风力机空气动力学课程设计

风力机空气动力学课程设计
风力机空气动力学课程设计

风力机空气动力学

第三章风力机气动力学 §3.1 总论 风力机功率的产生依赖于转子和风的相互作用。 风由平均风和附加于上的强烈的湍流脉动合成。 风力机的平均功率输出和平均载荷等主要性能由平均气流的气动力决定。周期性的气动力是疲劳载荷源和风力机峰值载荷的一个因素。周期性的气动力可以由切变风、偏轴风(off-axis winds)、转子旋转、由空气紊流和动力学影响诱发的随机脉动力引起。 本章首先关注的是稳态运行的空气动力学现象,关于非稳态空气动力学的复杂现象将在本章结尾简要介绍。 本章为读者提供理解翼型产生功率的背景,以计算一个优化的叶片形状作为设计叶片的起点,对已知翼型特性线和叶型的转子分析其气动性能。 本章的大部分内容详细说明了采用古典分析方法分析水平轴风力机。动量理论和基元叶片理论(blade element theory)构成了片条理论(strip theory)或基元叶片动量理论(BEM)。以此计算转子环形截面的特性,然后通过积分就可以获得整个转子的特性。 内容分为:1、理想风力机的分析(Betz极限) 2、翼型的运行和一般气动力概念 3、重点放在水平轴风力机的经典分析方法和一些应用和例子 §3.2 一维动量理论和贝兹极限 控制体积和理想透平如图,气流通过透平只产生压力不连续,并假设 ●气流均匀,不可压缩,定常流 动 ●气流无磨擦阻力 ●透平具有无限多叶片 ●推力均匀作用在转子叶轮旋转 面上

● 尾流无旋转 ● 转子远上游和远下游静压等于无干扰时环境的静压 设T 为风作用于风力机上的力,由动量定理可知,透平对风的作用力为: 4114()()T mU mU m U U ??? =---=- (3.2.2) 对于稳态流动,14()()AU AU m ρρ==,m 是质量流量,这里ρ是空气密度, A 是横截面,U 是空气速度。 此外,还由理想流体伯努利方程可知: 22 11221122 p U p U ρρ+=+ (3.2.3) 22 33441122 p U p U ρρ+=+ (3.2.4) 因为14p p =,且通过透平的前后速度一样(23U U =)。 由实际作用力223()T A p p =- (3.2.5) 利用3.2.3式和3.2.4式求得23()p p -,将其带入3.2.5式,得到: 222141 ()2 T A U U ρ= - (3.2.6) 从式3.2.2和式3.2.6得到推力值,设质量流量是22A U ,得到: 14 22 U U U += (3.2.7) 定义诱导速度(induction factor )a 为: 12 1 U U a U -= (3.2.8) 21(1)U U a =- (3.2.9) 且 41(12)U U a =-

1第一章 空气动力学基础知识复习过程

1第一章空气动力学 基础知识

第四单元飞机与飞机系统 第一章空气动力学基础知识 1.1 大气层和标准大气 1.1.1 地球大气层 地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。 根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。 对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组 成成分保持不变。 仅供学习与交流,如有侵权请联系网站删除谢谢1

从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下56.5度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。 中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。 中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。 散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部大气质量的1011 ,是大气的最外一层,因此也称之为“外层大气”。 1.1.2 大气的物理性质 大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。 气体的压强p是指气体作用于容器内壁的单位面积上的正压力。大气的压强是指大气垂直地作用于物体表面单位面积上的力。 仅供学习与交流,如有侵权请联系网站删除谢谢2

通风空调课程设计说明书

通风部分 (2) 第一章工程概况及基本资料 (2) 1.1 工程概况 (2) 1.2 基本资料 (2) 第一章设计内容 (2) 2.1 确定通风方式 (2) 2.2 送风量和排风量的计算 (3) 2.3 管道系统布置与水力计算 (3) 2.4 风机选择 (4) 空调部分 (5) 第一章工程概况 (5) 1.1 建筑概况 (5) 1.2 设计参数 (6) 第二章空调负荷计算 (6) 2.1 室内冷负荷计算 (6) 2.1.1 用冷负荷温度计算围护结构传热形成的冷负荷 (6) 2.1.2用冷负荷系数计算窗户因日射得热形成的冷负荷 (6) 2.1.3 内围护结构传热形成的冷负荷 (7) 2.1.4 人体散热形成的冷负荷 (7) 2.1.5 室内照明散热形成的冷负荷 (8) 2.1.6 室内设备散热形成的冷负荷 (8) 第三章空调系统方案确定 (9) 3.1 冷热源机组的确定 (9) 3.1.1 冷热源方案分析 (9) 3.1.2 空调系统划分送风区划分 (9) 第四章空调机组的选择 (10) 4.1 空调房间风量、冷量的确定 (10) 4.2 末端设备选型 (11) 第五章风系统设计计算 (11) 5.1 风系统设计概述 (11) 5.2 通风管道的选择 (11) 5.3 风管水力计算 (11) 第六章水系统设计计算 (12) 6.1 空调水系统形式的确定 (12) 6.1.1 冷冻水系统的选择 (12) 6.1.2 冷却水系统的选择 (14) 6.1.3 水循环水力计算 (14)

通风部分 第一章工程概况及基本资料 1.1 工程概况 本工程为营业及办公建筑。地下一层,建筑面积770m2。地下一层为车库及各类机房。要求进行地下室的通风排烟设计。 1.2 基本资料 本工程位于市中心,动力与能源完备,照明用电充足,自来水和天然气由城市管网供应。土建专业提供地下室平面图一张。 第一章设计内容 2.1 确定通风方式 地下一层的有害气体主要是由地下停车场产生,而地下停车场内汽车排放的有害物主要是一氧化碳(CO)、碳氢化合物(HC)、氮氧化物(NOX)等有害物。怠速状态下,CO、HC、NOX三种有害物散发量的比例大约为7:1.5:0.2。由此可见,CO是主要的。根据TT36-79《工业企业设计卫生标准》,只要提供充足的新鲜的空气,将空气中的CO浓度稀释到《标准》规定的范围以下,HC、NOX均能满足《标准》的要求。 由《高层民用建筑设计防火规范》[GB50045—1995(2001版)]及《人民防空工程设计防火规范》[GB50098—1998(2001版)]中对地下车库设消防排烟的规定知:本建筑属于高度超过32m的二类建筑,应在面积超过100m 2,且常有人停留或可燃物较多的无窗或固定窗房间是指机械排风排烟设施。 在考虑地下汽车库的气流分布时,防止场内局部产生滞流是最重要的问题。因CO较空气轻,再加上发动机发热,该气流易滞流在汽车库上部,因此在顶棚处排风有利,排风口的布置应均匀,并尽量靠近车体。新风如能从汽车库下部送,对降低CO浓度是十分有利的,但结构上很难做到,因此,送风口可集中布置在上部,采用中间送,两侧回。在保证满足设计要求的前提下,尽量使系统安装简

风力发电机组设计与制造课程设计报告

\ 《风力发电机组设计与制造》 课程设计报告 : 院系:可再生能源学院 班级:风能0902班 % 姓名:陈建宏 学号:04 指导老师:田德、王永

提交日期: 一、设计任务书 1、设计内容 风电机组总体技术设计 ; 2、目的与任务 主要目的: 1)以大型水平轴风力机为研究对象,掌握系统的总体设计方法; 2)熟悉相关的工程设计软件; 3)掌握科研报告的撰写方法。 主要任务: 每位同学独立完成风电机组总体技术设计,包括: 1)确定风电机组的总体技术参数; 2)、 3)关键零部件(齿轮箱、发电机和变流器)技术参数; 4)计算关键零部件(叶片、风轮、主轴、连轴器和塔架等)载荷和技术参数; 5)完成叶片设计任务; 6)确定塔架的设计方案。 每人撰写一份课程设计报告。 3、主要内容 每人选择功率范围在至6MW之间的风电机组进行设计。 1)原始参数:风力机的安装场地50米高度年平均风速为7.0m/s,60米高度年平均风速为7.3m/s,70米高度年平均风速为7.6 m/s,当地历史最大风速为48m/s,用户希望安装 MW 至6MW之间的风力机。采用63418翼型,63418翼型的升力系数、阻力系数数据如表1所示。空气密度设定为1.225kg/m3。 . 2)设计内容 (1)确定整机设计的技术参数。设定几种风力机的C p曲线和C t曲线,风力机基本参数包括叶片数、风轮直径、额定风速、切入风速、切出风速、功率控制方式、传动系统、电气系统、制动系统形式和塔架高度等,根据标准确定风力机等级; (2)关键部件气动载荷的计算。设定几种风轮的C p曲线和C t曲线,计算几种关键零部件的载荷(叶片载荷、风轮载荷、主轴载荷、连轴器载荷和塔架载荷等);根据载荷和功率确定所选定机型主要部件的技术参数(齿轮箱、发电机、变流器、连轴器、偏航和变桨距电机等)和型式。以上内容建议用计算机编程实现,确定整机和各部件(系统)的主要技术参数。(3)塔架根部截面应力计算。计算暴风工况下风轮的气动推力,参考风电机组的整体设计参数,计算塔架根部截面的应力。最后提交有关的分析计算报告。

风力发电机的设计及风力发电系统的研究毕业设计论文

毕 业 论 文 题 目: 风力发电机的设计及风力发电系统的研究

诚信声明 本人声明: 1、本人所呈交的毕业设计(论文)是在老师指导下进行的研究工作及取得的研究成果; 2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料; 3、我承诺,本人提交的毕业设计(论文)中的所有内容均真实、可信。 作者签名:日期:年月日

毕业设计(论文)任务书 题目: 风力发电机的设计及风力发电系统的研究 一、基本任务及要求: 1)基本数据:额定功率 600=N P KW 连接方式 Y 额定电压 V U N 690= 额定转速 min /1512r n N = 相数 m=3 功率因数 88.00=?s c 效率 96.0=η 绝缘等级 F 极对数 P=2 2、本毕业设计课题主要完成以下设计内容: (1) 风力发电机的电磁设计方案; (2) 风力发电系统的研究; (3) 电机主要零部件图的绘制; (4) 说明书。 进度安排及完成时间: 2月20日——3月10日:查阅资料、撰写文献综述、撰写开题报告 3月13日——4月25日:毕业实习、撰写实习报告 3月27日——5月30日:毕业设计 4月中旬:毕业设计中期抽查 6月1日——6月14日:撰写毕业设计说明书(论文) 6月15日——6月17日:修改、装订毕业设计说明书(论文),并将电子文档上传FTP 6月17日——6月20日:毕业设计答辩

目录 摘要 ..............................................................................................I ABSTRACT ......................................................................................II 第1章绪论 .. (1) 1.1 开发利用风能的动因 (1) 1.1.1 经济驱动力 (1) 1.1.2 环境驱动力 (2) 1.1.3 社会驱动力 (2) 1.1.4 技术驱动力 (2) 1.2 风力发电的现状 (2) 1.2.1 世界风力发电现状 (2) 1.2.2 中国风力发电现状[13] (3) 1.3风力发电展望 (3) 第2章风力发电系统的研究 (5) 2.1 风力发电系统 (5) 2.1.1 恒速恒频发电系统 (5) 2.1.2 变速恒频发电机系统 (6) 2.2 变速恒频风力发电系统的总体设计 (10) 2.2.1 变速恒频风力发电系统的特点 (10) 2.2.2 变速恒频风力发电系统的结构 (10) 2.2.3 变速恒频风力发电系统运行控制的总体方案 (20) 第3章风力发电机的设计 (27) 3.1 概述[11] (27) 3.2 风力发电机 (28) 3.2.1 风力发电机的结构 (28) 3.2.2 风力发电机的原理 (29) 3.3 三相异步发电机的电磁设计 (29) 3.3.1 三相异步发电机电磁设计的特点 (30) 3.3.2 三相异步发电机和三相异步电动机的差异[2] (30) 3.3.3 三相异步发电机的电磁设计方案 (31) 3.3.4 三相异步发电机电磁计算程序 (32)

风力机的基本参数与理论

风力发电机风轮系统 2.1.1 风力机空气动力学的基本概念 1、风力机空气动力学的几何定义 (1)翼型的几何参数 翼型 翼型本是来自航空动力学的名词,是机翼剖面的形状,风力机的叶片都是采用机翼或类似机翼的翼型,与翼型上表面和下表面距离相等的曲线称为中弧线。下面是翼型的几何参数图 1)前缘、后缘 翼型中弧线的最前点称为翼型的前缘,最后点称为翼型的后缘。 2)弦线、弦长 连接前缘与后缘的直线称为弦线;其长度称为弦长,用c表示。弦长是很重要的数据,翼型上的所有尺寸数据都是弦长的相对值。 3)最大弯度、最大弯度位置 中弧线在y坐标最大值称为最大弯度,用f表示,简称弯度;最大弯度点的x坐标称为最大弯度位置,用x f表示。 4)最大厚度、最大厚度位置 上下翼面在y坐标上的最大距离称为翼型的最大厚度,简称厚度,用t表示;最大厚度点的x坐标称为最大厚度位置,用x t表示。

5)前缘半径 翼型前缘为一圆弧,该圆弧半径称为前缘半径,用r1表示。 6)后缘角 翼型后缘上下两弧线切线的夹角称为后缘角,用τ表示。 7)中弧线 翼型内切圆圆心的连线。对称翼型的中弧线与翼弦重合。 8)上翼面凸出的翼型表面。 9)下翼面平缓的翼型表面。 (2)风轮的几何参数 1)风力发电机的扫风面积 风轮旋转扫过的面积在垂直于风向的投影面积是风力机截留风能的面积,称为风力机的扫掠面积,下图是一个三叶片水平轴风力机的扫掠面积示意图。 下图是一个四叶片的H型升力垂直轴风力发电机的扫掠面积示意图。 根据前面两表可由所需发电功率估算出风力机所需的扫风面积,例如200W的升力型垂直轴风力发电机工作风速为6m/s,全效率按25%计算所需扫风面积约为6.2m2,如果工作风速为10m/s则所需扫风面积约为1.4m2即可;例如10kW的升力型垂直轴风力发电机工作风速为10m/s,全效率按30%计算所需扫风面积约为56m2,如果工作风速为13m/s则所需扫风面积约为25m2即可。按高风速设计的风力机体积小成本相对低些,但必须用在高风速环境,例如把一台设计风速为10m/s的风力机放在风速为6m/s的环境工作,其功率会下降80%;按风速

1第一章 空气动力学基础知识

第四单元飞机与飞机系统 第一章空气动力学基础知识 1.1 大气层和标准大气 1.1.1 地球大气层 地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。 根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。 对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组成成分保持不变。 从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下56.5度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。 中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。 中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到 1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。 散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部大气质量的1011 ,是大气的最外一层,因此也称之为“外层大气”。 1.1.2 大气的物理性质 大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。

西南交通大学钢桥课程设计75.4m详解

西南交通大学钢桥课程设计 单线铁路下承式栓焊简支钢桁梁桥 课程设计 姓名: 学号: 班级: 电话: 电子邮件: 指导老师: 设计时间:2016.4.15——2016.6.5

目录 第一章设计资料 (1) 第一节基本资料 (1) 第二节设计内容 (2) 第三节设计要求 (2) 第二章主桁杆件内力计算 (3) 第一节主力作用下主桁杆件内力计算 (3) 第二节横向风力作用下的主桁杆件附加力计算 (7) 第三节制动力作用下的主桁杆件附加力计算 (8) 第四节疲劳内力计算 (10) 第五节主桁杆件内力组合 (11) 第三章主桁杆件截面设计 (14) 第一节下弦杆截面设计 (14) 第二节上弦杆截面设计 (16) 第三节端斜杆截面设计 (17) 第四节中间斜杆截面设计 (19) 第五节吊杆截面设计 (20) 第六节腹杆高强度螺栓计算 (22) 第四章弦杆拼接计算和下弦端节点设计 (23) 第一节 E2节点弦杆拼接计算 (23) 第二节 E0节点弦杆拼接计算 (24) 第三节下弦端节点设计 (25) 第五章挠度计算和预拱度设计 (27) 第一节挠度计算 (27) 第二节预拱度设计 (28) 第六章桁架桥梁空间模型计算 (29) 第一节建立空间详细模型 (29) 第二节恒载竖向变形计算 (30) 第三节活载内力和应力计算 (30) 第四节自振特性计算 (32) 第七章设计总结 (32)

第一章设计资料 第一节基本资料 1设计规范:铁路桥涵设计基本规范(TB10002.1-2005),铁路桥梁钢结构设计规范(TB10002.2-2005)。 2结构轮廓尺寸:计算跨度L=70+0.2×27=75.4m,钢梁分10个节间,节间长度d=L/10=7.54m,主桁高度H=11d/8=11×7.46/8=10.3675m,主桁中心距B=5.75m,纵梁中心距b=2.0m,纵梁计算宽度B0=5.30m,采用明桥面、双侧人行道。 3材料:主桁杆件材料Q345q,板厚 40mm,高强度螺栓采用40B,精制螺栓采用BL3,支座铸件采用ZG35II、辊轴采用35号锻钢。 4 活载等级:中—活载。 5恒载 (1)主桁计算 桥面p1=10kN/m,桥面系p2=6.29kN/m,主桁架p3=14.51kN/m, 联结系p4=2.74kN/m,检查设备p5=1.02kN/m, 螺栓、螺母和垫圈p6=0.02(p2+ p3+ p4),焊缝p7=0.015(p2+ p3+ p4); (2)纵梁、横梁计算 纵梁(每线)p8=4.73kN/m(未包括桥面),横梁(每片)p9=2.10kN/m。 6风力强度W0=1.25kPa,K1K2K3=1.0。 7工厂采用焊接,工地采用高强度螺栓连接,人行道托架采用精制螺栓,栓径均为22mm、孔径均为23mm。高强度螺栓设计预拉力P=200kN,抗滑移系数μ0=0.45。

小型风力发电机动力结构设计毕业设计论文

第一章概述 1.1课题研究的目的和意义 数千年来,风能技术发展缓慢,也没有引起人们足够的重视。但自1973年世界石油危机以来,在常规能源告急和全球生态环境恶化的双重压力下,风能作为新能源的一部分才重新有了长足的发展。风能作为一种无污染和可再生的新能源有着巨大的发展潜力,特别是对沿海岛屿,交通不便的边远山区,地广人稀的草原牧场,以及远离电网和近期内电网还难以达到的农村、边疆,作为解决生产和生活能源的一种可靠途径,有着十分重要的意义。 当前,全球都面临着能源枯竭、环境恶化、气温升高等问题,日益增长的能源需求、能源安全问题受到世界各国广泛关注。风能是一种可再生能源,它资源丰富,是一种永久性的本地资源,可为人类提供长期稳定的能源供应;她安全、清洁,没有燃料风险,更不会在使用中破坏环境。为此,世界各国都在加快风力发电技术的研究,以缓解越来越重的能源与环境压力,中国也不例外。 中国是世界上最大的煤炭生产国和消费国,能源利用以煤炭为主。在当前以石化能源为主体的能源结构中,煤炭占73.8%,石油占18.6%,天然气占2%,其余为水电等其它资源。在电力的能源消费中,也是以煤炭为主,燃煤发电量占总发电量的80%。但是,能为人类所用的石化资源是有限的,据第二届环太平洋煤炭会议资料介绍,按目前的技术水平和采掘速度计算,全球煤炭资源还可开采200年。此外,石油探明储量预测仅能开采34年,天然气约能开采60年。随着人口的增长和经济的发展,能源供需矛盾加剧,如果不趁早调整以石化能源为主体的能源结构,势必形成对数亿年来地球积累的生物石化遗产更大规模的挖掘、消耗,由此将导致有限的石化能源趋于枯竭,人类生态环境质量下降的恶性循环,不利于经济、能源、环境的协调发展。电力部己制定“大力发展水电,继续发展火电,适当发展核电,积极发展新能源发电”的基本原则,把风力发电作为优化我国电力工业结构跨世纪的战略发展目标①。 表1-1 1996-2005年世界风电市场增长 从表1-1可以看出,世界上的风电能源增长的非常迅速,10年平均增长率达到了29.77。截止2005年底,全世界并网运行的风力发电机总装机容量达到59237 MW ,是1996年装机容量的9.76倍②。

风力发电机设计与制造课程设计

一.总体参数设计 总体参数是设计风力发电机组总体结构和功能的基本参数,主要包括额定功率、发电机额定转速、风轮转速、设计寿命等。 1. 额定功率、设计寿命 根据《设计任务书》选定额定功率P r =3.5MW ;一般风力机组设计寿命至少为20年,这里选20年设计寿命。 2. 切出风速、切入风速、额定风速 切入风速 取 V in = 3m/s 切出风速 取 V out = 25m/s 额定风速 V r = 12m/s (对于一般变桨距风力发电机组(选 3.5MW )的额定风速与平均风速之比为1.70左右,V r =1.70V ave =1.70×7.0≈12m/s ) 3. 重要几何尺寸 (1) 风轮直径和扫掠面积 由风力发电机组输出功率得叶片直径: m C V P D p r r 10495.096.095.045.012225.13500000 883 3 213≈???????==πηηηπρ 其中: P r ——风力发电机组额定输出功率,取3.5MW ; 错误!未找到引用源。——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径; 1η——传动系统效率,取0.95; 2η——发电机效率,取0.96; 错误!未找到引用源。3η——变流器效率,取0.95; C p ——额定功率下风能利用系数,取0.45。 由直径计算可得扫掠面积: 22 2 84824 1044 m D A =?= = ππ错误!未找到引用源。错误!未找到引用源。 综上可得风轮直径D=104m ,扫掠面积A=84822 m

4. 功率曲线 自然界风速的变化是随机的, 符合马尔可夫过程的特征, 下一时刻的风速和上一时刻的结果没什么可预测的规律。由于风速的这种特性, 可以把风力发电机组的功率随风速的变化用如下的模型来表示: )()()(△t P t P t P sta t += )(t P ——在真实湍流风作用下每一时刻产生的功率, 它由t 时刻的V(t)决定; )(t P stat ——在给定时间段内V(t)的平均值所对应的功率; )(△t P ——表示t 时刻由于风湍流引起的功率波动。 对功率曲线的绘制, 主要在于对风速模型的处理。若假定上式表示的风模型中P stat (t)的始终为零, 即视风速为不随时间变化的稳定值, 在切入风速到切出风速的范围内按照设定的风速步长, 得到对应风速下的最佳叶尖速比和功率系数,带入式: 32123 8 1ηηπηρD V C P r P = 1η——传动系统效率,取0.95; 2η——发电机效率,取0.96; 错误!未找到引用源。3η——变流器效率,取0.95; 错误!未找到引用源。——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径; C p ——额定功率下风能利用系数,取0.45。

初中物理大题集练——能源与可持续发展

初中物理大题集练——能源与可持续发展 1、我市地处沿海,风力资源极为丰富,随着各项大型风力发电项目的建设,我市将成为广东省知名风力发电基地。如图甲是某地风力发电的外景。风力发电机组主要由风机叶片和发电机组成。请回答下列问题: (1)风力发电利用的是风能,风能是清洁的(选填“可再生”或“不可再生”)能源; (2)风机叶片具有质量轻、强度高、耐磨损等性能,通常用密度(选填“大”或“小”)、硬度大的复合材料制成;叶片形状像飞机的机翼,若叶片位置和风向如图乙所示,由于叶片两面空气流速不同而产差,使风叶旋转; (3)风叶产生的动力通过传动系统传递给发电机,发电机是利用原理,把机械能转化为电能; (4)某风力发电机的输出功率与风速的关系如图丙所示,由图像可以知道,当风速在v1到v2之间时,风速越大,发电机组的电功率; (5)请你根据图像判断,台风来临时,能否给风力发电带来最大的经济效益?(选填“能”或“不能”)。 2、如下图甲是我国某公路两旁风光互补路灯系统的外景,其中的风力发电机组主要由风机叶片和发动机组成;该风力发电机的输出功率与风速的关系图像如图乙所示。请回答: (1)风力发电利用的是风能,风能是清洁的、_____(填“可再生”或“不可再

生”)能源; (2)风力发电机利用_________原理把_________转化为电能; (3)由图乙图像可知,能使该风力发电机组产生电能的风速范围是_________(用图像中的字母表示); (4)下表给出的是在不同风速下该风力发电机的输出功率。请根据表中信息回答: ①当风速为8 m/s时,该风力发电机的输出功率为_________W; ②当风速为16 m/s时,这台风力发电机工作1 s所产生的电能可供1只“12 V 60W”电灯正常工作2 s,那么风力发电机发电的效率为_________。 3、2015年3月,全球最大的太阳能飞机“阳光动力2号”(如图所示)开始首次环球飞行,途径我国重庆和南京两个城市,此行的重要目的是传播新能源概念。 (1)该飞机白天飞行时,利用高效太阳能电池版将电磁能(太阳能)转化为____________能;夜间飞行时,利用其超轻薄离子电池储备的____________能转化为电能,首次实现昼夜飞行而不耗费一滴燃油。 (2)该机从重庆飞往南京的航程约为1260千米,用时17.5小时。则它的飞行速度为多少千米/小时? (3)为降低飞行时的能量消耗,该机选用新型轻质材料,取面积为1平方米,厚度为1毫米的新型材料,测得其质量为250克,则该材料的密度为多少?(4)该机计划从南京起飞后直飞美国夏威夷,是此次环球航行中最具挑战性的一段航程,飞行时间长达120小时,飞行过程中依靠平均功率为10千瓦的电动机提供动力,其消耗的能源全部由电池板吸收的太阳能提供,则此段航行中至少需要吸收多少太阳能?(太阳能电池板的转化功率约为30%) 4、如图所示,2015年3月31日,无需一滴燃料的世界最大太阳能飞机“阳光动力”2号降落在重庆江北国际机场,并于当天在重庆巴蜀中学开启中国首个

《风力发电机组设计与制造》课程设计报告_图文

《风力发电机组设计与制造》 课程设计报告 一、设计任务书 1、设计内容 风电机组总体技术设计 2、目的与任务 主要目的: 1)以大型水平轴风力机为研究对象,掌握系统的总体设计方法; 2)熟悉相关的工程设计软件; 3)掌握科研报告的撰写方法。 主要任务: 每位同学独立完成风电机组总体技术设计,包括: 1)确定风电机组的总体技术参数; 2)关键零部件(齿轮箱、发电机和变流器)技术参数;

3)计算关键零部件(叶片、风轮、主轴、连轴器和塔架等)载荷和技术参数; 4)完成叶片设计任务; 5)确定塔架的设计方案。 每人撰写一份课程设计报告。 3、主要内容 每人选择功率范围在1.5MW至6MW之间的风电机组进行设计。 1)原始参数:风力机的安装场地50米高度年平均风速为7.0m/s,60米高度年平均风速为7.3m/s,70米高度年平均风速为7.6 m/s,当地历史最大风速为48m/s,用户希望安装1.5 MW至6MW之间的风力机。采用63418翼型,63418翼型的升力系数、阻力系数数据如表1所示。空气密度设定为1.225kg/m3。 2)设计内容 (1)确定整机设计的技术参数。设定几种风力机的C p曲线和C t曲线,风力机基本参数包括叶片数、风轮直径、额定风速、切入风速、切出风速、功率控制方式、传动系统、电气系统、制动系统形式和塔架高度等,根据标准确定风力机等级; (2)关键部件气动载荷的计算。设定几种风轮的C p曲线和C t曲线,计算几种关键零部件的载荷(叶片载荷、风轮载荷、主轴载荷、连轴器载荷和塔架载荷等);根据载荷和功率确定所选定机型主要部件的技术参数(齿轮箱、发电机、变流器、连轴器、偏航和变桨距电机等)和型式。以上内容建议用计算机编程实现,确定整机和各部件(系统)的主要技术参数。 (3)塔架根部截面应力计算。计算暴风工况下风轮的气动推力,参考风电机组的整体设计参数,计算塔架根部截面的应力。最后提交有关的分析计算报告。4、进度计划

风力发电机设计

高等教育自学考试毕业设计(论文) 风力发电机设计题目 级机电一体化工程09专业班级 姓名高级工程师指导教师姓名、职称

所属助学单位 2011年 4月1 日 目录 1 绪论………………………………………………………………………………… 1 1.1 风力发电机简介 (1) 1.2 风力发电机的发展史简介 (1) 1.3 我国现阶段风电技术发展状况 (2) 1.4 我国现阶段风电技术发展前景和未来发展 (2) 2 风力发电机结构设计……………………………………………………………… 3 2.1 单一风力发电机组成 (3) 2.2 叶片数目 (3) 2.3 机舱 (4) 2.4 转子叶片 (5) 3 风力发电机的回转体结构设计和参数计算 (5) 3.1联轴器的型号及主要参数 (5) 3.2 初步估计回转体危险轴颈的大小 (5) 3.3 叶片扫描半径单元叶尖速比 (6) 4 风轮桨叶的结构设计……………………………………………………………… 6 4.1桨叶轴复位斜板设计 (6) 4.2托架的基本结构设计 (6) 5 风力发电机的其他元件的设计 (6) 5.1 刹车装置的设计 (6) 6 风力发电机在设计中的3个关键技术问题 (7) 6.1空气动力学问题 (7) 6.2结构动力学问题 (7) 6.3控制技术问题 (7)

7 风力发电机的分类………………………………………………………………… 7 8 风力发电机的选取标准 (8) 9 风力发电机对风能以及其它的技术要求………………………………………… 8 9.1风力发电机对风能技术要求 (8) 9.2风力发电机建模的技术是暂态稳定系统 (9) 9.3风力电动机技术之间的能量转换 (10) 10 风力发电机在现实中的使用范例 (10) 结论 (12) 致谢 (13) 参考文献 (14) 摘要 随着世界工业化进程不断加快,能源消耗不断增加,全球工业有害物质排放量与日俱增,造成了能源短缺和恶性疾病的多发,致使能源和环境成为当今世界两大问题。因此,风力发电的研究显得尤为重要。 我国风电场内无功补偿的方式是在风电场汇集站内装设集中无功补偿装置,这造成风电场无功补偿的投资很大。文章结合实例,通过对不同发电量下风电场的无功损耗和电压波动情况进行计算,提出利用风力发电机的无功功率可基本实现风电场的无功平衡,风电场母线电压的变化是无功补偿设备选型的依据,对于发电量变化引起的母线电压变化不超出电网要求的风电场,应利用风力发电机的无功功率减小汇集站内无功补偿装置的容量,降低无功补偿的投资。 关键词:风力发电、风电场、无功补偿、电压波动

小型风力发电机毕业设计论文

小型风力发电机毕业设计 摘要 基于开发风能资源在改善能源结构中的重要意义,本论文对风力发电机的特性作了简要的介绍,且对风力发电机的各种参数和风力机类型作了必要的说明。在此基础上,对风力发电机的原理和结构作了细致的分析。首先,对风力发电机的总体机械结构进行了设计,并且设计了限速控制系统。本课题设计的是一种新型的立式垂直轴小型风力发电机,由风机叶轮、立柱、横梁、变速机构、离合装置和发电机组成。这种发电机有体积小、噪音小、使用寿命长、价格低的特点,适合在有风能资源地区的楼房顶部,供应家庭用电,例如照明:灯泡,节能灯;家用电器:电视机、收音机、电风扇、洗衣机、电冰箱。 关键词:风力发电限速控制系统小型风力发电机

Abstract Exploiting wind energy resources is of great significance in improving energy structure. In the discourse,the characters of wind generator are introduced briefly,while parameters and types of wind generators are also narrated. Base on these,the theory and constitution of the wind generator are meticulously analyzed. Firstly,Has carried on the design to wind-driven generator's overall mechanism, And has designed the regulating control system. What I design is one kind of new vertical axis small wind-driven generator, by the air blower impeller, the column, the crossbeam, the gearshift mechanism, the engaging and disengaging gear and the generator is composed. This kind of generator has the volume to be small, the noise is small, the service life is long, the price low characteristic, suits in has the wind energy resources area building crown, the supply family uses electricity, For example illumination: The light bulb, conserves energy the lamp; Domestic electric appliances: Television, radio, electric fan, washer, electric refrigerator. Key words:Wind power generation, Regulating control system, Small wind-driven generator

风力机空气动力学常识

风力机空气动力学常识 作者:曹连芃 关键字:翼型,升力,阻力,相对风速,攻角,失速迎角,叶尖速比,贝茨极限,雷诺数,实度 风能曾是蒸汽机发明之前最重要的动力,数千年前就有了帆船用于交通运输,后来有了风车用来磨面与抽水等。近年来,由于传统能源逐渐枯竭、对环境污染严重,风能作为清洁的新能源得到人们的重视,风力发电已成为重要的新能源。对于想学习风力发电的朋友应该学习一些风力机空气动力学的基础知识。 升力与阻力 风就是流动的空气,把一块薄的平板放在流动的空气中会受到气流对它的作用力。 我们先分析一下平板与气流方向垂直时的情况,此时平板受到的阻力最大,D为阻力,当平板静止时,受阻力虽大但气流并未对平板做功;只有平板在阻力作用下运动,气流才对平板做功;如果平板运动速度方向与气流相同,气流相对平板速度为零,则阻力为零,气流也没有对平板做功。一般说来受阻力运动的平板速度是气流速度的20%至50%时能获得较大的功率。 当平板与气流方向平行时,平板受到的作用力为零。 当平板与气流方向有夹角时,在平板的向风面会受到气流的压力,在平板的下风面会形成负压区,平板两面的压差就产生了侧向作用力F,该力可分解为阻力D与升力L,阻力与气流方向平行,升力与气流方向垂直。

当夹角较小时,平板受到的阻力D较小;此时平板受到的作用力主要是升力L。 飞机的翼片是用来产生升力的,一般翼片上表面弯曲,下表面平直,即使翼片与气流方向平行也会有升力,因为翼片上表面弯曲,下表面平直,上方气流速度比下方快,跟据流体力学的伯努利原理,上方气体压强比下方小,翼片就受到向上的升力作用。由于飞机翼片截面为流线型,受气流阻力很小。 当翼片与气流方向有夹角(该角称攻角或迎角)时,升力会增大,阻力也会增加,适当选择翼片的攻角可获得最大的升力,尽量小的阻力。

风力机叶片课程设计(空气动力学)设计报告

课程设计(综合实验)报告( -- 年度第一学期) 名称: 题目: 院系: 班级: 学号: 学生姓名: 指导教师: 设计周数: 成绩: 日期:

一、目的与要求 本次课程设计的主要目的: 1.掌握动量叶素理论设计风力机叶片的原理和方法 2.熟悉工程中绘图软件及办公软件的操作 3.掌握科研报告的撰写方法 本次课程设计的主要要求: 1.要求独立完成叶片设计参数的确定,每人提供一份课程报告 2.每小组提供一个手工制作的风力机叶片 二、主要内容 设计并制作一个风力机叶片 1.原始数据 三叶片风力机功率P=6.03KW 来流风速7m/s 风轮转速72rpm 风力机功率系数Cp=0.43 传动效率为0.92 发电机效率为0.95 空气密度为1.225kg/m3 全班分为2个小组,每个小组采用一种风力机翼型,翼型的气动数据(升力系数,阻力系数, 俯仰力矩系数)已知。 2.设计任务 2.1风力机叶片设计:根据动量叶素理论对各个不同展向截面的弦长和扭角进行计算, 按比例画出弦长、扭角随叶高的分布。 2.2根据以上计算结果手工制作风力机叶片,给出简单的制作说明。 四、数据计算 选用翼型s819 (一)叶片半径的计算:

由风力发电机输出功率: 21238 1 ηηπρP r C D V P = 得,叶片直径: m C V P D P r 10.37 .048.08234.1800 883 2 13=?????= = πηηπρ 叶片半径: m D R 55.123.12=== (二) 叶尖速比的计算: 整个叶片的叶尖速比: 31.57 329.460/72260/2110=??=?=Ω= ππλv R n V R 半径r 处的叶尖速比:1 0V r Ω=λ ① 设计中取9处截面,分别是叶片半径的20%处,叶片半径的30%处,叶片半径的40%处,叶片半径的 50%处,叶片半径的60%处,叶片半径的70%处,叶片半径的80%处,叶片半径的90%处,则由式①得到各截面处的叶尖速比分别为: 60.01 %20% 10=?= V R ωλ 1.201 %20% 20=?= V R ωλ 1.801 %30% 30=?= V R ωλ 40.21%40% 40=?= V R ωλ 00.31 %50% 50=?= V R ωλ 3.601 %60% 60=?= V R ωλ 20 .41 %70% 70=?= V R ωλ 80.41%80%80=?=V R ωλ 60 .51 %90% 90=?= V R ωλ 00.61 %90% 100=?= V R ωλ 各截面处翼型弦长: 确定每个剖面的形状参数N: 可根据公式: 9 4 )(/91622 00 + = R r r R N λλπ

锅炉送引风设计

摘要 锅炉燃烧过程自动控制主要包括三项控制内容: 控制燃料量、控制送风量、控制引风量。为实现对燃料量、送风量和引风量的控制, 相应的有三个控制系统, 即燃料量控制系统、送风量控制系统和引风量控制系统。以上三个控制系统之间存在着密切的相互关联, 要控制好燃烧过程, 必须使燃料量、送风量及引风量三者协调变化。锅炉燃烧自动控制系统的基本任务是使燃料燃烧所提供热量适应外界对锅炉输出的蒸汽负荷的需求, 同时保证锅炉的安全经济运行。在锅炉燃料控制子系统中, 有三种方案控制燃料量, 分别为: 燃料反馈的燃料控制系统、给煤机转速反馈的燃料控制系统和前馈加反馈的燃料控制子系统。其中, 给煤机转速反馈的燃料控制子系统是目前应用最多的。送风控制一般采取串级比值控制系统, 辅之以含氧量校正信号。引风控制系统一般引入送风量前馈信号, 使送风量与引风量相匹配。锅炉送风机、引风机是锅炉系统的重要设备,对提高介质的燃烧利用率、保证锅炉的正常使用起着关键作用。本次课程设计主要针对燃煤锅炉燃烧的送、引风系统进行设计。 关键词:锅炉、燃烧、自动控制、送引风

目录 摘要...................................................................................................... I 1.锅炉燃烧过程分析. (1) 1.1磨煤机的工作原理 (1) 1.2给煤机的工作原理 (1) 1.3空气预热器 (1) 1.4一次风机工作原理 (1) 1.5送引风机工作原理 (1) 1.6燃烧器布置 (3) 2.燃烧过程控制任务和调节量 (4) 2.1.燃烧过程控制任务 (4) 2.2燃烧过程调节量 (4) 3.锅炉送、引风机风压及风量的理论计算 (5) 3.1送风机风压与风量的确定 (5) 3.2引风机的风压与风量的确定 (6) 4.锅炉燃烧过程控制基本方案及分析 (8) 4.1蒸汽出口压力控制系统分析 (9) 4.2燃料量控制系统 (9) 4.3送风量控制系统 (12) 4.4引风量控制系统 (14) 5.控制系统单元元件的选择 (16) 5.1变送器的选择 (16)

相关文档
最新文档