高一物理下册 万有引力与宇宙达标检测(Word版 含解析)

高一物理下册 万有引力与宇宙达标检测(Word版 含解析)
高一物理下册 万有引力与宇宙达标检测(Word版 含解析)

一、第七章万有引力与宇宙航行易错题培优(难)

1.2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有

A.在轨道Ⅱ上经过A的速度小于经过B的速度

B.在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能

C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期

D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度

【答案】ABC

【解析】

【分析】

【详解】

本题考查人造地球卫星的变轨问题以及圆周运动各量随半径的变化关

系.

2

2

v Mm

m G

r r

=,得

GM

v

r

=

的距离减小而增大,所以远地点的线速度比近地点的线速度小,v A

v AⅡ

2

2

2Mm

mr G

T r

π

??

=

?

??

,得

23

4r

T

GM

π

=

心距离越大,周期越大,因此TⅡ

2.2020年5月24日,中国航天科技集团发文表示,我国正按计划推进火星探测工程,瞄准今年7月将火星探测器发射升空。假设探测器贴近火星地面做匀速圆周运动时,绕行周期为T,已知火星半径为R,万有引力常量为G,由此可以估算()

A.火星质量B.探测器质量

C.火星第一宇宙速度D.火星平均密度

【答案】ACD

【解析】

【分析】

本题考查万有引力与航天,根据万有引力提供向心力进行分析。

【详解】

A .由万有引力提供向心力

2

224Mm

G m R R T

π= 可求出火星的质量

23

2

4R M GT π=

故A 正确;

B .只能求出中心天体的质量,不能求出探测器的质量,故B 错误;

C .由万有引力提供向心力,贴着火星表面运行的环绕速度即火星的第一宇宙速度,即有

22Mm v G m R R

= 求得

2GM R

v R T

π=

=

故C 正确;

D .火星的平均密度为

23

2234343

R M GT V GT R ππρπ=== 故D 正确。 故选ACD 。

3.如图为某双星系统A 、B 绕其连线上的O 点做匀速圆周运动的示意图,若A 星的轨道半径大于B 星的轨道半径,双星的总质量M ,双星间的距离为L ,其运动周期为T ,则( )

A .A 的质量一定大于

B 的质量 B .A 的加速度一定大于B 的加速度

C .L 一定时,M 越小,T 越大

D .L 一定时,A 的质量减小Δm 而B 的质量增加Δm ,它们的向心力减小 【答案】BCD 【解析】 【分析】 【详解】

A .双星系统中两颗恒星间距不变,是同轴转动,角速度相等,双星靠相互间的万有引力提供向心力,所以向心力相等,故有

22A A B

B m r m r ωω=

因为A B r r >,所以A B m m <,选项A 错误;

B .根据2a r ω=,因为A B r r >,所以A B a a >,选项B 正确;

C .根据牛顿第二定律,有

2

22()A B A A

m m G

m r L T

π= 2

22()A B B B

m m G

m r L T

π= 其中

A B r r L +=

联立解得

33

2 2 ()A B L L T G m m GM

ππ==+

L 一定,M 越小,T 越大,选项C 正确; D .双星的向心力由它们之间的万有引力提供,有

2

=A B

m m F G

L 向 A 的质量m A 小于B 的质量m B ,L 一定时,A 的质量减小Δm 而B 的质量增加Δm ,根据数学知识可知,它们的质量乘积减小,所以它们的向心力减小,选项D 正确。 故选BCD 。

4.宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称之为双是系统设某双星系统A 、B 绕其连线上的某固定点O 点做匀速圆周运动,如图所示,现测得两星球球心之间的距离为L ,运动周期为T ,已知万有引力常量为G ,若AO OB >,则( )

A .星球A 的线速度一定大于星球

B 的线速度 B .星球A 所受向心力大于星球B 所受向心力

C .双星的质量一定,双星之间的距离减小,其转动周期增大

D .两星球的总质量等于23

2

4L GT π

【答案】AD 【解析】 【分析】 【详解】

A .双星转动的角速度相等,根据v R ω=知,由于AO O

B >,所以星球A 的线速度一定

大于星球B的线速度,故A正确;

B.双星靠相互间的万有引力提供向心力,根据牛顿第三定律可知向心力大小相等,故B 错误;

C.双星AB之间的万有引力提供向心力,有

2

A B

A A

2

m m

G m R

L

ω

=,2

A B

B B

2

m m

G m m

L

ω

=

其中

2

T

π

ω=,

A B

L R R

=+

联立解得

()

223

3

A B A B

22

44

ππL

m m R R

GT GT

+=+=

解得()

23

A B

4πL

T

G m m

=

+

,故当双星的质量一定,双星之间的距离减小,其转动周期也减小,故C错误;

D.根据C选项计算可得

23

A B2

4L

m m

GT

π

+=

故D正确。

故选AD。

5.发射地球同步卫星要经过三个阶段:先将卫星发射至近地圆轨道1,然后使其沿椭圆轨道2运行,最后将卫星送入同步圆轨道3。轨道1、2相切于Q点,轨道2、3相切于P 点,如图所示。当卫星分别在轨道1、2、3上正常运行时,则以下说法正确的是()

A.卫星在轨道3上的运行速率大于7.9km/s

B.卫星在轨道2上Q点的运行速率大于7.9km/s

C.卫星在轨道3上的运行速率小于它在轨道1上的运行速率

D.卫星分别沿轨道1和轨道2经过Q点时的加速度大小不相等

【答案】BC

【解析】

【分析】

【详解】

AC.人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m , 轨道半径为r ,地球质量为M ,有

2

2GMm v m r r

= 解得

GM

v r

=

轨道3比轨道1半径大,卫星在轨道1上线速度是7.9km/s, 则卫星在轨道3上的运行速率小于7.9km/s ,A 错误,C 正确;

B.卫星从轨道1变到轨道2,需要加速,所以卫星沿轨道1的速率小于轨道2经过Q 点时的速度,B 正确;

D.根据牛顿第二定律和万有引力定律

2

GMm

ma r = 得

2

GM

a r =

所以卫星在轨道1上经过Q 点得加速度等于在轨道2上经过Q 点的加速度,D 错误。 故选BC 。

6.中国在西昌卫星发射中心成功发射“亚太九号”通信卫星,该卫星运行的轨道示意图如图所示,卫星先沿椭圆轨道1运行,近地点为Q ,远地点为P 。当卫星经过P 点时点火加速,使卫星由椭圆轨道1转移到地球同步轨道2上运行,下列说法正确的是( )

A .卫星在轨道1和轨道2上运动时的机械能相等

B .卫星在轨道1上运行经过P 点的速度大于经过Q 点的速度

C .卫星在轨道2上时处于超重状态

D .卫星在轨道1上运行经过P 点的加速度等于在轨道2上运行经过P 点的加速度 【答案】D 【解析】 【分析】 【详解】

A .卫星在轨道1上运行经过P 点需点火加速进入轨道2,所以卫星在轨道2上的机械能大于轨道1上运动时的机械能,A 错误;

B .P 点是远地点,Q 点是近地点,根据开普勒第二定律可知卫星在轨道1上运行经过P 点

的速度小于经过Q 点的速度,B 错误; C .卫星在轨道2上时处于失重状态,C 错误; D .根据牛顿第二定律和万有引力定律得

2

Mm

G

ma r = 所以卫星在轨道2上经过P 点的加速度等于在轨道1上经过P 点的加速度,D 正确。 故选D 。

7.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,如图所示,则当卫星分别在1、2、3轨道上正常运行时,以下说法不正确的是( )

A .要将卫星由圆轨道1送入圆轨道3,需要在圆轨道1的Q 点和椭圆轨道2的远地点P 分别点火加速一次

B .由于卫星由圆轨道1送入圆轨道3点火加速两次,则卫星在圆轨道3上正常运行速度大于卫星在圆轨道1上正常运行速度

C .卫星在椭圆轨道2上的近地点Q 的速度一定大于7.9 km/s ,而在远地点P 的速度一定小于7.9 km/s

D .卫星在椭圆轨道2上经过P 点时的加速度一定等于它在圆轨道3上经过P 点时的加速度 【答案】B 【解析】 【分析】 【详解】

A .卫星由小圆变椭圆,需要在Q 点点火加速,而卫星由椭圆变大圆,需要在P 点点火加速,故A 正确,A 项不合题意;

B .卫星在3轨道和1轨道做匀速圆周运动,由万有引力提供向心力,可得线速度为

GM

v r

=

而31r r >,可知星在圆轨道3上正常运行速度小于卫星在圆轨道1上正常运行速度,故B 正确,B 项符合题意;

C .卫星在1轨道的速度为7.9 km/s ,而由1轨道加速进入2轨道,则在椭圆轨道2上的近地点Q 的速度一定大于7.9 km/s ,而椭圆上由近地点到远地点减速,且3轨道的线速度大于椭圆在远地点的速度,故在远地点P 的速度一定小于7.9 km/s ,,即有

2132(7.9km/s)Q Q P P v v v v >=>>

故C 正确,C 项不合题意;

D .卫星在不同轨道上的同一点都是由万有引力提供合外力,则卫星在椭圆轨道2上经过P 点时的加速度一定等于它在圆轨道3上经过P 点时的加速度,故D 正确,D 项不合题意。 本题选不正确的,故选B 。

8.a 是地球赤道上一栋建筑,b 是在赤道平面内作匀速圆周运动、距地面9.6?610m 的卫星,c 是地球同步卫星,某一时刻b 、c 刚好位于a 的正上方(如图甲所示),经48h ,a 、b 、c 的大致位置是图乙中的(取地球半径R=6.4?610m ,地球表面重力加速度g=10m/2s ,π=10)

A .

B .

C .

D .

【答案】B 【解析】 【分析】 【详解】

因为c 是地球同步卫星,所以应一直在a 的上方,A 错误;对b 有:

,b 的周期为

,经24h 后b 转4.3圈,处于D

图位置,选项D 正确.

9.宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图所示,三颗质量为m 的星球位于等边三角形的三个顶点上,任意两颗星球的距离均为L ,并绕其中心O 做匀速圆周运动.忽略其他星球对它们的引力作用,引力常量为G ,以下对该三星系统的说法正确的是 ( )

A .每颗星球做圆周运动的半径都等于L

B .每颗星球做圆周运动的加速度与星球的质量无关

C .每颗星球做圆周运动的线速度Gm

v L

=

D .每颗星球做圆周运动的周期为2L T L Gm

π=【答案】C 【解析】 【分析】 【详解】

A .三颗星球均绕中心做圆周运动,由几何关系可知

r =2

cos30L

?

3

L A 错误;

B .任一星球做圆周运动的向心力由其他两个星球的引力的合力提供,根据平行四边形定则得

F =22

2Gm L

cos 30°=ma

解得

a 3Gm

B 错误; CD .由

F =222Gm L cos 30°=m 2v r =m 2

24T

πr

v Gm

L T =2π3L Gm

C 正确,

D 错误。

故选C。

10.2019年2月5日,“流浪地球”在中国大陆上映,赢得了票房和口碑双丰收。影片讲述的是面对太阳快速老化膨胀的灾难,人类制定了“流浪地球”计划,这首先需要使自转角速度为ω的地球停止自转,再将地球推移出太阳系到达距离太阳最近的恒星(比邻星)。为了使地球停止自转,设想的方案就是在地球赤道上均匀地安装N台“喷气”发动机,如图所示(N较大,图中只画出了4个)。假设每台发动机均能沿赤道的切线方向提供大小恒为F的推力,该推力可阻碍地球的自转。已知地球转动的动力学方程与描述质点运动的牛顿第二定律方程F=ma具有相似性,为M=Iβ,其中M为外力的总力矩,即外力与对应力臂乘积的总和,其值为NFR;I为地球相对地轴的转动惯量;β为单位时间内地球的角速度的改变量。将地球看成质量分布均匀的球体,下列说法中正确的是()

A.在M=Iβ与F=ma的类比中,与转动惯量I对应的物理量是m,其物理意义是反映改变地球绕地轴转动情况的难易程度

B.地球自转刹车过程中,赤道表面附近的重力加速度逐渐变小

C.停止自转后,赤道附近比极地附近的重力加速度大

D.这些行星发动机同时开始工作,且产生的推动力大小恒为F,使地球停止自转所需要的

时间为

I NF ω

【答案】A

【解析】

【分析】

【详解】

A.在M=Iβ与F=ma的类比中,与转动惯量I对应的物理量是m,其物理意义是反映改变地球绕地轴转动情况的难易程度,A正确;

B.地球自转刹车过程中,赤道表面附近的重力加速度逐渐变大,B错误;

C.停止自转后,赤道附近与极地附近的重力加速度大小相等,C错误;

D.这些行星发动机同时开始工作,且产生的推动力大小恒为F,根据

NFR Iβ

=

t βω=

则停止的时间

I t NFR

ω=

D 错误。 故选A 。

11.2020年1月7号,通信技术试验卫星五号发射升空,卫星发射时一般需要先到圆轨道1,然后通过变轨进入圆轨道2。假设卫星在两圆轨道上速率之比v 1∶v 2=5∶3,卫星质量不变,则( )

A .卫星通过椭圆轨道进入轨道2时应减速

B .卫星在两圆轨道运行时的角速度大小之比12ωω:=125∶27

C .卫星在1轨道运行时和地球之间的万有引力不变

D .卫星在两圆轨道运行时的动能之比

E k1∶E k 2=9∶25 【答案】B 【解析】 【分析】 【详解】

A .卫星通过椭圆轨道进入轨道2,需要做离心运动,所以应加速才能进入2轨道,选项A 错误;

B .根据万有引力提供向心力有

2

2GMm v m r r

= 解得

GM

v r

=

因为v 1:v 2=5:3,则

r 1:r 2=9∶25

根据万有引力提供向心力有

2

2

GMm mr r ω= 解得

3

=

GM

r ω 可得卫星在两轨道运行时的角速度大小之比

ω1:ω2=125:27

选项B 正确;

C .万有引力大小不变,但方向一直变化,选项C 错误;

D .根据2

12

k E mv =

,则卫星在两轨道运行时的动能之比 E k1∶E k2=25:9

选项D 错误; 故选B 。

12.北京时间2019年4月10日,人类历史上首张黑洞“照片”(如图)被正式披露,引起世界轰动;2020年4月7日“事件视界望远镜(EHT )”项目组公布了第二张黑洞“照片”,呈现了更多有关黑洞的信息。黑洞是质量极大的天体,引力极强。一个事件刚好能被观察到的那个时空界面称为视界。例如,发生在黑洞里的事件不会被黑洞外的人所观察到,因此我们可以把黑洞的视界作为黑洞的“边界”。在黑洞视界范围内,连光也不能逃逸。由于黑洞质量极大,其周围时空严重变形。这样,即使是被黑洞挡着的恒星发出的光,有一部分光会落入黑洞中,但还有另一部分离黑洞较远的光线会绕过黑洞,通过弯曲的路径到达地球。根据上述材料,结合所学知识判断下列说法正确的是( )

A .黑洞“照片”明亮部分是地球上的观测者捕捉到的黑洞自身所发出的光

B .地球观测者看到的黑洞“正后方”的几个恒星之间的距离比实际的远

C .视界是真实的物质面,只是外部观测者对它一无所知

D .黑洞的第二宇宙速度小于光速c 【答案】B 【解析】 【分析】 【详解】

A.由于黑洞是质量极大的天体,引力极强,因此其第一宇宙速度大于光速,所以黑洞自身发的光不能向外传输,黑洞“照片”明亮部分是被黑洞挡着的恒星发出的部分光,故选项A 错误;

B.由于部分离黑洞较远的光线会绕过黑洞,通过弯曲的路径到达地球,所以地球观测者看到的黑洞“正后方”的几个恒星之间的距离比实际的远,故选项B 正确;

C.一个事件刚好能被观察到的那个时空界面称为视界,因此对于视界的内容可以通过外部观测,故选项C 错误;

D.因为黑洞的第一宇宙速度大于光速,所以第二宇宙速度一定大于光速,故选项D 错误。

13.一颗距离地面高度等于地球半径R 的圆形轨道地球卫星,其轨道平面与赤道平面重合。已知地球同步卫星轨道高于该卫星轨道,地球表面重力加速度为g ,则下列说法正确的是( )

A

.该卫星绕地球运动的周期4T =B .该卫星的线速度小于地球同步卫星的线速度 C .该卫星绕地球运动的加速度大小2

g a =

D .若该卫星绕行方向也是自西向东,则赤道上的一个固定点连续两次经过该卫星正下方的时间间隔大于该卫星的周期 【答案】D 【解析】 【分析】 【详解】

A .对卫星根据牛顿第二定律有

()

2

02

0222Mm

G

m R T R π??= ???

在地球表面有

2

0GMm m g R '

'= 解得

4T = 选项A 错误;

B .该卫星的高度小于地球同步卫星的高度,则该卫星的线速度大于地球同步卫星的线速度,选项B 错误;

C .对卫星根据牛顿第二定律有

()

2

02GMm

ma R =

解得

4

g a =

选项C 错误;

D .由赤道上的一个固定点连续两次经过该卫星正下方,有

1t t

T T -= 得

t T >

选项D 正确。 故选D 。

14.北京时间2019年4月10日,人类首次利用虚拟射电望远镜,在紧邻巨椭圆星系M87的中心成功捕获世界首张黑洞图像。科学研究表明,当天体的逃逸速度(即第二宇宙速

倍)超过光速时,该天体就是黑洞。已知某天体质量为M ,万有引力常量为G ,光速为c ,则要使该天体成为黑洞,其半径应小于( )

A .2

2GM c

B .22c GM

C .

2

c

D .

2

GM

c 【答案】A 【解析】 【分析】 【详解】

地球的第一宇宙速度为v 1,根据万有引力提供向心力,有

212v Mm

G m

R R

= 解得

21GM v R =?

由题得第二宇宙速度

21v

又由题星体成为黑洞的条件为2v c >,即

c 解得

2

2GM

R c <

选项A 正确,BCD 错误。 故选A 。

15.我国于2019年年底发射“嫦娥五号”探月卫星,计划执行月面取样返回任务。“嫦娥五号”从月球返回地球的过程可以简单分成四步,如图所示第一步将“嫦娥五号”发射至月球表面附近的环月圆轨道I ,第二步在环月轨道的A 处进行变轨进入月地转移轨道Ⅱ,第三步当接近地球表面附近时,又一次变轨,从B 点进入绕地圆轨道III ,第四步再次变轨道后降

落至地面,下列说法正确的是()

A.将“嫦娥五号”发射至轨道I时所需的发射速度为7.9km/s

B.“嫦娥五号”从环月轨道Ⅰ进入月地转移轨道Ⅱ时需要加速

C.“嫦娥五号”从A沿月地转移轨道Ⅱ到达B点的过程中其速率一直增加

D.“嫦娥五号”在第四步变轨时需要加速

【答案】B

【解析】

【分析】

【详解】

A.7.9km/s是地球的第一宇宙速度,也就是将卫星发射到近地轨道上的最小发射速度,而月球的第一宇宙速度比地球的小的多,也就是将卫星发射到近月轨道I上的发射速度比7.9km/s小的多,A错误;

B.“嫦娥五号”从环月轨道Ⅰ进入月地转移轨道Ⅱ时做离心运动,因此需要加速,B正确;C.开始时月球引力大于地球引力,做减速运动,当地球引力大于月球引力时,才开始做加速运动,C错误;

D.“嫦娥五号”在第四步变轨时做近心运动,因此需要减速,D错误。

故选B。

高中物理公式大全一览表

高中物理公式大全一览表 高中物理有很多公式,经过高中三年的学习相信大家都有很多物理知识点需要总结,为了方便大家学习物理,小编为大家整理了高中物理公式,希望对大家有帮助。 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a0;反向则a0} 8.实验用推论s=aT2 {s为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注:(1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点.位移和路程.参考系.时间与时刻;速度与速率.瞬时速度。 2)自由落体运动

1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s210m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s210m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

高一物理万有引力定律测试题及答案

万有引力定律测试题 班级姓名学号 一、选择题(每小题中至少有一个选项是正确的,每小题5分,共40分) 1.绕地球作匀速圆周运动的人造地球卫星内,其内物体处于完全失重状态,则物体() A.不受地球引力作用 B.所受引力全部用来产生向心加速度 C.加速度为零 D.物体可在飞行器悬浮 2.人造地球卫星绕地球做匀速圆周运动,其轨道半径为R,线速度为v,周期为T,若要使卫星的周期变为2T,可能的办法是() 不变,使线速度变为 v/2 不变,使轨道半径变为2R D.无法实现 3.由于地球的自转,地球表面上各点均做匀速圆周运动,所以() A.地球表面各处具有相同大小的线速度 B.地球表面各处具有相同大小的角速度 C.地球表面各处具有相同大小的向心加速度 D.地球表面各处的向心加速度方向都指向地球球心 4.地球上有两位相距非常远的观察者,都发现自己的正上方有一颗人造地球卫星,相对自己静止不动,则这两位观察者的位置及两人造卫星到地球中心的距离可能是()A.一人在南极,一人在北极,两卫星到地球中心的距离一定相等 B.一人在南极,一人在北极,两卫星到地球中心的距离可以不等,但应成整数倍 C.两人都在赤道上,两卫星到地球中心的距离一定相等 D.两人都在赤道上,两卫星到地球中心的距离可以不等,但应成整数倍 5.设地面附近重力加速度为g0,地球半径为R0,人造地球卫星圆形运行轨道半径为R,那么以下说法正确的是 ( ) 6.一宇宙飞船在一个星球表面附近做匀速圆周运动,宇航员要估测星球的密度,只需要测定飞船的() A:环绕半径 B:环绕速度 C:环绕周期 D:环绕角速度 7.假设火星和地球都是球体,火星的质量M火和地球的质量M地之比M火/M地=p,火星的半径R火和地球的半径R地之比R火/R地=q,那么火星表面处的重力加速度g火和地球表面处的重力的加速度g地之比等于[ ] q2 q

万有引力定律应用的12种典型案例

3232 万有引力定律应用的12种典型案例 万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。 特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。 下面我们就来探讨一下万有引力定律在天文学上应用的12个典型案例: 【案例1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。 设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r 根据万有引力定律: r T 4m r Mm G 22 2π=……①得: 2 32G T r 4M π=……②可见A 正确 而T r 2v π= ……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3 R 4M 3 π= ρ……⑤结合②④⑤得: G 3T 2π = ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力 由2R Mm G mg =得:G g R M 2=可见B 正确

3333 【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。总之,牛顿万有引力定律是解决天体运动问题的关键。 【案例2】普通卫星的运动问题 我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h 。问:哪颗卫星的向心加速度大哪颗卫星的线速度大若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少 解析:本题主要考察普通卫星的运动特点及其规律 由开普勒第三定律T 2 ∝r 3 知:“风云二号”卫星的轨道半径较大 又根据牛顿万有引力定律r v m ma r Mm G 22==得: 2r M G a =,可见“风云一号”卫星的向心加速度大, r GM v = ,可见“风云一号”卫星的线速度大, “风云一号”下次通过该岛上空,地球正好自转一周,故需要时间24h ,即第二天上午8点钟。 【探讨评价】由万有引力定律得:2M a G r = ,v = ω= 2T = ⑴所有运动学量量都是r 的函数。我们应该建立函数的思想。 ⑵运动学量v 、a 、ω、f 随着r 的增加而减小,只有T 随着r 的增加而增加。 ⑶任何卫星的环绕速度不大于7.9km/s ,运动周期不小于85min 。 ⑷学会总结规律,灵活运用规律解题也是一种重要的学习方法。 【案例3】同步卫星的运动 下列关于地球同步卫星的说法中正确的是: A 、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上 B 、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24h C 、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上

高中物理 万有引力定律

万有引力定律 教学目标 知识目标 1、在开普勒第三定律的基础上,推导得到万有引力定律,使学生对此定律有初步理解; 2、使学生了解并掌握万有引力定律; 3、使学生能认识到万有引力定律的普遍性(它存在宇宙中任何有质量的物体之间,不管它们之间是否还有其它作用力). 能力目标 1、使学生能应用万有引力定律解决实际问题; 2、使学生能应用万有引力定律和圆周运动知识解决行星绕恒星和卫星绕行星运动的天体问题. 情感目标 1、使学生在学习万有引力定律的过程中感受到万有引力定律的发现是经历了几代科学家的不断努力,甚至付出了生命,最后牛顿总结了前人经验的基础上才发现的.让学生在应用万有引力定律的过程中应多观察、多思考. 教学建议 万有引力定律的内容固然重要,让学生了解发现万有引力定律的过程更重要.建议教师在授课时,应提倡学生自学和查阅资料.教师应准备的资料应更广更全面.通过让学生阅读“万有引力定律的发现过程”,让学生根据牛顿提出的几个结果自己去猜测万有引力与那些量有关.教师在授课时可以让学生自学,也可由教师提出问题让学生讨论,也可由教师展示出开普勒三定律和牛顿的一些故事引导学生讨论. 万有引力定律的教学设计方案 教学目的: 1、了解万有引力定律得出的思路和过程; 2、理解万有引力定律的含义并会推导万有引力定律;

3、掌握万有引力定律,能解决简单的万有引力问题; 教学难点:万有引力定律的应用 教学重点:万有引力定律 教具: 展示第谷、哥白尼,伽利略、开普勒和牛顿等人图片. 教学过程 (一)新课教学(20分钟) 1、引言 展示第谷、哥白尼,伽利略、开普勒和牛顿等人照片并讲述物理学史: 十七世纪中叶以前的漫长时间中,许多天文学家和物理学家(如第谷、哥白尼,伽利略和开普勒等人),通过了长期的观察、研究,已为人类揭示了行星的运动规律.但是,长期以来人们对于支配行星按照一定规律运动的原因是什么.却缺乏了解,更没有人敢于把天体运动与地面上物体的运动联系起来加以研究. 伟大的物理学家牛顿在哥白尼、伽利略和开普勒等人研究成果的基础上,进一步将地面上的动力学规律推广到天体运动中,研究、确立了《万有引力定律》.从而使人们认识了支配行星按一定规律运动的原因,为天体动力学的发展奠定了基础.那么: (1)牛顿是怎样研究、确立《万有引力定律》的呢? (2)《万有引力定律》是如何反映物体间相互作用规律的? 以上两个问题就是这节课要研究的重点. 2、通过举例分析,引导学生粗略领会牛顿研究、确立《万有引力定律》的科学推理的思维方法. 苹果在地面上加速下落:(由于受重力的原因): 月亮绕地球作圆周运动:(由于受地球引力的原因);

万有引力定律典型例题解析

万有引力定律·典型例题解析 【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下: (1)g (2)(3)r 60R 地面上物体的重力加速度= ;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值; GM R GM r g 22αα (4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ; (5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果, 求 的值.α g 解析: (1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4 点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力 G Mm r mg G Mm r m 2 2α 的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目 的条件可以用、ω或来表示.v r r T 2224r 2 π 【例】月球质量是地球质量的 ,月球半径是地球半径的,在21811 38. 距月球表面14m 高处,有一质量m =60kg 的物体自由下落. (1)它落到月球表面需用多少时间? (2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力

加速度g 地=9.8m/s 2)? 解析:(1)4s (2)588N 点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设 mg G M m R mg G M m R 22月月月 地地地 =.同理,物体在地球上的“重力”等于地球对物体的 万有引力,设=. 以上两式相除得=,根据=可得物体落到月球表 面需用时间为==×=. 月月g 1.75m /s S gt t 4s 2 2 12 2214 175S g . (2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N . 跟踪反馈 1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量分布均匀,大小分别为m 1、m 2,则两球间的万有引力大小为: [ ] A .Gm 1m 2/r 2 B .Gm 1m 2/r 12 C .Gm 1m 2/(r 1+r 2)2 D .Gm 1m 2/(r 1+r 2+r)2

高中物理《万有引力定律》知识点

高中物理《万有引力定律》知识点 万有引力是由于物体具有质量而在物体之间产生的一种相互作用。它的大小和物体的质量以及两个物体之间的距离有关。物体的质量越大,它们之间的万有引力就越大;物体之间的距离越远,它们之间的万有引力就越小。 两个可看作质点的物体之间的万有引力,可以用以下公式计算:F=Gmm/r^2,即万有引力等于引力常量乘以两物体质量的乘积除以它们距离的平方。其中G代表引力常量,其值约为6.67×10的负11次方单位N·m2/kg2。为英国科学家卡文迪许通过扭秤实验测得。 万有引力的推导:若将行星的轨道近似的看成圆形,从开普勒第二定律可得行星运动的角速度是一定的,即:ω=2π/T 如果行星的质量是m,离太阳的距离是r,周期是T,那么由运动方程式可得,行星受到的力的作用大小为mrω^2=mr(4π^2)/T^2 另外,由开普勒第三定律可得 r^3/T^2=常数k' 那么沿太阳方向的力为 mr(4π^2)/T^2=mk'(4π^2)/r^2 由作用力和反作用力的关系可知,太阳也受到以上相同大小的力。从太阳的角度看,

(太阳的质量m)(k'')(4π^2)/r^2 是太阳受到沿行星方向的力。因为是相同大小的力,由这两个式子比较可知,k'包含了太阳的质量m,k''包含了行星的质量m。由此可知,这两个力与两个天体质量的乘积成正比,它称为万有引力。 如果引入一个新的常数(称万有引力常数),再考虑太阳和行星的质量,以及先前得出的4·π2,那么可以表示为万有引力=Gmm/r^2 两个通常物体之间的万有引力极其微小,我们察觉不到它,可以不予考虑。比如,两个质量都是60千克的人,相距0.5米,他们之间的万有引力还不足百万分之一牛顿,而一只蚂蚁拖动细草梗的力竟是这个引力的1000倍!但是,天体系统中,由于天体的质量很大,万有引力就起着决定性的作用。在天体中质量还算很小的地球,对其他的物体的万有引力已经具有巨大的影响,它把人类、大气和所有地面物体束缚在地球上,它使月球和人造地球卫星绕地球旋转而不离去。 重力,就是由于地面附近的物体受到地球的万有引力而产生的。 任意两个物体或两个粒子间的与其质量乘积相关的吸引力。自然界中最普遍的力。简称引力,有时也称重力。在粒子物理学中则称引力相互作用和强力、弱力、电磁力合称

高考物理万有引力定律的应用技巧和方法完整版及练习题含解析

高考物理万有引力定律的应用技巧和方法完整版及练习题含解析 一、高中物理精讲专题测试万有引力定律的应用 1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求: (1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F R m -(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】 (1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l 在最高点:2 22mv F mg l += ① 在最低点:2 11mv F mg l -= ② 由机械能守恒定律,得 221211222 mv mg l mv =?+ ③ 由①②③,解得1 2 6F F g m -= (2) 2 GMm mg R = 2GMm R =2 mv R 两式联立得:12()6F F R m -

(3)在星球表面:2 GMm mg R = ④ 星球密度:M V ρ= ⑤ 由④⑤,解得12 8F F GmR ρπ-= 点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度. 2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1 )2 ,16(2)速度之比为2 【解析】 【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解; 解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2 Mm G mg R = a 卫星 2 224a GMm m R R T π= 解得2a T =b 卫星2 2 24·4(4)b GMm m R R T π= 解得16b T = (2)卫星做匀速圆周运动,F F =引向, a 卫星2 2a mv GMm R R =

高中物理公式大全全集万有引力

五、万有引力 1、开普勒三定律: ⑴开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上 ⑵开普勒第二定律(面积定律):太阳和行星的连线在相等的时间内扫过相等的面积 ⑶开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等 对T 1、T 2表示两个行星的公转周期,R 1、R 2表示两行星椭圆轨道的半长轴,则周期定律可表示为32 312221R R T T = 或k T R =3 3,比值k 是与行星无关而只与太阳有关的恒量 【注意】:⑴开普勒定律不仅适用于行星,也适用于卫星,只不过此时k T R =33 ‘ ,比值k ’ 是 由行星的质量所决定的另一恒量。 ⑵行星的轨道都跟圆近似,因此计算时可以认为行星是做匀速圆周运动 ⑶开普勒定律是总结行星运动的观察结果而总结归纳出来的规律,它们每一条都 是经验定律,都是从观察行星运动所取得的资料中总结出来的。 例题:飞船沿半径为R 的圆周绕地球运动,其周期为T ,如果飞船要返回地面,可在轨道上的某一点A 处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的椭圆轨道运动,椭圆和地球表面在B 点相切,如图所示,如果地球半径为R 0,求飞船由A 点到B 点所需要的时间。 解析:依开普勒第三定律知,飞船绕地球做圆周(半长轴和半短轴相等的特殊椭圆)运动时,其轨道半径的三次方跟周期的平方的比值,等于飞船绕地球沿椭圆轨道运动时,其半长轴的三次方跟周期平方和比值,飞船椭圆轨道的半长轴为 2 R R +,设飞船沿椭圆轨道运动的周期一、知识网络 二、 画龙点睛 概念

高中物理万有引力定律(教学设计)

高中物理必修二第六章第三节 【教材分析】 万有引力定律是本章的核心,从内容性质与地位上看,本节内容是对上一节“太阳与行星间的引力”的进一步外推,即:从天体运动推广到地面上任何物体的运动;又是下一节掌握万有引力理论在天文学上应用的学习的基础。本节重点内容是理解万有引力定律的推导思路和过程,掌握万有引力定律的内容及表达公式,知道万有引力定律得出的意义,知道任何物体间都存在着万有引力,且遵循相同的规律。本节难点是物体间距离的理解。另外本节内容还注重是对学生“科学方法”教育和“情感态度与价值观”的教育:使学生认识科学研究过程中根据事实和分析推理进行猜想、假设和检验的重要性,培养学生的推理能力、概括能力和归纳总结能力;本节结合“月—地检验”,经历思维程序“提出问题→猜想与假设→理论分析→实验观测→验证结论”培养学生探究思维能力;使学生学习科学家们坚持不懈、勇往直前和一丝不苟的工作精神,培养学生良好的学习习惯和善于探索的思维品质。 【学情分析】 上节内容中,学生用所学的“圆周运动”、“开普勒行星运动定律”和“牛顿运动定律”知识,经历了一系列科学探究过程,得出了太阳与行星间的引力特点,学生对天体运动的研究产生了极大的兴趣和求知欲。本节课教师再引导学生从太阳与行星间引力的规律出发,根据类比事实将“平方反比关系”的作用力进行猜想,假设和推广,从太阳对行星的引力到地球对月球的引力,再到任意物体间的吸引力都满足“平方反比的关系”。学生会带着好奇和探究意识以及必要的检验论证,一路探究下去,最终得出万有引力定律。使学生在理解掌握万有引力定律的基础上,培养了探究思维能力和良好的思维品质,为学生终身发展打下基础。 【教学流程】 【教学目标】 一、知识与技能 1.理解万有引力定律的推导思路和过程。

最新万有引力定律 经典例题

1.天体运动的分析方法 2.中心天体质量和密度的估算 (1)已知天体表面的重力加速度g和天体半径R G Mm R2=mg? ? ? ?天体质量:M=gR2G 天体密度:ρ= 3g 4πGR (2)已知卫星绕天体做圆周运动的周期T和轨道半径r ?? ? ??①G Mm r2=m 4π2 T2r?M= 4π2r3 GT2 ②ρ= M 4 3 πR3 = 3πr3 GT2R3 ③卫星在天体表面附近飞行时,r=R,则ρ= 3π GT2 1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知() A.太阳位于木星运行轨道的中心 B.火星和木星绕太阳运行速度的大小始终相等 C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方 D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 解析:由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A 错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B错误;根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C正确;对于某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同的时间内扫过的面积不相等,D错误. 答案:C 2.(2016·郑州二检)据报道,目前我国正在研制“萤火二号”火星探测器.探测器升空

后,先在近地轨道上以线速度v 环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度v ′在火星表面附近环绕飞行.若认为地球和火星都是质量分布均匀的球体,已知火星与地球的半径之比为1∶2,密度之比为5∶7,设火星与地球表面重力加速度分别为g ′和g ,下列结论正确的是( ) A .g ′∶g =4∶1 B .g ′∶g =10∶7 C .v ′∶v = 528 D .v ′∶v = 514 解析:在天体表面附近,重力与万有引力近似相等,由G Mm R 2=mg ,M =ρ43 πR 3 ,解两式得g =4 3G πρR ,所以g ′∶g =5∶14,A 、B 项错;探测器在天体表面飞行时,万有引力 充当向心力,由G Mm R 2=m v 2R ,M =ρ4 3πR 3,解两式得v =2R G πρ 3 ,所以v ′∶v =528 ,C 项正确,D 项错. 答案:C 3.嫦娥三号”探月卫星于2013年12月2日1点30分在西昌卫星发射中心发射,将实现“落月”的新阶段.若已知引力常量G ,月球绕地球做圆周运动的半径r 1、周期T 1,“嫦娥三号”探月卫星绕月球做圆周运动的环月轨道(见图)半径r 2、周期T 2,不计其他天体的影响,则根据题目条件可以( ) A .求出“嫦娥三号”探月卫星的质量 B .求出地球与月球之间的万有引力 C .求出地球的密度 D.r 13T 12=r 23T 2 2 解析:绕地球转动的月球受力为GMM ′r 12=M ′r 14π2 T 1 2得T 1= 4π2r 13 GM =4π2r 13 Gρ43πr 3.由于不知道地球半径r ,无法求出地球密度,C 错误;对“嫦娥三号”而言,GM ′m r 22 =mr 24π2 T 2 2,T 2=4π2r 23 GM ′ ,已知“嫦娥三号”的周期和半径,可求出月球质量M ′,但是所

高一物理 万有引力定律 典型例题解析

万有引力定律 典型例题解析 【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下: (1)g (2)(3)r 60R 地面上物体的重力加速度= ;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值;GM R GM r g 2 2αα (4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ; (5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果, 求的值.αg 解析: (1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4 点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力G Mm r mg G Mm r m 22α 的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目 的条件可以用、ω或来表示.v r r T 2224r 2π

【例】月球质量是地球质量的,月球半径是地球半径的,在2181138. 距月球表面14m 高处,有一质量m =60kg 的物体自由下落. (1)它落到月球表面需用多少时间? (2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力加速度g 地=9.8m/s 2)? 解析:(1)4s (2)588N 点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设 mg G M m R mg G M m R 22月月月地地地=.同理,物体在地球上的“重力”等于地球对物体的 万有引力,设=. 以上两式相除得=,根据=可得物体落到月球表面需用时间为==×=.月月g 1.75m /s S gt t 4s 2212 2214175S g . (2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N . 跟踪反馈 1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量

(完整版)高中物理万有引力部分知识点总结

高中物理——万有引力与航天 知识点总结 一、开普勒行星运动定律 (1)所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 (2)对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积。 (3)所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。 二、万有引力定律 1.内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. 2.公式:F=Gm1m2/r^2,其中G=6.67×10-11 N·m2/kg2,称为万有引力常量。 3.适用条件: 严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但

此时r应为两物体重心间的距离。对于均匀的球体,r是两球心间的距离。 三、万有引力定律的应用 1.解决天体(卫星)运动问题的基本思路 (1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式: F=Gm1m2/r^2=mv^2/r=mω2r=m(2π/T)2r (2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=Gm1m2/r^2,gR2=GM. 2.天体质量和密度的估算 通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即G r2(Mm)=m T2(4π2)r,得出天体质量M=GT2(4π2r3). (1)若已知天体的半径R,则天体的密度 ρ=V(M)=πR3(4)=GT2R3(3πr3) (2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT2(3π) 可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度. 3.人造卫星 (1)研究人造卫星的基本方法

万有引力定律典型例题分析

“万有引力定律”的典型例题 例5 【例1】假如一个作圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作圆周运动,则 [ ] A.根据公式v=ωr,可知卫星运动的线速度将增大到原来的2倍 D.根据上述选答B和C中给出的公式,可知卫星运动的线速度将 【分析】人造地球卫星绕地球作匀速圆周运动时,由地球对它的引力作向心力,即 卫星运动的线速度

当卫星的轨道半径增大为原来的2倍时,由于角速度会发生变化, 错,D正确. 同理,当卫星的轨道半径增大为原来的2倍时,由于线速度的变化,卫星所需的向心力不是减为原来的1/2,而是减小到原来的1/4.B错,C正确. 【答】C、D. 【说明】物体作匀速圆周运动时,线速度、角速度、向心加速度、向心力和轨道半径间有一定的牵制关系.例如,只有当ω不变时,线速度才与半径成正比;同样,当线速度不变时,同一物体的向心力才与半径成反比.使用中不能脱离条件. 研究卫星的运动时,最根本的是抓住引力等于向心力这一关系. 【例2】估算天体的质量 【解】把卫星(或行星)绕中心天体的运动看成是匀速圆周运动,由中心天体对卫星(或行星)的引力作为它绕中心天体的向心力.根据 得 因此,只需测出卫星(或行星)的运动半径r和周期T,即可算出中心天体的质量M.

【例3】登月飞行器关闭发动机后在离月球表面112km的空中沿圆形轨道绕月球飞行,周期是120.5min.已知月球半径是1740km,根据这些数据计算月球的平均密度.(G=6.67×10-11Nm2/kg2) 【分析】要计算月球的平均密度,首先应求出质量M.飞行器绕月球做匀速圆周运动的向心力是由月球对它的万有引力提供的. 【解】根据牛顿第二定律有 从上式中消去飞行器质量m后可解得 根据密度公式有 【例4】如图1所示,在一个半径为R、质量为M的均匀球体中, 连线上、与球心相距d的质点m的引力是多大? 【分析】把整个球体对质点的引力看成是挖去的小球体和剩余部分对质点的引力之和,即可得解.

高一下册物理万有引力定律知识点总结

高一下册物理万有引力定律知识点总结 物理在绝大多数的省份既是会考科目又是高考科目,在高中的学习中占有重要地位。为大家推荐了高一下册物理万有引力定律知识点,请大家仔细阅读,希望你喜欢。 一、行星运动 1.地心说和日心说 地心说认为地球是宇宙的中心,是静止不动的,太阳、月亮及其它行星都绕地球运动,日心说认为太阳是静止不动的,地球和其它行星都绕太阳运动,日心说是形成新的世界观的基础,是对宗教的挑战。 2.开普勒第一定律 开普勒第一定律指出:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上,这个定律也叫做轨道定律,它正确描述了行星运动轨道的形状。 3.开普勒第三定律 开普勒第三定律指出:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等,即R3/T2=k.这个定律也叫周期定律.行星运动三定律是开普勒根据第谷连续20年对行星运动进行观察记录的数据,经过刻苦计算而得出的结论. 二、万有引力定律 1.万有引力定律的内容 (l)万有引力是由于物体具有质量而在物体之间产生的一种

相互作用.它的大小和物体的质量及两个物体之间的距离有关:两个物体质量越大,它们间的万有引力越大;两物体间距离越远,它们间的万有引力越小.通常两个物体之间的万有引力极其微小,在天体系统中,万有引力的作用是决定性的. (2)万有引力定律的公式是:.即两物体间万有引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比. 2.引力常量及其测定 (1)万有引力常量 G=6.6725910-11 N?m2/kg2,通常取 G=6.6710-11 N?m2/kg2. (2)万有引力常量G的值是由英国物理学家卡文迪许用扭秤装置首先准确测定的.G的测定不仅用实验证实了万有引力的存在,同时也使万有引力定律有了实用价值. 3.万有引力定律的应用 万有引力定律在研究天体运动中起着决定性的作用,它把地面上物体的运动规律与天体运动的规律统一起来,是人类认识宇宙的基础.万有引力定律在天文学上的下列应用:(1)用万有引力定律求中心星球的质量和密度 当一个星球绕另一个星球做匀速圆周运动时,设中心星球质量为M,半径为R,环绕星球质量为m,线速度为v,公转周期为T,两星球相距r,由万有引力定律有:

万有引力与航天重点知识归纳及经典例题练习

第五讲 万有引力定律重点归纳讲练 知识梳理 考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: k T a =23 。其中k 值与太阳有关,与行星无关。 (4) 推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星旋转时,k T a =2 3 ,但k 值不同,k 与行星有关,与卫星无关。 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k T R =2 3 ,R ——轨道半径。 2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2 成反比。 (2) 公式:2 21r m m G F =,G 叫万有引力常量,2211 /10 67.6kg m N G ??=-。 (3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。 (4) 两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。 ①在赤道上,F=F 向+mg ,即R m R Mm G mg 22 ω-=; ②在两极F=mg ,即mg R Mm G =2 ;故纬度越大,重力加速度越大。 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上,2 2 R GM g mg R Mm G =?=;在地球表面高度为h 处: 22)()(h R GM g mg h R Mm G h h +=?=+,所以g h R R g h 2 2 ) (+=,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法:2 3 2224)2(GT r M T mr r Mm G ππ=?=,再根据3 23 33,34R GT r V M R V πρρπ=?== ,当r=R 时,2 3GT πρ= 2.g 、R 法:G g R M mg R Mm G 22 = ?=,再根据GR g V M R V πρρπ43,3 43=?== 3.v 、r 法:G rv M r v m r Mm G 2 22 =?=

《万有引力定律》教学设计【高中物理必修2(人教版)教案】

《6.3万有引力定律》教学设计 ● 教学模式介绍 “传递-接受”教学模式源于赫尔巴特的四段教学法,后来由前苏联凯洛夫等人进行改造传入我国。在我国广为流行,很多教师在教学中自觉不自觉地都用这种方法教学。该模式以传授系统知识、培养基本技能为目标。其着眼点在于充分挖掘人的记忆力、推理能力与间接经验在掌握知识方面的作用,使学生比较快速有效地掌握更多的信息量。该模式强调教师的指导作用,认为知识是教师到学生的一种单向传递的作用,非常注重教师的权威性。 “传递-接受”教学模式的课程环节: 复习旧课——激发学习动机——讲授新知识——巩固运用——检查评价——间隔性复习 ● 设计思路说明 一、新课程标准倡导学生自主学习,重视学生科学探究,在“科学探究”中学生自己不断发现问题、解决问题、体会科学方法、学会交流合作及通过集体的智慧解决问题。我将发现万有引力定律的过程设计为教师引导和学生探究先后结合的方法。“地球对月球的力、地球对地面上物体的力、太阳对行星的力,真是同一种力吗?”这个过程中所涉及到的逻辑思维和数学推导给学生带来的困难则由教师适时引导。当学生亲自动手,计算出月球轨道上物体运动的加速度就是地面物体下落加速度的2601 倍时,学生一定会由衷地感叹自然界的和 谐统一和科学的无穷魅力。 二、万有引力定律既是一个独立的科学定律,又是牛顿经典力学体系的重要组成部分。是普遍存在于宇宙中的任何有质量的物体(大到天体小到微观粒子)间的相互吸引力,是自然界的物体间的基本相互作用之一.对人类认识和探索未知世界有着重要的意义。教学中要让学生知道学习万有引力定律不只是用来做几道题,而是一个人科学素养的具体体现。 三、我让学生查找关于卡文迪许的资料、做成ppt 并让两到三组同学在课堂展示。增加学生的学习兴趣,同时锻炼学生的语言组织能力和表达能力。四、将不易测量的微小量转化为可测量的物理量的方法是物理学中重要且常用的研究方法。通过卡文迪许扭秤实验对学生进行的物理思想和科学方法的渗透。同时也能说明科学实验是发现科学真理的基础,也是检验科学真理的唯一标准。 ● 教材分析 万有引力定律是本章的重点知识,,本节内容是对上两节教学内容的进一步延伸,是下

(推荐下载)万有引力定律练习题

(完整word版)万有引力定律练习题 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)万有引力定律练习题)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)万有引力定律练习题的全部内容。

万有引力定律练习题 一.选择题(共8小题) 1.(2018?榆林一模)2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示.关于航天飞机的运动,下列说法中不正确的有() A.在轨道Ⅱ上经过A的速度小于经过B的速度 B.在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能 C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期 D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度 2.(2018?江西模拟)北斗卫星导航系统由一组轨道高低不同的人造地球卫星组成。高轨道卫星是地球同步卫星,其轨道半径约为地球半径的6.6倍。若某低轨道卫星的周期为12小时,则这颗低轨道卫星的轨道半径与地球半径之比约为() A.4。2 B.3.3 C.2.4 D.1.6 3.(2018?海南)土星与太阳的距离是火星与太阳距离的6倍多。由此信息可知() A.土星的质量比火星的小 B.土星运行的速率比火星的小 C.土星运行的周期比火星的小 D.土星运行的角速度大小比火星的大 4.(2018?高明区校级学业考试)如果把水星和金星绕太阳的运动视为匀速圆周运动,如图所示.从水星与金星在一条直线上开始计时,若天文学家测得在相同时间内水星转过的角度为θ1,金星转过的角度为θ2(θ1、θ2均为锐角),则由此条件可

高中物理 万有引力

第6课万有引力与航天 考纲展示命题探究 考点一万有引力定律及其应用 基础点 知识点1开普勒三定律 1.开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 2.开普勒第二定律:对每一个行星来说,它与太阳的连线在相等时间内扫过的面积相等。 3.开普勒第三定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。

知识点2 万有引力定律 1.内容 (1)自然界中任何两个物体都相互吸引。 (2)引力的方向在它们的连线上。 (3)引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比。 2.表达式:F =G m 1m 2r 2,其中G 为引力常量,G =6.67×10-11 N·m 2/kg 2,由卡文迪许扭 秤实验测定。 3.适用条件 (1)两个质点之间的相互作用。当两个物体间的距离远远大于物体本身的大小时,物体可视为质点;r 为两物体间的距离。 (2)对质量分布均匀的球体,r 为两球心的距离。 知识点3 万有引力定律的应用 1.计算天体的质量 (1)地球质量的计算 ①依据:地球表面的物体,若不考虑地球自转,物体的重力等于地球对物体的万有引力,即mg =G Mm R 2。 ②结论:M =gR 2 G ,只要知道g 、R 的值,就可计算出地球的质量。 (2)太阳质量的计算 ①依据:质量为m 的行星绕太阳做匀速圆周运动时,行星与太阳间的万有引力充当向心力,即G Mm r 2=4π2mr T 2。 ②结论:M =4π2r 3 GT 2,只要知道行星绕太阳运动的周期T 和半径r 就可以计算出太阳的质 量。 (3)其他行星的质量计算:同理,若已知卫星绕行星运动的周期T 和卫星与行星之间的距离r ,可计算行星的质量M ,公式是M =4π2r 3 GT 2。 2.发现未知天体 海王星、 冥王星的发现都是天文学家根据观测资料,利用万有引力定律计算出的,人们称其为“笔尖下发现的行星”。 重难点 一、开普勒行星运动定律 特别提醒 (1)开普勒行星运动定律不仅适用于行星绕太阳的运动,也适用于其他天体的运动。对于不同的中心天体,比例式a 3 T 2=k 中的k 值是不同的。

高中物理万有引力定律的应用练习题及答案含解析

高中物理万有引力定律的应用练习题及答案含解析 一、高中物理精讲专题测试万有引力定律的应用 1.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的 Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为 M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离 为r 时,地球与卫星组成的系统的引力势能为p GMm E r =-(取无穷远处的引力势能为 零),忽略地球自转和喷气后飞船质量的変化,问: (1)在近地轨道Ⅰ上运行时,飞船的动能是多少? (2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度 3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引 力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GM R 【解析】 【分析】 (1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可; (3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】 (1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动 即:2 2mM v G m R R = 则飞船的动能为2122k GMm E mv R = =; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守

相关文档
最新文档