四大泵学习资料汇总

四大泵学习资料汇总
四大泵学习资料汇总

水泵轴向推力平衡的方法

轴向推力平衡的方法很多,一般来说单级泵不同于多级泵。

对单级泵来说,平衡轴向推力的方法主要有三种:

1、平衡孔;

2、平衡管;

3、米用双吸式叶轮。

前两种方法的目的是使叶轮后的压力等于叶轮前的压力,从而使轴向推力平衡。为了把叶轮后压力降下来,叶轮后盖板还设有密封环,其直径与前盖板密封环直径相等。后一种方法是自身达到平衡。纵然如此,单级泵也不是百分之百的平衡,所以还采用止推轴承。

对于多级泵来说,平衡方法主要有两种:

1、叶轮对称布置,

2、米用平衡盘。

方法1是把两组叶轮的进水方式相反地装在轴上,其轴向推力相互抵消。对称布置的多级泵大都是蜗壳泵,为了把水从上一级引到另一级,泵壳上设有导管。

方法2用在分段式多级泵上。平衡盘的作用道理是:从末级叶轮出来的带有压力的水,经过调整套径向间隙流入平衡盘前的水室中,水室处于高压状态。平衡盘后有平衡管与泵入口相连,其压力近似为入口压力。这样平衡盘两侧压力不相等,因而也就产生了向后的轴向推力——即平衡力。

自动地平衡了叶轮的轴向推力。

当叶轮的轴向推力大于平衡盘上的平衡力时,水泵转子就会向入口侧移动,并由于惯性的作用,这种移动并不会立即停止在平衡位置上,而是要超出限度,引起平衡盘密封面间隙过量减小,使泄漏量减少,水室中压力升高,于是平衡盘上的平衡力增加,并超出叶轮的轴向推力,把转子又拉向出口侧。同样这个过程是有惯性的,使平衡盘的轴向间隙过量增大,引起平衡力小于轴向推力,转子又向入口侧移动,重复上述过程。这个过程是自动的,在水泵工作时,转子始终是在某一平衡位置上这么轴向窜动着。不过窜动量极小,从外观上很难看出来。

汽蚀

泵在工作时液体在叶轮的进口处因一定真空压力下会产生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压力,汽蚀余量是指在泵吸入口处单位

重量液体所具有的超过汽化压力的富余能量。

汽蚀现象

液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。

泵在运转中,若其过流部分的局部区域 (通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气

泡的液体向前经叶轮内的高压区时,气泡周

围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同

时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击

作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几

千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。

在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不

能正常工作。离心泵最易发生气蚀的部位有:

a. 靠近叶片进口边缘的低压侧;

b. 压出室中蜗壳隔舌和导叶的靠近进口边缘低压侧;

c. 无前盖板的高比转数叶轮的叶梢外圆与壳体之间的密封间隙以及叶

梢的低压侧;

d. 多级泵中第一级叶轮。

提高离心泵抗气蚀性能有下列两种措施:

a.提高离心泵本身抗气蚀性能的措施

(1) 改进泵的吸入口至叶轮附近的结构设计。增大过流面积;

增大叶轮盖板进口段的曲率半径,减小液流急剧加速与降压;适当

减少叶片进口的厚度,并将叶片进口修圆,使其接近流线形,也可

以减少绕流叶片头部的加速与降压;提高叶轮和叶片进口部分表面

光洁度以减小阻力损失;将叶片进口边向叶轮进口延伸,使液流提

前接受作功,提高压力。

(2) 采用前置诱导轮,使液流在前置诱导轮中提前作功,以提高液流

压力。

(3) 采用双吸叶轮,让液流从叶轮两侧同时进入叶轮,则进口截面增

加一倍,进口流速可减少一倍。

(4) 设计工况采用稍大的正冲角,以增大叶片进口角,减小叶片进口

处的弯曲,减小叶片阻塞,以增大进口面积;改善大流量下的工作条件,

以减少流动损失。但正冲角不宜过大,否则影响效率。

(5) 采用抗气蚀的材料。实践表明,材料的强度、硬度、韧性越高,

化学稳定性越好,抗气蚀的性能越强。

b.提高进液装置有效气蚀余量的措施

(1) 增加泵前贮液罐中液面的压力,以提高有效气蚀余量。

(2) 减小吸上装置泵的安装高度。

(3) 将上吸装置改为倒灌装置。

(4) 减小泵前管路上的流动损失。如在要求范围尽量缩短管路,减小

管路中的流速,减少弯管和阀门,尽量加大阀门开度等。

循环水泵

循环水泵用来输送凝结器所需的冷却水和其他工业用水。要求泵的效率高且高效区尽量宽,一般设计点效率不低于87%,以降低厂用电。并要求泵的流量-轴功率曲线在泵的使用区域内尽量平缓,在运行中不能因为工况偏移而超出功率现象。

一、循环水泵的结构形式及特点

本机组采用长沙水泵厂引进美国英格索兰公司技术生产的系列斜流泵,可满足超超临界机组循环水泵的性能要求。和其他形式的循环水泵相比,这种立式泵具有以下特点:

(1)体积小,占地面积少,进水流到易施工,节省泵房基建投资。

(2)安全可靠,使用寿命长。

(3)效率高,其效率在85%—90%之间,且高校区域宽。

(4)结构简单合理,拆装方便,容易检修。

(5)泵流量扬程适应范围广。

(6)抗汽蚀性能好,可减少泵房开挖深度。

(7)轴功率曲线较平稳缓,泵在运行中不易出现因偏离设计工况而超功率

的现象。

立式斜流泵的轴封一般米用软填料密封,也可米用内部层状剪切型注入式软填料。前者价格较低,但寿命较短,轴套易磨损,后者价格高,寿命较长,轴套不易磨损。

泵的导轴承内衬为橡胶,其润滑由外接水或泵本体水来完成,导轴承的使用寿命应满足一个大修周期的要求。

本机组循环水泵输送淡水,叶轮叶轮室一般选用不锈钢,吸入喇叭口、

导叶体一般选用灰口铸铁,外筒体、内接管导流片、导流片接管、泵支撑板、电机支架等一般选用普通碳素钢焊接,泵主轴一般选用45号钢,导轴承一般选用丁橡胶做内衬,导轴承一般选用采用外接清洁水润滑,也可采用泵本体水来润滑。

二、循环水泵性能及结构

1. 本机组采用2台88LKXA-28型循环水泵,其型号意义为:88- 泵

口口径(英寸)、L-立式、K-转子可抽式、X-泵吐出口在基础层之下、A-设计顺序、28-扬程(m)

水泵叶轮为半开式,整体铸造而成。叶轮是泵的主要部件,其作用是在效率最高的情况下将机械能转化为输送液体的动能。吸入喇叭口设计成逐渐收缩的喇叭状,使输送介质在进入叶轮入口之前的液体流场速度分布均匀,且损失最小。导叶体由扭曲的导叶片与内、外层铸成一体,形成具有多个单独水流道的压力室,其作用是收集从叶轮中流出的液体,在损失最小的情况下使液流方向改变并把输送液体的速度能转化为压力能。上、中、下主轴采用套筒式联轴器联接,以减少联轴器的径向尺寸。泵的吐出口处装有翼型式导向筋的导流片,使水流按规定方向流动,并在此过程中使泵内的损失尽可能减少。

该泵共座式安装形式使水泵与电机的对中比较容易,驱动电机通过法兰型刚性联轴器与泵轴直接相连,联轴器销孔无需铰制,由联轴器联接螺栓紧固后所产生的摩擦力传递扭矩,是安装进一步简便。泵在启动和运行中产生的轴向推力(包括轴向水推力和转子的重量)由电机的推力轴承承受。

叶轮叶片锥面与叶轮室之间的间隙为0.8mm可以通过设置在泵联轴器和电机联轴器之间的轴端调整螺母予以调整或补偿,操作简便。

泵轴承采用赛龙内衬,在正常运行时,由泵本体所输送的液体润滑和冷却,无须外接水源,但由于泵的轴封为软填料密封,在泵启动前,须对泵的填料函处通润滑冷却水,当泵达到额定转速后,填料函处的外接水即可停止。

2. 泵主要零件说明如下:

1)吸入喇叭口

吸入喇叭口的作用是将吸水池中的液流均匀地导向叶轮,减少泵的吸入水力损失。吸入喇叭口用螺柱、螺母联接于外接管a。

2)叶轮室

叶轮室用螺柱与导叶体联接,叶轮室套着叶轮。在叶轮室外圆周上有一个凸耳,卡在外接管a的配套凹槽中,防止泵在运行中可抽部件的旋转。

3)叶轮

叶轮为开式、单吸整体结构,叶轮用键联接在轴上,并用锁环和四组螺栓、弹簧垫圈定位在轴上。

4)导叶体

导叶体将从叶轮中流出的液流收集并经外接管导向吐出弯管,导叶体内装有两个赛龙轴承。

*

1-吸入喇叭口2-叶轮室3-叶轮4-导叶体567.12-(下冲冲.上)外

接管8-轴承支架

9-吐出弯管10-导流片11-导流片接管13-安装垫板14-泵支撑

板15-电机支座

图12-2循环水泵的结构

5)轴套

上、中、下轴套及填料轴套是可以更换的。中、下轴套用键联接并用定位螺钉固定在下主轴、中主轴上。上轴套、填料轴套依次装在上主轴上,并

用轴端螺母并紧。在填料轴套与轴端螺母之间装有“O” 密封圈,以防液体沿上主轴表面渗漏。

6)赛龙轴承

泵轴承采用赛龙(Thordon)轴承,无需外接润滑水。充分考虑了本工程的循环水水质,可以保证在高含沙量的运行水质条件下轴承不磨损、不腐蚀。各类轴承比照见表。

各类轴承比照表

)润滑内接管

主要作用是支撑轴承支架,内接管上开有孔,水可以通过孔进入管内对导叶体内的两个轴承进行润滑。

8) 轴

泵组有三根轴,它们将电动机的能量传递给叶轮,并将叶轮运动产生的轴向力传给电机轴承承受。

9) 吐出弯管

吐出弯管上设有标准的吐出法兰,以联接管路系统,导流片装在其内。

10) 外接管

外接管共有4件,它是泵的外壳,支撑泵的可抽出部件。

11) 电机支座

电机支座是电机的支撑件,它的下法兰与泵支撑板联接,上法兰与电机联接。

12) 填料函体

填料函体安装在泵盖板上,上赛龙轴承和5圈填料都在此内,填料控制液体泄漏。

3?循环水泵电机

电动机具有F级及以上的绝缘,温升不超过B级绝缘使用的温升值;电动机绕组经真空浸渍处理(VPI);端电压在70%额定电压,电动机能直接启动,电动机能够在母线电压降低到65%额定电压时自动启动;电机在满载时能承受电源快切过程中短暂失电而不损坏。

电动机轴承温度:滚动轴承不超过90C,滑动轴承不超过80 C, 油温不超过65 C;电动机在热态下能承受150%额定电流,而不便形或损坏,过电流时间不少于30秒。

电动机在空载情况下,能承受提高转速至额定值的120%,历时2 分钟而不发生有害变形。泵组最大反转速度为120%额定速度,电动机能在15%额定转速的逆转速下顺利启动。

电动机为立式,采用全封闭水-空冷却或水-水冷却方式。

三、循环水泵的运行

1. 运行前的准备

(1)清理泵吸入池内所有杂物,并在泵运行时,防止有新的杂物继续进入泵的吸水池。

(2)检查泵吸入池内的水位是否在最小淹没深度以上,如小于规定值,则泵运行时可能会产生涡流并将空气带入泵内,引起振动或泵汽蚀,此时应增加泵的淹没深度。

(3)检查电机转向是否正确。

(4)检查填料的压紧程度,不要太紧或太松。启动外接水,由外接水润滑填料及轴承10分钟后,注意填料压盖的是否均匀,适当的松一些,泵启动后在调整填料的压紧程度,以有少量的水连续不断地从填料函处冒出为准。

2. 启动

做好运行前的准备后,可按下列顺序启动:

离心泵的基础知识

离心泵的基础知识 一、离心泵的基本构造是由六部分组成的 离心泵的基本构造是由六部分组成的分别是叶轮,泵体,泵轴,轴承,密封环,填料函。 1、叶轮是离心泵的核心部分,它转速高出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。 2、泵体也称泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。 3、泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。 4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出并且漂贱,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理! 5、密封环又称减漏环。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封环,密封的间隙保持在0.25~1.10mm之间为宜。 6、填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。填料函的作用主要是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流不流到外面来也不让外面的空气进入到泵内。始终保持水泵内的真空!当泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内使填料冷却!保持水泵的正常运行。所以在水泵的运行巡回检查过程中对填料函的检查是特别要注意!在运行600个小时左右就要对填料进行更换。 二、离心泵的过流部件 离心泵的过流部件有:吸入室,叶轮,压出室三个部分。叶轮室是泵的核心,也是流部件的核心。泵通过叶轮对液体的作功,使其能量增加。叶轮按液体流出的方向分为三类: (1)径流式叶轮(离心式叶轮)液体是沿着与轴线垂直的方向流出叶轮。 (2)斜流式叶轮(混流式叶轮)液体是沿着轴线倾斜的方向流出叶轮。 (3)轴流式叶轮液体流动的方向与轴线平行的。 叶轮按吸入的方式分为二类: (1)单吸叶轮(即叶轮从一侧吸入液体)。 (2)双吸叶轮(即叶轮从两侧吸入液体)。 叶轮按盖板形式分为三类: (1)封闭式叶轮。 (2)敞开式叶轮。 (3)半开式叶轮。 其中封闭式叶轮应用很广泛,前述的单吸叶轮双吸叶轮均属于这种形式。 三、离心泵的工作原理 离心泵的工作原理是:离心泵所以能把水送出去是由于离心力的作用。水泵在工作前,泵体和进水管必须罐满水行成真空状态,当叶轮快速转动时,叶片促使水很快旋转,旋转着的水在离心力的作用下从叶轮中飞去,泵内的水被抛出后,叶轮的中心部分形成真空区域。水原的水在大气压力(或水压)的

离心泵知识,性能参数及特性曲线(参考模板)

离心泵知识、性能参数与特性曲线要正确地选择和使用离心泵,就必需了解泵的性能和它们之间的相互关系。离心泵的主要性能参数有流量、压头、轴功率、效率等。离心泵性能间的关系通常用特性曲线来表示。 一、离心泵的概念:水泵是把原动机的机械能转换成抽送液体能量的机器。来增加液体的位能、压能、动能。原动机通过泵轴带动叶轮旋转,对液体作功,使其能量增加,从而使需要数量的液体,由吸入口经水泵的过流部件输送到要求的高处或要求压力的地方。 二、离心泵的基本构造 离心泵的基本构造是由六部分组成的,分别是:叶轮,吸液室,泵壳,转轴,托架,轴承及轴承箱,密封装置,基础台板等。 1、叶轮是离心泵的核心部分,它转速高输出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上

的的内外表面要求光滑,以减少水流的摩擦损失。 2、泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。 3、转轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。 4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。轴承的依托为轴承箱。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出,不利于散热;太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理! 5、密封装置。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封装置,密封的间隙保持在0.25~1.10mm之间为宜。

离心泵知识点汇总

离心泵知识点汇总 1、机泵维护保养内容有哪些? 认真执行岗位责任制及设备维护保养等规章制度。 设备润滑做到“五定”、“三级过滤”,润滑器具完整、清洁。 维护工具、安全设施、消防器材等齐全完好,置放齐整。 2、离心泵振动的原因有哪些? 转子不平衡。 泵轴与电机不对中,对轮胶圈老化。 轴承或密封环磨损过多,形成转子偏心。 泵抽空或泵内有气体。 吸入压力过低,使液体汽化或近于汽化。 轴向推力变大,引起串轴。 轴承和填料润滑不当,磨损过多。 轴承磨损或损坏。 叶轮局部堵塞或外部附属管线振动。 润滑油(脂)过多或过少。 机泵基础刚度不够,螺栓松动。 3、离心泵抽空时有什么现象? 运行中的泵开始抽空时,会突然发出噪音、振动,并伴有压力、流量的降低和电流减小。抽空严重时,泵会发生强烈振动,压力回零,泵中无液体打出。 4、泵在冬天为什么要防冻? 水在零度以下发生体积膨胀,如果留在泵体内的水不清理出去,低温下的体积膨胀产生的力量会使泵体胀裂,造成不必要的损坏。防冻的方法主要有以下几种:

排净闲置泵内的存水。 保持冷却水细水长流。 对泵保温或用蒸汽、热水伴热。 备用泵保持出入口流通。 5、泵冻了以后如何处理? 泵冻了以后,决不能用蒸汽直接吹,以防因泵体热胀不均而破裂。 泵冻了以后先用冷水浇,然后待盘动车,可以用蒸汽或热水浇淋。 6、离心泵的主要工作原理是什么? 电动机带动叶轮高速旋转,使液体产生离心力,由于离心力的作用,液体被甩入侧流道排出泵外,或进入下一级叶轮,从而使叶轮进口处压力降低,与作用在吸入液体的压力形成压差,压差作用在液体吸入泵内,由于离心泵不停的旋转,液体就源源不断的被吸入或排出。 7、润滑油(脂)有哪些作用? 润滑冷却作用、冲洗作用、密封作用、减振作用、保护作用、卸荷作用。 8、润滑油使用前要经过哪三级过滤? 第一级:润滑油原装桶与固定桶之间; 第二级:固定油桶与油壶之间; 第三级:油壶与加油点之间。 9、什么是设备润滑“五定”? 定点:按规定点加油; 定时:按规定时间给润滑部位加油,并定期换油; 定量:按消耗定量加油; 定质:根据不同的机型选择不同的润滑油,并保持油品质量合格; 定人:每一个加油部位必须有专人负责。

离心泵基础知识(正式版)

文件编号:TP-AR-L4331 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 离心泵基础知识(正式版)

离心泵基础知识(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一.离心泵的工作原理 驱动机通过泵轴带动叶轮旋转产生离心力,在离 心力作用下,液体沿叶片流道被甩向叶轮出口,液体经 蜗壳收集送入排出管。液体从叶轮获得能量,?使压力 能和速度能均增加,并依靠此能量将液体输送到工作 地点。 在液体被甩向叶轮出口的同时,叶轮入口中心处 形成了低压,?在吸液罐和叶轮中心处的液体之间就产 生了压差,吸液罐中的液体在这个压差作用下,不断地 经吸入管路及泵的吸入室进入叶轮中。

二、离心泵的结构及主要零部件 一台离心泵主要由泵体、叶轮、密封环、旋转轴、轴封箱等部件组成,有些离心泵还装有导轮、诱导轮、平衡盘等。 1.泵体:即泵的壳体,包括吸入室和压液室。 ①吸入室:它的作用是使液体均匀地流进叶轮。 ②压液室:它的作用是收集液体,并把它送入下级叶轮或导向排出管,与此同时降低液体的速度,使动能进一步变成压力能。?压液室有蜗壳和导叶两种形式。 2.叶轮:它是离心泵内传递能量给液体的唯一元件,叶轮用键固定于轴上,随轴由原动机带动旋转,通过叶片把原动机的能量传给液体。 叶轮分类: ①按照液体流入分类:单吸叶轮(在叶轮的一

离心泵基础知识

编号:SM-ZD-57755 离心泵基础知识 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

离心泵基础知识 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一.离心泵的工作原理 驱动机通过泵轴带动叶轮旋转产生离心力,在离心力作用下,液体沿叶片流道被甩向叶轮出口,液体经蜗壳收集送入排出管。液体从叶轮获得能量,?使压力能和速度能均增加,并依靠此能量将液体输送到工作地点。 在液体被甩向叶轮出口的同时,叶轮入口中心处形成了低压,?在吸液罐和叶轮中心处的液体之间就产生了压差,吸液罐中的液体在这个压差作用下,不断地经吸入管路及泵的吸入室进入叶轮中。 二、离心泵的结构及主要零部件 一台离心泵主要由泵体、叶轮、密封环、旋转轴、轴封箱等部件组成,有些离心泵还装有导轮、诱导轮、平衡盘等。 1.泵体:即泵的壳体,包括吸入室和压液室。 ①吸入室:它的作用是使液体均匀地流进叶轮。

离心泵的基本知识

泵的分类方法有以下三种:(一)按工作原理分类 1.容积式泵依靠泵内工作室容积大小作周期性地变化来输送液体的泵;2.叶片式泵依靠泵内高速旋转的叶轮把能量传给液体,从而输送液体的泵;3.其它类型泵依靠一种流体(液、气或汽)的静压能或动能来输送液体的泵。此类泵又称流体动力作用泵。 采用这种分类方法时,根据泵的结构又可分为以下几种。 (二)按泵产生的压力(扬程)分类 1.高压泵总扬程在600m以上; 2.中压泵总扬程为200~600ml 3.低压泵总扬程低于200m。 (三)按泵用处分类 第2节离心泵的工作原理及分类 一.离心泵的基本构成 离心泵的主要部件有:叶轮、转轴、吸入室、泵壳、轴封箱和密封环等,如图2-1所示。有些离心泵还装有导轮、诱导轮、平衡盘等。 离心泵的过流部件是吸入室、叶轮和蜗壳。其作用简述如下: (1)吸入室吸入室位于叶轮进口前,其作用是把液体从吸入管引入叶轮,要求液体吸入室的流动损失要小,并使液体流入叶轮时速度分布均匀。 (2)叶轮叶轮是离心泵的重要部件,液体就是从叶轮中得到能量的。对叶轮的要求损失最小的情况下,使单位重量的液体获得较高的能量。

(3)蜗壳蜗壳位于叶轮出口之后,其功用是把从叶轮内流出来的液体收集起来,并按一定要求送入下级叶轮或送入排出管。由于液体在流出叶轮时速度很高,为了减少后面的管路损失,液体在送入排出管以前,必须将其速度降低,把速度能转变成静压能,这个任务也要求蜗壳等转能装置来完成,而且要求蜗壳在完成上述两项任务时流动损失最小。 二.离心泵的工 图2—1 离心泵基本构件 作原 1一转轴2一轴封箱3一扩压管4一叶轮5一吸入室6一密封 理 离心泵是由原动机(电动机或汽轮机)带动叶轮高速旋转,使液体由 于离心力的作用而获得能量的液体输送设备,故名离心泵。 当原动机带动叶轮高速旋转时,充满在泵体内的液体,在离心力的作用下,从叶轮中心被抛向叶轮的外缘。在此过程中,液体获得了能量,提高了静压强,同时由于流速增大,动能也增加了。液体离开叶轮进入

离心泵基础知识

图 2-1 离心泵活页轮 2-2 离心泵 离心泵结构简单,操作容易,流量均匀,调节控制方便,且能适用于多种特 殊性质物料,因此离心泵是化工厂中最常用的液体输送机械。近年来,离心泵正 向着大型化、高转速的方向发展。 2.2.1 离心泵的主要部件和工作原理 一、离心泵的主要部件 1.叶轮 叶轮是离心泵的关键部件,它是由若干弯曲的叶片组成。叶轮的作用是将原 动机的机械能直接传给液体,提高液体的动能和静压能。 根据叶轮上叶片的几何形式,可将叶片分为后弯、径向和前弯叶片三种,由 于后弯叶片可获得较多的静压能,所以被广泛采用。 叶轮按其机械结构可分为闭式、半闭式和开式(即敞式)三种,如图2-1 所示。在叶片的两侧带有前后盖板的叶轮称为闭式叶轮(c 图);在吸入口侧无 盖板的叶轮称为半闭式叶轮(b 图);在叶片两侧无前后盖板,仅由叶片和轮毂 组成的叶轮称为开式叶轮(a 图)。由于闭式叶轮宜用于输送清洁的液体,泵的 效率较高,一般离心泵多采用闭式叶轮。 叶轮可按吸液方式不同,分为单吸式和双吸式两种。单吸式叶轮结构简单, 双吸式从叶轮两侧对称地吸入液体(见教材图2-3)。双吸式叶轮不仅具有较大

的吸液能力,而且可以基本上消除轴向推力。 2.泵壳 泵体的外壳多制成蜗壳形,它包围叶轮,在叶轮四周展开成一个截面积逐渐扩大的蜗壳形通道(见图2-2)。泵壳的作用有:①汇集液体,即从叶轮外周甩出的液体,再沿泵壳中通道流过,排出泵体;②转能装置,因壳内叶轮旋转方向与蜗壳流道逐渐扩大的方向一致,减少了流动能量损失,并且可以使部分动能转变为静压能。 若为了减小液体进入泵壳时的碰撞,则在叶轮与泵壳之间还可安装一个固定不动的导轮(见教材图2-4中3)。由于导轮上叶片间形成若干逐渐转向的流道,不仅可以使部分动能转变为静压能,而且还可以减小流动能量损失。 注意:离心泵结构上采用了具有后弯叶片的叶轮,蜗壳形的泵壳及导轮,均有利于动能转换为静压能及可以减少流动的能量损失。 3.轴封装置 离心泵工作时是泵轴旋转而泵壳不动,泵轴与泵壳之间的密封称为轴封。轴封的作用是防止高压液体从泵壳内沿间隙漏出,或外界空气漏入泵内。轴封装置保证离心泵正常、高效运转,常用的轴封装置有填料密封和机械密封两种。 二、离心泵的工作原理 装置简图如附图。 1.排液过程 离心泵一般由电动机驱动。它在启动前需先向泵壳内灌满被输送的液体(称为灌泵),启动后,泵轴带动叶轮及叶片间的液体高速旋转,在惯性离心力的作用下,液体从叶轮中心被抛向外周,提高了动能和静压能。进而泵壳后,由于流道逐渐扩大,液体的流速减小,使部分动能转换为静压能,最终以较高的压强从排出口进入排出管路。 2.吸液过程 当泵内液体从叶轮中心被抛向外周时,叶轮中心形成了低压区。由于贮槽液面上方的压强大于泵吸入口处的压强,在该压强差的作用下,液体便经吸入管路被连续地吸入泵内。 3.气缚现象 当启动离心泵时,若泵内未能灌满液体而存在大量气体,则由于空气的密度

离心泵的基础知识

离心泵的基础知识 一、离心泵的基本构造就是由六部分组成的 离心泵的基本构造就是由六部分组成的分别就是叶轮,泵体,泵轴,轴承,密封环,填料函。 1、叶轮就是离心泵的核心部分,它转速高出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。 2、泵体也称泵壳,它就是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。 3、泵轴的作用就是借联轴器与电动机相连接,将电动机的转距传给叶轮,所以它就是传递机械能的主要部件。 4、轴承就是套在泵轴上支撑泵轴的构件,有滚动轴承与滑动轴承两种。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的就是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出并且漂贱,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(就是否有杂质,油质就是否发黑,就是否进水)并及时处理! 5、密封环又称减漏环。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮与泵壳的所使用寿命,在泵壳内缘与叶轮外援结合处装有密封环,密封的间隙保持在0、25~1、10mm 之间为宜。 6、填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。填料函的作用主要就是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流不流到外面来也不让外面的空气进入到泵内。始终保持水泵内的真空!当泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内使填料冷却!保持水泵的正常运行。所以在水泵的运行巡回检查过程中对填料函的检查就是特别要注意!在运行600个小时左右就要对填料进行更换。 二、离心泵的过流部件 离心泵的过流部件有:吸入室,叶轮,压出室三个部分。叶轮室就是泵的核心,也就是流部件的核心。泵通过叶轮对液体的作功,使其能量增加。叶轮按液体流出的方向分为三类: (1)径流式叶轮(离心式叶轮)液体就是沿着与轴线垂直的方向流出叶轮。 (2)斜流式叶轮(混流式叶轮)液体就是沿着轴线倾斜的方向流出叶轮。 (3)轴流式叶轮液体流动的方向与轴线平行的。 叶轮按吸入的方式分为二类: (1) 单吸叶轮(即叶轮从一侧吸入液体)。 (2) 双吸叶轮(即叶轮从两侧吸入液体)。 叶轮按盖板形式分为三类: (1) 封闭式叶轮。 (2) 敞开式叶轮。 (3) 半开式叶轮。 其中封闭式叶轮应用很广泛,前述的单吸叶轮双吸叶轮均属于这种形式。 三、离心泵的工作原理 离心泵的工作原理就是:离心泵所以能把水送出去就是由于离心力的作用。水泵在工作前,泵体与进水管必须罐满水行成真空状态,当叶轮快速转动时,叶片促使水很快旋转,旋转着的水在离心力的作用下从叶轮中飞去,泵内的水被抛出后,叶轮的中心部分形成真空区域。水原的水在大气压力(或水压)的作用下通过管网压到了进水管内。这样循环不已,就可以实现连续抽水。在此值得一提的就是:离心泵启动前一定要向泵壳内充满水以后,方可启动,否则将造成泵体发热,震动,出水量减少,对水泵造成损坏(简称“气蚀”)造成

离心泵基础知识

2-2 离心泵 离心泵结构简单,操作容易,流量均匀,调节控制方便,且能适用于多种特殊性质物料,因此离心泵是化工厂中最常用的液体输送机械。近年来,离心泵正向着大型化、高转速的方向发展。 2.2.1 离心泵的主要部件和工作原理 图2-1 离心泵活页轮 一、离心泵的主要部件 1.叶轮 叶轮是离心泵的关键部件,它是由若干弯曲的叶片组成。叶轮的作用是将原动机的机械能直接传给液体,提高液体的动能和静压能。 根据叶轮上叶片的几何形式,可将叶片分为后弯、径向和前弯叶片三种,由于后弯叶片可获得较多的静压能,所以被广泛采用。 叶轮按其机械结构可分为闭式、半闭式和开式(即敞式)三种,如图2-1所示。在叶片的两侧带有前后盖板的叶轮称为闭式叶轮(c图);在吸入口侧无盖板的叶轮称为半闭式叶轮(b图);在叶片两侧无前后盖板,仅由叶片和轮毂组成的叶轮称为开式叶轮(a图)。由于闭式叶轮宜用于输送清洁的液体,泵的效率较高,一般离心泵多采用闭式叶轮。 叶轮可按吸液方式不同,分为单吸式和双吸式两种。单吸式叶轮结构简单,双吸式从叶轮两侧对称地吸入液体(见教材图2-3)。双吸式叶轮不仅具有较大

的吸液能力,而且可以基本上消除轴向推力。 2.泵壳 泵体的外壳多制成蜗壳形,它包围叶轮,在叶轮四周展开成一个截面积逐渐扩大的蜗壳形通道(见图2-2)。泵壳的作用有:①汇集液体,即从叶轮外周甩出的液体,再沿泵壳中通道流过,排出泵体;②转能装置,因壳内叶轮旋转方向与蜗壳流道逐渐扩大的方向一致,减少了流动能量损失,并且可以使部分动能转变为静压能。 若为了减小液体进入泵壳时的碰撞,则在叶轮与泵壳之间还可安装一个固定不动的导轮(见教材图2-4中3)。由于导轮上叶片间形成若干逐渐转向的流道,不仅可以使部分动能转变为静压能,而且还可以减小流动能量损失。 注意:离心泵结构上采用了具有后弯叶片的叶轮,蜗壳形的泵壳及导轮,均有利于动能转换为静压能及可以减少流动的能量损失。 3.轴封装置 离心泵工作时是泵轴旋转而泵壳不动,泵轴与泵壳之间的密封称为轴封。轴封的作用是防止高压液体从泵壳内沿间隙漏出,或外界空气漏入泵内。轴封装置保证离心泵正常、高效运转,常用的轴封装置有填料密封和机械密封两种。 二、离心泵的工作原理 装置简图如附图。 1.排液过程 离心泵一般由电动机驱动。它在启动前需先向泵壳内灌满被输送的液体(称为灌泵),启动后,泵轴带动叶轮及叶片间的液体高速旋转,在惯性离心力的作用下,液体从叶轮中心被抛向外周,提高了动能和静压能。进而泵壳后,由于流道逐渐扩大,液体的流速减小,使部分动能转换为静压能,最终以较高的压强从排出口进入排出管路。 2.吸液过程 当泵内液体从叶轮中心被抛向外周时,叶轮中心形成了低压区。由于贮槽液面上方的压强大于泵吸入口处的压强,在该压强差的作用下,液体便经吸入管路被连续地吸入泵内。 3.气缚现象 当启动离心泵时,若泵内未能灌满液体而存在大量气体,则由于空气的密度

泵的基础知识大全讲述讲解

泵的基础知识大全 一、什么是泵? 泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加。 泵主要用来输送水、油、酸碱液、乳化液、悬乳液和液态金属等液体,也可输送液、气混合物及含悬浮固体物的液体。 泵通常可按工作原理分为容积式泵、动力式泵和其他类型泵三类。除按工作原理分类外,还可按其他方法分类和命名。如,按驱动方法可分为电动泵和水轮泵等;按结构可分为单级泵和多级泵;按用途可分为锅炉给水泵和计量泵等;按输送液体的性质可分为水泵、油泵和泥浆泵等。 泵的各个性能参数之间存在着一定的相互依赖变化关系,可以画成曲线来表示,称为泵的特性曲线,每一台泵都有自己特定的特性曲线。二、泵的定义与历史来源 输送液体或使液体增压的机械。广义上的泵是输送流体或使其增压的机械,包括某些输送气体的机械。泵把原动机的机械能或其他能源的能量传给液体,使液体的能量增加。 水的提升对于人类生活和生产都十分重要。古代已有各种提水器具,如埃及的链泵(前17 世纪)、中国的桔槔(前17世纪)、辘轳(前11 世纪)、水车(公元1 世纪),以及公元前3 世纪古希腊阿基米德发 明的螺旋杆等。公元前200 年左右,古希腊工匠克特西比 乌斯发明了最原始的活塞泵-灭火泵。早在1588年就有了关于4 叶片 滑片泵的记载,以后陆续出现了其他各种回转泵。1689 年,法国的D.帕

潘发明了4叶片叶轮的蜗壳离心泵。1818年,美国出现了具有径向直叶 片、半开式双吸叶轮和蜗壳的离心泵。1840?1850年,美国的H.R.沃辛顿发明了泵缸和蒸汽缸对置的蒸汽直接作用的活塞泵,标志着现代活塞泵的形成。1851?1875 年,带有导叶的多级离心泵相继发明,使发展高扬程离心泵成为可能。随后,各种泵相继问世。随着各种先进技术的应用,泵的效率逐步提高,性能范围和应用也日渐扩大。 三、泵的分类依据 泵的种类繁多,按工作原理可分为:①动力式泵,又叫叶轮式泵或叶片式泵,依靠旋转的叶轮对液体的动力作用,把能量连续地传递给液体,使液体的动能(为主)和压力能增加,随后通过压出室将动能转换为压力能,又可分为离心泵、轴流泵、部分流泵和旋涡泵等。②容积式泵,依靠包容液体的密封工作空间容积的周期性变化,把能量周期性地传递给液体,使液体的压力增加至将液体强行排出,根据工作元件的运动形式又可分为往复泵和回转泵。③其他类型的泵,以其他形式传递能量。如射流泵依靠高速喷射的工作流体将需输送的流体吸入泵后混合,进行动量交换以传递能量;水锤泵利用制动时流动中的部分水被升到一定高度传递能量;电磁泵是使通电的液态金属在电磁力作用下产生流动而实现输送。另 外,泵也可按输送液体的性质、驱动方法、结构、用途等进行分类。 四、泵在各个领域中的应用 从泵的性能范围看,巨型泵的流量每小时可达几十万立方米以上,而微型泵的流量每小时则在几十毫升以下;泵的压力可从常压到高达19.61Mpa(200kgf/cm2) 以上;被输送液体的温度最低达-200 摄氏度以下,最高可达800 摄氏度以上。泵输送液体的种类繁多,诸如输送水(清

泵的基本知识

泵的基本知识 泵是一种输送液体的流体机械,它把原动机的机械能或其他能源的能量传递给液体,使液体的能量(位能、压力能或动能)增加。 从定义可看出泵的主要用途:泵主要用来输送液体(泵总成在工作时输送的泥浆)泵输送液体的种类繁多,诸如输送水(清水、污水等)、油液、酸碱液、悬浮液、和液态金属等。 泵的性能参数主要有流量和扬程,此外还有轴功率、转速和必需汽蚀裕量。 流量是指单位时间内通过泵出口输出的液体量,一般采用体积流量。 扬程是单位重量输送液体从泵入口至出口的能量增量,对于容积式泵,能量增量主要体现在压力能增加上,所以通常以压力增量代替扬程来表示。即泵抽送液体的液柱高度。 按照工作原理泵大致分为三类: 1、动力式泵,又称叶轮式泵或叶片式泵。 动力式泵,依靠快速旋转的叶轮对液体的作用力,将机械能传递给液体,使其动能和压力能增加,然后再通过泵缸,将大部分动能转换为压力能而实现输送。离心泵是最常见的动力式泵。 在一定转速下产生的扬程有一限定值,扬程随流量而改变;工作稳定,输送连续,流量和压力无脉动;一般无自吸能力,需要将泵缸内先灌满液体或将管路抽成真空后才能开始工作;适宜输送粘度很小的清洁液体,特殊设计的泵可输送泥浆、污水等或水输固体物。动力式泵主要用于给水、排水、灌溉、流程液体输送、电站蓄能、液压传动和船舶喷射推进等。 2、容积式泵,主要有:齿轮泵、活塞泵、柱塞泵、隔膜泵、螺杆泵等。 容积式泵是依靠工作元件在泵缸内作往复或回转运动,使工作容积交替地增大和缩小,以实现液体的吸入和排出。 工作元件作往复运动的容积式泵称为往复泵,作回转运动的称为回转泵。 齿轮泵和螺杆泵属于回转泵;活塞泵、柱塞泵、隔膜泵属于往复泵。 往复泵的吸入和排出过程在同一泵缸内交替进行,并由吸入阀和排出阀加以控制;回转泵则是通过齿轮、螺杆、叶形转子或滑片等工作元件的旋转作用,迫使液体从吸入侧转移到排出侧。 容积式泵在一定转速或往复次数下的流量是一定的,几乎不随压力而改变。 ①往复泵的流量和压力有较大脉动,需要采取相应的消减脉动措施;回转泵一般无脉动或只有小的脉动;

离心泵基础知识

编号:SY-AQ-05570 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 离心泵基础知识 Basic knowledge of centrifugal pump

离心泵基础知识 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 一.离心泵的工作原理 驱动机通过泵轴带动叶轮旋转产生离心力,在离心力作用下,液体沿叶片流道被甩向叶轮出口,液体经蜗壳收集送入排出管。液体从叶轮获得能量,?使压力能和速度能均增加,并依靠此能量将液体输送到工作地点。 在液体被甩向叶轮出口的同时,叶轮入口中心处形成了低压,?在吸液罐和叶轮中心处的液体之间就产生了压差,吸液罐中的液体在这个压差作用下,不断地经吸入管路及泵的吸入室进入叶轮中。 二、离心泵的结构及主要零部件 一台离心泵主要由泵体、叶轮、密封环、旋转轴、轴封箱等部件组成,有些离心泵还装有导轮、诱导轮、平衡盘等。 1.泵体:即泵的壳体,包括吸入室和压液室。 ①吸入室:它的作用是使液体均匀地流进叶轮。

②压液室:它的作用是收集液体,并把它送入下级叶轮或导向排出管,与此同时降低液体的速度,使动能进一步变成压力能。?压液室有蜗壳和导叶两种形式。 2.叶轮:它是离心泵内传递能量给液体的唯一元件,叶轮用键固定于轴上,随轴由原动机带动旋转,通过叶片把原动机的能量传给液体。 叶轮分类: ①按照液体流入分类:单吸叶轮(在叶轮的一侧有一个入口)和双吸叶轮(液体从叶轮的两侧对称地流到叶轮流道中)。 ②按照液体相对于旋转轴线的流动方向分类:径流式叶轮、轴流式叶轮和混流式叶轮。 ③按照叶轮的结构形式分类:闭式叶轮、开式叶轮和半开式叶轮。 3.轴:是传递机械能的重要零件,?原动机的扭矩通过它传给叶轮。泵轴是泵转子的主要零件,轴上装有叶轮、轴套、平衡盘等零件。泵轴靠两端轴承支承,在泵中作高速回转,因而泵轴要承载能力大、耐磨、耐腐蚀。泵轴的材料一般选用碳素钢或合金钢并经调质处理。

常用泵的基础知识讲述

泵的维护保养 离心泵 一、日常维护保养 1、离心泵管路及结合处有无松动现象。用手转动离心泵,试看离心泵是否灵活。 2、支承体内加入轴承润滑机油,观察油位应在油标的中心线处,润滑油应及时更换或补充。 3、离心泵泵体的引水螺塞,灌注引水是否严密。 4、打开出水管路的闸阀和出口压力表。 5、电机,试看电机转向是否正确。

6、当离心泵正常运转后,打开出口压力表视显示适当压力后,逐渐打开闸阀,同时检查电机负荷情况。 7、控制离心泵的流量和扬程在标牌上注明的范围内,以保证离心泵在最高效率点运转,才能获得最大的节能效果。 8、泵在运行过程中,轴承温度不能超过环境温度35℃,最高温度不得超过80℃。 9、离心泵有异常声音应立即停车检查原因。 10、要停止使用时,先关闭闸阀、压力表,然后停止电机。 11、在工作第一个月内,经100小时更换润滑油,以后每隔500小时,换油一次。 12、填料压盖,保证填料室内的滴漏情况正常(以成滴漏出为宜)。 13、检查轴承、机封、轴套磨损情况,必要时进行更换。 14、在寒冬季节使用时,停车后,需将泵体下部放水螺塞拧开将介质放净。防止冻裂。 二、离心泵常见故障及排除方法 设备维护小常识 设备专业点检提示 点:设备重要部位点、工装模具 期:定期检查 标:按标准检查 录:检查、处理均有记录 析:分析故障记录和发展趋势,倾向管理 修:及时做好预防和事后维修

管道泵 一、安装说明 1、安装前应检查机组紧固件有无松动现象,泵体流道有无异物堵塞,以免水泵运行时损坏叶轮和泵体。 2、安装时管道重量不应加在水泵上,以免水泵变形。 3、安装时必须拧紧地脚螺栓,以免启动时振动对泵的性能产生影响。 4、为了维修方便和使用安全,在泵的进出口管路上各安装一只调节阀及在泵出口附近安装一颗压力表,以保证在额定扬程和流量范围内运行,确保泵正常运行,延长水泵的使用寿命。 5、安装后拨动泵轴,叶轮应无磨损声或卡死现象,否则应将拆开检查原因, 6、泵分硬性联接安装和柔性联接安装两种(见联接方式) 二、启动与停车 起动前准备: 1、试验电机转向是否正确,从电机顶部往泵看为顺时针旋转,试验时间要短,以免损坏机械密封。 2、打开排气阀使液体充满整个泵体,待满后关闭排气阀。 3、检查各部位是否正常。 4、用手盘动泵以使润滑液进入机械密封端面。 5、高温型应先进行预热,升温速度50℃/小时,以保证各部件受热均匀。 起动: 1、全开进口阀门。 2、关闭突出管路阀门。 3、起动电机,观察泵运行是否正常。

离心泵基础知识(新版)

离心泵基础知识(新版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0430

离心泵基础知识(新版) 一.离心泵的工作原理 驱动机通过泵轴带动叶轮旋转产生离心力,在离心力作用下,液体沿叶片流道被甩向叶轮出口,液体经蜗壳收集送入排出管。液体从叶轮获得能量,?使压力能和速度能均增加,并依靠此能量将液体输送到工作地点。 在液体被甩向叶轮出口的同时,叶轮入口中心处形成了低压,?在吸液罐和叶轮中心处的液体之间就产生了压差,吸液罐中的液体在这个压差作用下,不断地经吸入管路及泵的吸入室进入叶轮中。 二、离心泵的结构及主要零部件 一台离心泵主要由泵体、叶轮、密封环、旋转轴、轴封箱等部件组成,有些离心泵还装有导轮、诱导轮、平衡盘等。

1.泵体:即泵的壳体,包括吸入室和压液室。 ①吸入室:它的作用是使液体均匀地流进叶轮。 ②压液室:它的作用是收集液体,并把它送入下级叶轮或导向排出管,与此同时降低液体的速度,使动能进一步变成压力能。?压液室有蜗壳和导叶两种形式。 2.叶轮:它是离心泵内传递能量给液体的唯一元件,叶轮用键固定于轴上,随轴由原动机带动旋转,通过叶片把原动机的能量传给液体。 叶轮分类: ①按照液体流入分类:单吸叶轮(在叶轮的一侧有一个入口)和双吸叶轮(液体从叶轮的两侧对称地流到叶轮流道中)。 ②按照液体相对于旋转轴线的流动方向分类:径流式叶轮、轴流式叶轮和混流式叶轮。 ③按照叶轮的结构形式分类:闭式叶轮、开式叶轮和半开式叶轮。 3.轴:是传递机械能的重要零件,?原动机的扭矩通过它传给叶

离心泵的基础知识

离心泵得基础知识 一、离心泵得基本构造就是由六部分组成得 离心泵得基本构造就是由六部分组成得分别就是叶轮,泵体,泵轴,轴承,密封环,填料函。 1、叶轮就是离心泵得核心部分,它转速高出力大,叶轮上得叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上得内外表面要求光滑,以减少水流得摩擦损失。 2、泵体也称泵壳,它就是水泵得主体。起到支撑固定作用,并与安装轴承得托架相连接。 3、泵轴得作用就是借联轴器与电动机相连接,将电动机得转距传给叶轮,所以它就是传递机械能得主要部件。 4、轴承就是套在泵轴上支撑泵轴得构件,有滚动轴承与滑动轴承两种。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4得体积太多会发热,太少又有响声并发热!滑动轴承使用得就是透明油作润滑剂得,加油到油位线。太多油要沿泵轴渗出并且漂贱,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承得温度最高在85度一般运行在60度左右,如果高了就要查找原因(就是否有杂质,油质就是否发黑,就是否进水)并及时处理! 5、密封环又称减漏环。叶轮进口与泵壳间得间隙过大会造成泵内高压区得水经此间隙流向低压区,影响泵得出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮与泵壳得所使用寿命,在泵壳内缘与叶轮外援结合处装有密封环,密封得间隙保持在0、25~1、10mm 之间为宜。 6、填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。填料函得作用主要就是为了封闭泵壳与泵轴之间得空隙,不让泵内得水流不流到外面来也不让外面得空气进入到泵内。始终保持水泵内得真空!当泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内使填料冷却!保持水泵得正常运行。所以在水泵得运行巡回检查过程中对填料函得检查就是特别要注意!在运行600个小时左右就要对填料进行更换。 二、离心泵得过流部件 离心泵得过流部件有:吸入室,叶轮,压出室三个部分。叶轮室就是泵得核心,也就是流部件得核心。泵通过叶轮对液体得作功,使其能量增加。叶轮按液体流出得方向分为三类: (1)径流式叶轮(离心式叶轮)液体就是沿着与轴线垂直得方向流出叶轮。 (2)斜流式叶轮(混流式叶轮)液体就是沿着轴线倾斜得方向流出叶轮。 (3)轴流式叶轮液体流动得方向与轴线平行得。 叶轮按吸入得方式分为二类: (1) 单吸叶轮(即叶轮从一侧吸入液体)。 (2) 双吸叶轮(即叶轮从两侧吸入液体)。 叶轮按盖板形式分为三类: (1) 封闭式叶轮。 (2) 敞开式叶轮。 (3) 半开式叶轮。 其中封闭式叶轮应用很广泛,前述得单吸叶轮双吸叶轮均属于这种形式。 三、离心泵得工作原理 离心泵得工作原理就是:离心泵所以能把水送出去就是由于离心力得作用。水泵在工作前,泵体与进水管必须罐满水行成真空状态,当叶轮快速转动时,叶片促使水很快旋转,旋转着得水在离心力得作用下从叶轮中飞去,泵内得水被抛出后,叶轮得中心部分形成真空区域。水原得水在大气压力(或水压)得作用下通过管网压到了进水管内。这样循环不已,就可以实现连续抽水。在此值得一提得就是:离心泵启动前一定要向泵壳内充满水以后,方可启动,否则将造成泵体发热,震动,出水量减少,对水泵造成损坏(简称“气蚀”)造成设备事故!

离心泵的基础知识

泵的分类方法有以下三种: (一)按工作原理分类 1.容积式泵依靠泵内工作室容积大小作周期性地变化来输送液体的泵; 2.叶片式泵依靠泵内高速旋转的叶轮把能量传给液体,从而输送液体的泵; 3.其它类型泵依靠一种流体(液、气或汽)的静压能或动能来输送液体的泵。此类泵又称流体动力作用泵。 采用这种分类方法时,根据泵的结构又可分为以下几种。

(二)按泵产生的压力(扬程)分类 1.高压泵总扬程在600m以上; 2.中压泵总扬程为200~600ml 3.低压泵总扬程低于200m。 (三)按泵用处分类 第2节离心泵的工作原理及分类 一.离心泵的基本构成 离心泵的主要部件有:叶轮、转轴、吸入室、泵壳、轴封箱和密封环等,如图2-1所示。有些离心泵还装有导轮、诱导轮、平衡盘等。 离心泵的过流部件是吸入室、叶轮和蜗壳。其作用简述如下: (1)吸入室吸入室位于叶轮进口前,其作用是把液体从吸入管引入叶轮,要求液体吸入室的流动损失要小,并使液体流入叶轮时速度分布均匀。 (2)叶轮叶轮是离心泵的重要部件,液体就是从叶轮中得到能量的。对叶轮的要求损失最小的情况下,使单位重量的液体获得较高的能量。 (3)蜗壳蜗壳位于叶轮出口之后,其功用是把从叶轮内流出来的液体收集起来,并按一定要求送入下级叶轮或送入排出管。由于液体在流出叶轮时速度很高,为了减少后面的管路损失,液体在送入排出管以前,必须将其速度降低,把速度能转变成静压能,这个任务也要求蜗壳等 转能装置来完成,而且要求蜗壳在完成上述两项任务时流动损失最小。

二.离心泵的工 作原 理 离心泵是由原动机(电动机或汽轮机)带动叶轮高速旋转,使液体由于离心力的作用而获得能量的液体输送设备,故名离心泵。 当原动机带动叶轮高速旋转时,充满在泵体内的液体,在离心力的作用下,从叶轮中心被抛向叶轮的外缘。在此过程中,液体获得了能量,提高了静压强,同时由于流速增大,动能也增加了。液体离开叶轮进入泵壳,由于流道逐渐加宽、液体的速度逐渐降低,便将其中部分动能转变为静压能,这样又进一步提高液体的静压强,于是液体以较高的压强进入排出管路。 当泵内液体在高速旋转下产生离心现象而趋向叶轮外缘时,在叶轮中心形成低压区,这样造成贮槽液面与叶轮中心处的压强差。在这个压强差的作用下,液体便沿着吸入管连续不断地进入叶轮中心,以补充被排出的液体。这样,只要叶轮的转动不停,液体就会连续不断地被吸入和压出,从而达到输送的目的。 离心泵的叶轮是按输送液体设计的,对气体不能施加足够的离心力,假如泵内存在空气,由于空气的重度远小于液体,产生的离心力亦小,此时叶轮中心只能造成很小的负压,形不成所需的压强差,液体便不能进入到叶轮中心,泵也就排不出液体,这种现象称为“气缚"。所以,离心泵没有自吸能力,启动前必须要灌泵。 (二)、离心泵的型号 . 1.水泵 输送介质为水; 常用的三种水泵型号的表示方法如下: (1)4BA —12型水泵 型号的意义: 4—进口管直径,单位为英寸; BA —表示该泵的结构特点是悬臂式,即水泵是从泵座上伸悬出来的; 12—该泵的比转数的1/10,即该泵的比转数为l20。 DFjY160-120×10 150AY Ⅱ150B 第3节 离心泵参数 在石油化工生产中,离心泵是使用最广泛的液体输送机械。其特点是结构简单、流量均匀、 图2—1 离心泵基本构件 1一转轴 2一轴封箱 3一扩压管 4一叶轮 5一吸入室 6一密封

离心泵基础知识

2-2 离心泵 离心泵结构简单,操作容易,流量均匀,调节控制方便,且能适用于多种特殊性质物料,因此离心泵就是化工厂中最常用的液体输送机械。近年来,离心泵正向着大型化、高转速的方向发展。 2、2、1 离心泵的主要部件与工作原理 图2-1 离心泵活页轮 一、离心泵的主要部件 1.叶轮 叶轮就是离心泵的关键部件,它就是由若干弯曲的叶片组成。叶轮的作用就是将原动机的机械能直接传给液体,提高液体的动能与静压能。 根据叶轮上叶片的几何形式,可将叶片分为后弯、径向与前弯叶片三种,由于后弯叶片可获得较多的静压能,所以被广泛采用。 叶轮按其机械结构可分为闭式、半闭式与开式(即敞式)三种,如图2-1所示。在叶片的两侧带有前后盖板的叶轮称为闭式叶轮(c图);在吸入口侧无盖板的叶轮称为半闭式叶轮(b图);在叶片两侧无前后盖板,仅由叶片与轮毂组成的叶轮称为开式叶轮(a图)。由于闭式叶轮宜用于输送清洁的液体,泵的效率较高,一般离心泵多采用闭式叶轮。 叶轮可按吸液方式不同,分为单吸式与双吸式两种。单吸式叶轮结构简单,双吸式从叶轮两侧对称地吸入液体(见教材图2-3)。双吸式叶轮不仅具有较大的吸液能力,而且可以基本上消除轴向推力。 2.泵壳

泵体的外壳多制成蜗壳形,它包围叶轮,在叶轮四周展开成一个截面积逐渐扩大的蜗壳形通道(见图2-2)。泵壳的作用有:①汇集液体,即从叶轮外周甩出的液体,再沿泵壳中通道流过,排出泵体;②转能装置,因壳内叶轮旋转方向与蜗壳流道逐渐扩大的方向一致,减少了流动能量损失,并且可以使部分动能转变为静压能。 若为了减小液体进入泵壳时的碰撞,则在叶轮与泵壳之间还可安装一个固定不动的导轮(见教材图2-4中3)。由于导轮上叶片间形成若干逐渐转向的流道,不仅可以使部分动能转变为静压能,而且还可以减小流动能量损失。 注意:离心泵结构上采用了具有后弯叶片的叶轮,蜗壳形的泵壳及导轮,均有利于动能转换为静压能及可以减少流动的能量损失。 3.轴封装置 离心泵工作时就是泵轴旋转而泵壳不动,泵轴与泵壳之间的密封称为轴封。轴封的作用就是防止高压液体从泵壳内沿间隙漏出,或外界空气漏入泵内。轴封装置保证离心泵正常、高效运转,常用的轴封装置有填料密封与机械密封两种。 二、离心泵的工作原理 装置简图如附图。 1.排液过程 离心泵一般由电动机驱动。它在启动前需先向泵壳内灌满被输送的液体(称为灌泵),启动后,泵轴带动叶轮及叶片间的液体高速旋转,在惯性离心力的作用下,液体从叶轮中心被抛向外周,提高了动能与静压能。进而泵壳后,由于流道逐渐扩大,液体的流速减小,使部分动能转换为静压能,最终以较高的压强从排出口进入排出管路。 2.吸液过程 当泵内液体从叶轮中心被抛向外周时,叶轮中心形成了低压区。由于贮槽液面上方的压强大于泵吸入口处的压强,在该压强差的作用下,液体便经吸入管路被连续地吸入泵内。 3.气缚现象 当启动离心泵时,若泵内未能灌满液体而存在大量气体,则由于空气的密度远小于液体的密度,叶轮旋转产生的惯性离心力很小,因而叶轮中心处不能形成吸入液体所需的真空度,这种虽启动离心泵,但不能输送液体的现象称为气缚。因

相关文档
最新文档