录相关仪表的显示; 3、加强工艺操作人员的培训,熟悉掌握工艺流程、操作规程和应急预案。 2 超温 方法和步骤: (1)压力容器操作人员根据具体操作方案,立即操作相应阀门,喷淋装置将温度降到允许范围内; (2)立即通知工艺运行、设备管理部门查明原因,消除隐患; (3)超温情况可能会影响相关设备安全使用,应立即继续降温、降压、直至停车; (4)检查超温所涉及的受压元件、安全附件的外观、变形等安全状况; (5)修理或更换受损部件; (6)详细记录超温情况,受损部件的修理、更换情况。 1、遵守工艺纪律,严格按照压力容器系统的工艺规程进行操作;

2、加强巡查,注意观察、记录相关仪表的显示; 3、加强工艺操作人员的培训,熟悉掌握工艺流程、操作规程和应急预案。3 异常 声响 方法和步骤: (1)压力容器操作人员立即观察设备压力、温度等运行参数是否正常;(2)立即通知工艺运行、设备管理部门查明原因; (3)原因不明应立即降压、直至停车; (4)检查异常响声所涉及的受压元件、安全附件的外观、变形等安全状况;(5)修理或更换受损部件; (6)详细记录超温情况,受损部件的修理、更换情况。 1、遵守工艺纪律,严格按照压力容器系统的工艺规程进行操作; 2、加强巡查,注意观察、记录相关仪表的显示; 3、加强工艺操作人员的培训,熟悉掌握工艺流程、操作规程和应急预案。

压力容器的常见缺陷是什么

压力容器的常见缺陷是什么? 压力容器的常见缺陷如下。 1、裂纹:(1)器壁母材上裂纹;(2)热影响区裂纹;(3)焊缝区裂纹。 2、焊接缺陷:(1)未熔合;(2)未焊透;(3)夹渣;(4)气孔;(5)咬边;(6)焊瘤;(7)烧穿;(8)弧坑;(9)焊缝外形、尺寸不符合要求。 3、其他:(1)分层缺陷;(2)表面张口型缺陷;(3)冲刷缺陷;(4)腐蚀缺陷;(5)变形缺陷。 压力容器制造缺陷对其安全性的影响 容器在制造过程中产生的另一种缺陷是造成壳体几何形状的不连接,如凹凸不平、接缝角变形等。各种回转壳体在内压作用下的应力与它的曲率半径有关。曲率半径不同的两种壳体连接在一起时,由于应力不同,所产生的变形也不一样。但它们又相互约束,并由此在交接处引起剪力和弯矩,使壳体产生附加弯曲应力,造成过高的局部应力。几何形状不连续所引起的附加应力的大小取决于不连续处的过渡情况,形状和尺寸的突然变化可以引起很高的附加应力,而如果变化十分缓和,则附加应力可以降到很小。压力容器在加工成型和组装中所产生各种几何形状不连续的缺陷,其变化过渡情况不相同,所产生的影响也不大一样。截面不圆的缺陷,虽然也使壳体在同一截面内的曲率半径发生了变化,但其变化是缓慢的,对内压壳体的受力情况并无多大影响,但受外压的壳体(如夹套容器的内筒),会因截面不圆而降低临界压力,甚至由此使壳体失去稳定性而被压瘪。表面的局部凹陷(或凸出)所产生的影响决定于凹陷(或凸出)的直径和深度(或高度)。一般说来,直径大而深度小的凹陷,几何形状的变化比较缓和,所产生的影响也小。在容器制造过程中产生的封头凹凸不平,一般都是变化比较缓和的。三、内应力的影响压力容器的封头、圆筒等壳体经过冲压、滚卷等冷作加工以及在焊接以后,常常在壳体上残留的一部分应力,即制成后的容器在不承受压力的情况下,有一部分壳壁材料就处于有应力的状态下。这种内应力有时可能很大,特别是焊接内应力,在个别情况下甚至可以达到或接近材料的屈服极限。焊接内应力的产生是因为金属熔焊时,焊缝的熔注金属是在熔融状态下填充在焊件的接缝中的,当焊缝金属及其周围的母材冷却时,这些金属就要收缩,但它又受到刚性焊件的约束,因而在焊缝附近即产生拉伸应力,这就是焊接内应力。焊接内应力的大小取决于焊件对焊缝收缩变形的约束程度。焊件越厚,刚性越大,焊后残余内应力也越大。冷作加工产生的内应力则与加工变形的程度有关。一般来说,冷变形量越大,所产生的内应力也越大。容器壳体上残存的内应力即使不至于产生裂纹,也会加剧压力容器的疲劳破裂和应力腐蚀破裂。日本横田曾对应力腐蚀裂纹事故进行分类统计,在113件事例中,外部应力(也包括工作应力、温度应力等)引起的应力腐蚀仅为21件,约占全部事故的18.6%,其他的都是由残余应力引起的。 压力容器的事故分类?主要原因是什么? 压力容器的事故根据损坏程度,分为爆炸事故、重大事故和一般事故。压力容器在瞬时降到

铸件常见缺陷和处理

铸件常见缺陷和处理Last revision on 21 December 2020

铸件常见缺陷、修补及检验 一、常见缺陷 1.缺陷的分类 铸件常见缺陷分为孔眼、裂纹、表面缺陷、形状及尺寸和重量不合格、成 份及组织和性能不合格五大类。(注:主要介绍铸钢件容易造成裂纹的缺陷)孔眼类缺陷 孔眼类缺陷包括气孔、缩孔、缩松、渣眼、砂眼、铁豆。 1.1.1气孔:别名气眼,气泡、由气体原因造成的孔洞。 铸件气孔的特征是:一般是园形或不规则的孔眼,孔眼内表面光滑,颜色 为白色或带一层旧暗色。(如照片) 气孔 照片1 产生的原因是:来源于气体,炉料潮湿或绣蚀、表面不干净、炉气中水蒸 气等气体、炉体及浇包等修后未烘干、型腔内的气体、浇注系统不当,浇 铸时卷入气体、铸型或泥芯透气性差等。 1.1.2缩孔 缩孔别名缩眼,由收缩造成的孔洞。 缩孔的特征是:形状不规则,孔内粗糙不平、晶粒粗大。

产生的原因是:金属在液体及凝固期间产生收缩引起的,主要有以下几点:铸件结构设计不合理,浇铸系统不适当,冷铁的大小、数量、位置不符实际、铁水化学成份不符合要求,如含磷过高等。浇注温度过高浇注速度过快等。 1.1.3缩松 缩松别名疏松、针孔蜂窝、由收缩耐造成的小而多的孔洞。 缩松的特征是:微小而不连贯的孔,晶粒粗大、各晶粒间存在明显的网状孔眼,水压试验时渗水。(如照片2) 缩松 照片2 产生的原因同以上缩孔。 1.1.4渣眼

渣眼别名夹渣、包渣、脏眼、铁水温度不高、浇注挡渣不当造成。 渣眼的特征是:孔眼形状不规则,不光滑、里面全部或局部充塞着渣。(如照片3) 渣眼 照片3 产生的原因是:铁水纯净度差、除渣不净、浇注时挡渣不好,浇注系统挡渣作用差、浇注时浇口未充满或断流。 1.1.5砂眼 砂眼是夹着砂子的砂眼。 砂眼的特征是:孔眼不规则,孔眼内充塞着型砂或芯砂。 产生的原因是:合箱时型砂损坏脱落,型腔内的散砂或砂块未清除干净、型砂紧实度差、浇注时冲坏型芯、浇注系统设计不当、型芯表面涂料不好等。 1.1.6铁豆 铁豆是夹着铁珠的孔眼、别名铁珠、豆眼、铁豆砂眼等。

压力容器安全性评价技术

压力容器安全性评价技术 随着高新技术的不断发展,对压力容器的安全性提出了更多的要求,压力容器通常处于承压状态下运转工作,由于其接触的介质大多是易燃易爆或高温物,一旦出现故障,不但会影响正常的生产,还会引起火灾爆炸等重大事故,严重威胁人们的生命财产安全,因此,压力容器的安全性,具有重要的意义。 关键字:压力容器;安全;评估与检测 Absrtact:with the development of high and new technology,more requirements are put forward for the safety of pressure vessels. Pressure vessels usually operate under pressure,because most of the media they come into contact with are flammable,explosive or high temperature materials.Once failure occurs,it will not only affect normal production,but also cause major accidents,such as fire and explosion,which seriously threaten the safety of people’s lives and property. Therefore,the safety of pressure vessels is of great significance. Keywords:pressure vessel;safety;evaluation and detection 一、国内外研究现状 国内外科学家对各种金属构件在腐蚀环境下的断裂失效进行了多方面的研究,取得了丰硕的成果。早在20世纪30-40年代,国际上就开始了对概率安全评定(PSA)的研究,在建立模型中考虑了参数的实际离散性。1980年代后期,我国也开展了一些这方面的研究工作,取得了良好效果。 目前,国内外主要针对特定的装置进行风险评估,或者对材料在某种介质下的特殊行为进行实验研究。基于弹塑性力学和断裂力学的含缺陷压力容器安全评估研究已经比较深入,在《压力容器安全技术监察规程》中也允许开展缺陷评定来处理一些存在难以消除的严重缺陷但又有使用价值的压力容器,但这是以牺牲安全为前提条件的,国内还有争议,西方国家官方也未认可,目前在国内尚处于控制使用,仅限于在大型关键和确需的前提下开展。 我国石化企业里面压力容器普遍存在超期服役的现象,均匀腐蚀与局部冲刷腐蚀的比例偏高,凹坑与局部减薄很多,属于體积型缺陷,主要失效模式是由塑性极限载荷控制的。一类是原始先天缺陷,由于表面缺陷打磨形成凹坑,在使用中没有介质腐蚀的话,这类凹坑或局部减薄一般不会发生变化,是死缺陷,而且位置固定,容易发现与监控,危害性相对较小;另一类是使用中产生的凹坑与减薄,如腐蚀坑、冲刷、磨损、沟槽等等,这类缺陷是活缺陷,局部减薄尺寸会不断加大,可能存在于管道与设备的任何位置,难于发现且危害性较大。我国从1970年代初开始研究压力容器断裂理论,经过十年的研究工作,汲取国际上先进的压力容器缺陷评定技术,于1984年颁布了我国的压力容器缺陷评定标准,即“压力容器缺陷评定规范(CVDA-1984)”。该标准直接引用了国外标准中比较

铸件常见缺陷和处理

铸件常见缺陷和处理 The pony was revised in January 2021

铸件常见缺陷、修补及检验 一、常见缺陷 1.缺陷的分类 铸件常见缺陷分为孔眼、裂纹、表面缺陷、形状及尺寸和重量不合格、成份及组织和性能不合格五大类。(注:主要介绍铸钢件容易造成裂纹的缺陷) 孔眼类缺陷 孔眼类缺陷包括气孔、缩孔、缩松、渣眼、砂眼、铁豆。 1.1.1气孔:别名气眼,气泡、由气体原因造成的孔洞。 铸件气孔的特征是:一般是园形或不规则的孔眼,孔眼内表面光滑,颜色为白色或带一层旧暗色。(如照片) 气孔 照片1

产生的原因是:来源于气体,炉料潮湿或绣蚀、表面不干净、炉气中水蒸气等气体、炉体及浇包等修后未烘干、型腔内的气体、浇注系统不当,浇铸时卷入气体、铸型或泥芯透气性差等。 1.1.2缩孔 缩孔别名缩眼,由收缩造成的孔洞。 缩孔的特征是:形状不规则,孔内粗糙不平、晶粒粗大。 产生的原因是:金属在液体及凝固期间产生收缩引起的,主要有以下几点:铸件结构设计不合理,浇铸系统不适当,冷铁的大小、数量、位置不符实际、铁水化学成份不符合要求,如含磷过高等。浇注温度过高浇注速度过快等。 1.1.3缩松 缩松别名疏松、针孔蜂窝、由收缩耐造成的小而多的孔洞。 缩松的特征是:微小而不连贯的孔,晶粒粗大、各晶粒间存在明显的网状孔眼,水压试验时渗水。(如照片2)

缩松 照片2 产生的原因同以上缩孔。 1.1.4渣眼 渣眼别名夹渣、包渣、脏眼、铁水温度不高、浇注挡渣不当造成。 渣眼的特征是:孔眼形状不规则,不光滑、里面全部或局部充塞着渣。(如照片3)

渣眼 照片3 产生的原因是:铁水纯净度差、除渣不净、浇注时挡渣不好,浇注系统挡渣作用差、浇注时浇口未充满或断流。 1.1.5砂眼 砂眼是夹着砂子的砂眼。 砂眼的特征是:孔眼不规则,孔眼内充塞着型砂或芯砂。 产生的原因是:合箱时型砂损坏脱落,型腔内的散砂或砂块未清除干净、型砂紧实度差、浇注时冲坏型芯、浇注系统设计不当、型芯表面涂料不好等。 1.1.6铁豆 铁豆是夹着铁珠的孔眼、别名铁珠、豆眼、铁豆砂眼等。

压力容器常见工艺缺陷产生的原因分析

压力容器常见工艺缺陷产生的原因分析 摘要:压力容器制造产生的缺陷是压力容器发生破坏的根源,为保证压力容器制造质量,必须从制造工艺着手,包括材料检验、制造过程质量控制。本文从材料及制造工艺两方面分析了压力容器缺陷产生的原因。 关键词:压力容器; 工艺; 方法 引言: 随着市场经济的不断深入,基础建设的飞速发展,压力容器作为工业生产过程中不可缺少的一种设备,它的使用已深入到千家万户之中,而压力容器又容易发生事故,因此如何有效控制压力容器制造过程中的质量成为当前一个重要课题。压力容器制造过程中质量的控制,应该是从材料验证,焊接控制,无损检测控制,直到办理设备整体验收手续为止的全过程中,从而使得压力容器制造质量能够得到切实有效的保障。 一、材料方面的因素: 产生的原因: 在压力容器制造程序中规定了材料的采购与控制,所进的材料必须与图纸规定或相关规范相符,如果发生材料代用,必须按照相关规定执行,即取得原设计单位的同意,而且及时与监检单位联系进行备案。 另外在《压力容器制造许可条件》中规定:压力容器制造的质量保证体系人员中,制造企业具有与所制造压力容器产品相适应的,具备相关专业和一定资历的材料质控系统责任人,而许多小单位并没有专职的材料质控责任人,即使在程序文件,质量手册中有明确的规定,但也只是流于形式,往往是没有足够的责任心,缺乏对材料的有效控制,更谈不上对材料进厂时的检验验证,因此材料本身所带的缺陷自然发现不了,从材料方面的缺陷带进了容器,这些缺陷在容器使用过程中,由于介质的腐蚀、温度、压力以及疲劳破坏的影响会导致容器发生泄漏,甚至爆炸事故的发生。 二、制造工艺方面的因素: 制造工艺方面的缺陷主要是焊接时产生的缺陷,而焊接缺陷分为内部缺陷和外部缺陷,外部缺陷主要是咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹,外部缺陷容易发现,也容易处理,因此它对容器安全可靠性的影响不大,而影响容器安全可靠性的主要是内部缺陷,内部缺陷主要是裂纹、未焊透、未熔合、气孔、夹渣等,以下我逐一分析内部缺陷产生的原因 裂纹: 裂纹按照产生的机理分为冷裂纹、热裂纹、再热裂纹和层状撕裂裂纹等 (1)冷裂纹 冷裂纹是在焊接过程中或焊后,在较低的温度下,大约在300℃-200℃以下的温度区间产生的,故称为冷裂纹。 产生的原因: a)焊接接头形成淬硬组织,我们大多数使用的容器所采用的材料都是碳素钢,碳含量较大,在焊接时钢材容易发生淬硬倾向. b)钢材及焊缝中含扩散氢较多,氢原子聚集产生压力,使焊接接头开裂,这种现象主要是所用的焊接材料所致,一方面的原因是焊接材料代用,另一方面是焊工责任心不强,随便使用焊接材料。

压力容器安全状况的五个等级

仅供参考[整理] 安全管理文书 压力容器安全状况的五个等级 日期:__________________ 单位:__________________ 第1 页共3 页

仅供参考[整理] 压力容器安全状况的五个等级 根据压力容器安全状况,划分为五个等级。安全状况等级应根据检验结果评定,以其中评定项目等级最低者为评定级别。 1级:压力容器出厂资料齐全;设计、制造质量符合有关法规和标准要求;在设计条件下能安全使用。 2级:出厂资料基本齐全;设计、制造质量基本符合有关法规和标准的要求;根据检验报告,存在某些不危及安全,可不修复的一般性缺陷;在法规规定的定期检验周期内,在规定的操作条件下能安全使用。 3级:出厂资料不够齐全;主体材质、强度、结构基本符合有关法规和标准的要求,存在某些不符合有关法规或标准的问题或缺陷,根据检验报告,确认为在法规规定的定期检验周期内,在规定的操作条件下,能安全使用。 4级:出厂资料不齐全;主体材质不明或不符合有关规定;结构和强度不符合有关法规和标准的要求;存在严重缺陷;根据检验报告,确认在法规规定的检验周期内,需要在规定操作条件下监控使用。 5级:缺陷严重,难于或无法修复,无修复价值或修复后仍难于保证安全使用;检验报告结论为判废。 需要说明的是:安全状况等级中所述缺陷,是指该压力容器最终存在的状态,如缺陷已消除,则以消除后的状态,确定该压力容器的安全状况等级。 第 2 页共 3 页

仅供参考[整理] 安全管理文书 整理范文,仅供参考! 日期:__________________ 单位:__________________ 第3 页共3 页

铸件常见缺陷的产生原因及防止方法梳理

铸件常见缺陷的产生原因及防止方法梳理 热裂 热裂是裂纹外形弯弯曲曲,断口很不规则呈藕断丝连状,而且表面较宽,越到里面越窄,属热裂其机理是:钢水注入型腔后开始冷凝,当结晶骨架已经形成并开始线收缩后,由于此时内部钢水并未完成凝固成固态使收缩受阻,铸件中就会产生应力或塑性变形,当它们超过在此高温下的材质强度极限时,铸件就会开裂。 热裂纹的形貌和特征 热裂纹是铸件在凝固末期或凝固后不久尚处于强度和塑性很低状态下,因铸件固态收缩受阻而引起的裂纹。热裂纹是铸钢件、可锻铸铁件和某些轻合金铸件生产中常见的铸造缺陷之一。热裂纹在晶界萌生并沿晶界扩展,其形状粗细不均,曲折而不规则。裂纹的表面呈氧化色,无金属光泽。铸钢件裂纹表面近似黑色,而铝合金则呈暗灰色。外裂纹肉眼可见,可根据外形和断口特征与冷裂区分。 热裂纹又可分为外裂纹和内裂纹。在铸件表面可以看到的热裂纹称为外裂纹。外裂纹常产生在铸件的拐角处、截面厚度急剧变化处或局部疑固缓慢处、容易产生应力集中的地方。其特征是表面宽内部窄,呈撕裂状。有时断口会贯穿整个铸件断面。热裂纹的另一特征是裂纹沿晶粒边界分布。内裂纹一般发生在铸件内部最后凝固的部位裂纹形状很不规则,断面常伴有树枝晶,通常情况下,内裂纹不会延伸到铸件表面。 热裂纹形成的原因 形成热裂纹的理论原因和实际原因很多,但根本原因是铸件的凝固方式和凝固时期铸件的热应力和收缩应力。 液体金属浇入到铸型后,热量散失主要是通过型壁,所以,凝固总是从铸件表面开始。当凝固后期出现大量的枝晶并搭接成完整的骨架时,固态收缩开始产生。但此时枝晶之间还存在一层尚未凝固舶液体金属薄膜(液膜),如果铸件收缩不受任何阻碍,那么枝晶骨架可以自由收缩,不受力的作用。当枝晶骨架的收缩受到砂型或砂芯等的阻碍时,不能自由收缩就会产生拉应力。当拉应力超过其材料强度极限时,枝晶之间就会产生开裂。如果枝晶骨架被拉开的速度很慢,而且被拉开部分周围有足够的金属液及时流入拉裂处并补充,那么铸件不会产生热裂纹。相反,如果开裂处得不到金属液的补充,铸件就会出现热裂纹。 由此可知,宽凝固温度范围,糊状或海绵网络状凝固方式的合金最容易产生热裂。随着凝固温度范围的变窄,合金的热裂倾向变小,恒温凝固的共晶成分的合金最不容易形成热裂。热裂形成于铸件凝固时期,但并不意味着铸件凝固时必然产生热裂。主要取决于铸件凝固时期的热应力和收缩应力。铸件凝固区域固相晶粒骨架中的热应力,易使铸件产生热裂或皮下热裂;外部阻碍因素造成的收缩应力,则是铸件产生热裂的主要条件。处于凝固状态的铸件外壳,其线收缩受到砂芯、型砂、铸件表面同砂型表面摩擦力等外部因素阻碍,外壳中就会有收缩应力(拉应力),铸件热节,特别是热节处尖角所形成的外壳较薄,就成为收缩应力集中的地方,铸件最容易在这些地方产生热裂。

铸件常见缺陷修补及检验

铸件常见缺陷的鉴别、起因、修补及检验----------------------------------------------福联造型,呋喃树脂、酚醛树脂、覆膜砂专家 1.缺陷的分类 铸件常见缺陷分为孔眼、裂纹、表面缺陷、形状及尺寸和重量不合格、成份及组织和性能不合格五大类。(注:主要介绍铸钢件容易造成裂纹的缺陷) 1.1孔眼类缺陷 孔眼类缺陷包括气孔、缩孔、缩松、渣眼、砂眼、铁豆。 1.1.1气孔:别名气眼,气泡、由气体原因造成的孔洞。 铸件气孔的特征是:一般是园形或不规则的孔眼,孔眼内表面光滑,颜色为白色或带一层旧暗色。(如照片) 气孔 照片1 产生的原因是:来源于气体,炉料潮湿或绣蚀、表面不干净、炉气中水蒸气等气体、炉体及浇包等修后未烘干、型腔内的气体、浇注系统不当,浇铸时卷入气体、铸型或泥芯透气性差等。 1.1.2缩孔 缩孔别名缩眼,由收缩造成的孔洞。 缩孔的特征是:形状不规则,孔内粗糙不平、晶粒粗大。

产生的原因是:金属在液体及凝固期间产生收缩引起的,主要有以下几点:铸件结构设计不合理,浇铸系统不适当,冷铁的大小、数量、位置不符实际、铁水化学成份不符合要求,如含磷过高等。浇注温度过高浇注速度过快等。 1.1.3缩松 缩松别名疏松、针孔蜂窝、由收缩耐造成的小而多的孔洞。 缩松的特征是:微小而不连贯的孔,晶粒粗大、各晶粒间存在明显的网状孔眼,水压试验时渗水。(如照片2) 缩松 照片2 产生的原因同以上缩孔。 1.1.4渣眼

渣眼别名夹渣、包渣、脏眼、铁水温度不高、浇注挡渣不当造成。 渣眼的特征是:孔眼形状不规则,不光滑、里面全部或局部充塞着渣。(如照片3) 渣眼 照片3 产生的原因是:铁水纯净度差、除渣不净、浇注时挡渣不好,浇注系统挡渣作用差、浇注时浇口未充满或断流。 1.1.5砂眼 砂眼是夹着砂子的砂眼。 砂眼的特征是:孔眼不规则,孔眼内充塞着型砂或芯砂。 产生的原因是:合箱时型砂损坏脱落,型腔内的散砂或砂块未清除干净、型砂紧实度差、浇注时冲坏型芯、浇注系统设计不当、型芯表面涂料不好等。 1.1.6铁豆 铁豆是夹着铁珠的孔眼、别名铁珠、豆眼、铁豆砂眼等。

压力容器筒体卷制质量缺陷分析及对策

压力容器筒体卷制质量缺陷分析及对策 针对筒体卷制质量缺陷的产生原因,从注重关键工序的检查把控、制作筒体卷制靠模、合理制定筒体成型组对焊接工艺、注重员工实际操作技能提高等4个方面提出了应对措施,对提高压力容器筒体制造质量具有一定参考借鉴作用。 焊制压力容器由筒体、封头、接管等构件经焊接接头连接构成。新疆油田公司工程技术公司在油田过热注汽锅炉、水处理、储油、储水罐、洗井装置等油田用特种设备制造过程中,筒体部件是主要关键部件。钢制压力容器筒体,除直接采用无缝钢管外,其余都采用钢板经卷班机或压力机械进行弯卷加工、焊接而成。筒体卷制是压力容器制造的重要环节。筒体精度一般由两个方面来保证,一个是筒体材料的下料精度,另外一个就是筒体制造过程中的工艺控制精度(包括卷制精度和焊接精度)。新疆油田公司工程技术公司每年的压力容器筒体卷制数量在200件左右,对于筒体制造质量控制,需要对筒体卷制圆度缺陷原因进行分析,采取相应的生产工艺,确保筒体一次卷制合格率以及筒体组对焊接效率。 1.筒体卷制缺陷原因分析 1.1.管理制度落实不到位

新疆油田工程技术公司压力容器筒体制造工艺的主要工序流程遵循行业标准,分为领料、划线、下料、加工坡口、拼焊、卷圈、组焊、切割产品焊接试板、校圆、无损检测;制造执行标准有国家标准《钢制压力容器》(GB150—1998),有企业及公司标准《压力容器制造质保手册》,以确保制造质量。在制造过程中,工艺流程、规范标准的严格执行,滚板机等设备的性能很大程度上取决于管理机制、制度的落实程度。如焊口间隙控制,按照工艺要求,焊缝对口间隙应控制在1~2mm之间,间隙过小容易造成未焊透或间断性根部未熔焊丝;间隙过大会使焊接操作困难,产生根部高低不平并伴随未熔焊丝头;由于焊接位置受限,焊工为了提高焊接速度,铆对焊口时,往往对焊缝对口间隙控制不到位,间隙存在大小不一,影响了筒体制造质量。在焊接过程中,层间焊渣要求清理干净,为赶进度,多层多道焊接时,存在层间药渣未清理干净;焊缝焊接完毕,焊接接头表面药渣、飞溅物未清理或未清理干净,造成检验误差。其他如未严格遵守焊接工艺参数、坡口边缘不清洁、未带焊条保温桶等等均能够对筒体制造质量带来不利影响。 1.2.设备使用及维护保养 筒体制造过程中,相关设备如滚扳机、电焊机、吊车、氩气专用检测仪器,需要正确使用与及时维护保养,如氩弧焊时,需要通过专用

(推荐)铸件外观缺陷图

铸件常见缺陷 常见缺陷 缺陷的分类:铸件常见缺陷分为孔眼、裂纹、表面缺陷、残缺类缺陷、形状及尺寸和重量不合格、成份及组织和性能不合格六大类。 1孔眼类缺陷 孔眼类缺陷包括气孔、缩孔、缩松、渣眼、砂眼、等。 1.1.1气孔:别名气眼,气泡、由气体原因造成的孔洞。 铸件气孔的特征是:其表面一般比较光滑,主要呈梨形\圆形和椭圆形.一般在铸件表面露出,大孔常孤立存在,小孔则成群出现。(如图) 产生的原因是:来源于气体,炉料潮湿或绣蚀、表面不干净、炉气中水蒸气等气体、炉体及浇包等修后未烘干、型腔内的气体、浇注系统不当,浇铸时卷入气体、铸型等。 1.1.2缩孔 缩孔别名缩眼,由收缩造成的孔洞。 缩孔的特征是:形状不规则,孔壁粗糙并带有技状晶,常出现在铸件最后凝固的部位,广义的缩孔包括缩松。(如图)

产生的原因是:金属在液体及凝固期间由于补缩不良而产生的孔洞,主要有以下几点:铸件结构设计不合理,浇铸系统不适当,冷铁的大小、数量、位置不符实际、铁水化学成份不符合要求,如含磷过高等。浇注温度过高浇注速度过快等。 1.1.3缩松 缩松别名疏松、针孔蜂窝、由收缩耐造成的小而多的孔洞。 缩松的特征是:铸件断面上出现的分散而细小的缩孔.助高倍放大镜才能发现的缩松称为显微缩松,铸件有缩松的部位,在气密性实验时易渗漏。(如图) 产生的原因同以上缩孔。 1.1.4渣眼 渣眼别名夹渣、包渣、脏眼、铁水温度不高、浇注挡渣不当造成。

渣眼的特征是:铸件浇注位置上表面的非金属夹杂物。通常在加工后发现与气孔并存,孔径大小不一,成群集结。(如图) 产生的原因是:铁水纯净度差、除渣不净、浇注时挡渣不好,浇注系统挡渣作用差、浇注时浇口未充满或断流。 1.1.5砂眼 砂眼是夹着砂子的砂眼。 砂眼的特征是:铸件内部或表面带有砂粒的孔洞(如图)。 。

压力容器上机考试试题第三套

压力容器上机考试试题第三套 判断题 1: ()反应容器安全操作与投料顺序的先后有关。正确答案:对 2: ()压力容器一般不得采用贴补的方法进行修理。正确答案:对 3: ()蒸汽的饱和温度和压力之间的关系一般用绝对压力表示。正确答案:对 4: ()硬度是表征材料性能的强度指标。正确答案:错5: ()低碳钢可用退火热处理提高其可切削性。正确答案:对 6: ()等离子弧切割不受物性的限制,可切割各种金属、非金属物质。正确答案:对7: ()大多数压力容器的封头采用半球形封头。正确答案:错 8: ()易燃液体是指闪点高于45℃的液体。正确答案:错 9: ()压力容器的安全管理人员和操作人员必须取得《特种设备作业证书》,方可上岗作业。正确答案:对 10: ()我国压力容器事故分类是完全按照事故造成死亡的人数确定的。正确答案:错11: ()对于在苛性条件工作的爆破片,应当于1~2年进行更换。正确答案:错

12: ()凡是监察范围内的压力容器,装设安全泄放装置是为了保障压力容器的安全运行。正确答案:对 13: ()安全阀、爆破片、紧急切断阀等安全附件应当经过国家质检总局核准的型式试验机构进行型式试验后方可开 始制造,故其制造单位不需要取得制造许可证。正确答案:错 14: ()压力容器停止运行时,操作人员时应快速打开或关闭阀门。正确答案:错 15: ()压力容器紧急停运时,操作人员必须严格按照规定的程序操作。正确答案:对 16: ()铸铁可以进行普通气割。正确答案:错 17: ()裂纹是压力容器使用过程常见的缺陷,是导致压力容器发生塑性破坏的主要因素。正确答案:错 18: ()压力容器在内部存在压力时,任何情况下均不得进行维修密封作业。正确答案:对 19: ()容器破裂时,气体膨胀所释放的能量与气体压力、容器容积、介质的物理性质有关。正确答案:对 20: ()对容器内产生压力的反应容器超压时,应迅速切断电源,停止搅拌。正确答案:错 单选题 21: 液化石油气在空气中的体积百分数超过()时,会使人窒息。A. 1% B. 5% C.10%正确答案:C

铸件常见缺陷

铸件中常见的主要缺陷有: 1.气孔 这是金属凝固过程中未能逸出的气体留在金属内部形成的小空洞,其内壁光滑,内含气体,对超声波具有较高的反射率,但是又因为其基本上呈球状或椭球状,亦即为点状缺陷,影响其反射波幅。钢锭中的气孔经过锻造或轧制后被压扁成面积型缺陷而有利于被超声检测所发现,如图5.2所示。 2.缩孔与疏松 铸件或钢锭冷却凝固时,体积要收缩,在最后凝固的部分因为得不到液态金属的补充而会形成空洞状的缺陷。大而集中的空洞称为缩孔,细小而分散的空隙则称为疏松,它们一般位于钢锭或铸件中心最后凝固的部分,其内壁粗糙,周围多伴有许多杂质和细小的气孔。由于热胀冷缩的规律,缩孔是必然存在的,只是随加工工艺处理方法不同而有不同的形态、尺寸和位置,当其延伸到铸件或钢锭本体时就成为缺陷。钢锭在开坯锻造时如果没有把缩孔切除干净而带入锻件中就成为残余缩孔(缩孔残余、残余缩管),如图5.3、5.4、5.5所示。 如果铸件的型模设计不当、浇注工艺不当等,也会在铸件与型模接触的部位产生疏松,如图5.28所示。断口照片中的黑色部分即为疏松部位,其呈现黑色是因为该工件已经过退火处理,使得疏松部位被氧化和渗入机油所致。 W18钢铸件-用作铣刀齿,采用超声纵波垂直入射多次底波衰减法发现的疏松 3.夹渣 熔炼过程中的熔渣或熔炉炉体上的耐火材料剥落进入液态金属中,在浇注时被卷入铸件或钢锭本体内,就形成了夹渣缺陷。夹渣通常不会单一存在,往往呈密集状态或在不同深度上分散存在,它类似体积型缺陷然而又往往有一定线度。 4.夹杂 熔炼过程中的反应生成物(如氧化物、硫化物等)-非金属夹杂,如图 5.1和5.6,或金属成分中某些成分的添加料未完全熔化而残留下来形成金属夹杂,如高密度、高熔点成分-钨、钼等,如图5.29,也有如图5.24所示钛合金棒材中的纯钛偏析。 5.偏析 铸件或钢锭中的偏析主要指冶炼过程中或金属的熔化过程中因为成分分布不均而形成的成分偏析,有偏析存在的区域其力学性能有别于整个金属基体的力学性能,差异超出允许标准范围就成为缺陷 6.铸造裂纹 铸件中的裂纹主要是由于金属冷却凝固时的收缩应力超过了材料的极限强度而引起的,它与铸件的形状设计和铸造工艺有关,也与金属材料中一些杂质含量较高而引起的开裂敏感性有关(例如硫含量高时有热脆性,磷含量高时有冷脆性等)。在钢锭中也会产生轴心晶间裂纹,在后续的开坯锻造中如果不能锻合,将留在锻件中成为锻件的内部裂纹。 7.冷隔 这是铸件中特有的一种分层性缺陷,主要与铸件的浇铸工艺设计有关,它是在浇注液态金属时,由于飞溅、翻浪、浇注中断,或者来自不同方向的两股(或多股)金属流相遇等原因,因为液态金属表面冷却形成的半固态薄膜留在铸件本体内而形成一种隔膜状的面积型缺陷。 8.翻皮 这是炼钢时从钢包向锭模浇注钢锭时,因为浇注中断、停顿等原因,先浇入

压力容器焊接中常见缺陷产生成因及控制措施

压力容器焊接中常见缺陷产生成因及控制措施 摘要:本文分析了压力容器焊接的常见缺陷及成因、缺陷的一般处理以及优化措施。 关键词:压力容器;焊接缺陷;控制措施 引言 压力容器焊接缺陷的后果有渗漏、泄漏,甚至引起压力容器爆炸事故,造成人民安全和重大的财产损失。为此,保证压力容器在制造过程中的焊接质量,是保证压力容器安全运行的重要手段。压力容器制造过程中所产生的焊接缺陷主要有:裂纹、未熔合、未焊透等面积型缺陷;气孔、夹渣类体积性缺陷;咬边、焊瘤、弧坑等表面缺陷。下面就此情况详细论述。 一、压力容器焊接的常见缺陷及分析 1、夹渣 夹渣是残留在焊缝中的熔渣。夹渣也会降低焊缝的强度和致密性。产生夹渣的原因主要是焊缝边缘有氧割或碳弧气刨残留的熔渣;坡口角度或焊接电流太小,或焊接速度过快。在使用酸性焊条时,由于电流太小或运条不当形成“糊渣”;使用碱性焊条时,由于电弧过长或极性不正确也会造成夹渣。进行埋弧焊封底时,焊丝偏离焊缝中心,也易形成夹渣。防止产生夹渣的措施是:正确选取坡口尺寸,认真清理坡口边缘,选用合适的焊接电流和焊接速度,运条摆动要适当。多层焊时,应仔细观察坡口两侧熔化情况,每焊一层都要认真清理焊渣。封底焊渣应彻底清除,埋弧焊要注意防止焊偏。 2、气孔 气孔是指在压力容器焊接时,金属熔池中的气体在金属凝固之前没有完全逸出,使部分气体残存在焊缝中就形成了气孔。产生气孔的主要原因是由于母材或填充金属表面产生锈蚀、表面背油污、水等污染。此外,焊条及焊剂未能按规定进行烘干处理也会增加产生气孔的机率。焊接线能量过小时,焊接熔池冷却速度过大,也不利于气体的逸出。另外,由于焊缝金属没有完全脱氧也容易造成气孔产生。气孔的存在,会降低焊接接头的强度,引起压力容器泄漏。同时,由于气孔的存在,也容易产生应力集中。预防焊接气孔的办法主要有:选择正确的焊接电流以及适合的焊接速度;保证坡口边缘的干燥、清洁;严格按照规定保管和烘干焊接材料;不使用变质的焊条;如果在施焊之前发现焊条药皮变质、剥落以及焊芯锈蚀等时,应注意严格禁止使用。当采用埋弧焊焊接压力容器时应选用正确的焊接工艺参数,特别是薄板的自动焊焊接时,施焊的焊接速度要尽可能减小。 3、裂纹

铸件常见缺陷和处理

铸件常见缺陷、修补及检验 一、常见缺陷 1.缺陷的分类 铸件常见缺陷分为孔眼、裂纹、表面缺陷、形状及尺寸和重量不合格、成份及组织和性能不合格五大类。(注:主要介绍铸钢件容易造成裂纹的缺陷) 1.1孔眼类缺陷 孔眼类缺陷包括气孔、缩孔、缩松、渣眼、砂眼、铁豆。 1.1.1气孔:别名气眼,气泡、由气体原因造成的孔洞。 铸件气孔的特征是:一般是园形或不规则的孔眼,孔眼内表面光滑,颜色为白色或带一层旧暗色。(如照片) 气孔 照片1 产生的原因是:来源于气体,炉料潮湿或绣蚀、表面不干净、炉气中水蒸气等气体、炉体及浇包等修后未烘干、型腔内的气体、浇注系统不当,浇铸时卷入气体、铸型或泥芯透气性差等。 1.1.2缩孔 缩孔别名缩眼,由收缩造成的孔洞。

缩孔的特征是:形状不规则,孔内粗糙不平、晶粒粗大。 产生的原因是:金属在液体及凝固期间产生收缩引起的,主要有以下几点:铸件结构设计不合理,浇铸系统不适当,冷铁的大小、数量、位置不符实际、铁水化学成份不符合要求,如含磷过高等。浇注温度过高浇注速度过快等。 1.1.3缩松 缩松别名疏松、针孔蜂窝、由收缩耐造成的小而多的孔洞。 缩松的特征是:微小而不连贯的孔,晶粒粗大、各晶粒间存在明显的网状孔眼,水压试验时渗水。(如照片2) 缩松 照片2 产生的原因同以上缩孔。

1.1.4渣眼 渣眼别名夹渣、包渣、脏眼、铁水温度不高、浇注挡渣不当造成。 渣眼的特征是:孔眼形状不规则,不光滑、里面全部或局部充塞着渣。(如照片3) 渣眼 照片3 产生的原因是:铁水纯净度差、除渣不净、浇注时挡渣不好,浇注系统挡渣作用差、浇注时浇口未充满或断流。 1.1.5砂眼 砂眼是夹着砂子的砂眼。 砂眼的特征是:孔眼不规则,孔眼内充塞着型砂或芯砂。 产生的原因是:合箱时型砂损坏脱落,型腔内的散砂或砂块未清除干净、型砂紧实度差、浇注时冲坏型芯、浇注系统设计不当、型芯表面涂料不好等。 1.1.6铁豆

压力容器焊接常见缺陷及防治措施

压力容器焊接常见缺陷及防治措施 [摘要]:压力容器作为工业生产中不可缺少的一种重要设备,被广泛应用于各个行业,包括石油化工、科研、国防部门等等。其数量多和类型复杂的特点,决定了压力容器不仅要承受容器内介质的贮存压力,而且要时常受到容器内介质化学成分的影响,若有不慎,极易发生爆炸、火灾、泄露等事故。压力容器的焊接程序影响着压力容器的安全运行,因此压力容器的焊接质量成为了制造过程中的一个重要控制环节。本文针对这一问题,对压力容器焊接过程中容易出现的一些缺陷做了具体分析,并提出了解决措施。对确保压力容器的安全运行和保障人民生命财产安全、加快装备制造业的快速发展具有十分重要的意义。 关键词:压力容器;焊接;缺陷;预防措施 一、压力容器内外表面宏观及几何缺陷 1.错边和角变形错边是焊接过程中容易出现的几何缺陷问题,是指两个焊接工件在厚度方向上的错位,主要是在组装的时候产生的。压力容器的错边和角边问题常会引起应力集中,甚至会给压力容器的使用带来安全隐患。 2.咬边是焊接过程中比较容易出现的表面缺陷问题,是指在焊接时沿着焊趾,在母材部分形成的凹陷或沟槽。造成咬边的主要原因是由于焊接电流过大、运条速度过快、电弧拉得过长或角度不对引起的,除此之外,若埋弧焊的焊接速度过快或焊机轨道不平,也会造成焊件被熔化从而去掉一定深度,当填充金属未能及时填满时也会造成焊缝咬边。由于焊缝咬边会减小母材街头的工作面,会在咬边外造成应力集中导致压力容器发生事故。在标准抗拉强度的工作环境下限值大于540MPa的钢材及cr_Mo低合金钢材和不锈钢材制造的容器以及焊接接头系数取为1的容器,焊缝表面不会出现咬边。除此之外的其他容器焊缝表面的深度应控制在0.5mm之内,咬边连续长度应小于100mm,焊接两侧咬边的总长度控制在焊缝长度的10%以内。 二、压力容器焊缝内的主要缺陷 1.气孔:压力容器在焊接过程中熔池中出现的气泡在凝固时不能逸出而导致空穴的形成。这种情况的发生主要原因包括:坡口边缘不清洁,有水垢、油污和锈迹的存在;焊条或焊剂违规操作使用,导致焊芯锈蚀和药皮变质脱落;在焊接过程中,电弧过长,焊接速度过快,使焊条在摆动过程中在坡口边缘停留的时间不够、或焊接电压过高等。以上几种情况都比较容易在焊接时产生气孔。气孔的存在,会导致焊缝的有效截面变小,过大气孔甚至会降低焊缝的焊接强度,破坏焊缝的致密性,引起事故的发生。 2.夹渣:在焊接过程中难免会在焊缝中留下夹渣,这些夹渣会影响压力

压力容器常见的缺陷及措施

5.2压力容器常见的缺陷及措施 在用压力容器常见缺陷就其存在部位可分为表面缺陷和埋藏缺陷两类,都对压力容器的安全性能构成潜在威胁,以下对其中的焊接所造成的缺陷分别进行讨论。 1、表面缺陷 (1)表面裂纹 裂纹是在用压力容器的重点检验项目。现场检验时优先使用磁粉探伤技术,它能快速、准确和直观地发现表面裂纹,是目前检验表面缺陷最为灵敏可靠的手段。表面裂纹危害性极大,一旦发现应认真分析其产生原因,采取适当的措施(如打磨和挖补等) 予以彻底消除。从断裂力学观点而言,表面裂纹也存在允许尺寸,但考虑到内表面裂纹与储存介质直接接触,外表面裂纹与大气接触,因此易促使裂纹的扩展,危害极大,故对表面裂纹一律采取打磨消除的措施。 措施:有关文件规定,如表面裂纹打磨深度≤7 %的设计厚度,且>3mm时,可不补焊。但为了减少应力集中,要求磨削部位光滑并过渡圆滑。如果超出上述规定,则必须采取严格的补焊措施予以修复。 (2)焊缝咬边 焊缝咬边为几何不连续与应力集中部位,容易诱发裂纹。对于容器的焊缝咬边,都应打磨消除或打磨后补焊;对于其它容器,当其表面焊缝咬边深度≤0. 5mm ,连续长度≤100mm ,且焊缝两侧咬边总长不超过该焊缝长度的10 %时,可不作处理。如超过上述范围,则应打磨消除或打磨后补焊。 2、埋藏缺陷 常见的埋藏缺陷主要有裂纹、未焊透、未熔合、气孔和夹渣等。这些缺陷多为制造时留下的,其中处理的重点为埋藏裂纹。壁厚<8mm 的钢制容器一般采用X 射线探伤,可直接准确地反映缺陷类型和大小。随着板厚的增加,X 射线能量衰减增大,探伤灵敏度降低,因此当检测壁厚>8mm 的钢制容器时,一般采用超声波探伤。超声波穿透能力很强,对厚板中缺陷的探伤灵敏度较高且检测速度快。 (1)埋藏裂纹 不与腐蚀介质接触,相对于表面裂纹而言,所受的应力较小,危害性也较小。但在使用过程中,尤其是在交变载荷或频繁间歇操作时,有可能产生裂纹扩展至

浅谈压力容器制造的常见缺陷及处理

浅谈压力容器制造的常见缺陷及处理 摘要:压力容器是工业生产中经常使用的器件,在对压力容器进行制造时,不仅要遵循严格的设计要求,更重要的是排除制造过程中压力容器的缺陷影响。常见的缺陷主要体现在容器的计划环节、制作过程中以及安装方面,本文针对压力容器的制造过程进行研究,探讨一下制造过程中常见的缺陷以及缺陷处理的有效措施。 关键词:压力容器;常见缺陷;处理 我国各行各业,压力容器的使用非常普遍,例如:餐饮行业、生物制药行业、石油化工行业等等,随着压力容器的使用越来越频繁,不同样式、不同规模的压力容器逐渐问世,压力容器在制作过程中的缺陷也随之而来,缺陷的存在直接关系到压力容器在使用上的效果,因此需对制造过程中的缺陷进行处理,一方面提高压力容器的制造效率;另一方面提高压力容器的使用效益。 1.压力容器简介 市场上压力容器的产品是多种多样的,为满足不同行业客户的需求,提升了压力容器的制造规模,由于行业需求的不同,促使压力容器的形态、结构朝向多样化的方向发展。 压力容器制造的过程中,涉及到多种规范性的标准,而且制造过程中对标准需要严格遵循。制造过程中,受到多方条件影响,例如:真空、高温等,压力容器在使用上常接触不稳定的物质,因此安全因素是压力容器制造过程中必须考虑的内容,由此,必须对制造过程中出现的缺陷进行控制,采取有效的措施处理,保障压力容器的标准性。 2.压力容器制造缺陷 压力容器的缺陷[1]是贯穿在整体制造过程中的,主要是围绕压力容器的使用材料、焊接工艺以及加工过程产生的,对此进行以下分析: 2.1.材料使用不得当 压力容器在制造时,对材料的选择是非常严格的,材料稍微不得当即会引起制造缺陷,因此在材料选择时,需重点考虑材料的性能,高性能的材料在压力容器制造过程中发挥着关键作用,但是材料是受多方面因素影响的,例如:温度、湿度等等,导致材料的稳定性发生变化,导致制造过程中,压力容器出现缺陷。 2.2.焊接工艺不到位 焊接是压力容器制造过程中的主要工艺,焊接过程中会造成极大的影响,导

相关文档
最新文档