高中物理必修二第9讲 常见力做功(简单版) 学生版讲义

高中物理必修二第9讲 常见力做功(简单版) 学生版讲义
高中物理必修二第9讲 常见力做功(简单版) 学生版讲义

常见力做功

常见力做功

1.重力做功

我们知道物体由于被举高而具有重力势能。学习了做功之后,我们知道做功是能量转换的量度。同学们可以思考,当一个物体被举高,或者下落的时候,物体的重力分别作了负功和正功,显然重力势能的变化与重力做功有关。我们要系统的认识重力势能这种能量,必须先研究一下重力的做功特点。

① 一个质量为m 的物体,从高为1h 的位置,竖直向下运动到高度为2h 的位置,这个过程中重力做的功为:

G 1212()W mgh mgh mgh mg h h ==-=-

② 同一个物体从相同1h 高度的A 点,沿着倾斜直线运动了l 的距离,下滑到了2h 高度的B 点,过程中重力做的功为:

G 1212cos ()W mgl mgh mgh mgh mg h h θ===-=-

③ 如果物体沿任意的曲线路径从1h 高度的A 点运动到2h 高度的B 点,我们把整个路径分成许多很短的时间间隔,每一段路程都非常的短,所以可以把一小段曲线运动看成是直线运动进行处理,每一小段直线运动中重力做功为:N N W mg h =?。将所有分段累加起来就是整个曲线路径重力所做的功,

()G 12312312()W mg h mg h mg h mg h h h mg h h =?+?+?+=?+?+?+=-

通过上述推导我们可得:重力对它做的功只跟它的起点和终点的高度差有关,而跟物体运动的路径无关。

典例精讲

【例1.1】(2019春?荔湾区校级期末)一个物体从空中落下,在这个过程中,重力对它做的功为2000J ,物体克服空气阻力做的功为100J .则在这一过程中,物体的重力势能( )

A .减小了2000J

B .减小了2100J

C .增加了2000J

D .减小了1900J

【例1.2】(2011?江汉区校级模拟)如图所示,用一根长杆和两个小定滑轮组合成的装置来提升质量为m 的重物A ,长杆的一端放在地上,并且通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方的O 点处,在杆的中点C 处拴一细绳,通过两个滑轮后挂上重物A ,C 点与O 点的距离为l ,滑轮上端B 点距O 点的距离为4l .现在杆的另一端用力,使其沿逆时针方向由竖直位置以角速度ω缓缓转至水平位置(转过了90°角).则在此过程中,下列说法正确的是( )

A .重物A 做匀速直线运动

B .重物A 的速度先增大后减小,最大速度是ωl

C .绳的拉力对A ﹣3)mgl

D .绳的拉力对A ﹣3)m ω2l 2

【例1.3】(2015?赫山区校级一模)如图所示,A 、B 两物体质量分别是m A 和m B ,用劲度系数为k 的弹簧相连,A 、B 处于静止状态。现对A 施竖直向上的力F 提起A ,使B 对地面恰无压力。当撤去F ,A 由静止向下运动至最大速度时,重力做功为( )

A B .

C D .【例1.4】(2017?新课标Ⅲ)如图,一质量为m ,长度为l 的均匀柔软细绳PQ 竖直悬挂。用外力将绳的下端Q 缓慢地竖直向上拉起至M 点,M 点与绳的上端P l .重力加速度

大小为g 。在此过程中,外力做的功为( )

A mgl

B .mgl

C mgl

D .mgl

2.摩擦力做功

一个物块沿着粗糙的斜面上滑,沿斜面上滑长度为S ,当滑到最高点

时,摩擦力做功W fS =-上,若物块又从最高点滑到起点时,摩擦力

做功W fS =-下,从而全程摩擦力做功为f 2W fl =-,全程虽然位移为

0,但全程摩擦力的方向改变了,所以不能全程求,要分段求,摩擦力做功就不是0。在这个过程中物体的位移为零,但是做功却不为零,而与物体的运动总路程有关。

滑动摩擦力做功:由于滑动摩擦力的方向始终与相对运动的方向相反,所以与物体的运动路径有关,

也就是与物体的路程有关。可以做正功,也可以做负功或不做功。

静摩擦力做功:可以做正功,也可以做负功或不做功。

典例精讲

【例2.1】(2019春?商洛期末)如图所示,拖着轮胎跑是身体耐力训练的一种有效方法。某受训者拖着轮胎在水平直道上匀速跑了一段距离,下列说法正确的是()

A.地面对轮胎的摩擦力不做功

B.重力对轮胎做负功

C.绳子的拉力对轮胎不做功

D.轮胎所受的合力不做功

【例2.2】(2008?江苏)如图所示,粗糙的斜面与光滑的水平面相连接,滑块沿水平面以速度v0运动,设滑块运动到A点的时刻为t=0,距A点的水平距离为x,水平速度为v x.由于v0不同,从A点到B点的几种可能的运动图象如下列选项所示,其中表示摩擦力做功最大的是()

A.B.

C.D.

【例2.3】(2016?湘桥区校级学业考试)如图,拖着旧橡胶轮胎跑是身体耐力训练的一种有效方法。如果某受训者拖着轮胎在水平直道上跑了100m,那么下列说法正确的是()

A.轮胎受到地面的摩擦力做了负功

B.轮胎受到的重力做了正功

C.轮胎受到的拉力不做功

D.轮胎受到地面的支持力做了正功

【例2.4】(2017?府谷县校级学业考试)关于摩擦力对物体做功,以下说法中正确的是()A.滑动摩擦力总是做负功

B.滑动摩擦力可能做负功,也可能做正功

C.静摩擦力对物体一定做负功

D.静摩擦力对物体总是做正功

【例2.5】(2016?南平模拟)一物块放在水平地面上,受到水平推力F的作用,力F与时间t的关系如图甲所示;物块的运动速度v与时间t的关系如图乙所示,10s后的速度图象没有画出,重力加速度g取10m/s2.下列说法正确的是()

A.物块滑动时受到的摩擦力大小是6N

B.物块的质量为1kg

C.物块在0~10s内克服摩擦力做功为50 J

D.物块在10~15s内的位移为6.25 m

高一物理最新教案-摩擦力做功与能量转化问题 精品

专题 摩擦力做功与能量转化问题 【学习目标】 1.理解静摩擦力和滑动摩擦力做功的特点; 2.理解摩擦生热及其计算。 【知识解读】 1.静摩擦力做功的特点 如图5-15-1,放在水平桌面上的物体A 在水平拉力F 的作用下未动,则桌面对A 向左的静摩擦力不做功,因为桌面在静摩擦力的方向上没有位移。如图5-15-2,A 和B 叠放在一起置于光滑水平桌面上,在拉力F 的作用下,A 和B 一起向右加速运动,则B 对A 的静摩擦力做正功,A 对B 的静摩擦力做负功。可见静摩擦力做功的特点是: (1)静摩擦力可以做正功,也可以做负功,还可以不做功。 (2)相互作用的一对静摩擦力做功的代数和总等于零。 (3)在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力起着传递机械能的作用),而没有机械能转化为其它形式的能。 2.滑动摩擦力做功的特点 如图5-15-3,物块A 在水平桌面上,在外力F 的作用下向右运动,桌面对A 向左的滑动摩擦力做负功,A 对桌面的滑动摩擦力不做功。 如图5-15-4,上表面不光滑的长木板,放在光滑的水平地面上,一小铁块以速度 v 从木板的左端滑上木板,当铁块和木板相对静止时木板相对地面滑动的距离为s ,小铁 块相对木板滑动的距离为d ,滑动摩擦力对铁块所做的功为:W 铁=-f(s+d)―――① 根据动能定理,铁块动能的变化量为: k w =f s+d E ?铁铁=-()―――② ②式表明,铁块从开始滑动到相对木板静止的过程中,其动能减少。那么,铁块减少的动能转化为什么能量了呢? 以木板为研究对象,滑动摩擦力对木板所做的功为:w fs 板=――――――③ 根据动能定理,木板动能的变化量为:k E w fs ?板板==――④ 5-15-1 图 5152 图- -5153 图-- 5154 图--

五种方法搞定变力做功问题

五种方法搞定变力做功 一.微元法思想。 当物体在变力作用下做曲线运动时,我们无法直接使用θcos s F w ?=来求解,但是可以 将曲线分成无限个微小段,每一小段可认为恒力做功,总功即为各个小段做功的代数和。 例1. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图1所示,已知物块的 质量为m ,物块与轨道间的动摩擦因数为μ。求此过程中摩擦力所做的功。 思路点拨:由题可知,物块受的摩擦力在整个运动过程中大 小不变,方向时刻变化,是变力,不能直接用求解; 但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直 线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做 的功,然后再累加起来,便可求得结果 图1 把圆轨道分成无穷多个微元段,摩擦力在每一 段上可认为是恒力,则每一段上摩擦力做的功分别 为 , ,…,,摩擦力在一周内所做的功 二、平均值法 当力的大小随位移成线性关系时,可先求出力对位移的平均值2 21F F F +=,再由αc o s L F W =计算变力做功。如:弹簧的弹力做功问题。 例2静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运 动(如图2甲所示),拉力F 随物块所在位置坐标x 的变化关系(如图乙所示),图线为半圆.则 小物块运动到x 0处时的动能为 ( ) A .0 B .02 1x F m C .04x F m π D .204 x π 【精析】由于W =Fx ,所以F-x 图象与x 轴所夹的面积表示功,由图象知半圆形的面积为 04m F x π.C 答案正确. 图2

三.功能关系法。 功能关系求变力做功是非常方便的,但是必须知道这个过程中能量的转化关系。 例3 如图所示,用竖直向下的恒力F 通过跨过光滑定滑轮的细线拉动光滑水平面上的物体, 物体沿水平面移动过程中经过A 、B 、C 三点,设AB =BC ,物体经 过A 、B 、C 三点时的动能分别为E KA ,E KB ,E KC ,则它们间的关系 一定是: A .E K B -E KA =E K C -E KB B .E KB -E KA E KC -E KB D . E KC <2E KB 【精析】此题中物块受到的拉力是大小恒定,但与竖直方向的夹角逐渐增大,属于变力,求拉力做功可将此变力做功转化为恒力做功问题.设滑块在A 、B 、C 三点时到滑轮的距离分别为L 1、L 2、L 3,则W 1=F (L 1-L 2),W 2=F (L 2-L 3),要比较W 1和W 2的大小,只需比较(L 1-L 2)和(L 2-L 3)的大小.由于从L 1到L 3的过程中,绳与竖直方向的夹角逐渐变大,所以可以把夹角推到两个极端情况.L 1与杆的夹角很小,推到接近于0°时,则L 1-L 2≈AB ,L 3与杆的夹角较大,推到接近90°时,则L 2-L 3≈0,由此可知,L 1-L 2> L 2-L 3,故W 1> W 2.再由动能定理可判断C 、D 正确.答案CD. 四.应用公式Pt W =求解。 当机车以恒定功率工作时,在时间内,牵引力做的功Pt W =。 例 4.质量为m 的机车,以恒定功率从静止开始启动,所受阻力是车重的k 倍,机车经过时间t 速度达到最大值m v 。求机车在这段时间内牵引力所做的功。 解析:机车以恒定功率启动,从静止开始到最大速度的过程中,所受阻力不变,但牵引力是变力,因此,机车的牵引力做功不能直接用公式αcos FS W =来求解,但可用公式Pt W =来计算。 根据题意,机车所受阻力kmg f =。且当机车速度达到最大值时,f F =牵。 所以机车的功率为:max max max kmgv fv v F P ===牵。 根据Pt W =,机车在这段时间内牵引力所做的功为: t kmgv Pt W m ==牵。 五.S F -图象法。 在S F -图像中,图线与坐标轴围成的面积在数值上表示力F 在相应的位移上对物体做的功。这一点对变力做功问题也同样适用。 例5.如图4所示,一个劲度系数为的轻弹簧,一端固定在墙壁上,在另一端沿弹簧的轴 图4

高一物理摩擦力典型习题

摩擦力大全 1 .如图所示,位于水平桌面上的物块P ,由跨过定滑轮的轻绳与物块Q 相连,从滑 轮到P 和到Q 的两段绳都是水平的.已知Q 与P 之间以及P 与桌面之间的动摩擦因数都是μ,两物块的质量都是m ,滑轮的质量、滑轮轴上的摩擦都不计.若用一水平向右的力F 拉Q 使它做匀速运动,则F 的大小为 ( ) A .mg μ B .mg μ2 C .mg μ3 D .mg μ4 2 .如图所示,质量为m 的木块的在质量为M 的长木板上 滑行,长木板与地面间动摩擦因数为1μ,木块与长木板间动摩擦因数为2μ,若长木板仍处于静止状态,则长木板受地面摩擦力大小一定为: ( ) A .mg 2μ B .g m m )(211+μ C .mg 1μ D .mg mg 12μμ+ 3 .如图1-B-8所示,质量为m 的工件置于水平放置的钢板C 上,二者间动摩擦因 数为μ,由于光滑导槽 ( ) A . B 的控制,工件只能沿水平导槽运动,现在使钢板以速度ν1向右运动,同时用力F 拉动工件(F 方向与导槽平行)使其以速度ν2沿导槽运动,则F 的大小为 A 等于μmg B .大于μmg C 小于μmg D .不能确定 P Q F 图1-B-8

4 .用一个水平推力F=Kt (K为恒量,t为时间)把一重为G的物体压在竖直的足够 高的平整墙上,如图1-B-5所示,从t=0开始物体所受的摩擦力f随时间t变化关系是中的哪一个? 图 1-B- 6 5 .一皮带传动装置,轮A.B均沿同方向转动,设皮带不打滑,A.B为两边缘上的点, 某时刻a、b、o、o’位于同一水平面上,如图 1-B-3所示.设该时刻a、b所受摩擦力分别为f a、 f b,则下列说确的是

摩擦力做功及传送带中的能量问题

9月6日 摩擦力做功及传送带中的能量问题 高考频度:★★★★☆ 难易程度:★★★★☆ 如图所示,足够长的传送带与水平方向的夹角为θ,物块a 通过平行于传送带的轻绳跨过光滑定滑轮与物块b 相连,b 的质量为m 。开始时,a 、b 及传送带均静止,且a 不受摩擦力作用。现让传送带逆时针匀速转动,在b 由静止开始上升h 高度(未与定滑轮相碰)过程中 A .a 的重力势能减少mgh B .摩擦力对a 做的功等于a 机械能的增量 C .摩擦力对a 做的功等于a 、b 动能增加量之和 D .任意时刻,重力对a 、b 做功的瞬时功率大小相等 【参考答案】ACD 【知识补给】 摩擦力做功的特点 静摩擦力:可以不做功,可以做正功,也可以做负功;相互作用的系统内,一对静摩擦力所做共的代数和为零;在静摩擦力做功的过程重,只有机械能的相互转化,而没有机械能转化为其他形式的能。 滑动摩擦力;可以不做功,可以做正功,也可以做负功;相互作用的系统内,一对滑动摩擦力所做功的代数和总为负值,其绝对值等于滑动摩擦力与相对路程的乘积,等于系统损失的机械能,=f W f s E =?相对路程损,在滑动摩擦力做功的过程中,既有机械能的相互转移,又有机械能转化为其他形式

的能。 在传送带模型中,物体和传送带由于摩擦而产生的热量等于摩擦力乘以相对路程,即Q f s =?相对路程。 如图所示,白色传送带与水平面夹角为37°,以10 m/s 的恒定速率沿顺时针方向转动。在传送带上端A 处无初速度地轻放一个质量为1 kg 的小煤块(可视为质点),它与传送带间的动摩擦因数为0.5。已知传送带上端A 到下端B 的距离为16 m ,sin 37°=0.6,cos 37°=0.8,重力加速度g =10 m/s 2 。则在小煤块从A 运动到B 的过程中 A .运动的时间为2 s B .小煤块在白色传送带上留下的黑色印记长度为6 m C .小煤块和传送带间因摩擦产生的热量为24 J D .小煤块对传送带做的总功为0 (2017·山西太原高一期末)关于重力,摩擦力做功的叙述,正确的是 A .重力对物体做功只与始、末位置有关,而与路径无关 B .物体克服重力做了多少功,物体的重力势能就减少多少 C .摩擦力对物体做功与路径无关 D .摩擦力对物体做功,物体动能一定减少 (2017·山西太原高三月考)如图所示,传送带以恒定速率顺时针运行。将物体轻放在传送带底端,第一阶段物体被加速,第二阶段物体做匀速运动到达传送带顶端。下列说法中正确的是 A .第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功 B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加 C .全过程摩擦力对物体做的功等于全过程物体机械能的增加

新教材高中物理 科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况 新人教版必修第二册

科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况 功的计算,在中学物理中占有十分重要的地位.功的计算公式W =Fl cos α只适用于恒力做功的情况,对于变力做功,则没有一个固定公式可用,但可以通过多种方法来求变力做功,如等效法、微元法、图象法等. 一、求解变力做功的几种方法 法1.用公式W =F - l cos α求变力做功 如果物体受到的力是均匀变化的,则可以利用物体受到的平均力的大小F -=F 1+F 2 2来计 算变力做功,其中F 1为物体初状态时受到的力,F 2为物体末状态时受到的力. 【典例1】 用铁锤把小铁钉钉入木板,设木板对铁钉的阻力与铁钉进入木板的深度成正比.已知铁锤第一次使铁钉进入木板的深度为d ,接着敲第二锤,如果铁锤第二次敲铁钉时对铁钉做的功与第一次相同,那么,第二次使铁钉进入木板的深度为( ) A .(3-1)d B .(2-1)d C. 5-1d 2 D. 22 d 【解析】 根据题意可得W =F -1d =kd 2d ,W =F - 2d ′=kd +k d +d ′2 d ′,联立解得d ′ =(2-1)d (d ′=-(2+1)d 不符合实际,舍去),故选项B 正确. 【答案】 B 法2.用图象法求变力做功 在F - x 图象中,图线与x 轴所围的“面积”的代数和表示F 做的功.“面积”有正负,在x 轴上方的“面积”为正,在x 轴下方的“面积”为负.如图甲、乙所示,这与运动学中由v - t 图象求位移的原理相同. 【典例2】 用质量为5 kg 的均匀铁索,

从10 m 深的井中吊起一质量为20 kg 的物体,此过程中人的拉力随物体上升的高度变化如图所示,在这个过程中人至少要做多少功?(g 取10 m/s 2 ) 【解析】 方法一 提升物体过程中拉力对位移的平均值: F -=250+2002 N =225 N 故该过程中拉力做功:W =F - h =2 250 J. 方法二 由F - h 图线与位移轴所围面积的物理意义,得拉力做功:W =250+200 2×10 J =2 250 J. 【答案】 2 250 J 法3.用微元法求变力做功 圆周运动中,若质点所受力F 的方向始终与速度的方向相同,要求F 做的功,可将圆周分成许多极短的小圆弧,每段小圆弧都可以看成一段极短的直线,力F 对质点做的功等于它在每一小段上做功的代数和,这样变力(方向时刻变化)做功的问题就转化为多段上的恒力做功的问题了. 【典例3】 如图所示,质量为m 的质点在力F 的作用下,沿水平面上半径为R 的光滑圆槽运动一周.若F 的大小不变,方向始终与圆槽相切(与速度的方向相同),求力F 对质点做的功. 【解析】 质点在运动的过程中,F 的方向始终与速度的方向相同,若将圆周分成许多极短的小圆弧Δl 1、Δl 2、Δl 3、…、Δl n ,则每段小圆弧都可以看成一段极短的直线,所以质点运动一周,力F 对质点做的功等于它在每一小段上做功的代数和,即W =W 1+W 2+…+W n =F (Δl 1+Δl 2+…+Δl n )=2πRF . 【答案】 2πRF . 变式训练1 如图所示,放在水平地面上的木块与一劲度系数k =200 N/m 的轻质弹簧相连,现用手水平拉弹簧,拉力的作用点移动x 1=0.2 m ,木块开始运动,继续拉弹簧,木块

高中物理必修1摩擦力 教案

3-3.摩擦力 一、教学目标 l.知识与技能: (1)知道摩擦力产生的条件。 (2)能在简单问题中,根据物体的运动状态,判断静摩擦力的有无、大小和方向;知道存在着最大静摩擦力。 (3)掌握动磨擦因数,会在具体问题中计算滑动磨擦力,掌握判定摩擦力方向的方法。 (4)知道影响到摩擦因数的因素。 2.过程与方法: 通过观察演示实验,概括出摩擦力产生的条件及摩擦力的特点,培养学生的观察、概括能力。通过静摩擦力与滑动摩擦力的区别对比,培养学生分析综合能力。 3.情感态度价值观: 在分析物体所受摩擦力时,突出主要矛盾,忽略次要因素及无关因素,总结出摩擦力产生的条件和规律。 二、重点、难点分析 1.本节课的内容分滑动摩擦力和静摩擦力两部分。重点是摩擦力产生的条件、特性和规律,通过演示实验得出关系f=μN。 2.难点是学生有初中的知识,往往误认为压力N的大小总是跟滑动物体所受的重力相 等,因此必须指出只有当两物体的接触面垂直,物体在水平拉力作用下,沿水平面滑动时,压力N的大小才跟物体所受的重力相等。 3.在教学中要强调摩擦力有阻碍相对运动和相对运动趋势的性质。 三、教具 1.演示教具 带有定滑轮的平板一块、带线绳的大木块、小木块、玻璃、毛巾、测力计、砝码。 2学生实验材料 每两位学生一组:物块一块、测力计一只。 3.投影仪、投影片。 四、主要教学过程 (-)引入新课 力学中常见的三种力是重力、弹力、摩擦力。对于每一种力我们都要掌握它产生的条件,会计算力的大小,能判断力的方向。在前面我们已经学过了两种力:重力和弹力。今天我们学习第三种力——摩擦力。在这三种力中摩擦力较难掌握。 (二)教学过程设计 1.静摩擦力 演示实验: 当定滑轮的绳子下端是挂509破妈时,物块 保持静止状态。 提出问题:物块静止,它受板的静摩擦力多 大?方向如何?你是根据什么原理判断的? 当悬挂的破码增加到1009时,物块仍保持静

高中物理求电场力做功的四种方法学法指导

高中物理求电场力做功的四种方法 徐高本 一、利用功的定义式W =FS 来求。 例1. 两带电小球,电荷量分别为+q 和q -,固定在一长度为l 的绝缘细杆的两端,置于电场强度为E 的匀强电场中,杆与场强方向平行,其位置如图1所示。若此杆绕过O 点垂直于杆的轴线顺时针转过90°,则在此转动过程中,电场力做的功为( ) A. 零 B. qE l C. 2qE l D. πqE l +q -q O 图1 解析:+q 受到的电场力水平向右,q -受到的电场力水平向左。设+q 离O 点距离为x ,则q -离O 点的距离为x l -。在杆顺时针转过90°的过程中,电场力对两球做的功分别为 )(21x l qE W qEx W -== 所以总功为qEl x l qE qEx W W W =-+=+=)(21 故选项B 正确。 二、利用电场力做功等于电荷电势能增量的负值即ε?-=W 来求。 例2. 一平行板电容器的电容为C ,两板间的距离为d ,上板带正电,电荷量为Q ,下板带负电,电荷量也为Q ,它们产生的电场在无穷远处的电势为零。两个带异号电荷的小球用一绝缘刚性杆相连,小球的电荷量分别为+q 和q -,杆长为)(d l l <。现将它们从无穷远处移到电容器的两板之间,处于图2所示的静止状态(杆与板面垂直)。在此过程中,电场力对两个小球所做总功的大小等于多少?(设两球移动过程中极板上电荷分布情况不变)。 图2 +Q -Q -q +q 解析:当小球从无穷远处移至图示位置时,设+q 处的电势为q -,1?处的电势为2?,则具有的电势能分别为 00211<-=>=?ε?εq q 对+q :电势能增加了1?q ,所以电场力做负功11?q W -=;对q -:电势能减少了2?q ,所以电场力做正功22?q W =。电场力做的总功 )(2121??--=+=q W W W 因两板间的场强 ) (Cd Q d U E ==

摩擦力做功与产生热能的关系

摩擦力做功与产生热能的关系 众所周知,恒力做功的公式为W=F.Scosθ, 但当做功的力涉及到摩擦力时,往往会使问题变的复杂化. 我们知道摩擦力属于“耗散力”,做功与路径有关,如果考虑摩擦力做功的过程中与产生热能关系时,很多学生就会对之束手无策,从近几年的高考命题中,这类问题是重点也是难点问题,以下就针对摩擦力做功与产生热能的关系作一总结的分析. 1.摩擦力做功的特点与产生热能的机理. 根据,<费曼物理学讲义>中的描述:“摩擦力的起因:从原子情况来看,相互接触的两个表面是不平整的,它们有许多接触点,原子好象粘接在一起,于是,当我们拉开一个正在滑动的物体时,原子啪的一下分开,随及发生振动,过去,把这种摩擦的机理想象的很简单,表面起因只不过布满凹凸不同的形状,摩擦起因于抬高滑动体越过突起部分,但是事实不可能是这样的,因为在这种情况中不会有能量损失,而实际是要消耗动力的。动力消耗的机理是当滑动体撞击突起部分时,突起部分发生形变,接着在两个物体中产生波和原子运动,过了一会儿,产生了热。”从以上对摩擦力做功与产生热能的机理的描述,我们从微观的角度了解到摩擦生热的机理,"所以,我们对“做功”和“生热”实质的解释是:做功是指其中的某一个摩擦力对某一个物体做的功,而且一般都是以地面为参考系的,而“生热”的实质是机械能向内能转化的过程。这与一对相互作用的摩擦力所做功的代数和有关。为了说明这个问题,我们首先应该明确摩擦力做功的特点.2.摩擦力做功的特点. 我们学习的摩擦力包括动摩擦力和静摩擦力,它们的做功情况是否相同呢?下面我们就分别从各自做功的特点逐一分析。 2.1静摩擦力的功 静摩擦力虽然是在两个物体没有相对位移条件下出现的力,但这不等于静摩擦力做功一定为零。因为受到静摩擦力作用的物体依然可以相对地面或其它参考系发生位移,这个位移如果不与静摩擦力垂直,则静摩擦力必定做功,如果叠在一起的两个木块A、B,在拉力F的作用下沿着光滑水平面发生一段位移s,图一所示,则A物体受到向前的静摩擦力f0对A作正功W= f0s 图一 图二

2018高一物理摩擦力知识点总结

2018高一物理摩擦力知识点总结 查字典物理网为各位同学整理了高一物理摩擦力知识 点总结,供大家参考学习。更多内容请关注查字典物理网。 (1)滑动摩擦力:一个物体在另一个物体表面上相当于另一 个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。 说明:①摩擦力的产生是由于物体表面不光滑造成的。 ②摩擦力具有相互性。 ⅰ滑动摩擦力的产生条件:A.两个物体相互接触;B.两物体 发生形变;C.两物体发生了相对滑动;D.接触面不光滑。 ⅱ滑动摩擦力的方向:总跟接触面相切,并跟物体的相对运动方向相反。 说明:①与相对运动方向相反不能等同于与运动方向相反 ②滑动摩擦力可能起动力作用,也可能起阻力作用。

ⅲ滑动摩擦力的大小:F=FN 说明:①FN两物体表面间的压力,性质上属于弹力,不是重力。应具体分析。 ②与接触面的材料、接触面的粗糙程度有关,无单位。 ③滑动摩擦力大小,与相对运动的速度大小无关。 ⅳ效果:总是阻碍物体间的相对运动,但并不总是阻碍物体的运动。 ⅴ滚动摩擦:一个物体在另一个物体上滚动时产生的摩擦,滚动摩擦比滑动摩擦要小得多。 (2)静摩擦力:两相对静止的相接触的物体间,由于存在相对运动的趋势而产生的摩擦力。 说明:静摩擦力的作用具有相互性。 ⅰ静摩擦力的产生条件:A.两物体相接触;B.相接触面不光

滑;C.两物体有形变;D.两物体有相对运动趋势。 ⅱ静摩擦力的方向:总跟接触面相切,并总跟物体的相对运动趋势相反。 说明:①运动的物体可以受到静摩擦力的作用。 ②静摩擦力的方向可以与运动方向相同,可以相反,还可以成任一夹角。 ③静摩擦力可以是阻力也可以是动力。 ⅲ静摩擦力的大小:两物体间的静摩擦力的取值范围0 说明:①静摩擦力是被动力,其作用是与使物体产生运动趋势的力相平衡,在取值范围内是根据物体的需要取值,所以与正压力无关。 ②最大静摩擦力大小决定于正压力与最大静摩擦因数(选学)Fm=sFN。 ⅳ效果:总是阻碍物体间的相对运动的趋势。

高二物理电场力做功和电势能

电场力做功和电势能、电势和电势差 审稿:李井军责编:郭金娟 目标认知 学习目标 1.类比重力场理解电场力的功、电势能的变化、电势能的确定方法、电势的定义以及电势差的意义;理解电势对静电场能的性质的描写和电势的叠加原理。 2.明确场强和电势的区别与联系以及对应的电场线和等势面之间的区别和联系。 学习重点 1.用电势及等势面描写认识静电场分布。 2.熟练地进行电场力、电场力功的计算。 学习难点 电势这一概念建立过程的逻辑关系以及正、负两种电荷所导致的具体问题的复杂性。 知识要点梳理 知识点一:电势与等势面 要点诠释: 1.电场力的功与电势能 (1)电场力做功的特点 在电场中将电荷q从A点移动到B点,电场力做功与路径无关,只与A、B两点的位置有关。 (2)静电场中的功能关系 静电力对电荷做了功,电势能就发生变化,静电力对电荷做了多少功,就有多少电势能转化为其他形式的能,电荷克服静电力做了多少功,就有多少其他形式的能转化为电势能,也就是说,静电力做的功是电势能转化为其他形式的能的量度,静电力做的功等于电势能的减少量,即W AB=E pA-E pB。 即静电力做正功,电荷电势能一定减少,静电力做负功,电荷电势能一定增加。 (3)电势能的特点和大小的确定 ①零势点及选取 和计算重力势能一样,电势能的计算必须取参考点,也就是说,电势能的数值是相对于参考位置来说的。所谓参考位置,就是电势能为零的位置,参考位置的选取是人为的,通常取无限远处或大地为参考点。 ②电势能的计算 设电荷的电场中某点A的电势能为Ep A,移到参考点O电场力做功为W AO,即W AO=E pA-E pO,规定O为参考点

变力做功的计算

变力做功的计算 Prepared on 22 November 2020

变力做功的计算 公式适用于恒力功的计算,对于变力做功的计算,一般有以下几种方法。 一、微元法 对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。这种处理问题的方法称为微元法,这种方法具有普遍的适用性。但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变力的做功问题。 例1. 用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。求此过程中摩擦力所做的功。 图1 思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。 图2

正确解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为, ,…,,摩擦力在一周内所做的功 。 误点警示:对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。必须注意本题中的F是变力。 小结点评:对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。如力的大小不变而方向总与运动方向相同或相反时,可用计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。 [发散演习] 如图3所示,某个力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。则转动半圆,这个力F做功多少 图3 答案:。 二、图象法

高中物理专题练习《摩擦力做功》

一物体以某一初速度沿糙粗斜面向上滑,达到最高点后又滑回出发点,则下列说法中正确的是( ) A .上滑过程中重力的冲量值比下滑过程中重力的冲量值小 B .上滑过程中重力做功值比下滑过程中重力做功值小 C .上滑过程中摩擦力的冲量值比下滑过程中摩擦力的冲量值大 D .上滑过程中摩擦力做功值比下滑过程中摩擦力做功值大 答案:A 来源: 题型:单选题,难度:理解 如图所示,一物块(可视为质点)以 7 m / s 的初速度从半 圆面的A 点滑下,运动到B 点时的速度大小仍为 7 m / s 。若该物块以 6 m / s 的初速度仍由A 点滑下,则运动到B 点时的速度大小 为( ) A.大于6m/s B.等于6m/s C.小于6m/s D.无法确定 答案:A 来源: 题型:单选题,难度:理解 如图,一物块以s m /1的初速度沿曲面由A 处下滑,到达较低的B 点时速度恰好也是s m /1,如果此物块以s m /2的初速度仍由A 处下滑,则它达到B 点时的速度 ( ) A 、等于s m /2 B 、小于s m /2 C 、大于s m /2 D 、以上三种情况都有可能

答案:B 来源: 题型:单选题,难度:识记 如图所示在北戴河旅游景点之一的南戴河滑沙场有两个坡度不同的滑道AB 和AB / (都可看作斜面)。甲、乙两名旅游者分乘两个滑沙撬从插有红旗的A 点由静止出发同时沿AB 和AB / 滑下,最后都停在水平沙面BC 上.设滑沙撬 和沙面间的动摩擦因数处处相同,滑沙者保持一定 姿势坐在滑沙撬上不动。下列说法中正确的是 A.甲在B 点的速率等于乙在B / 点的速率 B.甲的滑行总路程比乙短 C.甲全部滑行过程的水平位移一定比乙全部滑行过程的水平位移大 D.甲、乙停止滑行后回头看A 处的红旗时视线的仰角一定相同 答案:D 来源:2004年高考江苏 题型:单选题,难度:应用 如图6甲所示,一质量为m 的滑块以初速度v 0自固定于地面的斜面底端A 开始冲上斜面,到达某一高度后返回A ,斜面与滑块之间有摩擦,图6乙中分别表示它在斜面上运动的速度V 、加速度a 、势能E P 和机械能E 随时间的变化图线,可能正确的是 A B B / C

求变力做功的几种方法

求变力做功的几种方法-CAL-FENGHAI.-(YICAI)-Company One1

求变力做功的几种方法 功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,本文对变力做功问题进行归纳总结如下: 一、等值法 等值法即若某一变力的功和某一恒力的功相等,则可以同过计算该恒力的功,求出该变力的功。而恒力做功又可以用W=FScosa计算,从而使问题变得简单。 例1、如图1,定滑轮至滑块的高度为h, 已知细绳的拉力为F牛(恒定),滑块沿水平面 由A点前进s米至B点,滑块在初、末位置时 细绳与水平方向夹角分别为α和β。求滑块由A 点运动到B点过程中,绳的拉力对滑块所做的 功。 分析:设绳对物体的拉力为T,显然人对绳 的拉力F等于T。T在对物体做功的过程中大小 虽然不变,但其方向时刻在改变,因此该问题是变力做功的问题。但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。而拉力F的大小和方向 都不变,所以F做的功可以用公式W=FScosa直接计算。由图可知,在绳与水平面的夹角由α变到β的过程中,拉力F的作用点的位移大小为: 二、微元法 当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。 例2 、如图2所示,某力F=10牛作用于半径R=1米的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为: A 0焦耳 B 20π焦耳 C 10焦耳 D 20焦耳 分析:把圆周分成无限个小元段,每个小元段可 认为与力在同一直线上,故ΔW=FΔS,则转一周中各个 小元段做功的代数和为W=F×2πR=10×2πJ=20πJ,故 B正确。

高中物理静电场题经典例题

高中物理静电场练习题 1、如图所示,中央有正对小孔的水平放置的平行板电容器与电源连接,电源电压为U 。将一带电小球从两小孔的正上方P 点处由静止释放,小球恰好能够达到B 板的小孔b 点处,然后又按原路返回。那 么,为了使小球能从B 板 的小孔b 处出射,下列可行的办法是( ) A.将A 板上移一段距离 B.将A 板下移一段距离 C.将B 板上移一段距离 D.将B 板下移一段距离 2、如图所示,A 、B 、C 、D 、E 、F 为匀强电场中一个正六边形的六个顶点,已知A 、B 、C 三点的电势 分别为1V 、6V 和9V 。则D 、E 、F 三 点的电势分别为( ) A 、+7V 、+2V 和+1V B 、+7V 、+2V 和1V ¥ C 、-7V 、-2V 和+1V D 、+7V 、-2V 和1V 3、质量为m 、带电量为-q 的粒子(不计重力),在匀强电场中的A 点以初速度υ0沿垂直与场强E 的方向射入到电场中,已知粒子到达B 点时的速度大小为2υ0,A 、B 间距为d ,如图所示。 则(1)A 、B 两点间的电势差为( ) A 、q m U AB 232υ-= B 、q m U AB 232 υ= C 、q m U AB 22υ-= D 、q m U AB 22 υ= (2)匀强电场的场强大小和方向( ) A 、qd m E 2 21υ= 方向水平向左 B 、qd m E 2 21υ= 方向水平向右 C 、qd m E 2212 υ= 方向水平向左 D 、qd m E 2212 υ= 方向水平向右 4、一个点电荷从竟电场中的A 点移到电场中的B 点,其电势能变化为零,则( ) A 、A 、B 两点处的场强一定相等 B 、该电荷一定能够沿着某一等势面移动 C 、A 、B 两点的电势一定相等 D 、作用于该电荷上的电场力始终与其运动方向垂直 5、在静电场中( ) A.电场强度处处为零的区域内,电势也一定处处为零 . B.电场强度处处相等的区域内,电势也一定处处相等 C.电场强度的方向总是跟等势面垂直 D.沿着电场线的方向电势是不断降低的 6、一个初动能为E K 的带电粒子,沿着与电场线垂直的方向射入两平行金属板间的匀强电场中,飞出时该粒子的动能为2E K ,如果粒子射入时的初速度变为原来的2倍,那么当它飞出电场时动能为( ) A B a P · m 、q 。 >U + - ~ A E B 。

高中物理摩擦力知识点归纳

高中物理摩擦力 知识点归纳 1、摩擦力定义:当一个物体在另一个物体的表面上相对运动(或有相对运动的趋势)时,受到的阻碍相对运动(或阻碍相对运动趋势)的力,叫摩擦力,可分为静摩擦力和滑动摩擦力。 2、摩擦力产生条件:①接触面粗糙;②相互接触的物体间有弹力;③接触面间有相对运动(或相对运动趋势)。 说明:三个条件缺一不可,特别要注意“相对”的理解。 3、摩擦力的方向: ①静摩擦力的方向总跟接触面相切,并与相对运动趋势方向相反。 ②滑动摩擦力的方向总跟接触面相切,并与相对运动方向相反。 说明:(1)“与相对运动方向相反”不能等同于“与运动方向相反”。 滑动摩擦力方向可能与运动方向相同,可能与运动方向相反,可能与运动方向成一夹角。 (2)滑动摩擦力可能起动力作用,也可能起阻力作用。 4、摩擦力的大小: (1)静摩擦力的大小: ①与相对运动趋势的强弱有关,趋势越强,静摩擦力越大,但不能超过最大静摩擦力,即0≤f≤fm 但跟接触面相互挤压力FN无直接关系。具体大小可由物体的运动状态结合动力学规律求解。 ②最大静摩擦力略大于滑动摩擦力,在中学阶段讨论问题时,如无特殊说明,可认为它们数值相等。 ③效果:阻碍物体的相对运动趋势,但不一定阻碍物体的运动,可以是动力,也可以是阻力。 (2)滑动摩擦力的大小: 滑动摩擦力跟压力成正比,也就是跟一个物体对另一个物体表面的垂直作用力成正比。 公式:F=μFN (F表示滑动摩擦力大小,FN表示正压力的大小,μ叫动摩擦因数)。 说明:①FN表示两物体表面间的压力,性质上属于弹力,不是重力,更多的情况需结合运动情况与平衡条件加以确定。 ②μ与接触面的材料、接触面的情况有关,无单位。 ③滑动摩擦力大小,与相对运动的速度大小无关。 5、摩擦力的效果:总是阻碍物体间的相对运动(或相对运动趋势),但并不总是阻碍物体的运动,可能是动力,也可能是阻力。 说明:滑动摩擦力的大小与接触面的大小、物体运动的速度和加速度无关,只由动摩擦因数和正压力两个因素决定,而动摩擦因数由两接触面材料的性质和粗糙程度有关. 巩固练习 1.关于由滑动摩擦力公式推出的μ=F F N,下列说法正确的是() A.动摩擦因数μ与摩擦力F成正比,F越大,μ越大 B.动摩擦因数μ与正压力F N成反比,F N越大,μ越小

高中物理电场知识点与题型归纳(精编)

高中物理电场总结 一. 教学内容:电场考点例析 电场是电学的基础知识,是承前启后的一章。通过这一章的学习要系统地把力学的“三大 方法”复习一遍,同时又要掌握新的概念和规律。这一章为历年高考的重点之一,特别是在力电综合试题中巧妙地把电场概念与牛顿定律、功能关系、动量等力学知识有机地结合起来,从求解过程中可以考查学生对力学、电学有关知识点的理解和熟练程度。只要同学们在复习本章时牢牢抓住“力和能两条主线”,实现知识的系统化,找出它们的有机联系,做到融会贯通,在高考得到本章相应试题的分数是不困难的。 二. 夯实基础知识 1. 深刻理解库仑定律和电荷守恒定律。 (1)库仑定律:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比, 跟它们的距离的二次方成反比,作用力的方向在它们的连线上。即: 其中k 为静电力常量, k =9.0×10 9 N m 2/c 2 成立条件:① 真空中(空气中也近似成立),② 点电荷。即带电体的形状和大小对相互 作用力的影响可以忽略不计。(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r 都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心间距代替r )。 (2)电荷守恒定律:系统与外界无电荷交换时,系统的电荷代数和守恒。 2. 深刻理解电场的力的性质。 电场的最基本的性质是对放入其中的电荷有力的作用。电场强度E 是描述电场的力的性质 的物理量。 (1)定义: 放入电场中某点的电荷所受的电场力F 跟它的电荷量q 的比值,叫做该 点的电场强度,简称场强。这是电场强度的定义式,适用于任何电场。其中的q 为试探电荷(以前称为检验电荷),是电荷量很小的点电荷(可正可负)。电场强度是矢量,规定其方向与正电荷在该点受的电场力方向相同。 (2)点电荷周围的场强公式是: ,其中Q 是产生该电场的电荷,叫场源电荷。 (3)匀强电场的场强公式是: ,其中d 是沿电场线方向上的距离。 3. 深刻理解电场的能的性质。 (1)电势φ:是描述电场能的性质的物理量。 ① 电势定义为φ= ,是一个没有方向意义的物理量,电势有高低之分,按规定:正电荷在电场中某点具有的电势能越大,该点电势越高 。 ② 电势的值与零电势的选取有关,通常取离电场无穷远处电势为零;实际应用中常取大地 电势为零。 ③ 当存在几个“场源”时,某处合电场的电势为各“场源”在此处电场的电势的代数和 。 ④ 电势差,A 、B 间电势差U AB =ΦA -ΦB ;B 、A 间电势差U BA =ΦB -ΦA ,显然U AB =- U BA ,电势差的值与零电势的选取无关。 q E P

考物理复习二轮专题《求变力做功的几种方法》.doc

考物理复习二轮专题《求变力做功的几种方法》 一、知识讲解 功的计算在中学物理中占有十分重要的地位, 中学阶段所学的功的计算公式 W=FScosa 只能用于恒力做功情况, 对于变力做功的计算则没有一个固定公式可用, 当 F 为变力时, 用 动能定理 W= E k 或功能关系求功,高中阶段往往考虑用这种方法求功。这种方法的依据是: 做功的过程就是能量转化的过程, 功是能的转化的量度。 如果知道某一过程中能量转化的数 值,那么也就知道了该过程中对应的功的数值。 下面是对这种方法的归纳与总结下面对变力 做功问题进行归纳总结如下: 1、等值法 等值法即若某一变力的功和某一恒力的功相等,则可以通过计算该恒力的功,求出该变力的功。 而恒力做功又可以用 W=FScosa 计算,从而 使问题变得简单。 例 1、如图,定滑轮至滑块的高度为 h ,已知细绳的拉力为 F (恒定),滑块沿水平面由 A 点前进 S 至 B 点,滑块在初、末位置时细绳与水平方向夹角 分别为α和β。求滑块由 A 点运动到 B 点过程中,绳的拉力对滑块所做的功。 分析与解:设绳对物体的拉力为T ,显然人对 绳的拉力 F 等于 T 。T 在对物体做功的过程中大小虽然不变,但其方向时刻在改变,因此该 问题是变力做功的问题。 但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下, 人对绳做 的功就等于绳的拉力对物体做的功。 而拉力 F 的大小和方向都不变, 所以 F 做的功可以用公 式 W=FScosa 直接计算。 由图 1 可知,在绳与水平面的夹角由α变到β的过程中 , 拉力 F 的作 用点的位移大小为: S S 1 h h S 2 sin sin W T W F F . S Fh ( 1 1 ) sin sin 2、微元法 当物体在变力的作用下作曲线运动时, 若力的方向与物体运动的切线方向之间的夹角 不变, 且力与位移的方向同步变化, 可用微元法将曲线分成无限个小元段, 每一小元段可认 为恒力做功,总功即为各个小元段做功的代数和。 例 2 、如图所示,某力 F=10N 作用于半径 R=1m 的转盘的边缘上,力 F 的大小保持不变,但方向始终保持与作用点的切线方向一 致,则转动一周这个力 F 做的总功应为: A 、 0J B 、 20π J C 、10J D 、20J. 分析与解:把圆周分成无限个小元段,每个小元段可认为 与力在同一直线上,故 W=F S ,则转一周中各个小元段做功的代数和为 W=F × 2π R=10× 2 π J=20 π J ,故 B 正确。 3、平均力法

高中物理 摩擦力专题讲义

摩擦力专题 一、复习旧知 (1)知道摩擦力产生的条件。 (2)能在简单问题中,根据物体的运动状态,判断静摩擦力的有无、大小和方向;知道存在着最大静摩擦力。 (3)掌握动磨擦因数,会在具体问题中计算滑动磨擦力,掌握判定摩擦力方向的方法。 (4)知道影响到摩擦因数的因素。 二、重难、考点: 1.静摩擦力 静摩擦力产生的条件:相互接触的物体间有相对运动的趋势,而又保持相对静止状态。 静摩擦力的方向:跟接触面相切,跟相对运动趋势的方向相反。 静摩擦力的大小:m f ~0 2.滑动摩擦力 滑动摩擦力产生的条件:相互接触的物体间发生相对运动时。 滑动摩擦力的方向:跟接触面相切,跟相对运动的方向相反。 滑动摩擦力的大小:N f μ=滑 三、例题讲解 【例1】、如图所示位于水平桌面上物块P ,由跨过定滑轮轻绳与物块Q 相连,滑轮到P 和到Q 两段绳都是水平的,已知Q 与P 之间以及P 与桌面之间的动摩擦因数都是μ,两物块质量都是m ,滑轮质量、滑轮轴上的摩擦都不计,若用一水平向右力F 拉Q 使它做匀速运动,则F 大小为( ) A 、mg μ B 、mg μ2 C 、mg μ3 D 、mg μ4 【对应练习1】、如图所示,质量为m 的木块的在质量为M 的长木板上滑行,长木板与地面间动摩擦因数为1μ,木块与长木板间动摩擦因数为2μ,若长木板仍处于静止状态,则长木板受地面摩擦力大小一定为( ) A 、mg 2μ B 、g m m )(211+μ P Q F

C 、mg 1μ D 、mg mg 12μμ+ 【例2】、一皮带传动装置轮A 、B 均沿同方向转动设皮带不打滑,A 、B 为两边缘上的点,某时刻a 、b 、o 、o’位于同一水平面上如图所示设该时刻a 、b 所受摩擦力分别为f a 、f b ,则下列说法正确是( ) A 、f a 、f b 都是动力、而且方向相同 D 、f a 、f b 都是阻力,而且方向相反 C 、f a 若是动力,则f b 一定是阻力,两力方向相反 D 、f a 若是阻力,则f b 一定是动力,两方向相同 【对应练习2】、如图所示,A 是主动轮,B 是从动轮,它们通过不打滑的皮带转动,轮的转动方向如图所示,B 轮上带有负载,P 、Q 分别是两轮边缘上的点,则关于P 、Q 所受摩擦力的判断正确的是( ) A 、P 受到的是静摩擦力,方向向下 B 、P 受到的是滑动摩擦力,方向向上 C 、Q 受到的是静摩擦力,方向向上 D 、Q 受到的是滑动摩擦力,方向向下 【例3】如图所示,在一粗糙水平面上有两个质量分别为m 1和m 2的木块1和2,中间用一原长为l 、劲度系数为K 的轻弹簧连接起来,木块与地面间的滑动摩擦因数为μ.现用一水平力向右拉木块2,当两木块一起匀速运动时两木块之间的距离是:( ) A 、g m K l 1μ + B 、g m m K l )(21++ μ

相关文档
最新文档