应用随机过程-综述

应用随机过程-综述
应用随机过程-综述

H a r b i n I n s t i t u t e o f T e c h n o l o g y

课程设计(论文)

课程名称:应用随机过程

设计题目:综述

院系:电子与信息工程学院

班级: 09硕通信一班

设计者:

学号:

指导教师:田波平

设计时间: 2009-11至2009-12

哈尔滨工业大学

哈尔滨工业大学课程设计任务书

特征函数在随机过程研究中的作用与意义

1.特征函数的定义

在介绍特征函数在随机过程研究中的作用和意义之前,首先介绍一下特征函数的定义。 特征函数是一个统计平均值,它是由随机变量X 组成的新的随机变量j X e ω的数学期望,记为:

()()j X E e ωωΦ=

(1)

当X 为连续随机变量时,则X 的特征函数可表示成

()()i X

i x Ee

f x e dx ωωω∞

-∞

Φ==

?

(2)

其中()f x 为X 的概率密度函数。

对于随机过程的特征函数的定义与随机变量的特征函数的定义一致。 对任意时刻t ,随机过程的一维特征函数为:

()

(,)[](,)i X t i x X t E e

f x t e dx ωωω∞

-∞

Φ==

?

(3)

2.特征函数的性质

以下本文不加证明的给出特征函数的几个性质:

(1) |()|(0)1ωΦ≤Φ=;

(2) 共轭对称性()()ωωΦ-=Φ;

(3) 特征函数()ωΦ在区间(,)-∞∞上一致连续;

(4) 设随机变量Y aX b =+,其中,a b 是常数,则()()ib Y X e

a ω

ωωΦ=Φ;

其中(),()X Y ωωΦΦ分别表示随机变量,X Y 的特征函数。上式对于随机过程同样适用。 (5) 设随机变量,X Y 相互独立,又Z X Y =+,则()()()Z X Y ωωωΦ=ΦΦ; 此式表示两个相互独立随机变量之和的特征函数等于各自特征函数的乘积。

3.特征函数在随机过程研究中的作用与意义

由于特征函数在随机过程中和随机变量中的定义是一致的,仅是将X 变为X (t ),将概率密度函数也做相应的变化即可。故本文为方便起见,将随机过程和随机变量的特征函数的作用与意义做统一的讨论。

利用特征函数求随机过程的概率密度

根据特征函数的定义,特征函数与概率密度有类似傅里叶变换的关系,即

()()i x X f x e dx ωω∞

-∞Φ=?

(4)

()()1

2j x

X X f x e dx ωωπ

--∞

=

Φ?

(5)

这里需要注意的是,特征函数与概率密度的之间的关系与傅里叶变换略有不同,指数项差

一负号。

在随机过程的研究过程中,经常会利用已知的随机过程()12(),X t X t 的概率密度函数()1122(,),,f x t f x t ,

求解它们某种特定组合的概率密度函数。通常我们的做法是由已知的概率密度函数,通过函数变换的形式求解,求解的过程很复杂。但是,如果利用特征函数的

性质以及它与概率密度之间的关系就很容易求解上述问题了。以下用一个例子来说明这个过程。

已知随机过程()12(),X t X t 为相互独立的高斯随机过程,数学期望为0,方差为1,求

()12()()Y t X t X t =+的概率密度。

已知数学期望为0,方差为1的高斯过程的概率密度为

()2

2

,

x X f x t -=

(6) 利用特征函数与概率密度之间类傅里叶变换的关系,可以很容易的求得()12(),X t X t 的

特征函数

()()2

112

,j x X X f x t e dx e

ωωω∞

-

-∞

Φ=

=?

,()()2

2

22

,j x X X f x t e dx e

ωωω∞

-

-∞

Φ==?

(7)

利用特征函数的性质(5)

()()()2

12Y X X e

ωωωω-Φ=ΦΦ=

再次利用特征函数与概率密度之间类傅里叶变换的关系,可得Y 的概率密度

()()24

1,

2y j y

Y Y f y t e d ωωωπ

-

--∞

=

Φ=

? (8)

由上面的求解过程可见,利用特征函数求解比起直接求两个随机过程之和的概率密度要简单的多。

以上就简要介绍了特征函数在求解随机过程的概率密度时的作用。利用特征函数可以很方便的对某些随机过程的特定组合的概率进行求解。

离散状况下的特征函数在求解分布函数中的应用

受傅立叶变换物理意义的启发,得到基于坐标分解的特征函数的新解释。离散情况下,特征函数的新解释:

()ωΦ可以看作是以k

j x e ω(k -∞<<+∞)为基的可列无穷维空间下的坐标分解,第k 维

的坐标值为k p 。则

()k j x k k

p e ωωΦ=∑

(9) ()12j k

k p e d π

ωπ

ωωπ

--=

Φ?

(10)

其中k p 可以看作是以j k e d ωω-(t ππ-<<)为基的实数势无穷维空间下的坐标分解,

()1

2ωπ

Φ是在基j x e d ωω-下的坐标值。上述新解释在求解离散随机过程的概率分布时有非常重要的应用。下面以一个例子来说明:

例如求下列各随机变量ζ的概率分布,已知其特征函数分别为: (1)cos ω (2)2cos ω

由反演公式可解决此问题,即利用公式()()2

1121lim 2T

j x j x T T

e e F x F x d j ωωωπω--→∞--=?,但计

算过程比较繁杂。如果利用本文提出的新解释去求这个问题就非常简单,现用此法求解。 分析:只要将特征函数()ωΦ进行坐标分解即可,()ωΦ可以看作是以j k e ω-(k -∞<<+∞)为基的可列无穷维空间下的坐标分解, 第k 维的坐标值为k p ,惟一性定理可知k p 即为概率分布。

解: (1)

()

()()()111111cos 11222

i i i i i i e e e e P x e P x e ωωωωωωω-?-?-??+==+==+=-

由惟一性定理可知, 它的概率分布惟一,P(ζ = 1) = , P(ζ= - 1) =,即ζ所求的概

率分布。 (2)

()

()()()()

22202021cos 2111cos 0222244

i i i i i i e e e P x e P x e P x e ωωωωωωωω?-?-????+==++==+=+=- 由惟一性定理可知, 它的概率分布惟一,P(ζ= 0)=,P(ζ= 2)=,P(ζ= -2) =,即为ζ所求的概率分布。

可见,基于坐标分解的特征函数的新解释能加深我们对特征函数的理解, 而且能使特征函数相关的求解问题化繁为简。

利用特征函数求解随机过程的矩函数

特征函数与矩函数是一一对应的,因此特征函数也称为矩生成函数。 设随机变量X 的n 阶原点矩存在,则它的特征函数可以微分n 次,且有

()()()0

,n n X n n

X n d E X x f x t j d ωωω∞

-∞=Φ??==-??? (11)

这是因为,当对特征函数求n 阶导数时可得

()()()00

,n X n n j x n n n n

X X n d j x e f x dx j x f x t j E X d ωωωωω∞∞

-∞-∞==Φ??===???? (12)

在随机过程的研究过程中,更多的时候我们需要研究的是随机过程的统计特性,如随机过程的各阶矩。如果利用矩函数的定义直接求解,则需要进行大量的积分过程,求解过程将相当复杂,。但是如果利用上述特征函数与矩函数之间的关系来求解,问题就可以得到很大的简化。以下通过一个例子来简要说明这种求解过程。

例如,求解数学期望为0的高斯随机过程()X t 的各阶矩。

易得数学期望为0,方差为2σ的高斯过程()X t 的概率密度函数为

(

)2

22.x X f x t σ-=

由()X t 的概率密度求特征函数

()()22

2

,j x X X f x t e dx e

σωωω∞

-

-∞

Φ=

=?

再利用上面介绍的特征函数与矩函数的关系可得

()22

220

0E X t j e σω

ωσω-=??

=--=?? ???

??

? ()()()2

2

2

2

22

222

2220

E X t j e e σωσωωσωσωσ--=??

??=---= ???

??

? 继续可求出各阶矩

()()1351,0n

n

n n E X t n σ????-????=????????

为偶数,为奇数

由上述的例子可以看出,利用特征函数求解随机过程的矩函数的确比较方便,它省去

了大量的积分过程。

4. 结论

上面简要介绍了特征函数在随机过程研究中的应用,利用特征函数可以求解复杂的随机过程的概率分布问题,以及随机过程的矩函数。同时根据特征函数的新的解释,可以应用它来求解离散型随机过程或随机变量的分布函数。利用特征函数的定义及性质,可以将很多原本复杂的问题进行简化,可以极大的方便我们对于随机过程的研究。

《应用随机过程》教学大纲

《应用随机过程》课程教学大纲 课程代码:090541007 课程英文名称:Applications Stochastic Processes 课程总学时:40 讲课:40 实验:0 上机:0 适用专业:应用统计学 大纲编写(修订)时间:2017.6 一、大纲使用说明 (一)课程的地位及教学目标 随机过程是现代概率论的一个重要的组成部分,其理论产生于上世纪初期,主要是由物理学、生物学、通讯与控制、管理科学等方面的需求而发展起来的。它是研究事物的随机现象随时间变化而产生的情况和相互作用所产生规律的学科。随机过程的理论为许多物理、生物等现象提供诸多数学模型,同时为研究这类现象提供了数学手段。本课程为统计学专业的专业课程,通过本课程的学习,掌握随机过程的基本概念、基本理论、内容和基本方法,了解随机过程的重要应用,为后继课程学习提供知识准备,另一方面,随机过程的发展也是人们认识客观世界的一个重要组成部分,它有助于学生辩证唯物主义世界观的培养。 (二)知识、能力及技能方面的基本要求 1.基本知识:通过本科程的学习,使学生掌握,要求学生掌握随机过程的基本概念、二阶矩过程的均方微积分、马尔可夫过程的基本理论、平稳过程的基本理论、鞅和鞅表示、维纳过程、Ito定理、随机微分方程等理论和方法。 2.基本能力:通过本课程的学习,使学生能较深刻地理解随机过程的基本理论、思想和方法,并能应用其解决实践中遇到的随机问题,从而提高学生的数学素质,加强学生开展科研工作和解决实际问题的能力。 3.基本技能:掌握建立随机数学模型、分析和解决问题方面的技能,为进一步自学有关专业应用理论课程作好准备。 (三)实施说明 本大纲是根据沈阳理工大学关于制订本科教学大纲的原则意见专门制订的。在制订过 程中参考了其他学校相关专业应用随机过程教学大纲。 本课程思维方式独特,还需要学生有较高的微积分基础,教学中应注意概率意义的解 释和学生基础情况的把握,处理好抽象与具体,偶然与必然、一维与多维,理论与实践的关系。本课程内容分概率论与数理统计两部分,在教学中应充分注意两者之间的联系,重视基本概念,讲清统计思想。 (四)对先修课的要求 本课的先修课程:数学分析,高等代数,概率论。 (五)对习题课的要求 由于本课程内容多学时少,习题课在大纲中未作安排,建议教师授课过程中灵活掌 握;对于学生作业中存在的问题,建议通过课前和课后答疑解决。通过习题课归纳总结章节知识解决重点难点内容。 (六)课程考核方式 1.考核方式:考试 2.考核目标:在考核学生基本知识、基本原理和方法的基础上,重点考核学生解决实际问题的能力。 3.成绩构成:本课程的总成绩主要由两部分组成:平时成绩20-30%;期末成绩70-80%; 平时成绩构成:出勤,测验,作业。其中测验为开卷,随堂测验。

随机信号分析实验报告

一、实验名称 微弱信号的检测提取及分析方法 二、实验目的 1.了解随机信号分析理论如何在实践中应用 2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等 3.掌握随机信号的检测及分析方法 三、实验原理 1.随机信号的分析方法 在信号与系统中,我们把信号分为确知信号和随机信号。其中随机信号无确定的变化规律,需要用统计特新进行分析。这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。 随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。本实验中算法都是一种估算法,条件是N要足够大。 2.微弱随机信号的检测及提取方法 因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。 噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决 ①降低系统的噪声,使被测信号功率大于噪声功率。 ②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。 对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。 对微弱信号检测与提取有很多方法,本实验采用多重自相关法。 多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。即令: 式中,是和的叠加;是和的叠加。对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。多重相关法将 当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。

(完整版)答案应用随机过程a

山东财政学院 2009—2010学年第 1 学期期末考试《应用随机过程》试卷(A ) (考试时间为120分钟) 参考答案及评分标准 考试方式: 闭卷 开课学院 统计与数理学院 使用年级 07级 出题教师 张辉 一. 判断题(每小题2分,共10分,正确划√,错误划ⅹ) 1. 严平稳过程一定是宽平稳过程。(ⅹ ) 2. 非周期的正常返态是遍历态。(√ ) 3. 若马氏链的一步转移概率阵有零元,则可断定该马氏链不是遍历的。(ⅹ ) 4. 有限马尔科夫链没有零常返态。(√ ) 5.若状态i 有周期d, 则对任意1≥n , 一定有:0)(?nd ii p 。(ⅹ ) 二. 填空题(每小题5分,共10分) 1. 在保险公司的索赔模型中,设索赔要求以平均每月两次的速率的泊松过程到达保险公司,若每次赔付金额是均值为10000元的正态分布,一年中保险公司的平均赔付金额是__240000元___。 2.若一个矩阵是随机阵,则其元素满足的条件是:(1)任意元素非负(2)每行元素之和为1。 三. 简答题(每小题5分,共10分) 1. 简述马氏链的遍历性。 答:设) (n ij p 是齐次马氏链{}1,≥n X n 的n 步转移概率,,如果对任意 I j i ∈,存在不依赖于i 的极限0)(?=j n ij p p ,则称齐次马氏链{}1,≥n X n 具有遍历性。 2. 非齐次泊松过程与齐次泊松过程有何不同?

答:非齐次泊松过程与齐次泊松过程的不同在于:强度λ不再是常数,而是与t 有关,也就是说,不再具有平稳增量性。它反映了其变化与时间相关的过程。如设备的故障率与使用年限有关,放射物质的衰变速度与衰败时间有关,等等。 四. 计算、证明题(共70分) 1. 请写出C —K 方程,并证明之. (10分) 解: 2. 写出复合泊松过程的定义并推算其均值公式. (15分) 解:若{}0),(≥t t N 是一个泊松过程,是Λ,2,1,=i Y i 一族独立同分布的随机变量,并且与{}0),(≥t t X 也是独立的, )(t X =∑=t N i i Y 1,那么{}0),(≥t t X 复合泊松过程

随机过程在信息与通信工程领域中的应用(可编辑).docx

随机过程在信息与通信工程领域中的应用 随机过程在信息为通信工程领域小的应用 姓名:马远美学号:1120110202专业:信息与通信工程信息科学技术学院 内容摘耍 信息为通信工程中存在大量的随机现象和随机问题。如:信源是随机过程;信道不仅对随机过程进行了变换,而R会叠加随机噪声; 从蒂加了噪声和进行了变换之后的接收信号屮将所需要的信号进行恢复;多个业务请求要共亨一个资源的排队问题等等。随机过程理论在信息与通信工程领域中已经得到了广泛的应川。本文主要研究了随机过程屮的泊松过程、马尔可夫过程以及平稳过程在信息与通信工程屮的应用。 关键词:通信与信息工程;泊松过程;马尔可夫过程;平稳过程 ABSTRACT There are a lot of random phenomena and random problems in Communication and Tnfonnation Engineering, such as: the sigrml source is a random process; channcl is not only a transformation of random process, but also superimposed random noise; the received signal which is the superposition of the

noise and after the transformation will be needed to restore the signal; queuing problems that multiple service request to share a resource. Stochastic process theory has been widely used in the field of Informati on and Comm uni cati on En gineer ing. This thesis studies the stochastic process of Poisson process, Markov processes and stationary processes in Conimunication and Information Engineering. Keywords: Communi cati on and Tnformati on Engi neering; Poisson process; Markov process; stationary process 1.信息和通信系统中的随机问题 信息和通信系统是一个产生、传输或处由电于信息的系统?在信息与通信工程中,存在人量的随机对象和相应的随机问题.卜-面我们就一些典型的例子加以说明[2]。 1.1信源和随机信号信源是指一?个能产生信号的随机系统, 其输出可以是一个离散值的随机过程,或者一个连续值的随机过程。离散值的随机过程称为数字随机信号,二进制数字信号是最常见的数字随机信号;连续值的随机过程称为模拟随机信号。如一个打字机町以输出一个数字随机信号,一个麦克风可以输Hl模拟随机信号。在信息和通信系统屮,通常用具有随机信号波形的电压和电流表示一个随机信号。 1. 2信道模型信道是指信号传输的物理介质,可以是电缆、不 同波长的电磁波等等。当随机信号通过信道以后,除了对信号进行了一个一般来说是线性的变换外,往往还要加上一个不可预测的干扰, 这种干扰被称为噪声。噪声的形成原因有许多;-?般有三类:人为噪声、自然噪声和内部噪声。人为噪声來源于和传输信号无关的英他信号源,如外台信号、开关接触噪声、工业的点火辐射和荧光灯干扰等; 自然噪声指自然界存在的各种电磁波源,如闪电和宇宙噪声等;内部噪声指系统设备木身产生的各种噪声;噪声也是一个随机过程,在没有信号传输时,我们也可以接收到一个随机波形,所有这些可能的随机波形的全体是噪声随机过程。在有信号传输时,这些随机噪声就叠加在随机信号上,成为信号接收的干扰。

实验三 随机过程通过线性系统

实验名称线性系统对随机过程的响应 一、实验目的 通过本仿真实验了解正态白色噪声随机过程通过线性系统后相关函数以及功率谱的变化;培养计算机编程能力。 二、实验平台 MATLAB R2014a 三、实验要求 (1)运用正态分布随机数产生函数产生均值为m=0,根方差σ=1的白色正态分布 序列{u(n)|n=1,2,…,2000},画出噪声u(n)的波形图。 (2)设离散时间线性系统的差分方程为 x(n)=u(n)-0.36u(n-1)+0.85u(n-2)(n=3,4,…,2000). 画出x(n)的波形图。 (3)随机过程x(n)的理论上的功率谱函数为 在[0,π]范围内对w进行采样,采样间隔0.001π,计算S(i×0.001π) (i=1,2,…,1000);画出波形图。 (4)根据步骤二产生的数据序列x(n)计算相关函数的估计值 与理论值1.1296、-0.666、0.85、0、0、0的差异。 (5)根据相关函数的估计值对随机过程的功率谱密度函数进行估计 在[0,π]范围内对w进行采样,采样间隔0.001π,计算S(i×0.001π) (i=1,2,…,1000);画出波形图,比较其与理论上的功率谱密度函数S(w)的差异。 (6)依照实验1的方法统计数据x(n)在不同区间出现的概率,计算其理论概率, 观察二者是否基本一致。

四、实验代码及结果 A、运用正态分布随机数产生函数产生均值为m=0,根方差σ=1的白色正态分布序列{u(n)|n=1,2,…,2000},画出噪声u(n)的波形图。 代码实现: 波形图: 分析:运用正态分布随机数产生函数产生均值为0,根方差σ=1的白色噪声样本序列。 B、设离散时间线性系统的差分方程为 x(n)=u(n)-0.36u(n-1)+0.85u(n-2)(n=3,4,…,2000). 画出x(n)的波形图。 代码实现:

应用随机过程试题及答案

应用随机过程试题及答案 一.概念简答题(每题5 分,共40 分) 1. 写出卡尔曼滤波的算法公式 2. 写出ARMA(p,q)模型的定义 3. 简述Poisson 过程的随机分流定理 4. 简述Markov 链与Markov 性质的概念 5. 简述Markov 状态分解定理 6.简述HMM 要解决的三个主要问题得分B 卷(共9 页)第2 页7. 什么是随机过程,随机序列?8.什么是时齐的独立增量过程?二.综合题(每题10 分,共60 分) 1 .一维对称流动随机过程n Y , 0 1 0, , n n k k Y Y X ? ? ? ? 1 ( 1) ( 1) , 2 k k k X p x p x ? ? ? ? ? 具有的概率分布为且1 2 , , ... X X 是相互独立的。试求1 Y 与2 Y 的概率分布及其联合概率分布。 2. 已知随机变量Y 的密度函数为其他而且,在给定Y=y 条件下,随机变量X 的条件密度函数为? ? 其他试求随机变量X 和Y 的联合分布密度函数( , ) f x y . 得分B 卷(共9 页)第3 页 3. 设二维随机变量( , ) X Y 的概率密度为( ,其他试求p{x<3y} 4.设随机过程( ) c o s 2 , ( , ) , X t X t t ? ? ? ? ? ? X 是标准正态分布的随机变量。试求数学期望( ) t E X ,方差( ) t D X ,相关函数1 2 ( , ) X R t t ,协方差1 2 ( , ) X C t t 。B 卷(共9 页)第4 页5 .设马尔科夫链的状态空间为I={0,1}, 一步转移概率矩阵为

通信原理软件实验报告材料单人地

标准文档 实验目的: 通过仿真测量占空比为25%、50%、75%以及100%的单、双极性归零码波形及其功率谱。(1)流程图 (2)源代码 ①单极性归零码 clear all close all L=64; %每码元采样点数 N=1024;%采样点数 M=N/L;%码元数 Rs=2;%码元速率 Ts=1/Rs;%比特间隔 fs=L/Ts;%采样速率 Bs=fs/2;%系统带宽 T=N/fs;%截短时间 t=[-(T/2):1/fs:(T/2-1/fs)];%时域采样点 f=-Bs+[0:N-1]/T;%频域采样点 EP=zeros(1,N); 实用文案

for loop=1:1000 a=(randn(1,M)>0);%产生单极性数据 tmp=zeros(L,M); L1=L*0.5; %0.5是占空比 tmp([1:L1],:)=ones(L1,1)*a; s=tmp(:)'; S=t2f(s,fs); P=abs(S).^2/T;%样本信号的功率谱密度 %随机过程的功率谱是各个样本的功率谱的数学期望 EP=EP*(1-1/loop)+P/loop; end figure(1) plot(t,s) axis equal grid figure(2) plot(f,EP) axis([-20,20,0,max(EP)]) grid 实验结果: 占空比为50%的单极性归零码

占空比为50%的单极性归零码功率谱修改占空比可得到以下图形 占空比为75%的单极性归零

占空比为75%的单极性归零码功率谱 占空比为100%的单极性归零码

占空比为100%的单极性归零码功率谱 ②双极性归零码 L=64; N=512; M=N/L; Rs=2; Ts=1/Rs; fs=L/Ts; Bs=fs/2; T=N/fs; t=[-(T/2):1/fs:(T/2-1/fs)]; f=-Bs+[0:N-1]/T; EP=zeros(1,N); for loop=1:1000 a=sign(randn(1,M)); tmp=zeros(L,M); L1=L*0.5; tmp([1:L1],:)=ones(L1,1)*a; s=tmp(:)'; S=t2f(s,fs); P=abs(S).^2/T; EP=EP*(1-1/loop)+P/loop; end figure(1) plot(t,s)

应用随机过程——马尔可夫过程的应用

应用随机过程——马尔可夫过程的应用 李文雯,黄静冉,李鑫,苏建武 (国防科学技术大学电子科学与工程学院,湖南,长沙,410072) 摘要:现实生活中,语音处理、人脸识别以及股市走势预测等实际问题都具有马尔可夫性,即未来的走势 和演变仅仅与当前的状态有关而不受过去状态的影响。本文运用这一性质建立了以上三个问题的马尔可夫 链模型并做出了相应分析。 Abstract: In practical, phonetic processing, face recognition and the prediction of trend in stock market all have the MarKov property, that is, the evolvement and trend in the future are just in relationship with present state but not influenced by the past. In this article, we use the property setting up MarKov chain models of the three problems mentioned above and make some corresponding analysis. 关键词:马尔可夫过程语音处理人脸识别股市走势预测 Keyword: MarKov Process Phonetic processing Face recognition Prediction of trend in stock market 一、引言 马尔科夫过程(MarKov Process)是一个典型的随机过程。设X(t)是一随机过程,当过程 在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关, 这个特性成为无后效性。无后效的随机过程称为马尔科夫过程。我们称时间离散、状态离散 的马尔科夫过程为马尔科夫链。马尔科夫链中,各个时刻的状态的转变由一个状态转移的概 率矩阵控制。我们将采用马尔可夫链建模的方法,就马尔可夫模型在语音处理、人脸识别以 及股市走势预测等几个方面的应用进行探讨。 二、马尔可夫过程的应用举例 1、股票市场走势预测 对一支股票来说,令x(n)表示该股票在第n天的收盘价,x(n)是一个随机变量,(x(n), n≥0)是一个参数离散的随机过程。假设股票价格具有无后效性与时问齐次性,这样一来我 们就可以用马尔可夫过程的研究方法预测未来某交易日收盘价格落在每个区间的概率。 以某股份18个收盘交易日的收盘价格为资料 序号 1 2 3 4 5 6 7 8 9 收盘价12.99 13.15 13.78 13.83 12.54 13 13.2 12.96 12.6 序号10 11 12 13 14 15 16 17 18 收盘价13.7 13.58 13.58 13.58 13.49 13.7 14.03 13.77 13.82 这组数据中的最大值为14.03,最小值为12.54,因此可以将这个取值范围划分为 [12.54,12.9125],[12.9125,13.285],[13.285,13.6575],[13.6575,14.03]。故将观测数据划分如下: 价格状态 A B C D 价格区间 [12.54,12.9125] [12.9125,13.285][13.285,13.6575][13.6575,14.03] 频数 2 5 4 7 根据以上的状态划分,可以对状态转移的情况进行统计如下:

北理工随机信号分析实验报告

本科实验报告实验名称:随机信号分析实验

实验一 随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法。 2、实现随机序列的数字特征估计。 二、实验原理 1、随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: )(mod ,110N ky y y n n -= N y x n n /= 序列{}n x 为产生的(0,1)均匀分布随机数。 下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7 510≈?; 2、(IBM 随机数发生器)3116N 2,k 23,==+周期8 510≈?; 3、(ran0)31 5 N 21,k 7,=-=周期9 210≈?; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有 )(1R F X x -= 由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变

随机过程分析

随机过程分析 摘要随着科学的发展,数学在我们日常的通信体系中有着越来越重的地位,因为在科学研究中,只有借助于数学才能精确地描述一个现象的不同量之间的关系,从最简单的加减乘除,到复杂的建模思想等等。其中,随机过程作为数学的一个重要分支,更是在整个通信过程中发挥着不可小觑的作用。如何全面的对随机信号进行系统和理论的分析是现在通信的关键,也是今后通信业能否取得巨大进步的关键。 关键字通信系统随机过程噪声 通信中很多需要进行分析的信号都是随机信号。随机变量、随机过程是随机分析的两个基本概念。实际上很多通信中需要处理或者需要分析的信号都可以看成是一个随机变量,利用在系统中每次需要传送的信源数据流,就可以看成是一个随机变量。例如,在一定时间内电话交换台收到的呼叫次数是一个随机变量。也就是说把随某个参量而变化的随机变量统称为随机函数;把以时间t为参变量的随机函数称为随机过程。随机过程包括随机信号和随进噪声。如果信号的某个或某几个参数不能预知或不能完全预知,这种信号就称为随机信号;在通信系统中不能预测的噪声就称为随机噪声。下面对随机过程进行分析。 一、随机过程的统计特性 1、数学期望:表示随机过程的n个样本函数曲线的摆动中心, 即均值

?∞ ∞-==11);()]([)(dx t x xp t X E t a 2、方差:表示随机过程在时刻t 对于均值a(t)的偏离程度。 即均方值与均值平方之差。 {}?∞ ∞ --=-=-==112222);()]([)]()([))](()([)]([)(dx t x p t a x t a t X E t X E t X E t X D t δ 3、自协方差函数和相关函数: 衡量随机过程任意两个时刻上获得的随机变量的统计相关特性时,常用协方差函数和相关函数来表示。 (1)自协方差函数定义 {} )]()()][()([);(221121t a t X t a t X E t t C x --=??∞∞-∞ ∞---=2121212211),;,()]()][([dx dx t t x x p t a x t a x 式中t1与t2是任意的两个时刻;a (t1)与a(t2)为在t1及t2得到的数学期望; 用途:用协方差来判断同一随机过程的两个变量是否相关。 (2)自相关函数 ??∞∞-∞ ∞-==2121212212121),;,()]()([),(dx dx t t x x p x x t X t X E t t R X 用途:a 用来判断广义平稳; b 用来求解随机过程的功率谱密度及平均功率。 二、平稳随机过程 1、定义(广义与狭义): 则称X(t)是平稳随机过程。该平稳称为严格平稳,狭义平稳或严平稳。

北邮通信原理软件实验报告XXXX27页

通信原理软件实验报告 学院:信息与通信工程学院 班级: 一、通信原理Matlab仿真实验 实验八 一、实验内容 假设基带信号为m(t)=sin(2000*pi*t)+2cos(1000*pi*t),载波频率为20kHz,请仿真出AM、DSB-SC、SSB信号,观察已调信号的波形和频谱。 二、实验原理 1、具有离散大载波的双边带幅度调制信号AM 该幅度调制是由DSB-SC AM信号加上离散的大载波分量得到,其表达式及时间波形图为: 应当注意的是,m(t)的绝对值必须小于等于1,否则会出现下图的过调制: AM信号的频谱特性如下图所示: 由图可以发现,AM信号的频谱是双边带抑制载波调幅信号的频谱加上离散的大载波分量。 2、双边带抑制载波调幅(DSB—SC AM)信号的产生 双边带抑制载波调幅信号s(t)是利用均值为0的模拟基带信号m(t)和正弦载波 c(t)相乘得到,如图所示: m(t)和正弦载波s(t)的信号波形如图所示:

若调制信号m(t)是确定的,其相应的傅立叶频谱为M(f),载波信号c(t)的傅立叶频谱是C(f),调制信号s(t)的傅立叶频谱S(f)由M(f)和C(f)相卷积得到,因此经过调制之后,基带信号的频谱被搬移到了载频fc处,若模拟基带信号带宽为W,则调制信号带宽为2W,并且频谱中不含有离散的载频分量,只是由于模拟基带信号的频谱成分中不含离散的直流分量。 3、单边带条幅SSB信号 双边带抑制载波调幅信号要求信道带宽B=2W, 其中W是模拟基带信号带宽。从信息论关点开看,此双边带是有剩余度的,因而只要利用双边带中的任一边带来传输,仍能在接收机解调出原基带信号,这样可减少传送已调信号的信道带宽。 单边带条幅SSB AM信号的其表达式: 或 其频谱图为: 三、仿真设计 1、流程图:

三国杀随机过程建模研究

基于随机过程的三国杀分析 张鹏缪雨壮洪杰 钟科杰许晨 2010-11-30

目录 1 课题背景 (4) 2 研究目的与报告结构 (4) 3 闪电命中概率 (5) 3.1 背景知识 (5) 3.2 建模场景 (5) 3.3 理论分析 (5) 3.4 仿真结果及讨论 (6) 4 司马懿对甄姬洛神技能的影响 (6) 4.1 背景知识 (6) 4.2 建模场景 (7) 4.3 理论分析 (7) 4.4 仿真结果及讨论 (8) 5 陆逊爆发力 (12) 5.1 背景知识 (12) 5.2 建模场景 (13) 5.3 理论分析 (13) 5.4 仿真结果及讨论 (15) 6 黄盖寿命及攻击力 (17) 6.1 背景知识 (17) 6.2 理论分析 (18) 6.3 仿真结果及讨论 (19) 6.4 补充拓展 (21) 7 郭嘉存活力 (24) 7.1 背景知识 (24) 7.2 建模场景 (25) 7.3 理论分析 (25) 7.4 仿真结果及讨论 (29) 8 周泰存活力 (31) 8.1 背景知识 (31) 8.2 建模场景 (32)

8.3 理论分析 (32) 8.4 仿真结果及讨论 (33) 9 黄月英爆发力 (35) 9.1 背景知识 (35) 9.2 建模场景 (35) 9.3 理论分析 (35) 9.4 仿真结果及讨论 (37) 10 总结 (38) 10.1 课题总结 (38) 10.2 学习感悟 (39) 11 成员分工情况 (39)

1 课题背景 随机过程,作为对一连串随机事件动态关系的定量描述,在自然科学、工程科学以及社会科学各领域具有重要应用。 数学上的随机过程是由实际随机过程概念引起的一种数学结构。人们研究这种过程,是因为它是实际随机过程的数学模型,或者是因为它的内在数学意义以及它在概率论领域之外的应用。随机过程的概念很广泛,因而随机过程的研究几乎包括概率论的全部。虽然不能给出一个有用而又狭窄的定义,但是概率论工作者在使用随机过程这个术语时,通常想到的是其随机变量具有某种有意义的相互关系的随机过程。由于这些过程类在数学上和非数学上的应用中十分重要,用这种理论工具,可以对常见的过程进行分析,进行一系列随机计算,从而可以将随机过程这一理论工具应用到实际中去,可以进行预测与决策,是相关数学模型的理论基础。 本课题选取三国杀桌牌游戏为研究对象,利用随机过程理论进行几个特定场景模式下的人物特性、角色相互关系的建模分析。正是由于摸牌结果的随机性、策略之间的牵制性,游戏过程往往涉及到随机概率、马尔可夫过程等概念;在研究某一问题的统计平均值时,又建模为随机变量的期望值求解。显然,基于随机过程的理论研究方法,可以得到一些三国杀游戏中的规律性认识。 2 研究目的与报告结构 将随机过程应用于对三国杀的建模分析,可以使我们在理解基本概念和方法的基础上,获得更灵活的对随机事件相互关系的探究;能够深刻体会随机过程在生活实际中的运用;并且,熟练掌握利用建模思想,解决问题的方法。当然,对于游戏的取胜功略方面,研究结果也将是颇有指导意义的。 下面的章节将分不同人物及场景来进行相关内容的阐述。其中,3~9节分别对闪电命中概率、司马懿对甄姬洛神技能的影响、陆逊爆发力、黄盖寿命及攻击力、郭嘉存活力、周泰存活力、黄月英爆发力几个问题进行了理论分析,并给出了仿真结果和必要的讨论。综合性的总结在第10节给出。第11节是小组内部成员的分工情况。

随机信号实验报告

随机信号分析 实验报告 目录 随机信号分析 (1) 实验报告 (1) 理想白噪声和带限白噪声的产生与测试 (2) 一、摘要 (2) 二、实验的背景与目的 (2) 背景: (2) 实验目的: (2) 三、实验原理 (3) 四、实验的设计与结果 (4) 实验设计: (4) 实验结果: (5) 五、实验结论 (12) 六、参考文献 (13) 七、附件 (13) 1

理想白噪声和带限白噪声的产生与测试一、摘要 本文通过利用MATLAB软件仿真来对理想白噪声和带限白噪声进行研究。理想白噪声通过低通滤波器和带通滤波器分别得到低通带限白噪声和帯通带限白噪声。在仿真的过程中我们利用MATLAB工具箱中自带的一些函数来对理想白噪声和带限白噪声的均值、均方值、方差、功率谱密度、自相关函数、频谱以及概率密度进行研究,对对它们进行比较分析并讨论其物理意义。 关键词:理想白噪声带限白噪声均值均方值方差功率谱密度自相关函数、频谱以及概率密度 二、实验的背景与目的 背景: 在词典中噪声有两种定义:定义1:干扰人们休息、学习和工作的声音,引起人的心理和生理变化。定义2:不同频率、不同强度无规则地组合在一起的声音。如电噪声、机械噪声,可引伸为任何不希望有的干扰。第一种定义是人们在日常生活中可以感知的,从感性上很容易理解。而第二种定义则相对抽象一些,大部分应用于机械工程当中。在这一学期的好几门课程中我们都从不同的方面接触到噪声,如何的利用噪声,把噪声的危害减到最小是一个很热门的话题。为了加深对噪声的认识与了解,为后面的学习与工作做准备,我们对噪声进行了一些研究与测试。 实验目的: 了解理想白噪声和带限白噪声的基本概念并能够区分它们,掌握用MATLAB 或c/c++软件仿真和分析理想白噪声和带限白噪声的方法,掌握理想白噪声和带限白噪声的性质。

应用随机过程习题课二

习题 1. 设随机过程{(,),}X t t ω-∞<<+∞只有两条样本函数 12(,)2cos ,(,)2cos ,X t t X t t x ωω==--∞<<+∞ 且1221 (),()33P P ωω==,分别求: (1)一维分布函数(0,)F x 和(,)4F x π ; (2)二维分布函数(0,;,)4F x y π ; (3)均值函数()X m t ; (4)协方差函数(,)X C s t . 2. 利用抛掷一枚硬币一次的随机试验,定义随机过程 1 2 cos ()2t X t πωω?=??出现正面出现反面 且“出现正面”与“出现反面”的概率相等,各为1 2 ,求 1)画出{()}X t 的样本函数 2){()}X t 的一维概率分布,1 (;)2F x 和(1;)F x 3){()}X t 的二维概率分布121 (,1;,)2 F x x 3. 通过连续重复抛掷一枚硬币确定随机过程{()}X t cos ()2 t t X t t π?=? ?在时刻抛掷硬币出现正面 在时刻抛掷硬币出现反面 求:(1)1(,),(1,)2F x F x ; (2)121 (,1;,)2 F x x 4. 考虑正弦波过程{(),0}X t t ≥,()cos X t t ξω=,其中ω为正常数,~(0,1)U ξ. (1)分别求3,,,424t ππππωωωω = 时()X t 的概率密度(,)f t x . (2)求均值函数()m t ,方差函数()D t ,相关函数(,)R s t ,协方差函数(,)C s t . 5. 给定随机过程: ()X t t ξη=+ ()t -∞<<+∞ 其中r. v. (,)ξη的协方差矩阵为1334C ?? = ??? , 求随机过程{(),}X t t -∞<<+∞的协方差函数. 6. 考虑随机游动{(),0,1,2,}Y n n =

随机信号处理模实验报告

随机信号分析与处理实验报告院系:信息工程学院 专业:电子信息科学与技术 姓名: 方静 学号:030941209 指导老师:廖红华

实验一 熟悉MATLAB 的随机信号处理相关命令 一、实验目的 1、利用Matlab 对随机熟悉各种随机信号函数的用法 2、掌握随机信号的简单分析方法 二、实验原理 1、语音的录入与打开 在MATLAB 中,wavread 函数用于读取语音信号,采样值放在向量y 中,s f 表示采样频率(Hz),bits 表示 采样位数。[N1 N2]表示读取从N1点到N2点的值。 2、语音信号的频域分析 FFT 即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。在Matlab 信号处理工具箱中,语音信号的频域分析就是对信号进行傅里叶变换后的分析。 4、方差 定义22)]}()({[t t m t X E X X -=)(δ 为随机过程的方差。方差通常也记为DX (t ) ,随机过程的方差也是时间 t 的函数, 由方差的 定义可以看出,方差是非负函数。 5、自相关与互相关 自相关和互相关分别表示的是两个时间序列之间和同一个时间序列在任意两个不同时刻的取值之间的相关程度,即互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2的取值之间的相关程度,自相关函数是描述随机信号x(t)在任意两个不同时刻t1,t2的取值之间的相关程度。 互相关函数给出了在频域内两个信号是否相关的一个判断指标,把两测点之间信号的互谱与各自的自谱联系了起来。它能用来确定输出信号有多大程度来自输入信号,对修正测量中接入噪声源而产生的误差非常有效. 事实上,在图象处理中,自相关和互相关函数的定义如下:设原函数是f(t),则自相关函数定义为R(u)=f(t)*f(-t),其中*表示卷积;设两个函数分别是f(t)和g(t),则互相关函数定义为R(u)=f(t)*g(-t),它反映的是两个函数在不同的相对位置上互相匹配的程度。 6. 短时过零率与短时能量 语音一般分为无声段,清音段和浊音段。由于语音信号是一个非平稳过程,不能用处理平稳信号的信号处理技术对其进行分析处理。但由于语音信号本身的特点,在10-30ms 的短时间范围内,其特性可以看作是一个准稳态过程,具有短时性,因此采用短时能量和过零率来对语音进行端点检测是可行的。 信号的短时能量定义为:设语音波形时域信号为x(t),加窗分帧处理后得到第n 帧语音信号为xn(m),则定义的短时能量函数如下: ) ()()(x m n x m w m n +=,10-≤≤ N m ,,0)(),1(~0,1)(=-==n w N m m w m 为其他值,其中n=0,1T,2T……并且N 为帧长,T 为帧移长度。 短时过零率表示一帧语音中语音信号的波形穿过横轴的零电平的次数,他可以用来区分清音和浊音,因为语音信号中高音段有高的过零率,低音段有低的过零率,短时能量大的地方过零率小,短时能量小的地方过零率大。 过零率可以反映信号的频谱特性。当离散时间信号相邻两个样点的正负号相异时,我们称之为“过零”,即此时信号的时间波形穿过了零电平的横轴。统计单位时间内样点值改变符号的次数具可以得到平均过零

应用随机过程建模报告

Harbin Institute of Technology 课程设计(论文) 课程名称:应用随机过程 设计题目:建模 院系:电子与信息工程学院 班级:通信1班 设计者: 学号: 指导教师: 设计时间:2013-11-9 哈尔滨工业大学 线性模型

——电力负荷时间序列建模 1电力系统负荷预测的意义 随着我国电力事业的发展,电网的管理日趋现代化,对电力系统负荷预测问题的研究也越来越引起人们的注意。电力负荷预测是电力系统调度、用电、计划、规划等管理部门的重要工作之一。提高负荷预测技术水平,有利于计划用电管理,有利于合理安排电网运行方式和机组检修计划,有利于节煤、节油和降低发电成本,有利于制定合理的电源建设规划,有利于提高电力系统的经济效益和社会效益。 电力负荷预测,为编制电力规划提供依据,是电网规划的基础,它规定了电力工业的发展水平、发展速度、源动力资源的需求量,电力工业发展的资金需求量,以及电力工业发展对人力资源的需求量。 因此,国内外许多专家和学者开始致力于现代负荷预测方法的研究,而时间序列模型在国际和国内的电力系统短期负荷预测中得到了广泛应用。 2 平稳时间序列及其随机线性模型 时间序列是指随时间改变而随机的变化的序列。时间序列分析分为时域分析和频域分析,前者是对时间序列在时间域上的各种平均值进行分析研究,后者是进行傅里叶变换以后在频率域进行谱分析。随着计算机技术的飞速发展,时域分析方法为人们所关注。本文所要研究的就是时域分析。 平稳时间序列是平稳序列,它满足期望为0,且任意两个时刻的相关函数与时间t 无关,仅与两个时刻的时间差相关。因为我们所掌握的为平稳时间序列的线性随机模型,而在实际中所遇到的一般都不是平稳时间序列,这就要对其进行相关的处理,使其变化为平稳序列。 均值为0且具有有理谱密度的平稳时间序列必可表示为下面三种形式中的一种(其中{,0,1,2,}t a t =±± 为白噪声): (1)自回归模型——AR 模型 1122,0,1,2,t t t p t p t a t ωφωφωφω-------==±± AR (p )模型由p +2参数来刻画; (2)滑动平均模型——MA 模型 1122,0,1,2,t t t t q t q a a a a t ωθθθ---=---=±± MA(q)模型由q +2参数刻画; (3)自回归滑动平均模型或混合模型——ARMA 模型 11221122, 0,1,2,,0,1,2,t t t p t p t t t q t q a a a a t t ωφωφωφωθθθ----------=---=±±=±± ARMA(p,q)混和模型由p +q +3参数刻画; 通过以上介绍可以看出我们可以把AR(p)和MA(q)模型看成APMA(p,q)的两种特例。 线性模型中有两个重要的参数:自相关函数k ρ和和偏相关函数kk φ。其中偏相关函数kk φ刻画了平稳序列任意一个长1k +的片段在中间量固定的条件下,两端的线性密切程度,而自相关函数k ρ也是刻画两端的线性密切程度,但并不需

随机过程——随机过程不随机

随机过程——随机过程不随机 随机过程与概率论是相互依存的,前文介绍了概率论在通信中的应用,这里简要介绍一下通信中随机过程的应用。 通信过程中的随机过程极为常见,比如通信中经常用到的高斯白噪声就可以理解成一个随机对象。 通常人们研究的都是平稳随机过程,而在通信中的大部分随机过程也都是宽平稳随机过程。在移动通信过程中,无线信道衰落的建模、噪声的建模、掉话的建模都用到了随机过程。简单地说,随机过程可以理解为随机发生的过程。 注意:随机过程可以用一定的数学模型来描述,随机过程不随机。 马尔科夫链也属于随机过程的学科范畴,通过到达概率、状态概率与转移概率来分析的一种随机过程。 下面举几个通信过程中随机过程的例子。 1.泊松分布 泊松分布是一种离散的概率分布,其概率密度函数为: e ()! k p x k k λλ?==(其中k =0,1,2,3….) 在通信,特别是移动通信中,很多过程都可以看作是泊松过程,比如呼叫接入请求的到达概率和离开概率都可视为服从泊松分布。 注意:两个泊松过程的发生间隔是符合独立同分布指数的随机变量的。 2.指数分布 指数分布的分布函数: 1e ,0()0,0 x x F x x ???≥?=?

应用随机过程-综述

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计(论文) 课程名称:应用随机过程 设计题目:综述 院系:电子与信息工程学院 班级: 09硕通信一班 设计者: 学号: 指导教师:田波平 设计时间: 2009-11至2009-12 哈尔滨工业大学

哈尔滨工业大学课程设计任务书

特征函数在随机过程研究中的作用与意义 1.特征函数的定义 在介绍特征函数在随机过程研究中的作用和意义之前,首先介绍一下特征函数的定义。 特征函数是一个统计平均值,它是由随机变量X 组成的新的随机变量j X e ω的数学期望,记为: ()()j X E e ωωΦ= (1) 当X 为连续随机变量时,则X 的特征函数可表示成 ()()i X i x Ee f x e dx ωωω∞ -∞ Φ== ? (2) 其中()f x 为X 的概率密度函数。 对于随机过程的特征函数的定义与随机变量的特征函数的定义一致。 对任意时刻t ,随机过程的一维特征函数为: () (,)[](,)i X t i x X t E e f x t e dx ωωω∞ -∞ Φ== ? (3) 2.特征函数的性质 以下本文不加证明的给出特征函数的几个性质: (1) |()|(0)1ωΦ≤Φ=; (2) 共轭对称性()()ωωΦ-=Φ; (3) 特征函数()ωΦ在区间(,)-∞∞上一致连续; (4) 设随机变量Y aX b =+,其中,a b 是常数,则()()ib Y X e a ω ωωΦ=Φ; 其中(),()X Y ωωΦΦ分别表示随机变量,X Y 的特征函数。上式对于随机过程同样适用。 (5) 设随机变量,X Y 相互独立,又Z X Y =+,则()()()Z X Y ωωωΦ=ΦΦ; 此式表示两个相互独立随机变量之和的特征函数等于各自特征函数的乘积。 3.特征函数在随机过程研究中的作用与意义 由于特征函数在随机过程中和随机变量中的定义是一致的,仅是将X 变为X (t ),将概率密度函数也做相应的变化即可。故本文为方便起见,将随机过程和随机变量的特征函数的作用与意义做统一的讨论。 利用特征函数求随机过程的概率密度

相关文档
最新文档