水性聚氨酯的合成

水性聚氨酯的合成
水性聚氨酯的合成

水性聚氨酯树脂和其他树脂一样, 其最终制品的性能是由内部结构决定的。阳离子型水性聚氨酯是将叔胺官能团引入到聚氨酯的大分子中而制得的。通常用含叔胺基的二醇作扩链剂, 用烷基化剂或合适的酸进行季铵化而得到离子基团。和普通的聚氨酯一样可用不同种类的多元醇、不同结构的二异氰酸酯、不同类型的扩链剂、不同类型的中和剂和采用不同的合成方法进行合成。阳离子型水性聚氨酯的骨架上带有阳离子基团, 这就使其具有了一些独特的性能, 在皮革、涂料、胶粘剂、纺织和造纸等领域有着较好的应用。此外, 阳离子水性聚氨酯对水的硬度不敏感, 且可以在酸性条件下使用。因此, 开发出性能优异的阳离子水性聚氨酯, 其市场前景非常广阔。

1 阳离子水性聚氨酯的合成 1.1 合成机理

合成阳离子水性聚氨酯时, 一般通过两种途径引入阳离子。一是用卤素元素化合物引入阳离子,该机理先将聚醚或者聚酯二醇与二异氰酸酯制成预聚体, 加入溶剂降低粘度后, 加入卤素元素化合物( 如2,3-二溴丁二酸) 扩链, 然后再加入溶剂降低粘度, 加入三乙胺季铵化, 搅拌离子化, 将离子化后的PU 分散到水中, 高速剪切乳化, 最后蒸除溶剂。该机理的季铵化是SN2(亲核取代反应) 二是用叔胺化合物引入阳离子, 该机理首先将聚醚或者聚酯二醇与二异氰酸酯制成预聚体, 加入溶剂降低粘度后, 用叔胺化合物( 如N- 甲基二乙醇胺) 扩链, 再加入溶剂降低粘度, 然后加入离子化试剂如乙酸, 搅拌离子化。将离子化后的PU 分散到水中, 高速剪切乳化, 最后蒸除溶剂。该机理的季铵化是酸碱中和。

1.2 合成方法阳离子水性聚氨酯的合成与阴离子水性聚氨酯的合成最大的不同就是阳离子水性聚氨酯需加酸成盐, 因此一般不在水中用胺扩链, 所以阳离子水性聚氨酯一般不用阴离子水性聚氨酯常用的预聚体混合法。从国内外近年来的研究来看, 阳离子水性聚氨酯的合成主要有熔融法和丙酮法。

熔融法是无溶剂制备水性聚氨酯的重要方法。它把二异氰酸酯的加聚反应和氨基的缩聚反应紧密地结合起来。反应的第一步是合成含亲水基团的端异氰酸酯基预聚体。然后在高温下, 该预聚体和过量的脲反应生成缩二脲。该产品分散在水中之后, 再和甲醛反应生成甲醇基, 通过降低pH值可促进缩聚反应进行扩链和交联。熔融法的优点是不需要大量溶剂, 避免了相对分子质量快速增长而带来的问题,工艺简单, 易于控制, 也不需要特殊设备。但是用该法合成水性聚氨酯时需要强力搅拌, 因为即使在100 ℃左右的温度下, 预聚体的粘度也很高。用该法制得的水性聚氨酯通常是枝化的和相对分子质量较低的树脂。乳液中残存的甲醛气味比较大, 且有较强的毒性, 在环保要求越来越高的今天, 它将被摒弃。

丙酮法也叫溶液法。就是在低沸点的能和水混合的惰性溶剂(如丙酮、甲乙酮、四氢呋喃等) 中, 制得含亲水基团的高相对分子质量的聚氨酯乳液, 然后用水将该溶液稀释。先形成油包水的以溶剂为连续相的乳液, 然后再加入大量的水, 发生相倒转, 水变成连续相并形成分散液。脱去溶剂后得到无溶剂的高相对分子质量的聚氨酯- 脲的分散液。该法操作简单, 重复性好。

1.3 原料选择 1.3.1 多异氰酸酯类化合物的选择

二异氰酸酯有TDI(甲苯二异氰酸酯)、MDI(二苯基甲烷二异氰酸酯)、IPDI(异佛尔酮二异氰酸酯) 、HDI(六亚甲基二异氰酸酯) 等10余种产品, 其中的脂肪类二异氰酸酯(HDI,IPDI等) 抗老化性能好, 尤其在水性聚氨酯固化过程中的选择性比较好,但芳香族比脂肪族异氰酸酯的PU 抗热氧化性好,因为芳环上的氢较难被氧化。

1.3.2 低聚物多元醇的选择

常用的聚二醇有聚酯二醇和聚醚二醇, 相对分子质量通常在600~3000之间。一般来说, 不同的聚二醇与二异氰酸酯制备的PU 性能各不相同。聚酯型PU 比聚醚型PU 具有较高的强度和硬度, 这归因于酯基的极性大, 内聚能(12.2kJ/m) 比醚基的内聚能(4.2kJ/m) 高。软段分子间作用力大, 内聚强度较高, 机械强度也就越高。并且由于酯键的极性作用, 与极性基材的粘附力比聚醚型优良, 抗热氧化性也比聚醚型好。然而, 由于聚醚型PU 醚基较易旋转,具有较好的柔顺性, 有优越的低温性能, 并且聚醚中不存在相对易水解的酯基, 其PU比聚酯型耐水解性好。

1.3.3 亲水扩链剂的选择

和阴离子水性聚氨酯显著不同, 在合成叔胺化合物引入阳离子时, 先是在聚氨酯链段上引入叔胺基团, 再进行叔胺化(中和)。而季铵化工序较为复杂, 这是阳离子水性聚氨酯发展落后于阴离子水性聚氨酯的原因之一。叔胺化合物有二乙醇胺、三乙醇胺、N-甲基二乙醇胺(MDEA)、N-乙基二乙醇胺(N-EDEA)、N-丙基二乙醇胺(N-PDEA)、N-苄基二乙醇胺(N-BDEA)、叔丁基二乙醇胺(t-BuDEAt)、二甲基乙醇胺、双(2-羟乙基)苄基苯胺(BHBA) 和双(2-羟丙基)苯胺(BHPA)等, 国内用的主要为MDEA, 其反应活性适中。

2 各种因素对阳离子水性聚氨酯性能的影响 2.1 -NCO含量对性能的影响

有研究指出, 随着-NCO含量的增长, 聚氨酯预聚体相对分子质量逐渐减小。又因为异氰酸酯基团与水反应能生成极性较强的取代脲, 故聚氨酯乳液的稳定性与-NCO质量分数也有一定的关系: 当-NCO含量超过4%时储存期明显缩短。而且-NCO含量的变化对膜的机械物理性能也有影响: 随着-NCO含量的增大, 干膜的邵氏硬度和撕裂强度均提高, 300%模量和拉伸强度则呈现出先增后降的相同规律, 且均在质量分数为4.5%时出现峰值。而且随着-NCO含量的升高, 吸水率也明显增加。

2.2 预聚物中n(-NCO)/n(-OH)比值对性能的影响随着n(-NCO)/n(-OH)比值的增大, 膜的拉伸强度和硬度都在递增, 而断裂伸长率却在降低。

2.3 中和剂的影响

中和剂对乳液的粘度影响很小, 但对乳液的分散状态和粒度有影响。 2.4 亲水扩链剂用量的影响粒径与MDEA 含量之间的关系呈渐进线降低; 乳液粘度在MDEA含量低时增加较慢, 在MDEA含量高时增加较快。涂膜的强度随MDEA含量增加而增加, 而断裂伸长率随其增加而下降。这可能是因为随着MDEA 用量的增加, 聚氨酯分子链中刚性链段含量增加, 极性

增强, 氢键作用以及离子性物理交联增加, 结果使得拉伸强度增加和断裂伸长率下降。

影响阳离子水性聚氨酯性能的因素还有很多,如亲水扩链剂的选择, 加料方式及温度等, 这里不再赘述。

3 阳离子水性聚氨酯的改性

水性聚氨酯以其无毒、不易燃和不污染环境等优点, 愈来愈受到消费者的青睐, 被用作纸张、木材、纤维和皮革等的表面涂饰。其中阳离子型水性聚氨酯对疏水性的聚酯和丙烯基类纤维具有良好的湿润性, 在化学纤维整理和复合中应用较广, 但与溶剂型聚氨酯相比, 由于存在亲水性基团, 传统的单组分水性聚氨酯涂料涂膜的硬度、耐水性和耐溶剂性达不到溶剂型或双组分聚氨酯的水平,为改善水性聚氨酯乳液及涂膜性能必须对其进行改性。 3.1 丙烯酸酯改性阳离子水性聚氨酯

用甲基丙烯酸中和含叔胺基聚氨酯, 形成阳离子型聚合物, 再用去离子水乳化,得到阳离子型水性聚氨酯。然后分别用油性引发剂偶氮二异丁腈(AIBN) 、水性引发剂过硫酸钾(KPS)及两种混合引发剂引发丙烯酸酯单体聚合, 制备出具有不同核壳结构的水性聚氨酯/丙烯酸酯共聚乳液。

3.2 有机硅改性阳离子水性聚氨酯

有机硅的加入改善了阳离子水性聚氨酯漆膜的耐水性、光泽性和手感, 随着有机硅加入量的增加, 漆膜的耐水性提高、吸水率下降。热重分析表明漆膜耐热性提高。采用羟基硅油对阳离子水性聚氨酯进行了改性后,明显提高了涂膜的光亮性、柔软性、抗水性和手感。

3.3 环氧树脂改性阳离子水性聚氨酯

为了提高水性阳离子聚氨酯涂膜的耐水性和力学性能, 通过引入环氧树脂得到的涂膜耐水性大大提高。

3.4 松香改性阳离子水性聚氨酯

用松香改性的阳离子水性聚氨酯在中、碱性条件下有优良的施胶性能。合成的聚合物松香胶, 本身带有阳离子电荷, 可自留。松香对WPU的改进效果明显。

3.5 纳米改性阳离子水性聚氨酯

聚氨酯是一种合成材料, 当用于涂料和涂层等装饰材料时, 长期的紫外线照射可能会导致材料老化、变脆, 出现粉化现象, 因此研究抗紫外材料具有重要意义。目前已发现的抗紫外材料有纳米TiO2、ZnO、Al2O3、SiO2 和Fe2O3, 稀土CeO2也是一种很好的外吸收材料。若在聚氨酯涂料中加入纳米CeO2, 可起到紫外防护的作用。该复合材料对350nm以下的紫外

A 区和B区有很好的吸收, 是一种优良的紫外吸收材料。

4 阳离子水性聚氨酯的应用

4.1 皮革涂饰剂

阳离子水性聚氨酯可赋予皮革柔软、自然和丰满的外观, 且可提升皮革的品级。与阴离子皮革涂饰剂相比, 阳离子型具有以下几个优点: 阳离子电荷对于铬鞣、植物鞣和合成鞣的皮

革都有较好的键合力; 所有阳离子产品都具有自然、微粒细的特性, 也比阴离子型的同类产品要柔软, 因而具有良好的渗透性及附着性, 它的作用是使皮革柔软细致, 且表面成膜极薄而自然; 可以减少涂料的使用量; 阳离子涂饰系统可以改进纤维强度和压力, 同时又能填充皮革并使它柔软。

4.2 织物整理剂

水性聚氨酯能赋予织物柔软、丰满的手感, 改善织物耐磨性、抗皱性、回弹性和通透性等。阳离子水性聚氨酯在织物表面形成一层亲水膜, 改善了一些合成纤维织物的吸水性能。大多数化纤织物摩擦后都产生负电荷, 阳离子水性聚氨酯中的季铵离子基团具有显著抗静电作用。水性聚氨酯的吸湿性也是改善抗静电作用的重要原因。实验表明, 棉、粘胶纤维织物经一般树脂整理后撕裂强度下降, 但经阳离子水性聚氨酯整理后, 撕裂强度却得到提高。而且经阳离子水性聚氨酯处理后, 还可使织物耐磨性增强,透气性大幅度提高。

4.3 其他

除了上述两种用途以外, 阳离子水性聚氨酯还可用于涂料、胶粘剂、造纸施胶剂及医药领域中, 如制备血液的抗凝固膜等。另有研究指出, 它也可用作阴极电泳涂料等。

环保型水性聚氨酯合成革浆料

环保型水性聚氨酯合成革浆料 (温州寰宇高分子材料有限公司浙江温州325000) 摘要:回顾了PU革浆料的发展状况,分析了我国现行工艺存在的问题,展望了我国PU革的发展前景。作者在不改变现行生产工艺的条件下,研究开发了新一代环保型水性聚氨酯浆料。研究表明,该浆料节约成本,完全能替代溶剂型浆料,性能达到甚至超过溶剂型和国外同类水性浆料。 关键词:PU革浆料;水性聚氨酯;环保 1 PU革浆料的发展与现状 在我国PU皮革是一个新兴的产业,它的发展仅20年左右。由于其具有优异的耐磨性、良好的抗撕裂强度和伸长率,同时赋予PU皮革表面平坦、手感丰满、舒适、回复性良好、价格适中等特性,PU皮革不但替代了很多原来价格昂贵的天然皮制品,而且也逐渐取代低档、廉价的PVC人造革,现已成为人们日常生活中一种不可或缺的消费品。近十几年发展迅速蓬勃。据报道,我国的PU皮革市场的每年增长幅度已达15%~25%,仅温州合成革行业,已从初始的一家企业发展到如今的100多家企业,300多条干式、湿式生产线,整个行业的固定投资已达100多亿元,产量和市场份额已占全国70%,日产能力300多万平方米,品种发展到上千种,年产值近100亿元。因此有人说我国的PU皮革市场逐渐成为推动全球的PU皮革,甚至整个聚氨酯市场发展的主要动力之一。 目前国内合成革生产过程中,均采用有机溶剂型的PU树脂作为生产革品基层和面层的基本原料,这种类型的PU树脂均通过甲苯、二甲苯、丙酮、丁酮(MEK)、乙酸乙酯和二甲基甲酰胺(DMF)等作为主要溶剂以溶剂聚合法制得。这些占整个树脂成分60%以上的有机溶剂都是有害物质,而且对人体造成的危害是多方面的。其中,甲苯等芳香烃溶剂对造血器官具有危害性,在高浓度环境下长期接触,可能发生急性中毒而休克,慢性中毒将出现血小板和白血球减少,并出现相应的病症。丁醇、丁酮、丙酮、乙酸乙酯和二甲基甲酰胺等溶剂都有相当大的毒副作用,其中乙酸乙酯对眼和粘膜有刺激性,并有麻醉性;合成革生产中用量最大的二甲基甲酰胺,对皮肤、眼部粘膜有强刺激性,吸入高浓度蒸汽时,会刺激咽部引起恶心,经常接触,经皮肤侵入,会导致肝功能障碍;而且有机溶剂对女性孕育下一代将产生严重的负面影响。 据统计,一条合成革生产线日均需消耗10t左右溶剂型PU树脂,其中占溶剂型PU树脂总用量60%以上的是溶剂,虽然湿法生产线中85%左右的溶剂被回收,但湿法生产线中仍有15%左右、干法生产线中95%的溶剂无法回收,将通过水和空气排放到周边的河流和天空中,势必会严重污染当地的环境,给人们的生产、生活,公众的生命健康构成重大威胁。如果以温州市300条生产线计算,年均需要的溶剂型PU树脂用量为70多万t,每年将会有数以万吨的溶剂排放到空气和周边的河流中,造成的污染将不可想象。由于苯、甲苯等有害溶剂易燃、易爆,极易引发火灾,造成伤残,甚至死亡,近年已屡见报道。 在大力发展经济的同时,保持优良的环境,健康的身体是当今社会发展的一个重要目标。正确处理“保护”和“促进”的关系,减少工业生产对环境和人类本身的伤害,是不可逆转的潮流,也是历史赋予我们的责任。人类只有一个地球,保护我们的家园,保持可持续性地发展经济的问题,已成为全球的共识,引起了各国政府的高度重视。在美国、意大利、日本、韩国等合成革主要生产国,已逐渐淘汰溶剂型PU树脂产品,采用环保型PU树脂。我国也先后制定、出台了许多相关的法律、法规。如:《环境保护法》、《劳动保护条例》、《职业病防治法》等等,为化工产业的发展提出了要求,严格了规范。随着我国加入世贸组织,我们企业参与国际市场竞争,客观上也要求我们生产和使用无公害的产品,消除国际上“绿色贸易壁垒”对我国产品的非贸易壁垒限制。 从源头上杜绝污染,对于PU革行业来讲已迫在眉睫。温州寰宇高分子材料有限公司,通过长期不懈的努力,已成功开发出国内首创的环保型聚氨酯合成革树脂产品。其主攻方向为:

阳离子水性聚氨酯.pdf

阳离子水性聚氨酯 更新时间:XXXX-12-26 9:23:35 浏览次数:1189次 水性聚氨酯树脂和其他树脂一样, 其最终制品的性能是由内部结构决定的。阳离子型水性聚氨酯是将叔胺官能团引入到聚氨酯的大分子中而制得的。通常用含叔胺基的二醇作扩链剂, 用烷基化剂或合适的酸进行季铵化而得到离子基团。和普通的聚氨酯一样可用不同种类的多元醇、不同结构的二异氰酸酯、不同类型的扩链剂、不同类型的中和剂和采用不同的合成方法进行合成。阳离子型水性聚氨酯的骨架上带有阳离子基团, 这就使其具有了一些独特的性能, 在皮革、涂料、胶粘剂、纺织和造纸等领域有着较好的应用。此外, 阳离子水性聚氨酯对水的硬度不敏感, 且可以在酸性条件下使用。因此, 开发出性能优异的阳离子水性聚氨酯, 其市场前景非常广阔。 1 阳离子水性聚氨酯的合成 1.1 合成机理 合成阳离子水性聚氨酯时, 一般通过两种途径引入阳离子。一是用卤素元素化合物引入阳离子,该机理先将聚醚或者聚酯二醇与二异氰酸酯制成预聚体, 加入溶剂降低粘度后, 加入卤素元素化合物( 如2,3-二溴丁二酸) 扩链, 然后再加入溶剂降低粘度, 加入三乙胺季铵化, 搅拌离子化, 将离子化后的PU 分散到水中, 高速剪切乳化, 最后蒸除溶剂。该机理的季铵化是SN2(亲核取代反应) ; 二是用叔胺化合物引入阳离子, 该机理首先将聚醚或者聚酯二醇与二异氰酸酯制成预聚体, 加入溶剂降低粘度后, 用叔胺化合物( 如N- 甲基二乙醇胺) 扩链, 再加入溶剂降低粘度, 然后加入离子化试剂如乙酸, 搅拌离子化。将离子化后的PU 分散到水中, 高速剪切乳化, 最后蒸除溶剂。该机理的季铵化是酸碱中和。 1.2 合成方法 阳离子水性聚氨酯的合成与阴离子水性聚氨酯的合成最大的不同就是阳离子水性聚氨酯需加酸成盐, 因此一般不在水中用胺扩链, 所以阳离子水性聚氨酯一般不用阴离子水性聚氨酯常用的预聚体混合法。从国内外近年来的研究来看, 阳离子水性聚氨酯的合成主要有熔融法和丙酮法。 熔融法是无溶剂制备水性聚氨酯的重要方法。它把二异氰酸酯的加聚反应和氨基的缩聚反应紧密地结合起来。反应的第一步是合成含亲水基团的端异氰酸酯基预聚体。然后在高温下, 该预聚体和过量的脲反应生成缩二脲。该产品分散在水中之后, 再和甲醛反应生成甲醇基, 通过降低pH 值可促进缩聚反应进行扩链和交联。熔融法的优点是不需要大量溶剂, 避免了相对分子质量快速增长而带来的问题,工艺简单, 易于控制, 也不需要特殊设备。但是用该 法合成水性聚氨酯时需要强力搅拌, 因为即使在100 ℃左右的温度下, 预聚体的粘度也很高。用该法制得的水性聚氨酯通常是枝化的和相对分子质量较 低的树脂。乳液中残存的甲醛气味比较大, 且有较强的毒性, 在环保要求越来越高的今天, 它将被摒弃。 丙酮法也叫溶液法。就是在低沸点的能和水混合的惰性溶剂(如丙酮、甲乙酮、四氢呋喃等) 中, 制得含亲水基团的高相对分子质量的聚氨酯乳液, 然后用水将该溶液稀释。先形成油包水的以溶剂为连续相的乳液, 然后再加入大量的水, 发生相倒转, 水变成连续相并形成分散液。脱去溶剂后得到无溶剂的高相对分子质量的聚氨酯- 脲的分散液。该法操作简单, 重复性好。 1.3 原料选择 1.3.1 多异氰酸酯类化合物的选择 二异氰酸酯有TDI(甲苯二异氰酸酯)、MDI(二苯基甲烷二异氰酸酯)、IPDI(异佛尔酮二异氰酸酯) 、HDI(六亚甲基二异氰酸酯) 等10余种产品, 其中的脂肪类二异氰酸酯(HDI,IPDI等) 抗

阳离子聚丙烯酰胺

阳离子聚丙烯酰胺 Ciba?ZETAG?8660絮凝剂是一种合成高分子量聚丙烯酰胺,外观为白色流动粉末,,能完全溶解于水中,形成高黏度溶液,只要低浓度就可以在某些使用中达到普通聚合物的效果。 ZETAG?8660阳电荷量中等。ZETAG?8660用于处理需要离心或带滤处理的有机工业污泥和城市污泥,亦用于活性污泥的浓缩处理,其有效PH值范围广。 ZETAG?8660采用25公斤净重塑料袋包装,每托盘有20包(500公斤)或36包(900公斤),亦有700-850公斤的大袋包装方式。我公司提供全面的技术服务及支援,包括对产品的选择、提出建议、帮助进行实验室实验和中试等。 Ciba?ZETAG?7650絮凝剂是一种超高分子量阳离子性聚丙烯酰胺,外观为自由流动的粉末,能完全溶解于水中,形成高黏度溶液。与其他常用的聚合物相比,在使用场合,这种高黏度溶液需要更大的稀释倍数和更加充分的搅拌混合。 ZETAG?7650的阳电荷量低到中等。ZETAG?7650专用于工业和城市生物污泥的离心处理,也适用于其他的浓缩和脱水过程,亦能有效用于辅助沉降过程,具有优异的脱水效果。ZETAG?7650最佳PH应用范围应为4-9,否则会影响产品效能。 ZETAG?7650采用25公斤净重塑料袋包装,每托盘有20包(500公斤)或36包(900公斤),亦有700-850公斤的大袋包装方式。 我公司提供全面的技术服务及支援,包括对产品的选择、提出建议、帮助进行实验室实验和中试等。Ciba?ZETAG?7652絮凝剂是一种超高分子量阳离子聚丙烯酰胺,外观为自由流动的粉末,能完全溶解于水中,形成高黏度溶液。与其他常用的聚合物相比,在使用场合,这种高黏度溶液需要更大的稀释倍数和更加充分的搅拌混合。 ZETAG?7652具有中等的阳电荷量。ZETAG?7652设计专为工业及城市污泥在进入离心机前的絮凝过程,具有优异的脱水效果,也适用于其他的浓缩和脱水过程,亦能有效用于辅助沉降过程。ZETAG?7652运用的PH值范围应为5-9,否则会影响产品效能。ZETAG?7652采用25公斤净重塑料袋包装,每托盘有20包(500公斤)或36包(900公斤),亦有700-850公斤的大袋包装方式。 我公司提供全面的技术服务及支援,包括对产品的选择、提出建议、帮助进行实验室实验和中试等。Ciba?ZETAG?7653絮凝剂是一种超高分子量阳离子聚丙烯酰胺,外观为自由流动的粉末,能完全溶解于水中,形成高黏度溶液。与其他常用的聚合物相比,在使用场合,这种高黏度溶液需要更大的稀释倍数和更加充分的搅拌混合。 ZETAG?7653具有中等至高的阳电荷量。ZETAG?7653专用于工业和城市有机类污泥离心机前的絮凝过程并且特别适用于生物物质含量高的污泥,具有优异的脱水效果,亦能有效用于辅助沉降过程。ZETAG?7653最佳PH值范围广。 ZETAG?7653采用25公斤净重塑料袋包装,每托盘有20包(500公斤)或36包(900公斤),亦有700-850公斤的大袋包装方式。 我公司提供全面的技术服务及支援,包括对产品的选择、提出建议、帮助进行实验室实验和中试等。Ciba?ZETAG?7651絮凝剂是一种超高分子量阳离子聚丙烯酰胺,外观为自由流动的粉末,能完全溶解于水中,形成高黏度溶液。与其他常用的聚合物相比,在使用场合,这种高黏度溶液需要更大的稀释倍数和更加充分的搅拌混合。 ZETAG?7651具有极高的阳电荷量。ZETAG?7651设计专为工业及城市污泥在进入离心机前的絮凝过程,特别适用于有机物含量高的污泥,具有优异的脱水效果,也适用于其他的浓缩和脱水过程,也能有效用于辅助沉降过程。ZETAG?7651运用的PH值范围很宽。 ZETAG?7651采用25公斤净重塑料袋包装,每托盘有20包(500公斤)或36包(900公斤),亦有700-850公斤的大袋包装方式。 我公司提供全面的技术服务及支援,包括对产品的选择、提出建议、帮助进行实验室实验和中试等。

阳离子水性聚氨酯

阳离子水性聚氨酯 更新时间:2012-12-26 9:23:35 浏览次数:1189次 水性聚氨酯树脂和其他树脂一样, 其最终制品的性能是由内部结构决定的。阳离子型水性聚氨酯是将叔胺官能团引入到聚氨酯的大分子中而制得的。通常用含叔胺基的二醇作扩链剂, 用烷基化剂或合适的酸进行季铵化而得到离子基团。和普通的聚氨酯一样可用不同种类的多元醇、不同结构的二异氰酸酯、不同类型的扩链剂、不同类型的中和剂和采用不同的合成方法进行合成。阳离子型水性聚氨酯的骨架上带有阳离子基团, 这就使其具有了一些独特的性能, 在皮革、涂料、胶粘剂、纺织和造纸等领域有着较好的应用。此外, 阳离子水性聚氨酯对水的硬度不敏感, 且可以在酸性条件下使用。因此, 开发出性能优异的阳离子水性聚氨酯, 其市场前景非常广阔。 1 阳离子水性聚氨酯的合成 1.1 合成机理 合成阳离子水性聚氨酯时, 一般通过两种途径引入阳离子。一是用卤素元素化合物引入阳离子,该机理先将聚醚或者聚酯二醇与二异氰酸酯制成预聚体, 加入溶剂降低粘度后, 加入卤素元素化合物( 如2,3-二溴丁二酸) 扩链, 然后再加入溶剂降低粘度, 加入三乙胺季铵化, 搅拌离子化, 将离子化后的PU 分散到水中, 高速剪切乳化, 最后蒸除溶剂。该机理的季铵化是SN2(亲核取代反应) ; 二是用叔胺化合物引入阳离子, 该机理首先将聚醚或者聚酯二醇与二异氰酸酯制成预聚体, 加入溶剂降低粘度后, 用叔胺化合物( 如N- 甲基二乙醇胺) 扩链, 再加入溶剂降低粘度, 然后加入离子化试剂如乙酸, 搅拌离子化。将离子化后的PU 分散到水中, 高速剪切乳化, 最后蒸除溶剂。该机理的季铵化是酸碱中和。 1.2 合成方法 阳离子水性聚氨酯的合成与阴离子水性聚氨酯的合成最大的不同就是阳离子水性聚氨酯需加酸成盐, 因此一般不在水中用胺扩链, 所以阳离子水性聚氨酯一般不用阴离子水性聚氨酯常用的预聚体混合法。从国内外近年来的研究来看, 阳离子水性聚氨酯的合成主要有熔融法和丙酮法。 熔融法是无溶剂制备水性聚氨酯的重要方法。它把二异氰酸酯的加聚反应和氨基的缩聚反应紧密地结合起来。反应的第一步是合成含亲水基团的端异氰酸酯基预聚体。然后在高温下, 该预聚体和过量的脲反应生成缩二脲。该产品分散在水中之后, 再和甲醛反应生成甲醇基, 通过降低pH 值可促进缩聚反应进行扩链和交联。熔融法的优点是不需要大量溶剂, 避免了相对分子质量快速增长而带来的问题,工艺简单, 易于控制, 也不需要特殊设备。但是用该 法合成水性聚氨酯时需要强力搅拌, 因为即使在100 ℃左右的温度下, 预聚体的粘度也很高。用该法制得的水性聚氨酯通常是枝化的和相对分子质量较 低的树脂。乳液中残存的甲醛气味比较大, 且有较强的毒性, 在环保要求越来越高的今天, 它将被摒弃。 丙酮法也叫溶液法。就是在低沸点的能和水混合的惰性溶剂(如丙酮、甲乙酮、四氢呋喃等) 中, 制得含亲水基团的高相对分子质量的聚氨酯乳液, 然后用水将该溶液稀释。先形成油包水的以溶剂为连续相的乳液, 然后再加入大量的水, 发生相倒转, 水变成连续相并形成分散液。脱去溶剂后得到无溶剂的高相对分子质量的聚氨酯- 脲的分散液。该法操作简单, 重复性好。 1.3 原料选择 1.3.1 多异氰酸酯类化合物的选择 二异氰酸酯有TDI(甲苯二异氰酸酯)、MDI(二苯基甲烷二异氰酸酯)、IPDI(异佛尔酮二异氰酸酯) 、HDI(六亚甲基二异氰酸酯) 等10余种产品, 其中的脂肪类二异氰酸酯(HDI,IPDI等) 抗

阳离子聚丙烯酰胺生产工艺汇总

阳离子聚丙烯酰胺生产工艺 聚丙烯酰胺简称PAM、结构式为[-CH2-CH(CONH2]n-,分子量在400-2000 万之间。聚丙烯酰胺主要有两种商品形式,一种是外观为白色或略带黄色粉末状的,易溶于水,速度很慢,提高温度可以稍微促进溶解,但温度不得超过50℃,以防发生分子降解,难溶于有机溶剂。另一种是无色粘稠胶体,还有聚丙烯酰胺乳液(上海合成树脂研究所研制。中性,无毒。聚丙烯酰胺贮存于阴凉、通风、干燥的库房内,防潮、避光、防热.存放时间不宜过长。聚丙烯酰胺按结构分为阳离子型、阴离子型、两性离子和非离子型。 1.2 阳离子聚丙烯酰胺(CPAM 阳离子聚丙烯酰胺(CPAM是由一种阳离子单元和丙烯酰胺非离子单元构成的共聚物,其分子链上带有可以电离的正电荷基团(-CONH2,在水中可以电离成聚阳离子和小的阴离子,能与分散于溶液中的悬浮粒子吸附和架桥,有着极强的絮凝作用。阳离子聚丙烯酰胺被广泛用于水处理以及冶金、造纸、石油、化工、纺织、选矿等领域,用作增稠剂、絮凝剂、减阻剂,具有凝胶、沉降、补强等作用。CPAM 的分子量一般比NPAM 和APAM 低,特别适用于城市污水、城市污泥、造纸污泥及其它工业污泥的脱水处理。 在阳离子聚丙烯酰胺的合成中较常用的阳离子单体有甲基丙烯酰氧乙基三甲基氯化铵(DMC、丙烯酰氧乙基三甲基氯化铵(DAC、二甲基二烯丙基氯化铵(DMDAAC、丙烯酰氨基丙基三甲基氯化铵(AMPTAC、甲基丙烯酸-2-(N,N-二甲氨基乙酯(DM、丙烯酸-2-(N,N-二甲氨基乙酯(DA等。其中以DMDAAC、DAC、DMC 较常用。(1DMDAAC 二甲基二烯丙基氯化铵,为高纯度、聚合级、季胺盐、高电荷密度的阳离子单体,含微量氯化钠和其他杂质(可控范围,分子式为C8H16NCl,分子量161.5。该分子结构中含有烯基双键,可以通过各种聚合反应,形成线性均聚物和各种共聚物。DMDAAC 作为阳离子单体通过均聚或共聚形成高分子。在水处理过程中可用于脱

水性聚氨酯配制方法

1.低聚物多元醇:聚醚二醇、聚酯二醇、聚醚三醇、聚丁二烯二二醇、丙烯酸酯多元醇等 水性聚氨酯胶粘剂制备中常用的低聚物多元醇一般以聚醚二醇、聚酯二醇居多,有时还使用聚醚三醇、低支化度聚酯多元醇、聚碳酸酯二醇等小品种低聚物多元醇。聚醚型聚氨酯低温柔顺性好,耐水性较好,且常用的聚氧化丙烯二醇(PPG)的价格比聚酯二醇低,因此,我国的水性聚氨酯研制开发大多以聚氧化丙烯二醇为主要低聚物多元醇原料。由聚四氢呋喃醚二醇制得的聚氨酯机械强度及耐水解性均较好,惟其价格较高,限制了它的广泛应用。 聚酯型聚氨酯强度高、粘接力好,但由于聚酯本身的耐水解性能比聚醚差,故采用一般原料制得的聚酯型水性聚氨酯,其贮存稳定期较短。但通过采用耐水解性聚酯多元醇,可以提高水性聚氨酯胶粘剂的耐水解性。国外的聚氨酯乳液胶粘剂及涂料的主流产品是聚酯型的。脂肪族非规整结构聚酯的柔顺性也较好,规整结构的结晶性聚酯二醇制备的单组分聚氨酯乳液胶粘剂,胶层经热活化粘接,初始强度较高。而芳香族聚酯多元醇制成的水性聚氨酯对金属、RET等材料的粘接力高,内聚强度大。 其他低聚物二醇如聚碳酸酯二醇、聚己内酯二醇、聚丁二烯二醇、丙烯酸酯多元醇等,都可用于水性聚氨酯胶粘剂的制备。聚碳酸酯型聚氨酯耐水解、耐候、耐热性好,易结晶,由于价格高,限制了它的广泛应用。 2.异氰酸酯:TDI、MDI、IPDI、HDI等 制备聚氨酯乳液常用的二异氰酸酯有TDI、MDI等芳香族二异氰酸酯,以及TDI、MDI、HDI:MDI等脂肪族、脂环族二异氰酸酯。由脂肪族或脂环族二异氰酸酯制成的聚氨酯,耐水解性比芳香族二异氰酸酯制成的聚氨酯好,因而水性聚氨酯产品的贮存稳定性好。国外高品质的聚酯型水性聚氨酯一般均采用脂肪族或脂环族异氰酸酯原料制成,而我国受原料品种及价格的限制,大多数仅用TDI为二异氰酸酯原料。 多亚甲基多苯基多异氰酸酯一般用于制备乙烯基聚氨酯乳液和异氰酸酯乳液。 3.扩链剂:1,4—丁二醇、乙二醇、己二醇、乙二胺等 水性聚氨酯制备中常常使用扩链剂,其中可引入离子基团的亲水性扩链剂有多种,除了这类特种扩链剂外,经常还使用1,4—丁二醇、乙二醇、一缩二乙二醇、己二醇、乙二胺、二亚乙基三胺等扩链剂。由于胺与异氰酸酯的反应活性比水高,可将二胺扩链剂混合于水中或制成酮亚胺,在乳化分散的同时进行扩链反应。 4.水:蒸馏水、离子水 水是水性聚氨酯胶粘剂的主要介质,为了防止自来水中的Ca2+、寸+等杂质对阴离子型水性聚氨酯稳定性的影响,用于制备水性聚氨酯胶粘剂的水一般是蒸馏水或去离子水。除了用作聚氨酯的溶剂或分散介质,水还是重要的反应性原料,合成水性聚氨酯目前以预聚体法为主,在聚氨酯预聚体分散与水的同时,水也参与扩链。由于水或二胺的扩链,实际上大多数水性聚氨酯是聚氨酯—脲乳液(分散液),聚氨酯—脲比纯聚氨酯有更大的内聚力和粘接力,脲键的耐水性比氨酯键好。

水性聚氨酯的合成与改性_闫福安

CHINA COATINGS 2008年第23卷第7期 15 0 引 言 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控,配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行必不可少的材料之一,其本身就已经形成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。 据有关报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右。美国人均年消耗聚氨酯材料约5.5 kg,西欧约4.5 kg,而我国的消费水平 还很低,年人均不足0.5 kg。 溶剂型的聚氨酯涂料品种众多、用途广泛,在涂料产品中占有非常重要的地位。水性聚氨酯的研究始自20世纪50年代,60、70年代,对水性聚氨酯的研究、开发迅速发展,70年代开始工业化生产用作皮革涂饰剂的水性聚氨酯。进入90年代,随着人们环保意识以及环保法规的加强,环境友好的水性聚氨酯的研究、开发日益受到重视,其应用已由皮革涂饰剂不断扩展到涂料、黏合剂等领域,正在逐步占领溶剂型聚氨酯的市场。在水性树脂中,水性聚氨酯仍然是优秀树脂的代表,是现代水性树脂研究的热点之一。 水性聚氨酯的合成与改性 □ 闫福安,陈 俊 (武汉工程大学化工与制药学院,武汉 430073) 摘要:对水性聚氨酯的合成单体、合成原理、合成工艺及改性方法作了介绍。水性聚氨酯合成技术不断完善,市场正在推进,国内相关企业和研究机构应加强合作,从分子设计出发,不断推进水性聚氨酯产业的技术进步和市场推广。 关键词:水性聚氨酯;合成;改性 中图分类号:TQ630 文献标识码:A 文章编号:1006-2556(2008)07-0015-08 Synthesis and modifi cation of water-borne PU Yan fuan, Chen jun (School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, Hubei Province) Abstract: This paper introduces water-borne PU about its monomers, synthesis mechanism, and synthesis technology and modifi cation methods. Relevant enterprises and research institutes China should strengthen the work cooperatively on molecule design, to promote the continuously progressing synthesis technology and the growing market of water-borne PU. Keywords: water-borne PU, synthesis, modifi cation 编者按:本文搜集了相关的情报资料,比较全面地阐述水性聚氨酯的合成技术。相应地,嘉宝莉朱延安、中国科技大章鹏进行了这方面的研发和实验实践。相比之下,为改善PUD分散体涂膜力学性能,选用聚碳酸酯型方向是可行的,但在水性木器涂料中的应用,应综合考虑制造成本、涂料使用范围、对涂膜光泽大小不同要求等方面因素;软段多元醇的选用不可能单一型,可以选用混合型,如PCD与PCL混合,或PCD与聚醚型混合,否则单用PCD,因价格太贵或存在功能过剩,影响水性聚氨酯涂料的推广应用与市场定位。 TECHNICAL PROGRESS DOI:10.13531/https://www.360docs.net/doc/697095857.html,ki.china.coatings.2008.07.007

无溶剂水性聚氨酯人造革粘合剂的制备与研究(论文)

2014年12 月 无溶剂水性聚氨酯人造革粘合剂的制备与研究 江大健 福建双祥化工助剂有限公司福建南平353400 摘要:采纳特有的一步法,制作无溶剂态势下的聚氨酯;制备成的这一材料,带有水性的特性。无溶剂范畴内的这种聚氨酯,固有的粒径及粘度,会受到偏多层级的要素影响。在这之中,软段特有的类别、测量得来的分子量、亲水扩链表征着的这种影响,都被涵盖在这一范畴。把制备得来的这种原料,安设在人造革衔接的粘合层级之内。经由测定及运算,明辨了粘合剂范畴内的耐水特性、增塑剂特有的取值、测量得来的剥离强度,粘合剂凸显出最佳情形下的综合特性。 关键词:无溶剂;水性聚氨酯人造革;粘合剂;制备方法聚氨酯制备出来的人造革,被划归成偏软质地下的替代品,用于平日以内的箱包制备、家具及特有的服饰制备。通常情形下,人造革依托的基材被设定成织物,上层添加着合成态势的树脂、塑料范畴内的添加剂。然而,人造革固有的表层处理,会产生偏多的废气,也耗费掉石化特性的制备原料。水性特性的聚氨酯,用水替换掉了有机范畴的多样溶剂,提升了固有的柔韧层级。为限缩制备时段的有机污染,本文明辨了水性聚氨酯依循的制备流程,在这样的根基上,测量得来粘合剂这样的性能。 一、明辨实验流程 1.溶解依托的乳液 若要制备某规格下的乳液,应当依循如下的流程:预备出来的配套构件,包含电动特性的搅拌机、选出来的温度计、三口架构下的保护烧瓶。把预处理得来的脱水聚酯,添加至这一容器以内。同时添加过来的试剂,还涵盖着小分子架构之下的二元醇、亲水扩链依托的独特试剂。加热直至预设的某一温度,这样的态势下,让亲水特性的扩链剂,能完全去溶解。 在这以后,缩减原初的温度直至90°,添加某规格下的催化剂,经由4小时特有的反应时段。这时测量得来的正丁胺,就达到拟定好的规格水准。把制备出来的这种预聚物,缩减温度直至50°,再次添入合成态势的去离子水,这就扩散得来无溶剂特性的、带有水性表征的乳液。 2.制备浆料及接续的贴合流程把无溶剂特性的这种聚氨酯,依循设定好的比例予以调和;添加水性特性的增稠剂,以便更替原初的液体粘度。粘合浆料原初的浓度,应被调和成预设的某一数值。这样做,就调制得来可用的粘合浆料。 贴合特有的步骤中,应被选出来的贴合原料,包含预设比值之下的聚氯乙烯、颜料膏及合规的发泡剂、增塑剂及调均态势下的稳泡剂。混合得来的浆液,被添加至离型纸这样的表层之上,予以接续的烘干发泡。在这以后,再添加至某规格下的粘合剂。浆料应有的浓度,应被限缩在每立方米85克这样的比值之内。经由高温烘干,把均匀态势的这种涂层,从原初的载体上分开,这样得来粘合剂特有的制成品。 二、应被注重的事宜 1.制剂构架特有的影响 无溶剂范畴内的聚氨酯,对粘合剂表征出来的乳液物性,会凸显出偏大的影响。这个层级内的物性影响,涵盖着细分出来的软段类别、关联着的分子量、亲水特性的基团影响。测验得来的结论表征着,不同范畴之内的软段,会产生多层级的这一影响。这是因为,PPG 架构下的分子,带有柔顺的特性,链段彼此互通并缠绕。与此同时,聚醚特有的软段之上,带有亲水特性凸显的某物质。它与体系架构原初的水分子,予以互通作用,形成偏大数 值下的水化半径。这样的态势下,调和得来的整体乳液,就提升 了原有的表层粘度。 与此对应,PTMG 特有的物质,有着凸显出来的结晶特性。软段及附带着的水体,会形成偏弱态势的氢键,这就限缩了粘稠程度。PBA 表征出来的粘度,没能超出PU 。因此,经由结合得来的软段,带有最佳情形下的结晶属性。乳液受到偏多的外在冲击,也不易扭曲,为此表征着的粘度偏低。 2.亲水基团特有的影响人造革依托的粘合制剂,应当表征着最优的剥离特性。这是因为,人造革依循的制备流程中,为创设最佳手感,应当添加调制得来的弱碱水,妥善予以碱洗。水性特性的粘合剂,应能抵挡住偏大范畴内的碱性腐蚀。接续的运用中,人造革附带着的增塑剂,会渐渐予以析出,深入更深层级的粘合层。为此,初始的制备时,就应添加某规格下的耐增塑剂。 聚酯架构下的这种制剂,对皮革表征出来的剥离状态,显著优于惯常见到的聚醚型。这是因为,聚酯潜藏着的内聚特性,还是偏大的。聚酯及关联着的聚氯乙烯,有着更高层级的相容特性。聚酯型表征出来的水性状态,很近似皮革特有的表层张力。这样的态势下,聚酯架构的粘合剂,比对惯用的聚醚,会超出2.3这样的倍数。 聚酯型范畴之内的聚氨酯,耐水特性及对应着的耐增塑剂,也会超出水性特性的聚氨酯。聚氨酯框架之内的分子,带有内聚这样的凸显特性,分子互通的作用偏强。外部附带着的水分子、DOP 这样的分子,很难渗进这种架构之内。聚氨酯固有的酯键,很易溶于预设的碱性液体;但聚醚型这样的同等酯类,却表征着相对态势的稳定倾向。 3.粘合特性的比对 DMBA 范畴内的粘合剂,有着最优情形下的剥离强度、耐增塑剂特有的数值、耐碱性特有的数值、抵挡水体侵蚀这样的特性。比对原初的亲水基团,它添加了附着上去的碳原子。这就提快了运动的速率,制备得来的聚氨酯,也带有亲水特有的属性。水性乳胶粒,在预备好的水溶剂以内,很易予以舒展;粘合剂经由接续的干燥流程,被变更成膜体以后,乳胶粒也会很密实。真正去制备以前,应当明辨这样的亲水特性,以便随时去查验粘合剂更替的倾向。 结束语 实验得来的数值表征着:二元醇特有的分子量,密切关联着聚氨酯测定出来的粘度及粒径。无溶剂特性的新颖材料,在细分出来的各个层级上,都优于惯常见到的其他原料。采纳某规格下的软段,看成原料配有的亲水基团。这样创设出来的粘合剂,会凸显出最优情形下的综合表征。耐增塑剂特有的耐水比值,被测定成86%;关联着的耐碱比值,测定成75%。 参考文献: [1]陈炜.无溶剂水性聚氨酯人造革粘合剂的制备与研究[J]. 广州化工,2014(02). [2]冯见艳.浅析聚氨酯人造革、合成革清洁生产的现状与未来[J].中国皮革,2013(09). [3]李维虎.合成革/人造革用水性聚氨酯树脂的制备方法[J].涂料技术与文摘,2013(07). 164

水性聚氨酯性能优缺点

水性聚氨酯的优点: 聚氨酯的全名叫聚氨基甲酯。水性聚氨酯是以水代替有机溶剂作为分散介质的新型聚氨酯体系,其分子结构中含氨基甲酸酯基、脲键和离子键,内聚能高,粘结力强,且可通过改变软段长短和软硬段的比例调节聚氨酯性能。 水性聚氨酯乳液相比较与溶剂型聚氨酯具有以下优点: (1)由于水性聚氨酯以水作分散介质,加工过程无需有机溶剂,因此对环境无污染,对操作人员无健康危害,并且水性聚氨酯气味小、不易燃烧,加工过程安全可靠。 (2)水性聚氨酯体系中不含有毒的-NCO基团,由于水性聚氨酯无有毒有机溶剂,因此产品中无有毒溶剂残留,产品安全、环保,无出口限制。 (3)水性聚氨酯产品的透湿透汽性要远远好于同类的溶剂型聚氨酯产品,因为水性聚氨酯的亲水性强,因此和水的结合能力强,所以其产品具有很好的透湿透汽性。 (4)水作连续相,使得水性聚氨酯体系粘度与聚氨酯树脂分子量无关,且比固含量相同的溶剂型聚氨酯溶液粘度低,加工方便,易操作。 (5)水性聚氨酯的水性体系可以与其它水性乳液共混或共聚共混,可降低成本或得到性能更为多样化的聚氨酯乳液,因此能带来风格和性能各异的合成革产品,满足各类消费者的需求。 并且,由于近年来溶剂价格高涨和环保部门对有机溶剂使用和废物排放的严格限制,使水性聚氨酷取代溶剂型聚氨酷成为一个重要发展方向。 水性聚氨酯膜的优点: 水性聚氨酯树脂成膜好,粘接牢固,涂层耐酸、耐碱、耐寒、耐水,透气性好,耐屈挠,制成的成品手感丰满,质地柔软,舒适,具有不燃、无毒、无污染等优点。将成革的透氧气性、透湿性、低温耐曲折性、耐干湿擦性、耐老化性等,与溶剂型聚氨酯涂饰后的合成革进行了对比研究。结果表明,经水性聚氨酯涂饰的合成革的透氧量达到了4583.53mg/(em3·h),为溶剂型的1.5倍,且透水汽量达到了615.53mg/(cm3·h),约为溶剂型的8倍;低温耐曲折次数大于4万次,为溶剂型的2倍。采用水性聚氨酯替代传统的溶剂型聚氨酯完成合成革的

聚丙烯酰胺

聚丙烯酰胺 1、定义 丙烯酰胺聚合物是丙烯酰胺的均聚物及其共聚物的统称。工业上凡是含有50%以上的丙烯酰胺(AM)单体结构单元的聚合物,都泛称聚丙烯酰胺。其他单体结构单元含量不足5%的通常都视为聚丙烯酰胺的均聚物。 聚丙烯酰胺,polyacrylamide(PAM),CAS RN:[9003-05-8],结构式为: n是聚合度。n的范围很宽,数量级为102~105,相应的相对分子质量由几千到上千万。 分子量是PAM的最重要参数。按其值得大小有低分子量(<100×104)、中等分子量(100×104~1000×104)、高分子量(1000×104~1500×104)和超高分子量(>1700×104)四种。不同分子量范围的PAM有不同的应用性质和用途。 2、分类 聚丙烯酰胺按在水溶液中的电离性可分为非离子型、阴离子型、阳离子型、两性型。 非离子型聚丙烯酰胺(NPAM)的分子链上不带可电离基团,在水中不电离;阴离子型聚丙烯酰胺(APAM)的分子链上带有可电离的负电荷基团,在水中可电离成聚阴离子和小的阳离子;阳离子型聚丙烯酰胺(CPAM)的分子链上带有可电离的正电荷基团,在水中可电离成聚阳离子和小的阴离子;两性的聚丙烯酰胺(AmPAM或ZPAM)的分子链上则同时带有可电离的负电荷基团和正电荷基团,在水中能电离成聚阴离子和聚阳离子,ZPAM的电性依溶液体系的PH值和何种类型的电荷基团多寡而定。 PAM的电性称谓和所带的电荷基团解离后的电性称谓相同。 按照聚合物分子链的几何形状可把PAM分为线型、支化型和交联型。PAM分子链的形状一般是线型结构。但是在丙烯酰胺自由基聚合反应的过程中会发生链转移反应。

水性聚氨酯的制备

水性聚氨酯的制备 1、原料 聚醚二元醇(PPG,分子量为2000和1000),2,4-甲苯二异氰酸酯(TDI),二羟甲基丙酸,丙酮(工业品),2-甲基-2-氨基-7-丙醇。 2、合成 制备水性聚氨酯的主要方法有:丙酮法、预聚体直接分散法、熔融分散法、酮距胺法和酮丫嗪法等按照水性化方法不同,水性聚氨酯的制备又可以分为内乳化法和外乳化法。内乳化法,又称自乳化法,是因聚氨酯链段中含有亲水性成分,无需乳化剂即可得到稳定的乳液的方法。外乳化法,又称强制乳化法,若分了链中仅含少量或者不含亲水性链段或基团必须添加乳化剂,凭借外力进行乳化。 1)丙酮法 亲水的异氰酸酯预聚物和扩链剂的扩链反应在溶剂丙酮中进行,故称之为丙酮法。由于聚合物的合成反应在均相的溶液中进行,故再现性很好。水性聚氨酯树脂合成好以后,再加水乳化,最后减压抽出丙酮溶剂就可得到粒径较小的聚氨酯分敞体。这种方法是经典的方法,浚方法的优点是试验重现性好,得到的聚氨酯水分散体粒径小,稳定性好;但该方法也有缺点,那就是试验过程中丙酮的大量使用,而且还得将丙酮减压抽出,制备工艺复杂,生产成本较大。 2)预聚体直接分散法 该方法是合成聚氨酯分散体的一个普通方法。先制得亲水性的预聚体,当然预聚体含有游离的异氰酸酯基团,然后将预聚体和水混合,扩链反应是预聚体和扩链剂在水中进行。本人在这种方法基础上对此方法进行了改进,得到了一种方法把它罩尔之为边扩链边分散法,运用这种方法成功合成了长期稳定的水性聚氨酯分散体,而且在合成过程中不使用溶剂,简化了制备工艺,节约了合成成本。 3)熔融分散法 将聚酯或聚醚二醇、叔胺和异氰酸酯在熔融状态下制备预聚体,用过量尿素终止生成亲水性的双缩二脲离聚物,在将其在甲醛水溶液中分散,使发生羟甲基阳离子型水性聚氨酯发生反应。 4)外乳化法 外乳化法是最早使用的制备水性聚氯酯的方法,它是1953年美国Du Pont公司的、V Yandott发明。选取制成适当分子量的聚氨酯预聚体或其溶液,然后加入乳化剂,在强烈搅拌下强制性地将其分散于水中,制成聚氨酯乳液或分散体。外乳化法工艺简单,但存在以下缺点: a.在分散阶段需要强力搅拌设备,搅拌工艺对分散液性能影响很大; b.制得的分散液粒径较大,一般大于1.0mm,粒径分布宽,储存稳定性差; c.乳化剂的存在影响成膜后胶膜的耐水性、强韧性和粘结性等力学性能。 5)自乳化法 聚氨酯的自乳化过程实际上是一个相反转过程,在乳化过程中经历了一个从w/o 到o/w的转变过程,随着乳化的进行,聚集念结构也会发生相应变化,并且体现出物化性质(如粘度和电导率)改变。众所周知,聚氨酯材料内由于软链段和硬链段各自成相生微相分离,若将离子型水性聚氨酯中和成盐,那么它就属于离聚体。对离聚体的聚集态结构,许多人进行了研究,提出了很多模型,包括微离子点阵模型、各相同性模型、两相结构模型等。

人造革基本知识

人造革基本知识(一) 1.概述 2.羊巴革的知识介绍 3.皮革如何才能便宜? 4.便宜的PU合成革是如何炼成的? 5.真空吸花革的特点 6.干式PU变色革的特点 9.帽用皮革之我见 10.无布水性PU革的特点 11.皮雕PU皮革 12.皮革好坏如何区别? 13.一种仿真皮细折纹合成革及其制备方法 14.水性PU的特点简介 7.湿法合成革主要原料 8.干法合成革主要原料 15. PU皮、真皮、水洗皮区别 16.鉴别真皮和人造革的方法 17.干法聚氨酯合成革生产中的常见问题及解决办法 18.干法聚氨酯合成革主要原料——离型纸 19.干法合成革主要原料——树脂 20.如何提升聚氨酯的耐水解性能 一、概述 1、PVC人造革是经压延成形,再按工艺经过一系列的后加工来实现不同的百度、花纹、颜色、手感、用途等,从而满足客户的各种需要,实现产品的价值。 2、PVC人造革一般用在仿皮、手袋、球革、鞋材、手套、皮带、文具革、汽车革等方面。用途广泛。各类产品的要求受用途、时间、地区、工作环境的影响,要求各有不同,具体生产时会通过改善配方达到这些要求。 二、PVC人造革的产品特性 1、物理性 1.1耐寒屈折:它是指人造革在低温下维持弹性的能力。一般产品在低温下会变脆,易破裂,耐寒产品视使用的地区而要求有些不同。 1.2耐寒冲击:PVC人造革在-20度时放置4小时,或依客户指定条件,取出以打击錘打击打试片,取五块试片中少于3块出现裂痕或破裂均视为合格。 1.3撕裂强度:按公司标准剪取试片,把试片置于拉力机,以200mm/min的速度拉到试片断裂,取最大值为撕裂强度。 1.4剥离力:它是指胶与底部的贴合强度。

阳离子聚丙烯酰胺

阳离子聚丙烯酰胺使用注意事项: 1、絮团的大小:絮团太小会影响排水的速度,絮团太大会使絮团约束较多水而降低泥饼干度。经过选择聚丙烯酰胺的分子量能够调整絮团的大小。 2、污泥特性。第一点理解污泥的来源,特性以及成分,所占比重。依据性质的不同,污泥可分为有机和无机污泥两种。阳离子聚丙烯酰胺用于处置有机污泥,相对的阴离子聚丙烯酰胺絮凝剂用于无机污泥,碱性很强时用阳离子聚丙烯酰胺,而酸性很强时不宜用阴离子聚丙烯酰胺,固含量高时污泥通常聚丙烯酰胺的用量也大。 3、絮团强度:絮团在剪切作用下应坚持稳定而不破碎。进步聚丙烯酰胺分子量或者选择适宜的分子构造有助于进步絮团稳定性。 4、聚丙烯酰胺的离子度:针对脱水的污泥,可用不同离子度的絮凝剂经过先做小试停止挑选,选出最佳适宜的聚丙烯酰胺,这样即能够获得最佳絮凝剂效果,又可使加药量最少,节约本钱。 5、聚丙烯酰胺的溶解:溶解良好才干发充沛发挥絮凝作用。有时需求加快溶解速度,这时可思索进步聚丙烯酰胺溶液的浓度。 任何絮凝剂 絮凝剂 理论基础是;“聚并”理论,絮凝剂主要是带有正电(负)性的基团中和一些水中带有负(正)电性难于分离的一些粒子或者叫颗粒,降低其电势,使其处于不稳定状态,并利用其聚合性质使得这些颗粒,集中,并通过物理或者化学方法分离出来。 一般为达到这种目的而使用的药剂,称之为絮凝剂。 主要分为两大类别:铁制剂系列和铝制剂系列,当然也包括其丛生的高聚物系列。絮凝剂有不少品种,其共通特点是能够将溶液中的悬浮微粒聚集联结形成粗大的絮状团粒或团块。絮凝剂简述如下: 无机絮凝剂 1.1 无机絮凝剂的分类和性质 无机絮凝剂按金属盐可分为铝盐系及铁盐系两大类;铝盐以硫酸铝、氯化铝为主,铁盐以硫酸铁、氯化铁为主。后来在传统的铝盐和铁盐的基础上发展合成出聚合硫酸铝、聚合硫酸铁等新型的水处理剂,它的出现不仅降低了处理成本,而且提高了功效。这类絮凝剂中存在多羟基络离子,以OH-为架桥形成多核络离子,从而变成了巨大的无机高分子化合物,相对分子质量高达1×105。无机聚合物絮凝剂之所以比其他无机絮凝剂能力高、絮凝效果好,其根本原因就在于它能提供大量的如上所述的络合离子,能够强烈吸附胶体微粒,通过粘附、架桥和交联作用,从而促使胶体凝聚。同时还发生物理化学变化,中和胶体微粒及悬浮物表面的电荷,降低了Zeta电位,使胶体粒子由原来的相斥变成相吸,破坏了胶团的稳定性,促使胶体微粒相互碰撞,从而形成絮状混凝沉淀,而且沉淀的表面积可达(200-1000)m2/g,极具吸附能力。也就是说,聚合物既有吸附脱稳作用,又可发挥黏附、桥联以及卷扫絮凝作

水性聚氨酯的合成

闫福安,陈俊 (武汉工程大学化工与制药学院,武汉430073) 摘要:对水性聚氨酯的合成单体、合成原理、合成工艺及改性方法作了介绍。水性聚氨酯合成技术不断完善,市场正在推进,国内相关企业和研究机构应加强合作,从分子设计出发,不断推进水性聚氨酯产业的技术进步和市场推广。 关键词:水性聚氨酯;合成;改性 0引言 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控,配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行必不可少的材料之一,其本身就已经形成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。据有关报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右。美国人均年消耗聚氨酯材料约5.5kg,西欧约4.5kg,而我国的消费水平还很低,年人均不足0.5kg。溶剂型的聚氨酯涂料品种众多、用途广泛,在涂料产品中占有非常重要的地位。水性聚氨酯的研究始自20世纪50年代,60、70年代,对水性聚氨酯的研究、开发迅速发展,70年代开始工业化生产用作皮革涂饰剂的水性聚氨酯。进入90年代,随着人们环保意识以及环保法规的加强,环境友好的水性聚氨酯的研究、开发日益受到重视,其应用已由皮革涂饰剂不断扩展到涂料、黏合剂等领域,正在逐步占领溶剂型聚氨酯的市场。在水性树脂中,水性聚氨酯仍然是优秀树脂的代表,是现代水性树脂研究的热点之一。 1水性聚氨酯的合成单体 1.1多异氰酸酯(polyisocynate) 多异氰酸酯可以根据异氰酸酯基与碳原子连接的部位特点,可分为四大类:芳香族多异氰酸酯(如甲苯二异氰酸酯,TDI)、脂肪族多异氰酸酯(六亚甲基二异氰酸酯,HDI)、芳脂族多异氰酸酯(即在芳基和多个异氰酸酯基之间嵌有脂肪烃基-常为多亚甲基,如苯二亚甲基二异氰酸酯,XDI)和脂环族多异氰酸酯(即在环烷烃上带有多个异氰酸酯基,如异佛尔酮二异氰酸酯,IPDI。芳香族多异氰酸酯合成的聚氨酯树脂户外耐候性差,易黄变和粉化,属于“黄变性多异氰酸酯”,但价格低,来源方便,在我国应用广泛,如TDI常用于室内涂层用树脂;脂肪族多异氰酸酯耐候性好,不黄变,其应用不断扩大,欧美发达国家已经成为主流的多异氰酸酯单体;芳脂族和脂环族多异氰酸酯接近脂肪族多异氰酸酯,也属于“不黄变性多异氰酸酯”。水性聚氨酯合成用的多异氰酸酯主要有TDI、IPDI、HDI、TMXDI(四甲基苯二亚甲基二异氰酸酯)。TMXDI可直接用于水性体系,或用于零VOC水性聚氨酯的合成。

合成革用水性聚氨酯树脂技术应用现状及未来发展

合成革用水性聚氨酯树脂技术应用现状及未来发展 摘要: 通过对合成革水性聚氨酯的合成、生产应用配制、皮膜的性能进行比较详细的研究,结果表明我们的合成革用水性聚氨酯能在各种性能上达到甚至超过溶剂型树脂。且经济成本更低,更安全环保,它将可以逐渐取代溶剂型聚氨酯树脂。 关键词: 合成革用水性聚氨酯、交联、强度、耐屈挠、热水揉 一、国内合成革发展及现状 中国聚氨酯合成革的生产真正意义上的开始是1983年山东烟台合成革厂从日本引进聚氨酯合成革的生产技术及设备。但是中国合成革行业真正意义上的发展是在改革开放后实现的,特别是最近十年,合成革行业进入快速发展时期,行业整体平均每年都保持15%-20%的快速增长,无论是生产线的数量还是生产量在世界范围内都处于领先地位,到目前为止中国已成为世界上合成革的生产大国、使用大国。 目前全国共有人造革合成革企业2000多家,上千条生产线,其中规模以上干法生产线有516条,这些PU树脂主要都是以DMF、甲苯、丁酮、乙酸乙酯等为溶剂,这些溶剂的使用具有多方面的危害: (1)DMF经常接触会导致人体肝功能障碍;甲苯对皮肤粘膜有刺激作用,对中枢神经系统有麻醉作用;丁酮、乙酸乙酯等也都是长期吸入其蒸气会使眼、鼻、喉等粘膜受刺激,而引起炎症;长期接触这些有机溶剂势必影响人体健康。 (2)这些溶剂直接排放或者通过水性排放都会对周边环境造成极大的污染和破坏,进而影响整个地球生态环境。 (3)大多数这些有机溶剂都是易燃易爆的化学品,这样在储存、运输、操作上就存在了一定的安全隐患。 (4)使用有机化学作溶剂造成了资源的很大浪费。虽然现在有少数合成革企业对溶剂进行回收,但也仅仅局限于对干法生产线上部分DMF的回收。 因此,无毒、无污染、节能的水是溶剂最好的替代品,是经济、社会、资

相关文档
最新文档