单片机矩阵键盘汇编语言程序

51单片机4*4矩阵键盘汇编语言程序示例(原创)

,欢迎咨询

线反转法

ORG 00H

LJMP MAIN

MAIN:MOV R0,#00H

MOV R1,#00H

MOV R2,#00H

MOV R3,#00H

MOV A,#00H

AJMP KEYSCAN

KEYSCAN:MOV P3,#0F0H

MOV A,P3

XRL A,#0F0H

JNZ DELAY

DELAY:MOV R2,#05H

LOOP1:MOV R3,#0FAH LOOP2:DJNZ R3,LOOP2 DJNZ R2,LOOP1

MOV A,P3

ANL A,#0F0H

MOV R0,A

XRL A,#0F0H

JNZ KEYSCAN1

LJMP KEYSCAN

KEYSCAN1:MOV A,#00H MOV P3,#0FH

MOV A,P3

ANL A,#0FH

MOV R1,A

XRL A,#0FH

JNZ NUM

LJMP KEYSCAN

NUM:MOV A,R0

MOV B,R1

ORL A,B

MOV DPTR,#TAB

SJMP DISP0

DISP0:CJNE A,#0EEH,DISP1

MOVC A,@A+DPTR

MOV P0,A

LCALL DELAY1

LJMP KEYSCAN

DISP1:CJNE A,#0EDH,DISP2 MOV A,#01H

MOVC A,@A+DPTR

MOV P0,A

LCALL DELAY1

LJMP KEYSCAN

DISP2:CJNE A,#0EBH,DISP3 MOV A,#02H

MOVC A,@A+DPTR

MOV P0,A

LCALL DELAY1

LJMP KEYSCAN

DISP3:CJNE A,#0E7H,DISP4 MOV A,#03H

MOVC A,@A+DPTR

MOV P0,A

LCALL DELAY1

LJMP KEYSCAN

DISP4:CJNE A,#0DEH,DISP5 MOV A,#04H

MOVC A,@A+DPTR

MOV P0,A

LJMP KEYSCAN

DISP5:CJNE A,#0DDH,DISP6 MOV A,#05H

MOVC A,@A+DPTR

MOV P0,A

LCALL DELAY1

LJMP KEYSCAN

DISP6:CJNE A,#0DBH,DISP7 MOV A,#06H

MOVC A,@A+DPTR

MOV P0,A

LCALL DELAY1

LJMP KEYSCAN

DISP7:CJNE A,#0D7H,DISP8 MOV A,#07H

MOVC A,@A+DPTR

MOV P0,A

LCALL DELAY1

LJMP KEYSCAN

DISP8:CJNE A,#0BEH,DISP9 MOV A,#08H

MOVC A,@A+DPTR

MOV P0,A

LCALL DELAY1

LJMP KEYSCAN

DISP9:CJNE A,#0BDH,DISPA

MOVC A,@A+DPTR

MOV P0,A

LCALL DELAY1

LJMP KEYSCAN

DISPA:CJNE A,#0BBH,DISPB MOV A,#0AH

MOVC A,@A+DPTR

MOV P0,A

LCALL DELAY1

LJMP KEYSCAN

DISPB:CJNE A,#0B7H,DISPC MOV A,#0BH

MOVC A,@A+DPTR

MOV P0,A

LCALL DELAY1

LJMP KEYSCAN

DISPC:CJNE A,#07EH,DISPD MOV A,#0CH

MOVC A,@A+DPTR

MOV P0,A

LCALL DELAY1

LJMP KEYSCAN

DISPD:CJNE A,#07DH,DISPE MOV A,#0DH

MOVC A,@A+DPTR

MOV P0,A

LJMP KEYSCAN

DISPE:CJNE A,#07BH,DISPF

MOV A,#0EH

MOVC A,@A+DPTR

MOV P0,A

LCALL DELAY1

LJMP KEYSCAN

DISPF:CJNE A,#077H,KEY

MOV A,#0FH

MOVC A,@A+DPTR

MOV P0,A

LCALL DELAY1

LJMP KEYSCAN

DELAY1:MOV R2,#0FH

LOOP10:MOV R3,#0FAH

LOOP20:DJNZ R3,LOOP20

DJNZ R2,LOOP10

RET

KEY:LJMP MAIN

TAB:DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH,77H,7CH,39H,5EH,79H,71H END

行扫描法

ORG 00H

MAIN:

LCALL KEYJUDGE LCALL KEYSCAN LCALL DISP

LJMP MAIN KEYJUDGE:

MOV P3,#0F0H

MOV A,P3

XRL A,#0F0H

JNZ DELAY

LJMP MAIN

DELAY:MOV R4,#08H LOOP1:MOV R5,#0FAH LOOP2:DJNZ R5,LOOP2 DJNZ R4,LOOP1

MOV P3,#0F0H

MOV A,P3

XRL A,#0F0H

JZ MAIN

RET

KEYSCAN:

MOV R0,#00H

MOV R1,#00H

MOV R2,#0FEH

MOV R3,#04H

KEY:

KEY0:JB ,KEY1 MOV R1,#00H LJMP NUM

KEY1:

JB ,KEY2 MOV R1,#04H LJMP NUM

KEY2:

JB ,KEY3 MOV R1,#08H LJMP NUM

KEY3:

JB ,NEXT MOV R1,#0CH LJMP NUM NEXT:

INC R0

MOV A,R2

RL A

MOV R2,A DJNZ R3,KEY LJMP NUM NUM:

MOV A,R0

ADD A,R1 MOV DPTR,#TAB

MOVC A,@A+DPTR

MOV R6,A

RET

DISP:

MOV P0,R6

LCALL DELAY1

RET

DELAY1:

MOV R4,#0FH

LOOP10:MOV R5,#0FAH

LOOP20:DJNZ R5,LOOP20

DJNZ R4,LOOP10

RET

TAB:DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH,77H,7CH,39H,5EH,79H,71H END

电子琴C程序代码,四乘四矩阵键盘输入

电子琴C程序代码,四乘四矩阵键盘输入#include #define uchar unsigned char #define uint unsigned int sbit duan=P 2八6; sbit wei=P 2八7; sbit bee=P 2八3; uchar code table[]={ 0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71}; uchar code tablewe[]={ 0x7f,0xbf,0xdf,0xef, 0xf7,0xfb,0xfd,0xfe}; uchar disp[16]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71}; // 在里面输入按下键值为0~15 对应要显示的第一位码值uchar disp1[16]={0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71,0x3f}; // 在里面输入按下键值为0~15 对应要显示的第二位码值unsigned char temp; unsigned char key; unsigned char i,j;

unsigned char STH0; unsigned char STL0; unsigned int code tab[]={ //63625, 63833, 64019, 64104, 64260, 64400, 64524 ,// 低音区:1 2 3 4 64580, 64685, 64778, 64820, 64898, 64968, 65030 ,// 中音区:1 2 3 4 5 65058, 65110, 65157, 65178, 65217, 65252, 65283 ,// 高音区:1 2 3 4 5 65297 ,// 超高音:1 }; // 音调数据表可改 void delay(uchar x) uchar y,z; for(y=x;y>0;y--) for(z=0;z<110;z++); void init() TMOD=0x01; ET0=1; EA=1; void display() { for(i=0;i<2;i++)

单片机矩阵键盘设计方案

1、设计原理 (1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号。 (2)键盘中对应按键的序号排列如图14.1所示。 2、参考电路 图14.2 4×4矩阵式键盘识别电路原理图 3、电路硬件说明 (1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上。 (2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h。 4、程序设计内容 (1)4×4矩阵键盘识别处理。 (2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。矩阵的行线和列线分别通过两并行接口和CPU通信。键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动。两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。 5、程序流程图(如图14.3所示) 6、汇编源程序 ;;;;;;;;;;定义单元;;;;;;;;;; COUNT EQU 30H ;;;;;;;;;;入口地址;;;;;;;;;;

ORG 0000H LJMP START ORG 0003H RETI ORG 000BH RETI ORG 0013H RETI ORG 001BH RETI ORG 0023H RETI ORG 002BH RETI ;;;;;;;;;;主程序入口;;;;;;;;;; ORG 0100H START: LCALL CHUSHIHUA LCALL PANDUAN LCALL XIANSHI LJMP START ;;;;;;;;;;初始化程序;;;;;;;;;;

(完整版)快速入门单片机汇编语言

快速入门单片机汇编语言 简要: 单片机有通用型和专用型之分。专用型是厂家为固定程序的执行专门开发研制的一种单片机,其程序不可更改。通用型单片机是常用的一种供学习或自主编制程序的单片机,其程序需要自己写入,可更改。单片机根据其基本操作处理位数不同可以分为:1位、4位、8位、16、32位单片机。 正文: 在此我们主要讲解美国ATMEL公司的89C51单片机。 一、89C51单片机PDIP(双列直插式)封装引脚图: 其引脚功能如下: P0口(p0.0—p0.7):为双向三态口,可以作为输入/输出口。但在实际应用中通常作为地址/数据总线口,即为低8位地址/数据总线分时复用。低8位地址在ALE信号的负跳变锁存到外部地址锁存器中,而高8位地址由P2口输出。 P1口(p1.0—p1.7):其每一位都能作为可编程的输入或输出线。 P2口(p2.0—p2.7):每一位也都可作为输入或输出线用,当扩展系统外设时,可作为扩展系统的地址总线高8位,与P0口一起组成16位地址总线。对89c51单片机来说,P2口一般只作为地址总线使用,而不作为I/O线直接与外设相连。 P3口(p3.0—p3.7):其为双功能口,作为第一功能使用时,其功能与P1口相同。当作为第二功能使用时,每一位功能如下表所示。 Rst\Vpd:上电复位端和掉电保护端。 XTAL1(xtal2):外接晶振一脚,分别接晶振的一端。 Gnd:电源地。 Vcc:电源正级,接+5V。 PROG\ALE:地址锁存控制端 PSEN:片外程序存储器读选通信号输出端,低电平有效。 EA\vpp:访问外部程序储存器控制信号,低电平有效。当EA为高电平时访问片内存储器,若超出范围则自动访问外部程序存储器。当为低电平时只访问外部程序存储器。 二、常用指令及其格式介绍: 1、指令格式: [标号:]操作码 [ 目的操作数][,操作源][;注释]

单片机设计矩阵键盘电子琴

课程设计任务书 课程名称单片机原理及应用课程设计 1.课程设计应达到的目的 本课程是继《单片机原理及应用B》课程之后,训练学生综合运用上述课程知识,进行单片机软件、硬件系统设计与调试,使学生加深对单片机结构、工作原理的理解,提高学生综合应用知识的能力、分析解决问题的能力和单片机最小应用系统的设计技能。通过课程设计,达到理论与实际应用相结合,增强学生对综合电子系统设计的理解,掌握单片机原理就应用的设计方法以及C51编程的能力,并能够在这个基础上进行实际项目的程序设计及软硬件调试,增强学生的工程实践能力。 2.课程设计题目及要求

带存储播放功能的简易电子琴设计 要求:利用行列式键盘和数码管,来控制并显示和产生不同频率的声音。其他扩展功能学生可自己添加,功能不限定与此。 3.课程设计任务及工作量的要求〔包括课程设计计算说明书、图纸、实物样品等要求〕(1)了解相关理论知识,掌握基本的原理,理解相关特殊功能寄存器的设置。 (2)完成电路板的组装 (3)完成硬件电路的测试、以及软件的编程 (4)最终完成具体的课设任务。 4.主要参考文献 1.张洪润等.单片机应用设计200例.北京:北京航空航天大学出版社,2006 2. 胡汉才.单片机原理及其接口技术. 北京:清华大学出版社,2010 3.夏继强等.单片机实验与实践教程.北京:北京航空航天大学出版社,2006 4. 倪晓军等.单片机原理与接口技术教程.北京:清华大学出版社,2007 5(1)硬件方面:单片机。4*4行列式键盘,蜂鸣器,独立数码管,独立建。硬件部分采用逐列扫描,16个键位对应16个音,不断检测16键位,当某个键位被按下,先检测哪一列再检测哪个按键被按下,同时设置四个功能键,p1.0,p1.1播放歌曲,p1.2暂停,p1.3复位,可控制歌曲的播放。 插入图片 (2)音乐频率 一首音乐是许多不同的音阶组成的,而每个音阶对应着不同的频率,这样我们就可以利用不同的频率的组合,即可构成我们所想要的音乐了,当然对于单片机来产生不同的频率非常方便,我们可以利用单片机的定时/计数器T0来产生这样方波频率信号,因此,我们只要把一首歌曲的音阶对应频率关系弄正确即可。单片机12MHZ晶振,高中低音符与单片机计数T0相关的计数值如下表所示: 音符频率简码值(T值) 低3 M 330 64021 低4 FA 349 64103 低5 SO 392 64260 低6 LA 440 64400 低7 SI 494 64524 中 1 DO 523 64580 中 2 RE 587 64684 中 3 M 659 64777 中 4 FA 698 64820 中 5 SO 784 64898 中 6 LA 880 64968

课程设计-制作单片机的4X4矩阵键盘

课程设计-制作单片机的4X4矩阵键盘

目录 摘要.............................................. 错误!未定义书签。第一章硬件部分 (5) 第一节AT89C51 (5) 第二节4*4矩阵式键盘 (8) 第三节LED数码管 (11) 第四节硬件电路连接 (13) 第二章软件部分 (15) 第一节所用软件简介 (15) 第二节程序流程图 (18) 第三节程序 (20) 第三章仿真结果 (23) 心得体会 (26) 参考文献 (27)

第一章硬件部分 第一节AT89C51 AT89C51是一种带4K字节FLASH存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。引脚如图所示 AT89C5 图1 AT89C51管脚 图 AT89C51其具有以下特性: 与MCS-51 兼容 4K字节可编程FLASH存储器 寿命:1000写/擦循环 数据保留时间:10年

全静态工作:0Hz-24MHz 三级程序存储器锁定 128×8位内部RAM 32可编程I/O线 两个16位定时器/计数器 5个中断源 可编程串行通道 低功耗的闲置和掉电模式 片内振荡器和时钟电路 特性概述: AT89C51 提供以下标准功能:4k 字节Flash 闪速存储器,128字节内部RAM,32 个I/O 接口,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。 管脚说明: VCC:供电电压。 GND:接地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P0口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的低八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须接上拉电阻。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为低八位地址接收。

MSP430单片机的4X4矩阵键盘C语言程序

MSP430单片机的4X4矩阵键盘C语言程序 #include #define uchar unsigned char#define uint unsigned int uchar table[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f}; void delay(unsigned int i) //延时子程序{while(i--);} uchar keyvalue(){ uchar key; uchar np10,np11,np12,np13; P1DIR=0x0f;//第一排P1OUT=~BIT3; delay(10); np10=P1IN&BIT4; if(np10==0) { key=0; } np11=P1IN&BIT5; if(np11==0) { key=1; } np12=P1IN&BIT6; if(np12==0) { key=2; } np13=P1IN&BIT7; if(np13==0) { key=3; } //第二行P1OUT=~BIT2; delay(10); np10=P1IN&BIT4; if(np10==0) { key=4; } np11=P1IN&BIT5; if(np11==0) { key=5; } np12=P1IN&BIT6; if(np12==0) { key=6; } np13=P1IN&BIT7; if(np13==0) { key=7; } //第三行P1OUT=~BIT1; delay(10); np10=P1IN&BIT4; if(np10==0) { key=8; } np11=P1IN&BIT5; if(np11==0) { key=9; } np12=P1IN&BIT6; if(np12==0) { key=10; } np13=P1IN&BIT7; if(np13==0) { key=11; } //第四行P1OUT=~BIT0; delay(10); np10=P1IN&BIT4; if(np10==0) { key=12; } np11=P1IN&BIT5; if(np11==0) { key=13; } np12=P1IN&BIT6; if(np12==0) { key=14; } np13=P1IN&BIT7; if(np13==0) { key=15; } P1OUT=0X00; return key; while(1) { if((P1IN&0X0F)==0x0f) break; }} void main(){ uchar key_value; WDTCTL=WDTPW+WDTHOLD; P1DIR=0X0F; P2DIR=0XFF; P2OUT=0XFF; while(1) { if((P1IN&0XF0)!=0XF0) { delay(100); if((P1IN&0XF0)!=0XF0) { delay(100); if((P1IN&0XF0)!=0XF0) { key_value=keyvalue(); } } } P2OUT=~key_value; }} tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

单片机实验报告——矩阵键盘数码管显示

单片机实验报告 信息处理实验 实验二矩阵键盘 专业:电气工程及其自动化 指导老师:高哲 组员:明洪开张鸿伟张谦赵智奇 学号:152703117 \152703115\152703118\152703114室温:18 ℃日期:2017 年10 月25日

矩阵键盘 一、实验内容 1、编写程序,做到在键盘上每按一个键(0-F)用数码管将该建对应的名字显示出来。按其它键没有结果。 二、实验目的 1、学习独立式按键的查询识别方法。 2、非编码矩阵键盘的行反转法识别方法。 3、掌握键盘接口的基本特点,了解独立键盘和矩阵键盘的应用方法。 4、掌握键盘接口的硬件设计方法,软件程序设计和贴士排错能力。 5、掌握利用Keil51软件对程序进行编译。 6、会根据实际功能,正确选择单片机功能接线,编制正确程序。对实验结果 能做出分析和解释,能写出符合规格的实验报告。 三、实验原理 1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。 2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。 3、识别键的闭合,通常采用行扫描法和行反转法。行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然

后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。 行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。 由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。 行反转法识别按键的过程是:首先,将4个行线作为输出,将其全部置0,4个列线作为输入,将其全部置1,也就是向P1口写入0xF0;假如此时没有人按键,从P1口读出的值应仍为0xF0;假如此时1、4、7、0四个键中有一个键被按下,则P1.6被拉低,从P1口读出的值为0xB0;为了确定是这四个键中哪一个被按下,可将刚才从P1口读出的数的低四位置1后再写入P1口,即将0xBF写入P1口,使P1.6为低,其余均为高,若此时被按下的键是“4”,则P1.1被拉低,从P1口读出的值为0xBE;这样,当只有一个键被按下时,每一个键只有唯一的反转码,事先为12个键的反转码建一个表,通过查表就可知道是哪个键被按下了。

快速入门单片机汇编语言

快速入门单片机汇编语 言 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

快速入门单片机汇编语言 简要: 单片机有通用型和专用型之分。专用型是厂家为固定程序的执行专门开发研制的一种单片机,其程序不可更改。通用型单片机是常用的一种供学习或自主编制程序的单片机,其程序需要自己写入,可更改。单片机根据其基本操作处理位数不同可以分为:1位、4位、8位、16、32位单片机。 正文: 在此我们主要讲解美国ATMEL公司的89C51单片机。 一、89C51单片机PDIP(双列直插式)封装引脚图: 其引脚功能如下: P0口(—):为双向三态口,可以作为输入/输出口。但在实际应用中通常作为地址/数据总线口,即为低8位地址/数据总线分时复用。低8位地址在ALE信号的负跳变锁存到外部地址锁存器中,而高8位地址由P2口输出。 P1口(—):其每一位都能作为可编程的输入或输出线。 P2口(—):每一位也都可作为输入或输出线用,当扩展系统外设时,可作为扩展系统的地址总线高8位,与P0口一起组成16位地址总线。对89c51单片机来说,P2口一般只作为地址总线使用,而不作为I/O线直接与外设相连。 P3口(—):其为双功能口,作为第一功能使用时,其功能与P1口相同。当作为第二功能使用时,每一位功能如下表所示。 P3口第二功能

Rst\Vpd:上电复位端和掉电保护端。 XTAL1(xtal2):外接晶振一脚,分别接晶振的一端。 Gnd:电源地。 Vcc:电源正级,接+5V。 PROG\ALE:地址锁存控制端 PSEN:片外程序存储器读选通信号输出端,低电平有效。 EA\vpp:访问外部程序储存器控制信号,低电平有效。当EA为高电平时访问片内存储器,若超出范围则自动访问外部程序存储器。当EA为低电平时只访问外部程序存储器。 二、常用指令及其格式介绍: 1、指令格式: [标号:]操作码 [ 目的操作数][,操作源][;注释] 例如:LOOP:ADD A,#0FFH ;(A)←(A)+FFH 2、常用符号: Ri和Rn:R表示工作寄存器,i表示1和0,n表示0~7。 rel:相对地址、地址偏移量,主要用于无条件相对短转移指令和条件转移指令。 #data:包含于指令中的8位立即数。 #data16:包含于指令中的16位立即数。

51单片机矩阵键盘的C语言程序与分析

51单片机矩阵键盘的C语言程序与分析 2009-10-17 19:25 学习51单片机矩阵键盘时,我有点迷乱了,不知道是怎样处理的,经过仔细分析电路,然后终于明白其中的原理,这样的话,再看程序,就是那样的简单了。。 首先看一下电路图是怎样连接的,我买的开发板上是AT89S52单片机,矩阵键盘在P3口。接法如下图: 当然上面的图的意思是P3.1~P3.3 跟P3.4~P3.7不一样的,他们是相互连接(当按下键时),组成4*4=16个键的。

如果给P3一个扫描初值的话:如0x0F ,则没有键按下时为: P3.1~P3.3为1,P3.4~P3.7为0。 如果有键按下,则情况发生变化:高电平接入低电平:如P3.3与P3.7连接的键按下,则P3.3与P3.7为0,即接地了。 则P3此时为:0000 0111,这时如果用P3&0x0F,则高四位为0,低四位保留,可以得到低四位的内容了。 通过去抖操作,即一个delay,可以得到低四位内容。这里设为:h=P3&0x0F; 如果再得到高四位内容,则可以组成一个数,来定位哪个键了。 用P3=h|0xF0;这会出现什么情况呢?1|0=1 1| 1 =1,这里难道高四位全置1 吗?不是的,当赋值后,如果有键按下的话,P3高四位不会全为1111,被拉到0了。如P3.3与P3.7连接的键按下,则P3.3与P3.7为0,即接地了。即:0111 0111,&F0之后,得到0111 0000,这样的话,我们得到高四位的值了, 用高四位+低四位,就可以得到一个数值,确定一个键。 下面看看人家编写的程序,相信不是太难了吧。 //keyboard.c 这里的行与列的扫描,也就是把字节的8位,高四位与低四位分开来,从而确定坐标。 //行列扫描程序,可以自己定义端口和扫描方式,这里做简单介绍 #include //包含头文件 #define uchar unsigned char #define uint unsigned int unsigned char const dofly[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f, 0x77,0x7c,0x39,0x5e,0x79,0x71};//0-F,数码管来显示按下键的值。 uchar keyscan(void); //主要的矩阵键盘扫描函数。 void delay(uint i); void main() { uchar key; P2=0x00;//1数码管亮按相应的按键,会显示按键上的字符 while(1) { key=keyscan();//调用键盘扫描,

51单片机矩阵键盘扫描程序

/*----------------------------------------------- 名称:矩阵键盘依次输入控制使用行列逐级扫描 论坛:https://www.360docs.net/doc/6a18762355.html, 编写:shifang 日期:2009.5 修改:无 内容:如计算器输入数据形式相同从右至左使用行列扫描方法 ------------------------------------------------*/ #include //包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义 #define DataPort P0 //定义数据端口程序中遇到DataPort 则用P0 替换 #define KeyPort P1 sbit LATCH1=P2^2;//定义锁存使能端口段锁存 sbit LATCH2=P2^3;// 位锁存 unsigned char code dofly_DuanMa[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f, 0x77,0x7c,0x39,0x5e,0x79,0x71};// 显示段码值0~F unsigned char code dofly_WeiMa[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//分别对应相应的数码管点亮,即位码 unsigned char TempData[8]; //存储显示值的全局变量 void DelayUs2x(unsigned char t);//us级延时函数声明 void DelayMs(unsigned char t); //ms级延时 void Display(unsigned char FirstBit,unsigned char Num);//数码管显示函数 unsigned char KeyScan(void);//键盘扫描 unsigned char KeyPro(void); void Init_Timer0(void);//定时器初始化 /*------------------------------------------------ 主函数 ------------------------------------------------*/ void main (void) { unsigned char num,i,j; unsigned char temp[8]; Init_Timer0(); while (1) //主循环 { num=KeyPro();

矩阵键盘程序c程序,51单片机.

/*编译环境:Keil 7.50A c51 */ /*******************************************************/ /*********************************包含头文件********************************/ #include /*********************************数码管表格********************************/ unsigned char table[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0x88,0x83,0xC6,0xA1,0x86,0x 8E}; /**************************************************************************** 函数功能:延时子程序 入口参数: 出口参数: ****************************************************************************/ void delay(void) { unsigned char i,j; for(i=0;i<20;i++) for(j=0;j<250;j++); } /**************************************************************************** 函数功能:LED显示子程序 入口参数:i 出口参数: ****************************************************************************/ void display(unsigned char i) { P2=0xfe; P0=table[i]; } /**************************************************************************** 函数功能:键盘扫描子程序 入口参数: 出口参数: ****************************************************************************/ void keyscan(void) { unsigned char n; //扫描第一行 P1=0xfe;

51单片机矩阵键盘程序

/*风清云扬*/ # include #define uchar unsigned char #define uint unsigned int void delay(uint i) { uchar x,j; for(j=0;j

} else if(temp0==0x0b) { switch (temp1) { case 0xe0: num=12;break; case 0xd0: num=11;break; case 0xb0: num=10;break; case 0x70: num=9;break; default:num=0;break; } } else if(temp0==0x07) { switch (temp1) { case 0xe0: num=16;break; case 0xd0: num=15;break; case 0xb0: num=14;break; case 0x70: num=13;break; default:num=0;break; } } } } return num; } void main() { char num; while(1) { num=key_scan(); P2=num/10; P3=num%10; } }

单片机矩阵键盘检测程序并用数码管显示c语言程序

#include #define uint16 unsigned int #define uint8 unsigned char //控制数码管段选锁存口 sbit P3_7=P3^7; //共阴数码管显示 uint8 code table[]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71,0}; uint8 temp; uint16 num; //延时子函数 void delay(uint16 z) { uint16 x,y; for(x=z;x>0;x--) for(y=110;y>0;y--); } //子函数声明 uint8 keyscan(); void display(uint8);

void main() { num=17; while(1) { display(keyscan()); } } void display(uint8 num1) { P2=0xf8; P3_7=1; P0=table[num1-1]; P3_7=0; } uint8 keyscan() { P1=0xfe; temp = P1;

temp=temp&0xf0; while(temp!=0xf0) { delay(5); temp=P1; temp=temp&0xf0; while(temp!=0xf0) { temp=P1; switch(temp) { case 0xee:num=1;break; case 0xde:num=2;break; case 0xbe:num=3;break; case 0x7e:num=4;break; default:break; } while(temp!=0xf0)//检测按键是否放开 { temp=P1; temp=temp&0xf0; }

基于C51单片机矩阵键盘控制蜂鸣器的应用

学校代码 10126 学号科研创新训练论文 题目基于C51单片机的蜂鸣器和流水灯的 应用 院系内蒙古大学鄂尔多斯学院 专业名称自动化 年级 2013 级 学生姓名高乐 指导教师高乐奇 2015年06月20日

基于C51单片机的蜂鸣器和流水灯的应用 摘要 当今时代是一个新技术层出不穷的时代,在电子领域尤其是自动化智能控制领域,传统的分立元件或数字逻辑电路构成的控制系统,正以前所未见的速度被单片机智能控制系统所取代。单片机具有体积小、功能强、成本低、应用面广等优点,可以说,智能控制与自动控制的核心就是单片机。本文介绍了单片机的发展及应用,和基于单片机的蜂鸣器和流水灯的知识及应用,还介绍了此次我所设计的课题。 关键词:C-51单片机,控制系统,流水灯,蜂鸣器,程序设计

The application of buzzer and flowing water light based on C51 MCU Author:GaoLe Tutor:GaoLeQi Abstract This age is a new technology emerge in endlessly era, in the electronic field especially automation intelligent control field, the traditional schism components or digital logic circuit, is composed of control system with unprecedented speed was replaced by micro-controller intelligent control system. SCM has small, strong function, low cost, etc, it can be said that wide application, intelligent control and automatic control core is the micro-controller.This article introduces the MCU development and application,the knowledge and application of buzzer and flowing water light based on MCU,then introduces the task I have designed this time. Keyword:C51 micro-controller,control system,flowing water light,buzzer ,programming

单片机之矩阵键盘

单片机之矩阵键盘 下面是一个stc89c52单片机下的矩阵键盘程序,P0口接键盘,显示在P2口. #include; #define uchar unsigned char #define uint unsigned int sbit key1=P3^2; sbit key2=P3^3; uchar code tab[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x 7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x00}; //定义八个灯的工作状态。 uchar code wep[]={0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07}; void yanshi(uint t) { while(--t); } void main() {

uchar han,lei,key; while(1) { P0=0xf0; //初始化为开关状态。11110000 han=P0; //han变量读取P0口的值。第一次扫描键盘。 han=han&0xf0; //对han变量与0xf0与. //如果结果等于P0口初值(0xf0)说明没有键被按下. //如果结果不等于P0(0xf0)口初值,说明有键按下. if(han!=0xf0) yanshi(125*5); //延时消抖. if(han!=0xf0) //语句执行到这里说明真的有键按下. { //例如按下S1键.则P0=1110 0000 lei=P0&0xf0; //lei读取P0口的值. lei=lei|0x0f; //lei=11101111 P0=lei; //P0=11101111 han=P0; //han=11101110 第二次扫描键盘, //因为这里按键S1还是闭合的状态。 han=han&0x0f; //han=00001110 lei=lei&0xf0; //lei=11100000

单片机汇编语言实验教程(1).

本文由zaoangy贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 实验一熟悉MCS-51寻址方式及传送类指令 一.实验目的: 1.熟悉uVision2集成调试环境 2.熟悉 MCS-51寻址方式及传送类指令二.uVision2集成调试环境的使用uVision2是德国Keil Software公司用于多种嵌入式微处理器的一个理想、快速、 可靠的程序调试器。此调试器包含一个高速模拟器,能够让你模拟整个8051 系统,包括片上外围.....器件和外部硬件。 1.创建项目uVision2是以项目来管理你的任务,它可以使你的8051应用系统设计变得简单。要创建一个应用,你需要按下列步骤进行操作:①第一次使用,首先为我们编写的实验程序在D盘上新建一个文件夹D:\单片机实验;②启动uVision2,新建一个项目文件并从器件库中选择一个器件,操作步骤如下:直接在桌面上点击uVision2程序图标就可以启动它。要新建一个项目文件,从uVision 2的Project菜单中选择New Project,这将打开一个标准的Windows对话框,此对话框要求你输入项目文件名,例如为实验一新建项目:D:\单片机实验\ex1.vu2。紧接着,Select Device for Target,即为你的项目选择一个CPU。我们选择Gene ric下的8032。 2.新建一个源文件你可以用菜单选项File-New来新建一个源文件。这将打开一个空的编辑窗口让你输入你的源代码。编辑后,我们把我们的实验程序保存为D:\单片机实验\dpj1.asm。 3.将你的源文件加入到你的项目中在你的P roject Workspace窗口双击Target1及Suorce Group1,将你的目标系统一直展开到看到源文件组,如图1(a所示。右击Suorce Group1,出现Add files选项, 选择它可打开一个标准的文件对话框,从对话框中选择你刚刚生成的文件dpj1.asm 。 (a (b

矩阵键盘单个数码管显示C语言程序

#include #define uchar unsigned char #define uint unsigned int uchar code_h,code_l; //定义行扫描码,列检测数据uchar tmp,keyvalue; //定义接收键值 /*函数说明*/ void delay(void); uchar keyscan(); /*主函数*/ void main () //键值处理 { while(1) { tmp=keyscan();//调用键盘扫描程序 switch(tmp) { case 0x11: P0=0x3f; break; //0 case 0x12: P0=0x06; break; //1 case 0x14: P0=0x5b; break; //2 case 0x18: P0=0x4f; break; //3 case 0x21: P0=0x66; break; //4 case 0x22: P0=0x6d; break; //5 case 0x24: P0=0x7d; break; //6 case 0x28: P0=0x07; break; //7 case 0x41: P0=0x7f; break; //8 case 0x42: P0=0x67; break; //9 case 0x44: P0=0x77; break; //a case 0x48: P0=0x7c; break; //b case 0x81: P0=0x39; break; //c case 0x82: P0=0x5c; break; //d case 0x84: P0=0x79; break; //e case 0x88: P0=0x71; break; //f case 0x00: ; break; default:P0=0x00; } delay(); } } /*延时函数*/ void delay(void) {uchar i; for(i=0;i<200;i++){} } /*键盘扫描函数*/ uchar keyscan(void)

单片机矩阵键盘

单片机 4*4 矩阵键盘 在单片机按键使用过程中,当键盘中按键数量较多时为了减少端口的占用通常将按键排列成矩阵形式如下图所示,在矩阵式键盘中每条水平线和垂直线在交叉处不直接连通而是通过一个按键加以连接,到底这样做是出意何种目的呢?大家看下面电路图,单片机的整一个8位端口可以构成4*4=16 个矩阵式按键,相比独立式按键接法多出了一倍,而且线数越多区别就越明显,假如再多加一条线就可以构成20个按键的键盘,但是独立式按键接法只能多出1个按键。由此可见,在需要的按键数量比较多时,采用矩阵法来连接键盘是非常合理的,矩阵式结构的键盘显然比独立式键盘复杂一些,单片机对其进行识别也要复杂一些。确定矩阵式键盘上任何一个键被按下通常采用行扫描法。行扫描法又称为逐行查询法它是一种最常用的多按键识别方法。因此,我们就以行扫描法为例介绍矩阵式键盘的工作原理。 首先,不断循环地给低四位独立的低电平,然后判断键盘中有无键按下。将低位中其中一列线(P1.0~P1.3中其中一列)置低电平然后检测行线的状态(高4位,即P1.4~P1.7,由于线与关系,只要与低电平列线接通,即跳变成低电平),只要有一行的电平为低就延时一段时间以消除抖动,然后再次判断,假如依然为低电平,则表示键盘中真的有键被按下而且闭合的键位于低电平的4个按键之中任其一,若所有行线均为高电平则表示键盘中无键按下。再其次,判断闭合键所在的具体位置。在确认有键按下后,即可进入确定具体闭合键的过程。其方法是: 依次将列线置为低电平,即在置某一根列线为低电平时,其它列线为高电平。同时再逐行检测各行线的电平状态;若某行为低,则该行线与置为低电平的列线交叉处的按键就是闭合的按键。下面图5-5是4*4矩阵式按键接法的软件算法操作流程。 图5-4(4*4矩阵式按键的接法) 下面程序按照上述算法流程去编写的,其电路如图5-6,只是在图5-5的基础上多加了P0端口的8只LED灯。从键盘中检测到一个键值,然后将这个值写到LED数码管上显示。

相关文档
最新文档