铝矾土的煅烧

铝矾土的煅烧
铝矾土的煅烧

铝矾土的煅烧

关键字:

铝矾土;

分解阶段;二次莫来石化阶段;重晶烧结阶段;铝矾土的烧结; 1.铝矾土的加热变化

中国铝矾土主要是D-K型,某些二级铝矾土含有勃姆石,个别的还含有一些白云母:有些三级铝矾土含有一定数量的地开石。

铝矾土的加热变化可分为三个阶段:分解阶段、二次莫来石化阶段和结晶烧结阶段。

(1)分解阶段(400~1200。 C)

400~1200。 C温度范围为铝矾土的分解阶段。在该阶段,铝矾土中的水铝石和高岭石在400。 C时开始脱水,至450~600。 C反应激烈,700~800。 C完成。水铝石脱水后形成刚玉假象,此种假象仍保持原来水铝石的外形,但边缘模糊不清,折射率较水铝石低,在高温下逐步转变为刚玉。高岭石脱水后形成偏高岭石,950。 C以上时偏高岭石转变为莫来石和非晶态SiO2,后者在高温下转变为方石英。其反应式为:

表3-7 耐火材料用铝土矿的技术条件

注:①拣选分级后的某一级铝矾土矿石中,其它级别矿石的混入量不超过总量10%;②矿石块度50~300mm,若允许有小于50mm者,其数量不超过总量的10%;③矿石夹杂之杂质(如山皮、粘土等)不得超过1%,并不得混入明显的块状或片状石灰石

表3-8 耐火材料用铝矾土精矿的技术条件

α-Al2O3·H2O(水铝石)→(400~600。 C)→α-Al2O3(刚玉假象)+H2O ↑

Al2O3·2SiO2·2H2O(高岭石)→(400~600。 C)→Al2O3·2SiO2(偏高岭石)+H2O↑

3(Al2O3·2SiO2)(偏高岭石)→(400~600。C)→3Al2O3·2SiO2(莫来石)+4SiO2(非晶态SiO2)

(2)二次莫来石化阶段(1200~1400。C或1500。 C)

在1200。 C以上,从水铝石脱水形成的刚玉与高岭石分解出来的游离SiO2继续发生反应形成莫来石,被成为二次莫来石:3Al2O3+2SiO2→(≥1200。 C)→3Al2O3+2SiO2(二次莫来石)在二次莫来石化时,发生约10%的体积膨胀。同时在1300~1400。 C 以下时铝矾土中的Fe2O3、TiO2和其它杂质与Al2O3、SiO2反应既可形成液相,Fe2O3、TiO2也可进入莫来石的晶格形成固溶体。液相的形成,有助于二次莫来石化的进行,同时也为重晶烧结阶段准备了条件。

(3)重晶烧结阶段(1400~1500。 C)

在二次莫来石化阶段,由于液相的形成,已经开始发生某种程度

的烧结,但进程很缓慢。只有随着二次莫来石化的完成,重晶烧结作用才开始迅速进行。在1400~1500。 C以上,由于液相的作用,刚玉与莫来石晶体长大,1500。 C时约10μm,到1700。 C分别为60μm和90μm;同时,微观气孔在1200。 C到1400~1500。 C之间约为100~300μm,基本保持不变;在1400~1500。 C以后迅速缩小与消失,气孔率降低,物料迅速趋向致密。

2.铝矾土的烧结

影响铝矾土烧结的主要因素有二次莫来石化、液相及铝矾土的组织结构。

二次莫来石化是D-K型铝矾土在煅烧过程中必然发生的反应,该反应往往引起10%左右的体积膨胀,对烧结起妨碍作用。其原因一是生成二次莫来石时由于比重的变化引起物料本身的体积增大;二是由于颗粒间发生二次莫来石反应而相互推开,从而在颗粒间形成空隙。另外,反应时在颗粒周围首先形成莫来石薄膜也妨碍了铝、硅离子的进一步扩散,使反应难趋完全。

二次莫来石的形成量与铝矾土中水铝石、高岭石的相对含量有关。如果高岭石加热分解出的SiO2与水铝石分解出的Al2O3正好达到莫来石的组成,则二次莫来石的量将会达到最大。研究与生产实践都证明,Al2O3含量在65%~70%的二级铝矾土,Al2O3/SiO2比值接近莫来石的Al2O3/SiO2比值(),在煅烧后莫来石的含量最高,二次莫来石化程度最大,最难于烧结;而Al2O3含量较高或较低的特级或三级铝矾土烧结较容易,温度也较低。

铝矾土的分散度对二次莫来石化的影响也是显着的。铝矾土原矿煅烧时,由于矿物分布不均匀,颗粒反应后相互推开而引起的膨胀起着重要作用。这种作用使反应无法趋于完全,而生成的空隙往往不易弥合,使铝矾土难于致密化。原块铝矾土除组织结构较均匀的特级和三级在1500。 C以下达到烧结外,其它铝矾土往往吸水率较高。若将铝矾土细磨制坯后煅烧,分散度提高,二次莫来石化进行得较早,并易于完全,在较低的温度下既产生膨胀,对烧结有利。

由于烧结基本上开始于二次莫来石化完成的温度,所以充分的二次莫来石化是铝矾土达到烧结的必要条件,特别是对二级铝矾土尤为重要。

液相是影响铝矾土烧结的另一重要因素。铝矾土煅烧时所形成液相量(一、二级铝矾土约10%,三级约20%~30%)不足以填满颗粒间的全部空隙。在这种情况下,液相的作用首先是把固体颗粒拉在一起,使它们相互接触。但二次莫来石化引起的膨胀却是把它们推开,两个相反的作用同时进行。在1400~1500。 C以内时,液相的数量较少、流动性较低,二次莫来石化起主导作用。在1400~1500。 C以上时,二次莫来石趋于完全,液相数量和流动性都增大,液相烧结作用明显显现,成为烧结的主导因素。液相使固体颗粒基本上都相互接触之后,就逐渐发生着固体颗粒的溶解与分析晶过程,逐步导致晶粒堆积致密,直到最后形成连续的固相骨架,液相填充空隙,使铝矾土完全烧结。但液相也有其有害作用的一面,若液相量增多,或者它的熔点、粘度降低,则降低铝矾土的高温机械性能。

填充在空隙中的液相冷却后即为玻璃相。烧后铝矾土的玻璃相化学组成有如下特点:

①玻璃相中Al2O3/SiO2比值随铝矾土Al2O3/SiO2比值降低而降低。

②特级与一级铝矾土中,Fe2O3、TiO2进入玻璃相较多;而二级铝矾土中则进入结晶相较多。

③煅烧温度提高时(由1500到1700。 C),玻璃相中的Al2O3含量减少,SiO2含量增加;同时,一级铝矾土的玻璃相中Fe2O3增多而TiO2减少;二级铝矾土Fe2O3、TiO2都更多地进入玻璃相。铝矾土的组织结构即均匀致密程度及鲕状体的数量与分析,直接影响到铝矾土熟料的烧结程度与致密性。如鲕状体较多的二级铝矾土,组织结构复杂,不均匀,烧后一般呈黄、白两色,白色为水铝石富集部分,黄色为高岭石及一些杂质集中部位,且常有膨胀现象,烧结困难。

中国铝土矿资源概况特点及分布

中国铝土矿资源概况特点及分布 2010-09-14 22:39:13 来源:中铝网 一、什么是铝土矿 铝土矿实际上是指工业上能利用的,以三水铝石、一水软铝石或一水硬铝石为主要矿物所组成的矿石的统称。它的应用领域有金属和非金属两个方面。 铝土矿是生产金属铝的最佳原料,也是最主要的应用领域,其用量占世界铝土矿总产量的90%以上。 铝土矿的非金属用途主要是作耐火材料、研磨材料、化学制品及高铝水泥的原料。铝土矿在非金属方面的用量所占比重虽小,但用途却十分广泛。例如:化学制品方面以硫酸盐、三水合物及氯化铝等产品可应用于造纸、净化水、陶瓷及石油精炼方面;活性氧化铝在化学、炼油、制药工业上可作催化剂、触媒载体及脱色、脱水、脱气、脱酸、干燥等物理吸附剂;用r-Al2O3生产的氯化铝可供染料、橡胶、医药、石油等有机合成应用;玻璃组成中有3%~5%Al2O3可提高熔点、粘度、强度;研磨材料是高级砂轮、抛光粉的主要原料;耐火材料是工业部门不可缺少的筑炉材料。 金属铝是世界上仅次于钢铁的第二重要金属,1995年世界人均消费量达到3.29kg。由于铝具有比重小、导电导热性好、易于机械加工及其他许多优良性能,因而广泛应用于国民经济各部门。目前,全世界用铝量最大的是建筑、交通运输和包装部门,占铝总消费量的60%以上。铝是电器工业、飞机制造工业、机械工业和民用器具不可缺少的原材料。 二、中国铝土矿矿业简史 三、资源状况 截至1996年末,我国已探明铝土矿矿区310处,分布于全国19个省、自治区、直辖市。铝土矿保有储量达到22.73亿t,其中A+B+C级7.05亿t,占总保有储量的31%。 据美国矿业局《MineralCommoditySummaries》1996年资料,全世界铝土矿储量为230亿t,储量基础为280亿t,其中铝土矿资源比较丰富的国家有:澳大利亚(储量基础79亿t)、几内亚(储量基础59亿t)、巴西(储量基础29亿t)、牙买加(储量基础20亿t)、印度(储量基础12亿t)、匈牙利(储量基础9亿t)。我国铝土矿的数量和质量都不及上述国家,如以我国A+B+C级储量(工业储量)和这些国家的储量基础相比,远在它们之后。 我国铝土矿资源还是比较丰富的,华北地台、扬子地台、华南褶皱系及东南沿海四个成

铝矾土的煅烧

铝矾土的煅烧 关键字: 铝矾土; 分解阶段;二次莫来石化阶段;重晶烧结阶段;铝矾土的烧结; 1.铝矾土的加热变化 中国铝矾土主要是D-K型,某些二级铝矾土含有勃姆石,个别的还含有一些白云母:有些三级铝矾土含有一定数量的地开石。 铝矾土的加热变化可分为三个阶段:分解阶段、二次莫来石化阶段和结晶烧结阶段。 (1)分解阶段(400~1200。C) 400~1200。C温度范围为铝矾土的分解阶段。在该阶段,铝矾土中的水铝石和高岭石在400。C时开始脱水,至450~600。C反应激烈,700~800。C完成。水铝石脱水后形成刚玉假象,此种假象仍保持原来水铝石的外形,但边缘模糊不清,折射率较水铝石低,在高温下逐步转变为刚玉。高岭石脱水后形成偏高岭石,950。C以上时偏高岭石转变为莫来石和非晶态SiO2,后者在高温下转变为方石英。其反应式为: 表3-7 耐火材料用铝土矿的技术条件

注:①拣选分级后的某一级铝矾土矿石中,其它级别矿石的混入量不超过总量10%;②矿石块度50~300mm,若允许有小于50mm者,其数量不超过总量的10%;③矿石夹杂之杂质(如山皮、粘土等)不得超过1%,并不得混入明显的块状或片状石灰石 表3-8 耐火材料用铝矾土精矿的技术条件 α-Al2O3·H2O(水铝石)→(400~600。C)→α-Al2O3(刚玉假象)+H2O↑ Al2O3·2SiO2·2H2O(高岭石)→(400~600。C)→Al2O3·2SiO2(偏高岭石)+H2O↑ 3(Al2O3·2SiO2)(偏高岭石)→(400~600。C)→3Al2O3·2SiO2(莫来石)+4SiO2(非晶态SiO2) (2)二次莫来石化阶段(1200~1400。C或1500。C) 在1200。C以上,从水铝石脱水形成的刚玉与高岭石分解出来的游离SiO2继续发生反应形成莫来石,被成为二次莫来石:3Al2O3+2SiO2→(≥1200。C)→3Al2O3+2SiO2(二次莫来石)在二次莫来石化时,发生约10%的体积膨胀。同时在1300~1400。C

铝土矿地质特征及其勘查开发前景

河南省洛阳—三门峡铝土矿地质特征 及其勘查开发前景 陈全树,何文平,周 迪 (河南省有色金属地质矿产局第六地质大队,河南洛阳471002) 摘 要: 河南省洛阳—三门峡的铝土矿,是赋存于中石炭统本溪组的一水硬铝石型沉积铝土矿。本区不仅蕴藏量多,而且有相当数量的富铝土矿,勘查开发潜力大,前景广阔。关键词: 铝土矿床;地质特征;勘查开发;洛阳—三门峡;河南 中图分类号: P 611.22;P 618.45 文献标识码: A 文章编号:1001-1412(2002)04-0252-05 河南省西北部的洛阳—三门峡地区,西起三门峡,东到洛阳,南跨陇海铁路,北临黄河,面积约3000km 2 的范围内,已发现大小铝土矿床(点)30余处,总储量超过3亿t 。区内的铝土矿不仅储量大,而且有相当数量的富铝土矿,是河南省最主要的铝土矿资源产地。 1 区域地质概况 本区大地构造位置为中朝准地台的华熊台缘坳陷的渑池—确山陷褶断束的西北部。北部有北段村穹窿,及近EW 向的陕县断陷盆地,渑池、新安两个向斜构成了区内的基本骨架,并发育有以扣门山断层为代表的NE 向高角度正断层组,以龙潭沟断层为代表的NW 向正断层组,以义马断层为代表的近EW 向逆断层组,以及发育在渑池向斜西端转折部位的SN 向断层组。由于各方向断层相互交错,将穹窿和向斜分割成以扣门山断层和龙潭沟断层为界的3个扇形断块,对含铝、含煤建造的展布起着重要的控制作用(图1)。 区内地层比较齐全,沉积岩广泛分布,除上奥陶统—下石炭统缺失外,中元古界熊耳群及汝阳群、上元古界洛峪群、震旦系、古生界、中生界和新生界在区内均有出露。 本区岩浆岩出露面积很小,且分布零星。除中元古界熊耳群中见有中性火山岩外,在北部和南部有 少量的燕山期石英斑岩侵入中上元古界中。在西部,局部有燕山期花岗斑岩呈岩床状侵入石炭系,但对铝土矿层没有影响。南部还有煌斑岩脉穿插。这些岩浆岩多属浅成侵入相。 本区矿产的种类虽然不多,但有些矿产储量巨大,是经济建设的重要资源。区内主要矿产为煤和铝土矿,此外还有耐火材料、化工原料、玻璃原料及铁矿等,这些矿产资源,为地方工业的发展和经济振兴发挥着重要的作用。 2 矿床地质特征 2.1 矿带划分及矿床分布 本区中石炭统本溪组的铝(粘)土含矿岩系,分布于陕县—渑池—新安一带,东西绵延长达百余公里,人们往往称之为陕—新铝土矿带,它是河南主要的富铝土矿成矿带,以扣门山断层和龙潭沟断层为界,可划分为西、中、东三个铝土矿带(图1)。 (1)西矿带。位于扣门山断层以西的陕县断陷盆地北缘,西起七里沟,东至焦地,长达30km ,断裂非常发育,矿带被分割成大小不一的菱形断块。矿体倾向SE 或SW ,倾角10°~30°。该带有矿产地16处,其中矿床9处,矿点7处。矿床中大型矿床5处,中型矿床1处,小型矿床3处。铝土矿体一般厚2~5m ,矿石品位中等偏富,w (Al 2O 3)=62.91%~69.33%,A /S =5.1~8.8。主要矿区有支建、 崖底、水泉洼、焦收稿日期:2002-02-21; 修订日期:2002-06-06 作者简介:陈全树(1968-),男,工程师,理学学士,主要从事铝土矿、贵金属及有色金属的勘查。 第17卷 第4期2002年12月 地 质 找 矿 论 丛 Vol.17 No.4 Dec.2002

铝矾土、铝土矿

铝矾土 1. 性质:铝矾土(aluminous soil ;bauxite )又称矾土或铝土 矿,主要成分是氧化铝,系含有杂质的水合氧化铝,是一种土状矿物。白色或灰白色,因含铁而呈褐黄或浅红色。密度3.9~4g/cm3,硬度1~3,不透明,质脆。极难熔化。不溶于水,能溶于硫酸、氢氧化钠溶液。主要用于炼铝,制耐火材料。铝土矿是含铝矿物和赤铁矿、针铁矿、高岭石、锐铁矿、金红石、钛铁矿等矿物的混合矿,是现代电解法炼铝的原料。 2.主要成分: 矾土矿学名铝土矿、铝矾土。其组成成分异常复杂,是多种地质来源极不相同的含水氧化铝矿石的总称。如一水软铝石、一水硬铝石和三水铝石(Al2O3·3H2O);有的是水铝石和高岭石(2SiO2·Al2O3·2H2O)相伴构成;有的以高岭石为主,且随着高岭石含量的增高,构成为一般的铝土岩或高岭石质粘土。铝土矿一般是化学风化或外生作用形成的,很少有纯矿物,总是含有一些杂质矿物,或多或少含有粘土矿物、铁矿物、钛矿物及碎屑重矿物等等。 铝土矿的定义名称还不够统一,但基本上大同小异。在我国一 铝矾土制成的防 火砖

般认为:“铝土矿系指矿石之含铝量较高(40%以上),铝硅比值大于2.5者(A/S≥2.5),其小于此数值者则称为粘土矿或铝土页岩或铝质岩”。在我国已探明的铝土矿储量中,一水铝石型铝土矿占全国总储量的98%左右。 3.产地分布: 世界:目前,已知赋存铝土矿的国家有49个,澳大利亚是世界上拥有铝矾土资源最多的国家。但生产供耐火材料用的高铝矾土的国家只有圭亚那和中国,其他国家的铝矾土含铁量高,多用于炼铝和研磨材料。近年的越南也有丰富的铝土矿资源,估计储量在80 亿吨左右。 国内:中国铝土矿资源较为丰富,铝土矿资源总量预计可达50亿t,铝土矿保有基础储量在世界上居第七位,储量在世界上居第八位,与澳大利亚、几内亚、巴西同属世界铝矾土资源大国。我国铝土矿分布高度集中,山西、贵州、河南和广西四个省(区)的储量合计占全国总储量的90.9%(山西41.6%、贵州17.1%、河南16.7%、广西15.5%)。其他分布地区还有山东、河北、辽宁、贵州、四川、重庆、湖南、云南、海南等地。 类型:世界铝土矿的主要类型是三水铝石型。我国铝土矿的特点高硅、高铝和低铁,为一水硬铝石型,矿石中铝硅比在4~7之间[m(Al2O3)/ m(SiO2)]。福建、河南和广西有少量的三水铝石型铝土矿。

老挝阿速坡省铝土矿地质特征及成因分析

老挝阿速坡省铝土矿地质特征及成因分析 老挝阿速坡省铝土矿位于波罗芬高原,是一个红土型三水铝土矿,由玄武岩风化而成。矿层赋存于第四系残积层中。矿体平面形态主要受地形地貌控制,矿石自然形态主要有块状、结核状、粒状,其次有片状、不规则状、管状等。呈灰褐色、黄红色、紫红色。大范围的玄武岩和地形地貌为铝土矿的形成提供了主要的成矿条件。 标签:阿速坡省波罗芬高原三水铝土矿玄武岩 1区域地质特征 波罗芬高原铝土矿位于印支陆块万象—巴色微陆块南西部之班敦凸起。大面积分布中生代地层及新生代第三系、第四系喷发的玄武岩。地层由老到新简述如下: 古生代(Pz3):浅海陆棚层序、砂岩、泥岩及页岩。 中生代(Mz1):陆相层序局部浅海相,陆相红层粘土质砂岩夹薄煤线及砾岩,中三叠系海相灰岩单元出现在层间底部。 中生代(Mz2):陆源红层砂石和泻湖泥岩混杂粘土,上层含岩盐和石膏挥发物。 新近系(N2):未固化沉积砾石、砂、泥和粘土。 第四系(Q):浅褐、褐黄、黄红色残坡积粘土、含砾粘土及黄红、紫红色残积粘土、及铝土矿组成,厚1~20m,个别地段大于20米。其中:玄武岩风化残积层是区内红土型铝土矿主要含矿层位。 其形成多与板块俯冲、岛弧活动及裂谷有关。 2矿体地质特征 矿体赋存层位。铝土矿矿体赋存于第四系的第二层残积层中,主要分布在山脊、山丘的宽缓地带及缓坡上。矿体部分裸露在地表,部分有表土层覆盖。剖面自上而下可分为: 残坡积层(Qel+dl):主要分布在半山坡及相对低洼地带,下部原岩可能为玄武岩或砂岩,也有覆盖于铝土矿之上的。底部少量残积物,上部为坡积物。部分形成铝土矿层。岩性为黄褐色、褐红色含砾粘土,呈松散土状。砾石成份主要为结核状、块状铝土矿。含量变化较大,2%~45%均有,个别地段形成较好的铝土矿。近地表处常有10~50cm的腐殖层,盖层一般厚度0~4.9m。下伏基岩

铝矾土的煅烧

铝矶土的嘏烧 关键字: 铝矶土; 分解阶段;二次莫来石化阶段;重晶烧结阶段;铝矶土的烧结; 1.铝矶土的加热变化 中国铝矶土主要是D-K型,某些二级铝矶土含有勃姆石,个别的还含有一些白云母:有些三级铝矶土含有一定数量的地开石。 铝矶土的加热变化可分为三个阶段:分解阶段、二次莫来石化阶段和结晶烧结阶段。 (1) 分解阶段(400?1200。C) 400?1200。C温度范围为铝矶土的分解阶段。在该阶段,铝矶土中的水铝石和高岭石在400。C时开始脱水,至450?600。C反应激烈,700?800。C完成。水铝石脱水后形成刚玉假象,此种假象仍保持原来水铝石的外形,但边缘模糊不清,折射率较水铝石低,在高温下逐步转变为刚玉。高岭石脱水后形成偏高岭石,950。C以上 时偏高岭石转变为莫来石和非晶态SiO2,后者在高温下转变为方石 英。其反应式为: 表3-7耐火材料用铝土矿的技术条件

注:①拣选分级后的某一级铝矶土矿石中,其它级别矿石的混入量不超过总量10%;②矿石块度50?300mm,若允许有小于50mm者, 其数量不超过总量的10%;③矿石夹杂之杂质(如山皮、粘土等)不得超过1%,并不得混入明显的块状或片状石灰石 表3-8耐火材料用铝矶土精矿的技术条件 济-A12O3 - H2O(水铝石)—(400 ?600。 C)— a -Al2O3(刚玉假象)+H2O f A12O3 - 2SiO2 - 2H2O(高岭石)—(400?600。C)—A12O3 - 2SiO2(偏高岭石)+H2O f 3(A12O3 ?2SiO2)(偏高岭石)—(400?600。C)— 3A12O3 ?2SiO2(莫来石)+4SiO2(非晶态SiO2) (2)二次莫来石化阶段(1200?1400。C或1500。C)在1200。C以上,从水铝石脱水形成的刚玉与高岭石分解出来的游离SiO2继续发生反应形成莫来石,被成为二次莫来石:3A12O3+2SiO2 —( > 1200。 C)— 3A12O3+2SiO2 (二次莫来石)在二次莫来石化时,发生约10%的体积膨胀。同时在1300?1400。C 以下时铝矶土中

陕西省渭北铝土矿地质特征及找矿前景分析

文章编号:1009-6248(2010)03-0093-06 陕西省渭北铝土矿地质特征及找矿前景分析 陈连红1,王瑞廷2,刘维东1 (1.中国铝业公司,北京 100082; 2.西北有色地质勘查局地质勘查院,陕西西安 710054) 摘 要:渭北铝土矿带是陕西省两大铝土矿带之一。矿床产于下古生界碳酸盐岩不整合面上,为岩溶型 铝土矿。矿体形态有似层状、透镜状和漏斗状,空间展布严格受基底古岩溶地形的控制。矿石类型属于 一水硬铝石型铝矿,主要呈碎屑状、豆鲕状和泥状结构,致密块状和层状构造。矿石主要化学成分有: A l2O3、SiO2、F e2O3、T iO2,A l2O3平均含量为55.05%~64.97%,SiO2平均含量为12.44%~15.16%, A/S平均为3.63~5.22。矿床受沉积间断、古气候、古纬度和古地形等因素控制。与我国主要铝土矿成 矿区——河南、山西相类比,渭北地区具有相似的成矿地质和古气候条件,找矿前景较好,但以低品位 矿石为主。 关键词:铝土矿;渭北地区;控矿因素;找矿前景 中图分类号:P618.45 文献标识码:A 渭北铝土矿分布在东起陕西省韩城市,西到铜川市黄堡镇的东西长150km、南北宽10~30km、面积约3000km2的地区,包括韩城市、合阳县、澄城县、蒲城县、白水县和铜川等县市。地理坐标为:东经109°00′~110°35′,北纬34°55′~35°40′。已发现铜川陈炉、蒲城县东党、澄城县曹村等铝土矿床8处,估算铝土矿资源量达数千万吨。另外,还发现铝(黏)土矿点数十处,全区潜在资源量为4000×104~5000×104t(韩俊民等,2007)。 1 区域地质概况 1.1 区域地层特征 区域地层属华北地层区,沉积有震旦—奥陶系、石炭系、二叠—第四系,沉积厚度累计10000多米,为地台型沉积。包括震旦系的陆相碎屑岩,寒武—奥陶系的海相碳酸盐岩,中、上石炭统的滨岸铁铝质岩系、碳酸盐岩、含煤泥质岩和碎屑岩,二叠—白垩系的内陆盆地相碎屑岩,显示出两次较大的沉积旋回(赵一鸣等,2006)。 1.2 区域构造特征 渭北铝土矿分布于华北地台鄂尔多斯台向斜南缘之次级构造单元渭北褶断束中,南与汾渭断陷相接,构造形态简单,总体为向北西缓倾的单斜层,地层倾角一般为5°~15°。中生代末期受燕山运动影响,形成了一些小褶皱及断裂构造,多为北东向正断层近等间距排列,构成了地垒、地堑格局(杨克明,1992)。 1.3 区域地质演化 寒武纪—中奥陶世华北地台大面积海侵,形成广阔的陆表海,沉积了厚达500m以上的海相碳酸盐建造。加里东运动使整个华北地台隆升成陆地,本区缺失了晚奥陶世—早石炭世的沉积,在长期的沉积间断过程中,经受风化剥蚀并准平原化。直至石  收稿日期:2009-09-15;修回日期:2010-01-15  基金项目:中国铝业公司铝土矿资源勘查项目(chalco2005-1)  作者简介:陈连红(1966-),男,河南西平人,高级工程师,1989年毕业于原西安地质学院地质勘查专业,从事矿产地质勘查与管理。E-mail:Ih chen@https://www.360docs.net/doc/6a5385130.html,

铝土矿分布

一、铝土矿资源分布 我国铝土矿资源具有鲜明的区域特征,分布高度集中,山西、贵州、河南和广西四个省(区)的储量合计占全国总储量的90.9%(山西41.6%、贵州17.1%、河南16.7%、广西15.5%),其余拥有铝土矿的15个省、自治区、直辖市的储量合计仅占全国总储量的9.1%。 山西的铝土矿床(点)主要分布在孝义、交口、汾阳、阳泉、盂县、宁武、原平、兴县、保德、平陆等5大片42个县境内,面积约6.7万km2,探明铝土矿储量,居全国第一,该区的资源总量估计可达20亿t。 河南的铝土矿集中分布在黄河以南、京广线以西的巩县、登封、偃师、新安、三门峡、陕县、宝丰、鲁山、临汝、禹县等三大片10多个县境内,面积3万多km2,探明铝土矿储量居全国第2位,预测资源总量可达10亿t。 贵州的铝土矿床主要分布在“黔中隆起”南北两侧的遵义、息峰、开阳、瓮安、正安、道真、修文、清镇、贵阳、平坝、织金、苟江、黄平等十几个县境内,面积2400km2,探明铝土矿储量居全国第3位。预测资源总量逾10亿t。 广西的铝土矿集中分布在平果、田东、田阳、德保、靖西、桂县、那坡、果化、隆安、邕宁、崇左等县境内,探明铝土矿储量居全国第4位,预测铝土矿储量在8亿t以上。 山东的铝土矿主要分布在淄博、新泰、洪山等县境内,其探明铝土矿储量占全国总储量的3%。 此外,在海南、广东、福建、云南、江西、湖北、湖南、陕西、四川、新疆、宁夏、河北等省(区),也有铝土矿矿床产出。 二、铝土矿采炼企业分布 从我国铝开采和冶炼的企业在各省市的资产分布不难看出,以河南、山西、山东、内蒙、贵州为代表的五省是我国铝土矿采炼的重点地区。上述五省的铝土矿企业资产累计比重占到了全国的65.4%。

铝矾土

铝矾土 aluminous soil;bauxite 铝矾土又称矾土或铝土矿,主要成分是氧化铝,系含有杂质的水合氧化铝,是一种土状矿物。白色或灰白色,因含铁而呈褐黄或浅红色。密度3.9~4g/cm3,硬度1~3,不透明,质脆。极难熔化。不溶于水,能溶于硫酸、氢氧化钠溶液。主要用于炼铝,制耐火材料。 矾土矿学名铝土矿、铝矾土。其组成成分异常复杂,是多种地质来源极不相同的含水氧化铝矿石的总称。如一水软铝石、一水硬铝石和三水铝石(Al2O3·3H2O);有的是水铝石和高岭石(2SiO2·Al2O3·2H2O)相伴构成;有的以高岭石为主,且随着高岭石含量的增高,构成为一般的铝土岩或高岭石质粘土。铝土矿一般是化学风化或外生作用形成的,很少有纯矿物,总是含有一些杂质矿物,或多或少含有粘土矿物、铁矿物、钛矿物及碎屑重矿物等等。 铝土矿的定义名称还不够统一,这与各个国家的资源情况及工业需求有关。各个时期名称也不一致,但基本上大同小异。在我国一般认为:“铝土矿系指矿石之含铝量较高(40%以上),铝硅比值大于2.5者(A/S≥2.5),其小于此数值者则称为粘土矿或铝土页岩或铝质岩”。在我国已探明的铝土矿储量中,一水铝石型铝土矿占全国总储量的98%左右。 目前,已知赋存铝土矿的国家有49个。我国有丰富的铝矾土资源,约37亿吨,居世界前列,与几内亚、澳大利亚、巴西同属世界铝矾土资源大国。但生产供耐火材料用的高铝矾土的国家只有圭亚那和我国,其他国家的铝矾土含铁量高,多用于炼铝和研磨材料。 我国铝土矿资源比较丰富,在全国18个省、自治区、直辖市已查明铝土矿产地205处,其中大型产地72处(不包括台湾)。主要分布在山西、山东、河北、河南、贵州、四川、广西、辽宁、湖南等地。 用途 (1)炼铝工业。用于国防、航空、汽车、电器、化工、日常生活用品等。 (2)精密铸造。矾土熟料加工成细粉做成铸模后精铸。用于军工、航天、通讯、仪表、机械及医疗器械部门。 (3)用于耐火制品。高铝矾土熟料耐火度高达1780℃,化学稳定性强、物理性能良好。 (4)硅酸铝耐火纤维。具有重量轻,耐高温,热稳定性好,导热率低,热容小和耐机械震动等优点。用于钢铁、有色冶金、电子、石油、化工、宇航、原子能、国防等多种工业。它是把高铝熟料放进融化温度约为2000~2200℃的高温电弧炉中,经高温熔化、高压高速空气或蒸汽喷吹、冷却,就成了洁白的“棉花”——硅酸铝耐火纤维。它可压成纤维毯、板或织成布代替冶炼、化工、玻璃等工业高温窑炉内衬的耐火砖。消防人员可用耐火纤维布做成衣服。 (5)以镁砂和矾土熟料为原料,加入适当结合剂,用于浇注盛钢桶整体桶衬效果甚佳。

我国铝土矿资源特点及溶出技术发展趋势

我国铝土矿资源特点及溶出技术发展趋势 王一雍、张廷安、陈霞、王艳利 (东北大学材料与冶金学院沈阳 110004 ) 摘要:我国铝土矿多为一水硬铝石矿,资源丰富,且高硅高铝,但铝硅比低,氧化铝溶出性能差,碱耗、能耗高,生产成本高。我国现行的氧化铝生产方法已愈益不适应目前的资源状况及日益竞争的国际环境。本文对不同的强化溶出方法进行了技术上的分析,并针对我国一水硬铝石矿的特点,重点阐明了采用后加矿增溶溶出技术、微波加热技术、生物浸出技术进行强化溶出的优势所在及技术上的可行性了。 关键词:铝土矿;一水硬铝石;强化溶出;增溶溶出技术 1.我国铝土矿资源特点及存在的问题 我国铝土矿资源储量丰富,截止到2001年底,我国铝土矿储量5.06亿t,基础储量6.74亿t。资源量18亿t,居世界第五位,其中广西、贵州、河南、广西、山东五省区占全国总储量的85.5%。但我国铝土矿类型以一水硬铝石型为主,约占总储量的98%以上,而三水铝石型铝土矿仅在海南、广西、福建、台湾等省区有分布。 表1 中国主要铝土矿产地的矿石特征 省份Al2O3含量 (%)SiO2含量 (%) Fe2O3含量 (%) 平均铝硅比 (%) 占全国总储量 (%) 广西58~60 5~6 15~17 9.9 12.8 贵州67~68 8.8~11.1 2.2~3.0 6.1~7.8 18.1 河南64~71 7.5~13.7 3.0~5.1 4.7~9.4 26.0 广东54~61 15~22 5~9 3.7~3.9 3.8 广西63~65 11~13 2~3 5.0~6.0 26.0 由表1可以看出我国的铝土矿具有高硅、高铝、低铁的特点,铝硅比偏低,约在4~6之间,其中的主要含铝矿物为一水硬铝石,这是一种难浸出的矿物,用传统的拜耳法处理这类矿石时,要求溶出温度高,使用的碱液浓度也高,因而生产上采用的工艺条件比用三水铝石或一水软铝石为原料时苛刻。这给拜耳法系统的溶出,分解、蒸发等重要工序的技术和装备带来了一系列困难。 随着氧化铝工业和其他需用铝土矿工业的快速发展,我国铝土矿资源,特别是优质资源的短缺,已充分显现出来。按目前的生产需求估算,我国每年需消耗的铝土矿多达1000多万t,其中大多是优质矿或次优质矿。目前优质铝土矿供需矛盾十分突出,矿山均不同程度出现了贫化趋势,特别是河南等地的高铝矿已濒临枯渴,众多用户争先采购有限的优质资源。我国铝土矿资源基础储量中80%以上为中低品位矿,目前高品位优质铝土矿平均服务年限少于10年。如果

铝矾土、铝土矿

铝矾土 1. 性质:铝矾土(aluminous soil ;bauxite )又称矾土或铝土矿,主要成分是氧化铝,系含有杂质的水合氧化铝,是一种土状矿物。白色或灰白色,因含铁而呈褐黄或浅红色。密度3.9~4g/cm3 ,硬度1~3,不透明,质脆。极难熔化。不溶于水,能溶于硫酸、氢氧化钠溶液。主要用于炼铝,制耐火材料。铝土矿是含铝矿物和赤铁矿、针铁矿、高岭石、锐铁矿、金红石、钛铁矿等矿物的混合矿,是现代电解法炼铝的原料。 2.主要成分: 矾土矿学名铝土矿、铝矾土。其组成成分异常复杂,是多种地质来源极不相同的含水氧化铝矿石的总称。如一水软铝石、一水硬铝石和三水铝石(Al2O3·3H2O);有的是水铝石和高岭石(2SiO2·Al2O3·2H2O)相伴构成;有的以高岭石为主,且随着高岭石含量的增高,构成为一般的铝土岩或高岭石质粘土。铝土矿一般是化学风化或外生作用形成的,很少有纯矿物,总是含有一些杂质矿物,或多或少含有粘土矿物、铁矿物、钛矿物及碎屑重矿物等等。 铝土矿的定义名称还不够统一,但基本上大同小异。在我国一般认为:“铝土矿系指矿石之含铝量较高(40%以上),铝硅比值大于 2.5者(A/S≥2.5),其小于此数值者则称为粘土矿或铝土页岩或铝质岩”。在我国已探明的铝土矿储量中,一水铝石型铝土矿占全国总储量的98%左右。 3.产地分布: 世界:目前,已知赋存铝土矿的国家有49个,澳大利亚是世界上拥

有铝矾土资源最多的国家。但生产供耐火材料用的高铝矾土的国家只有圭亚那和中国,其他国家的铝矾土含铁量高,多用于炼铝和研磨材料。近年的越南也有丰富的铝土矿资源,估计储量在80 亿吨左右。 国内:中国铝土矿资源较为丰富,铝土矿资源总量预计可达50亿t,铝土矿保有基础储量在世界上居第七位,储量在世界上居第八位,与澳大利亚、几内亚、巴西同属世界铝矾土资源大国。我国铝土矿分布高度集中,山西、贵州、河南和广西四个省(区)的储量合计占全国总储量的90.9%(山西41.6%、贵州17.1%、河南16.7%、广西15.5%)。其他分布地区还有山东、河北、辽宁、贵州、四川、重庆、湖南、云南、海南等地。 类型:世界铝土矿的主要类型是三水铝石型。我国铝土矿的特点高硅、高铝和低铁,为一水硬铝石型,矿石中铝硅比在4~7之间[m(Al2O3)/ m(SiO2)]。福建、河南和广西有少量的三水铝石型铝土矿。 4.用途:

铝土矿资源地质特征

铝土矿资源地质特征 2008-01-22 14:05:43 文字大小:【大】【中】【小】浏览次数: 209 摘要:铝土矿资源地质特征 一、矿床时空分布及成矿规律 按照廖士范等人的意见,中国铝土矿矿床可分为古风化壳型铝土矿矿床和红土型铝土矿矿床。中国古风化壳型铝土矿矿床的形成经历了三个阶段。第一阶段是陆生阶段,是在大气条件下由风化作风形成含有铝土矿矿物、粘土矿物、氧化铁矿物等的残、坡积富铝风化壳物质,例如钙红土层、红土层或红土铝土矿,此阶段为大气条件下原地残积、堆积或异地堆积阶段;第二阶段是富铝钙红土层、红土层或红土铝土矿为海水(或湖水)淹没阶段,有的立即为海水(或湖水)淹没,有的则经过一定时间的岩化作用以后才为海水(或湖水)淹没,逐渐深埋地下,经过一段时期的成岩后生作用演变改造后形成原始铝土矿层;第三阶段是表生富集阶段,是原始铝土矿层随地壳抬升到地表浅部后由于地表水或地下水的改造作用,使硅质淋失、铝质富集,形成品位较富的有工业价值的铝土矿矿床。至于红土型铝土矿矿床,一般认为是现代气候条件下由含铝岩石经风化作用形成的。 我国古风化壳型铝土矿主要形成于石炭纪。中、晚石炭世的铝土

矿分布在我国北方的山西、河南、河北、山东等省,早石炭世的铝土矿分布在南方贵州中部地区。风化壳型铝土矿的另一个重要成矿期为二叠纪,其中早二叠世铝土矿主要分布在四川、贵州、云南、湖南、湖北等省,晚二叠世到早三叠世铝土矿主要分布在广西、云南、四川、山东、河北、辽宁等省(区)。本类型铝土矿矿床的形成,都与侵蚀间断面的古风化壳有关。一般来说,侵蚀间断时期长的,特别是下伏基岩是碳酸盐岩或含铝质多也较易风化的基性喷出岩(例如玄武岩),所形成的矿床往往矿石品位富,矿层厚,矿体规模大。在中国寻找古风化壳型铝土矿矿床,除注意地层中侵蚀间断之外,还应注意古地磁的低纬度位置,以及古陆邻近海洋的附近,因为这些地区为海洋气候,潮湿多雨,适宜风化作用的进行。由于中国古风化壳型铝土矿的形成,经历过“陆生阶段”,因此必须研究堆积古残坡积钙红土层、红土层的低洼地区的古地理环境和古地貌,特别是喀斯特溶洞、溶斗发育规律、分布方向以及喀斯特高地(无矿地区)的分布规律,因为矿层的薄厚、矿体规模的大小受这些因素控制。 具体来说,①修文式碳酸盐岩古风化壳异地堆积亚型铝土矿矿床,由于下伏基岩是碳酸盐岩,因此由风化作用形成的是富铝钙红土残坡积层,一般说侵蚀间断时间越长,即风化作用时间越长,由风化作用形成的残坡积富铝钙红土层越多、越厚,生成的铝土矿物越多,粘土矿物越少,矿石品位越富,矿层厚度也越大。②新安式碳酸盐古风化壳原地堆积亚型铝土矿矿床,这类矿床的铝土矿直接覆在碳酸盐岩的喀斯特侵蚀面上,是原地堆积的,许多情况下是堆积在喀斯特溶洞、

铝矾土煅烧技术及设备

铝矾土煅烧技术及设备 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

铝矾土煅烧技术及设备 1.铝矾土的加热变化 中国铝矾土主要是D-K型,某些二级铝矾土含有勃姆石,个别的还含有一些白云母:有些三级铝矾土含有一定数量的地开石。铝矾土的加热变化可分为三个阶段:分解阶段、二次莫来石化阶段和结晶烧结阶段。 (1)分解阶段(400~1200℃) 400~1200℃温度范围为铝矾土的分解阶段。在该阶段,铝矾土中的水铝石和高岭石在400℃时开始脱水,至450~600℃反应激烈,700~800℃完成。水铝石脱水后形成刚玉假象,此种假象仍保持原来水铝石的外形,但边缘模糊不清,折射率较水铝石低,在高温下逐转变为刚玉。高岭石脱水后形成偏高岭石,950℃以上时偏高岭石转变为莫来石和非晶态SiO2,后者在高温下转变为方石英。其反应式为: 3(Al2O3·2SiO2)(偏高岭石)→(400~600℃)→3Al2O3·2SiO2(莫来石)+4SiO2(非晶态SiO2) 表1 耐火材料用铝矾土矿的技术条件 注:①拣选分级后的某一级铝矾土矿石中,其它级别矿石的混入量不超过总量10%;②矿石块度50~300mm,若允许有小于50mm者,其数量不超过总量的10%;③矿石夹杂之杂质(如山皮、粘土等)不得超过1%,并不得混入明显的块状或片状石灰石 表2 耐火材料用铝矾土精矿的技术条件 α-Al2O3·H2O(水铝石)→(400~600℃)→α-Al2O3(刚玉假象)+H2O↑ Al2O3·2SiO2·2H2O(高岭石)→(400~600℃)→Al2O3·2SiO2(偏高岭石)+H2O↑ 3(Al2O3·2SiO2)(偏高岭石)→(400~600℃)→3Al2O3·2SiO2(莫来石)+4SiO2(非晶态SiO2) (2)二次莫来石化阶段(1200~1400℃或1500℃) 在1200℃以上,从水铝石脱水形成的刚玉与高岭石分解出来的游离SiO2继续发生反应形成莫来石,被成为二次莫来石: 3Al2O3+2SiO2→(≥1200℃)→3Al2O3+2SiO2(二次莫来石) 在二次莫来石化时,发生约10%的体积膨胀。同时在1300~1400℃以下时铝矾土中的Fe2O3、TiO2和其它杂质与Al2O3、SiO2反应既可形成液相,Fe2O3、TiO2也可进入莫来石的晶格形成固溶体。液相的形成,有助于二次莫来石化的进行,同时也为重晶烧结阶段准备了条件。 (3)重晶烧结阶段(1400~1500℃)

低品位铝土矿悬浮态焙烧碱浸预脱硅试验研究

低品位铝土矿悬浮态焙烧碱浸预脱硅试验研究焙烧脱硅,将铝土矿中高岭石经焙烧热分解形成无定形氧化硅和松散铝硅尖晶石,再通过碱浸脱硅,能有效提高一水硬铝石-高岭石型低品位铝土矿的铝硅比(A/S)。本文以河南某地的铝土矿样品为研究对象,在完成矿物分析和热力学试验研究的基础上,利用悬浮态焙烧快速反应器对其展开悬浮态焙烧试验,对焙烧矿进行了矿物相分析和碱浸脱硅试验,采用正交试验极差(交互)分析和方差分析对焙烧矿碱浸脱硅条件进行了优化,确定了试验条件下焙烧矿的最佳浸出条件;通过动力学研究,获得了悬浮态焙烧矿的碱浸脱硅动力学方程参数,同时确定碱浸温度与脱硅率之间的关系。 试验研究的结果如下:悬浮态焙烧试验结果表明:悬浮态快速焙烧对一水硬铝石-高岭石型低品位铝土矿中的二氧化硅的活化作用显著,同时也提高了氧化铝的活性,结合碱浸脱硅效果,分析确定出焙烧温度为1030±5℃,铝土矿样品经此条件焙烧,其中的高岭石转变为无定形二氧化硅和松散型的铝硅尖晶石,这两种物质中的二氧化硅在碱液中更易于浸出。悬浮态焙烧矿碱浸脱硅单因素试验、正交试验极差(交互)分析以及正交试验方差分析结果表明:碱浸条件对焙烧矿脱硅效果影响的主要因素有碱浸温度、碱浸浓度和液固比,此外碱浸时间和搅拌速度对脱硅率、氧化铝损失率以及A/S的提高也有一定影响,而碱浸条件之间交互效应不明显。 考虑过高的液固比会导致生产过程中母液循环量过大,同时结合正交试验极差(正交)和方差分析结果,试验条件下的最佳碱浸条件为A4B1C4D1 (T=100℃,t=30min,c=125g/l,l/s=4ml/g)。碱浸动力学分析结果表明:悬浮态焙烧矿碱浸过程由固膜扩散控制,其动力学方程为:t=knks[1-2η/3-

铝土矿降硅方法的探讨

2009耐火原料学术交流会论文集 目录 一、发展现状及展望 我国主要耐火原料的基本现状与综合利用 (1) 王守业孙庚辰中钢集团洛阳耐火材料研究院有限公司 河南省铝粘土矿资源及有效供给的对策 (17) 姚公一河南省有色地矿局 水泥窑窑衬用新型耐火原料的展望 (21) 周季婻中国耐火材料行业协会 铝-硅系原料综合利用问题 (27) 李楠武汉科技大学湖北省耐火材料与高温陶瓷重点实验室 我国高铝矾土的均化与提纯实践 (35) 魏同吴运广中冶焦耐工程技术有限公司 再论耐火黏土矿综合开发与合理利用 (43) 刘鸿权冶金工业规划研究院 矾土基原料的开发与应用 (48) 叶方保郑州大学高温材料研究所河南省高温材料重点实验室 河南省耐火材料工业发展回顾及目前节能减排技术改造规划建议 (56) 靳亲国河南省耐火材料行业协会 谢朝晖郑州大学高温材料研究所 辽宁菱镁矿资源现状及发展意见 (64) 赵海鑫辽宁省镁资源保护办公室 中国铝酸盐水泥工业的现状与发展 (69) 李万鹏郑州长城特种水泥有限公司 我国棕刚玉行业的现状和发展 (73) 孔德夫河南省棕刚玉行业协会会长 浅谈电熔镁砂现状生产实践及发展建议 (78) 侯力辽宁金鼎镁矿集团 中国刚玉的发展现状、展望及市场需求分析 (85) 孟春亮

二、原料性能及应用 轻质隔热耐火原料—钙长石和六铝酸钙 (91) 孙庚辰王守业中钢集团洛阳耐火材料研究院有限公司 李建涛郑玲聪周国禄郑州安耐克实业有限公司 Al2O3-SiO2系新型优质耐材的开发离不开“三石”原料 (101) 林彬荫李居州赵永安巩义市第五耐火材料总厂 GL-88高铝矾土熟料的性能 (108) 石干卫晓辉张伟中钢集团洛阳耐火材料研究院有限公司 高性能耐火材料用板状刚玉概述 (115) 刘新彧安迈铝业(青岛)有限公司,青岛,中国 Dr. Gunter Büchel Almatis GmbH, Frankfurt, Germany Dr. Andreas Buhr Almatis GmbH, Frankfurt, Germany 氧化铝微粉对超低水泥刚玉莫来石浇注料性能的优化作用 (125) 杨丁熬袁守谦蒋明学西安建筑科技大学材料科学与工程学院 刘士庚孙国强王志刚薛学良张长喜开封特耐股份有限公司 添加剂对原位Al3CON增强刚玉复合材料性能的影响 (130) 杨丁熬袁守谦蒋明学西安建筑科技大学材料科学与工程学院 张长喜开封特耐股份有限公司开封475003 酚醛树脂液粉比应用于成型材料的研究 (137) 魏莹唐路林李枝芳胡伟山东圣泉化工股份有限公司 河南林州硅线石-红柱石特高品位复合矿石特点与开发利用 (144) 河南省林州市伟隆硅线石有限公司 林州复合硅线石-红柱石原料在低气孔黏土砖研制与生产的应用 (148) 郑玲聪周国禄郑州安耐克实业有限公司技术研发部 白刚玉块体积密度和气孔分布研究 (151) 曹战峰张恩甫蒋丹宇上硅所玉发新材料研发中心 有色冶炼炉用镁质喷补料的开发与应用 (155) 翟耀杰张吉利陈卫敏王水运河南新密荣耀炉料有限公司 史兴华朱维忠高峰张邦棋毛忠云南铜业股份有限公司 康明红株洲冶炼集团有限责任公司 纯铝酸钙水泥的应用 (161) 董俊刘辉开封市高达新型耐火材料厂

铝矾土铝土矿

铝矾土 1. 性质:铝矾土(aluminous soil ;bauxite )又称矾土或铝土矿,主要成分是,系含有杂质的水合氧化铝,是一种土状。白色或灰白色,因含铁而呈褐黄或浅红色。~4g/cm3,1~3,不透明,质脆。极难熔化。不溶于水,能溶于、氢氧化钠溶液。主要用于炼铝,制。铝土矿是含铝矿物和赤铁矿、针铁矿、高岭石、锐铁矿、金红石、钛铁矿等矿物的混合矿,是现代电解法炼铝的原料。 2.主要成分: 矾土矿学名铝土矿、铝矾土。其组成成分异常复杂,是多种来源极不相同的含水氧化铝的总称。如一水软铝 石、和(Al2O3·3H2O);有的是水铝石和(2SiO2·Al2O3·2H2O)相伴构成;有的以高岭石为主,且随着高岭石含量的增高,构成为一般的或高岭石质。铝土矿一般是或外生作用形成的,很少有纯,总是含有一些杂质矿物,或多或少含有、铁矿物、钛矿物及碎屑等等。 铝土矿的定义名称还不够统一,但基本上大同小异。在我国一般认为:“铝土矿系指矿石之含铝量较高(40%以上),铝硅比值大于者(A/S≥,其小于此数值者则称为粘土矿或铝土页岩或”。在我国已探明的铝土矿储量中,一水铝石型铝土矿占全国总储量的98%左右。 3.产地分布: 世界:目前,已知赋存铝土矿的国家有49个,澳大利亚是世界上拥有铝矾土资源最多的国家。但生产供耐火材料用的高铝矾土的国家只有和中国,其他国家的铝

矾土含铁量高,多用于炼铝和研磨材料。近年的越南也有丰富的铝土矿资源,估计储量在 80 亿吨左右。 国内:中国铝土矿资源较为丰富,铝土矿资源总量预计可达50亿t,铝土矿保有在世界上居第七位,储量在世界上居第八位,与、、同属世界铝矾土资源大国。我国铝土矿分布高度集中,山西、贵州、河南和广西四个省(区)的储量合计占全国总储量的%(山西%、贵州%、河南%、广西%)。其他分布地区还有山东、、辽宁、、四川、重庆、、云南、海南等地。 类型:世界铝土矿的主要类型是三水铝石型。我国铝土矿的特点高硅、高铝和低铁,为一水硬铝石型,矿石中铝硅比在4~7之间[m(Al2O3)/ m(SiO2)]。福建、河南和广西有少量的三水铝石型铝土矿。 4.用途: 铝土矿用于金属用途(85%)、非金属用途(10%)及非冶练铝矾土应用。

铝土矿基本常识

铝土矿实际上是指工业上能利用的,以三水铝石、一水软铝石或一水硬铝石为主要矿物所组成的矿石的统称。它的应用领域有金属和非金属两个方面。 铝土矿是生产金属铝的最佳原料,也是最主要的应用领域,其用量占世界铝土矿总产量的90%以上。 铝土矿的非金属用途主要是作耐火材料、研磨材料、化学制品及高铝水泥的原料。铝土矿在非金属方面的用量所占比重虽小,但用途却十分广泛。例如:化学制品方面以硫酸盐、三水合物及氯化铝等产品可应用于造纸、净化水、陶瓷及石油精炼方面;活性氧化铝在化学、炼油、制药工业上可作催化剂、触媒载体及脱色、脱水、脱气、脱酸、干燥等物理吸附剂;用r-Al2O3生产的氯化铝可供染料、橡胶、医药、石油等有机合成应用;玻璃组成中有3%~5%Al2O3可提高熔点、粘度、强度;研磨材料是高级砂轮、抛光粉的主要原料;耐火材料是工业部门不可缺少的筑炉材料。 金属铝是世界上仅次于钢铁的第二重要金属,1995年世界人均消费量达到3.29kg。由于铝具有比重小、导电导热性好、易于机械加工及其他许多优良性能,因而广泛应用于国民经济各部门。目前,全世界用铝量最大的是建筑、交通运输和包装部门,占铝总消费量的60%以上。铝是电器工业、飞机制造工业、机械工业和民用器具不可缺少的原材料。 重点讨论的是生产金属铝的铝土矿及其矿床。至于作耐火粘土用的铝土矿及其矿床见非金属矿“耐火粘土”中讨论。 一、矿物原料特点 铝是地壳中分布最广泛的元素之一,属亲石亲氧元素。铝在自然界中多成氧化物、氢氧化物和含氧的铝硅酸盐存在,极少发现铝的自然金属。 自然界已知的含铝矿物有258种,其中常见的矿物约43种。实际上,由纯矿物组成的铝矿床是没有的,一般都是共生分布,并混有杂质。从经济和技术观点出发,并不是所有的含铝矿物都能成为工业原料。用于提炼金属铝的主要是由一水硬铝石、一水软铝石或三水铝石组成的铝土矿。原苏联因缺乏铝土矿资源,利用霞石和明矾石提炼氧化铝。我国的硫磷铝锶矿可以综合回收氧化铝。 一水硬铝石又名水铝石,结构式和分子式分别为AlO(OH)和Al2O3·H2O。斜方晶系,结晶完好者呈柱状、板状、鳞片状、针状、棱状等。矿石中的水铝石一般均含有TiO2、SiO2、Fe2O3、Ga2O3、Nb2O5、Ta2O5、TR2O3等不同量类质同象混入物。水铝石溶于酸和碱,但在常温常压下溶解甚弱,需在高温高压和强酸或强碱浓度下才能完全分解。一水硬铝石形成于酸性介质,与一水软铝石、赤铁矿、针铁矿、高岭石、绿泥石、黄铁矿等共生。其水化可变成三水铝石,脱水可变成α刚玉,可被高岭石、黄铁矿、菱铁矿、绿泥石等交代。 一水软铝石又名勃姆石、软水铝石,结构式为AlO(OH),分子式为Al2O3·H2O。

铝矾土的用途和成分有哪些 3分钟带你了解铝矾土

铝矾土的用途和成分有哪些 3分钟带你了解铝矾土 铝矾土又称矾土或铝土矿,是一种富含铝质矿物的化学或生物化学岩。主要矿物成分为一水硬铝石、一水软铝石、三水铝石。主要由铝硅酸盐类矿物受强热化学风化,带出溶解的氧化铝,搬运到海湖盆地沉积而成。是一种莫氏硬度在1到3之间的矿石,通常是冶炼铝和生产耐火材料的常用原矿石,主要成分是氧化铝,系含有杂质的水合氧化铝,是一种土状矿物。密度3.9~4g/cm3,不透明,质脆,极难熔化,不溶于水,能溶于硫。那么铝矾土的用途有哪些呢?铝矾土的主要成分有哪些呢?下面千家信耐材的小编就给大家介绍一下关于铝矾土的介绍吧! 铝矾土的用途有哪些 1、炼铝工业。用于国防、航空、汽车、电器、化工、日常生活用品等。 2、精密铸造。矾土熟料加工成细粉做成铸模后精铸。用于军工、航天、通讯、仪表、机械及医疗器械部门。 3、用于耐火制品。高铝钒土熟料耐火度高达1780℃,化学稳定性强、物理性能良好。 4、硅酸铝耐火纤维。具有重量轻,耐高温,热稳定性好,导热率低,热容小和耐机械震动等优点。用于钢铁、有色冶金、电子、石油、化工、宇航、原子能、国防等多种工业。它是把高铝熟料放进融化温度约为2000~2200℃的高温电弧炉中,经高温熔化、高压高速空气或蒸汽喷吹、冷却,就成了洁白的“棉花”——硅酸铝耐火纤维。它可压成纤维毯、板或织成布代替冶炼、化工、玻璃等工业高温窑炉内衬的耐火砖。消防人员可用耐火纤维布做成衣服。 5、以镁砂和矾土熟料为原料,加入适当结合剂,用于浇注盛钢桶整体桶衬效果甚佳。 6、制造矾土水泥,研磨材料,陶瓷工业以及化学工业可制铝的各种化合物。 铝矾土成分有哪些? 铝矾土一般指煅烧过后的铝矾土熟料,是制作一系列耐火制品的主要原材料;铝矾土的煅烧过程中也是一种去杂质的过程,煅烧后用作耐火原料的矾土主要看的指标一般有以下几点: 1、铝(关系到耐火度的高低)

相关文档
最新文档