神经系统的躯体运动功能

神经系统的躯体运动功能
神经系统的躯体运动功能

第五节神经系统的躯体运动功能

重点:

一. 脊髓的躯体运动功能

二. 脑干对骨骼肌运动的控制

三. 小脑的躯体运动

四. 大脑对躯体运动的调节

难点:

一. 网状结构的易化作用和抑制作用

二. 基底神经节的功能

案例:

张健在一次意外事故中头部受伤,医生诊断为右侧颅脑损伤,经手术治疗后意识逐渐清醒,但是出现左侧面、舌瘫和左侧上、下肢体瘫痪。

讨论:

1. 为什么右侧颅脑损伤会出现左侧上下肢体瘫痪?

2. 如何对张健的颅脑损伤进行定位?

课程相关参考资料:

1.帕金森病与线粒体的相关性研究进展广西医学杂志 2007年5期

2.帕金森病基因治疗目的基因的表达及选择中华神经医学杂志 2005年12期

3. 临床神经生理学秦震编著上海科学技术出版社 2004 年

机体的运动功能,从简单的膝跳反射到复杂的随意运动,都是在中枢神经系统不同水平的调节下进行的。简单的反射仅需低位中枢参与,复杂的反射需要高位中枢的参与。为研究不同水平与哪些运动反射有关,在动物实验中常采用不同中枢水平切断脑脊髓的方法。例如,在脊髓第五颈节段下横切(保留隔肌的呼吸运动),使脊髓与延髓以上的中枢离断,这种动物称为脊髓动物。在脊髓动物上,能观察到脊髓的躯体运动功能,例如屈肌反射和牵张反射等。如果在中脑上、下丘之间横切,则动物出现牵张反射亢进的现象。

一、脊髓的躯体运动功能

(一)屈肌反射和对侧伸肌反射

肢体的皮肤受到伤害性刺激时,该侧肢体出现屈曲运动,关节的屈肌收缩而伸肌弛缓,称为屈肌反射。屈肌反射具有保护性意义,使肢体屈缩而避开伤害性刺激。屈肌反射的强度与刺激强度有关,例如足部较弱的刺激只引起踝关节的屈曲;刺激强度加大时,则膝关节和髓关节也可发生屈曲。如刺激强度更大,则可在同侧肢体发生屈肌反射的基础上,出现对侧肢体伸展的反射,称为对侧伸肌反射。动物的一侧肢体屈曲,对侧肢体伸直,以利于支持体重,维持姿势。屈肌反射与对侧伸肌反射的中枢均在脊髓。

(二)牵张反射

当骨骼肌受到外力牵拉而伸长时,能反射地引起受牵拉的同一块肌肉发生收缩,称为牵张反射。由于牵拉的形式不同,肌肉收缩的反射效应也不相同,因此牵张反射又可分为腱反射和肌紧张两种类型。

1.腱反射

腱反射是指快速牵拉肌腱时发生的牵张反射。例如,叩击膝关节以下的股四头肌肌腱,使该肌受到牵拉,则股四头肌发生一次快速收缩,称为膝跳反射;叩击跟腱使小腿腓肠肌受到牵拉,则该肌发生一次快速收缩,称为跟腱反射。腱反射的特点是,叩击肌腱时,肌肉内的肌梭(一种本体感受器)几乎同时受到牵拉,其传入冲动进入中枢后又几乎同时使该肌的运动神经元发生兴奋,于是该肌的肌纤维几乎同时发生一次收缩。临床上常检查腱反射来了解脊髓的功能状态,如果某一腱反射减弱或消失,则提示相应节段的脊髓功能受损;如果腱反射亢进,则提示相应节段的脊髓失去了高位中枢的制约。

2.肌紧张

脊髓动物的骨骼肌仍然保持一定的肌肉张力,称为肌紧张,它也是一种牵张反射。肌紧张是由于肌肉受到缓慢而持续的牵拉而发生的,整个肌肉处于持续的、微弱的收缩状态,以阻止肌肉被拉长。肌紧张的意义在于维持身体的姿势,而不表现明显的动作。在肌紧张发生过程中,同一肌肉内的不同肌纤维轮换地进行收缩,因而能持久维持着肌紧张而不易疲劳。在正常情况下,人和动物的骨骼肌在无明显的运动表现时,也处于持续的、微弱的收缩状态,伸肌和屈肌都有一定的紧张性。但在直立姿势时,伸肌紧张处于主要地位;因为直立时,由于重力的影响,支持体重的关节趋向于被体重所弯曲,被弯曲的关节势必使伸肌受到牵拉,从而引起牵张反射使伸肌的肌紧张加强,以对抗关节的屈曲来维持直立姿势。由于重力持续作用于关节,肌紧张也就持续地发生。

二、低位脑干对肌紧张的调节

正常机体即使在安静时,其骨骼肌也存在着一定的肌紧张以维持某种姿势;在活动时,肢体的肌肉也是在一定的肌紧张的背景上发生收缩。脊髓的牵张反射可以产生一定的肌紧张,但远不足于维持机体的姿势和平衡。在正常情况下,脊髓的牵张反射要受高位中枢的调控。动物实验证明,高位中枢对肌紧张的调节具有两重性,即有些部位对肌紧张起易化作用,使肌紧张加强;而另一些部位则起抑制作用,使肌紧张减弱。

利用定向仪刺激动物脑的不同部位,观察到脑内某些部位具有抑制肌紧张及运动的作用,这些部位称为抑制区;而另一些部位则具有加强肌紧张及运动的作用,称为易化区。脑干网状结构的腹内侧部分是抑制区所在部位,而脑干网状结构的背外侧部分、脑桥的被盖、中脑的中央灰质及被盖是易化区所在部位。此外,下丘脑和丘脑的内侧部分也具有对肌紧张及运动的易化作用,因此也可包括在易化区概念之中。从活动的强度来看,易化区的活动比较强,抑制区的活动比较弱;因此在肌紧张的平衡调节中,易化区略占优势。

目前知道,抑制肌紧张的中枢部位除脑干网状结构抑制区外,还有大脑皮层运动区、纹状体、小脑前叶蚓部等部位,而这些部位的抑制功能主要是通过脑干网状结构抑制区来实现的;易化肌紧张的中枢部位除脑干网状结构易化区外,还有前庭核、小脑前叶两侧部等部位,而这些部位的易化功能是通过脑干网状结构易化区来实现的。如果在动物中脑上、下丘之间横切脑干,对抑制肌紧张的功能区和联系通路损害较大,抑制肌紧张的活动减弱,而易化肌紧张的活动便占有相对优势,从而出现肌紧张的明显亢进。这时候,动物出现四肢伸直、头尾昂起、脊柱挺硬的肌紧张(主要表现为伸肌肌紧张)亢进现象,称为去大脑僵直。

三、小脑的躯体运动功能

小脑的绒球小结叶与身体平衡功能有关,动物切除绒球小结叶后则平衡失调。实验观察到,切除绒球小结叶的猴,由于平衡功能失调而不能站立,只能躲在墙角里依靠墙壁而站立;但其随意运动仍然很协调,能很好地完成吃食动作。在第四脑室附近出现肿瘤的病人,由于肿瘤往往压迫损伤绒球小结叶,患者站立不稳,但其肌肉运动协调仍良好。

小脑前叶与调节肌紧张有关,前叶蚓部具有抑制肌紧张的作用,而前叶两侧部具有易化肌紧张的作用,它们分别与脑干网状结构抑制区和易化区有结构和功能上的联系。

小脑半球与随意运动的协调有密切的关系。小脑半球与大脑皮层有双向性联系,大脑皮层的一部分传出纤维在脑桥换神经元后,投射到小脑半球;小脑半球的传出纤维则在齿状核换神经元,从齿状核发出的纤维可以直接投射到丘脑腹外侧部分或经红核换元后再投射到丘脑腹外侧部分,转而投射到大脑皮层,形成大小脑之间的反馈联系。这一反馈联系对大脑皮层发动的随意运动起调节作用,并在人类中最为发达。小脑半球损伤后,患者随意动作的

力量、方向、速度和范围均不能很好地控制,同时肌张力减退、四肢乏力。患者不能完成精巧动作,肌肉在完成动作时抖动而把握不住动作的方向(称为意向性震颤),行走摇晃呈酩酊蹒跚状,如动作越迅速则协调障碍也越明显。因此说明,小脑半球是对肌肉在运动过程中起协调作用的。小脑半球损伤后的动作性协调障碍,称为小脑性共济失调。

四、基底神经节的躯体运动功能

基底神经节包括尾核、壳核、苍白球、丘脑底核、黑质和红核。尾核、壳核和苍白球统称为纹状体。纹状体具有控制肌肉运动的功能,并与丘脑、下丘脑联合成为本能反射的调节中枢,例如完成行走等本能反射活动。

在清醒猴,记录苍白球单个神经元的放电活动时观察到,当肢体进行随意运动时神经元的放电发生明确的变化,说明基底神经节与随意运动活动有关。电刺激纹状体的动物实验中观察到,单纯刺激纹状体并不能引起运动效应;但如在刺激大脑皮层运动区的同时,再刺激纹状体,则皮层运动区发出的运动反应即被迅速抑制,并在刺激停止后抑制效应还可继续存留一定时间。临床上基底神经节损害的主要表现可分为两大类:一类是具有运动过多而肌紧张不全的综合征(如舞蹈病),另一类是具有运动过少而肌紧张过强的综合征(如震颤麻痹)。

震颤麻痹(帕金森病)患者的症状是:全身肌紧张增高、肌肉强直、随意运动减少、动作缓慢、面部表情呆板。此外,患者常伴有静止性震颤,此种震颤多见于上肢(尤其是手部),其次是下肢及头部;震颤节律每秒约4~6次,静止时出现,情绪激动时增强,进行自主运动时减少,入睡后停止。关于震颤麻痹的产生原因,目前已有较多的了解。近年来,通过对中枢神经递质的研究,已明确中脑黑质是多巴胺能神经元存在的主要部位,其纤维上行可抵达纹状体。震颤麻痹患者的病理研究证明,其黑质具有病变,同时脑内多巴胺含量明显下降。在动物中,如用药物(利血平)使儿茶酚胺(包括多巴胺)耗竭,则动物会出现类似震颤麻痹的症状;如进一步给予左旋多巴(为多巴胺之前体,能通过血脑屏障进入中枢神经系统)治疗,使体内多巴胺合成增加,则症状缓解。由此说明,中脑黑质的多巴胺能神经元功能被破坏,是震颤麻痹的主要原因。

早已知道,震颤麻痹患者能用M型胆碱能受体阻断剂(东莨菪碱、苯海索)治疗,说明震颤麻痹的产生与乙酰胆碱递质功能的改变也有关系。在震颤麻痹患者进行苍白球破坏手术治疗过程中,如将乙酰胆碱直接注入苍白球,则导致对侧肢体症状加剧,而注入M型受体阻断剂则症状减退。由此说明,纹状体内存在乙酰胆碱递质系统,其功能的加强将导致震颤麻痹症状的出现。总结以上的研究结果,目前认为黑质上行抵达纹状体的多巴胺递质系统的

功能,在于抑制纹状体内乙酰胆碱递质系统的功能;震颤麻痹患者由于多巴胺递质系统功能受损,导致乙酰胆碱递质系统功能的亢进,才出现一系列症状。如果应用左旋多巴以增强多巴胺的合成,或应用M型受体阻断剂以阻断乙酰胆碱的作用,均能治疗震颤麻痹。

在正常情况下,黑质上行抵达纹状体的多巴胺递质系统还与行为觉醒有关。动物实验观察到,单纯破坏中脑黑质多巴胺递质系统后,则动物在行为上不能表现觉醒,对新异的刺激不能表现探究行为。震颤麻痹患者面部表情呆板,可能就是行为觉醒发生障碍的表现。

舞蹈病患者的主要临床表现为不自主的上肢和头部的舞蹈样动作,并伴有肌张力降低等。病理研究证明,患者纹状体严重萎缩,而黑质-纹状体通路是完好的。在这类患者,若采用左旋多巴进行治疗反而使症状加剧,而用利血平耗竭多巴胺递质却可使症状缓解。神经生化的研究发现,患者纹状体中胆碱能神经元和γ-氨基丁酸能神经元的功能明显减退。因此认为,舞蹈病病变主要是纹状体内的胆碱能和γ-氨基丁酸能神经元功能减退,而黑质多巴胺能神经元功能相对亢进,这和震颤麻痹的病变机制正好相反。目前知道,黑质和纹状体之间是有环路联系的:黑质的多巴胺能上行系统能抑制纹状体内胆碱能和γ-氨基丁酸能系统的活动;而纹状体的γ-氨基丁酸下行系统能反馈抑制黑质的多巴胺能系统的活动。临床治疗震颤麻痹时,如左旋多巴用得过量则可引起类似舞蹈病的症状,也说明上述的观点是有道理的。

五、大脑皮层对躯体运动的调节

机体的随意运动只有在神经系统对骨骼肌的支配保持完整的条件下才能发生,而且必须受大脑皮层的控制。大脑皮层控制躯体运动的部位称为皮层运动区。

(一)大脑皮层运动区

用电刺激方法观察到,大脑皮层的某些区域与躯体运动有密切的关系;刺激这些区域能引起对侧一定部位肌肉的收缩。这些区域称为运动区,主要位于中央前回。运动区也有一些与大脑皮层体表感觉区相似的特点:①对躯体运动的调节是交叉性的,但对头面部的支配主要是双侧性的。②有精细的功能定位,其安排大体呈身体的倒影,而头面代表区内部的安排是正立的。③运动愈精细复杂的躯体的代表区也愈大,例如手和五指的代表区很大,几乎与整个下肢所占的区域同等大小。④刺激所得的肌肉运动反应单纯,主要为少数个别肌肉的收缩。此外,在猴与人的大脑皮层,用电刺激法还可以找到运动辅助区;该区在皮层内侧面(两半球纵裂的侧壁)下肢运动代表区的前面,刺激该区可引起肢体运动和发声,反应一般为双侧性。

大脑皮层运动区对躯体运动的调节,是通过锥体系和锥体外系下传而实现的。

(二)锥体系及其功能

锥体系一般是指由大脑皮层发出经延髓锥体而后下达脊髓的传导系(即锥体束,或称皮层脊髓束);然而由皮层发出抵达脑神经运动核的纤维(皮层延髓束),虽不通过延髓锥体,也应包括在锥体系的概念之中。因为,后者与前者在功能上是相似的,两者都是由皮层运动神经元(上运动神经元)下传抵达支配肌肉的下运动神经元(脊髓前角运动神经元和脑神经核运动神经元)的最直接通路。

以前认为锥体束下传的纤维均直接与下运动神经元发生突触联系,但现在知道有80%~90%的上、下运动神经元之间还间隔有一个以上中间神经元的接替,仅有10%~20%上、下运动神经元之间的联系是直接的、单突触性的。电生理研究指出,这种单突触直接联系在前肢运动神经元比后肢运动神经元多,而且肢体远端肌肉的运动神经元又比近端肌肉的运动神经元多。由此可见,运动愈精细的肌肉,大脑皮层对其运动神经元的支配具有愈多的单突触直接联系。

锥体系的大脑皮层起源比较广泛,中央前回运动区是锥体系的主要起源,但中央后回以及其他区域也是锥体系的起源部位。中央前回运动区的第五层大锥体细胞发出的纤维组成锥体束中直径较为粗大的有髓鞘纤维,第三至六层的小细胞也发出纤维进入锥体束;中央后回等区域也发出纤维参与锥体束的组成,但运动辅助区的下行纤维不进入锥体束。

(三)锥体外系

锥体外系是一个复杂的概念。在解剖学中,锥体外系是指不通过锥体系的、调节肌肉运动的系统,因此把基底神经节和小脑等对肌肉运动的调节系统都归属于锥体外系。但在临床上,锥体外系仅指皮层下某些核团(尾核、壳核、苍白球、黑质、红核等)对脊髓运动神经元的调节系统,它们的下行通径在延髓锥体之外。所以,临床上的锥体外系概念比较窄,而且似与大脑皮层无关。但是,现在知道这些核团不仅接受大脑皮层下行纤维的联系,同时还经过丘脑对大脑皮层有上行纤维的联系。因此,目前把由大脑皮层下行并通过皮层下核团(主要指基底神经节)换元接替,转而控制脊髓运动神经元的传导系统,称为皮层起源的锥体外系。

皮层起源的锥体外系是大脑皮层控制躯体运动的另一下行传导通路。锥体外系的皮层起源比较广泛,但主要来源是额叶和顶叶的感觉运动区和运动辅助区。因此,皮层锥体系和锥体外系的起源是相互重迭的。锥体外系对脊髓运动神经元的控制常是双侧性的,其机能主要与调节肌紧张、肌群的协调性运动有关。

正常人体运动学第四章神经系统与运动控制

第六章神经系统与运动控制 第一节与运动相关的神经系统结构与反射 一、大脑皮层的主要运动区: 为中央前回4,6区。此外还有8区,额上回,扣带回,及额叶内侧面的运动补充区和补充前区。 大脑皮层的主要运动区的功能特点: 1.交叉支配(躯干、头面部除外); 2.倒置安排(头面部正立); 3.机能代表区的大小与运动的精细程度有关; 4.运动柱(motor column): 这可能是在皮层控制存在时,人的肢体可以做单个关节的分离运动的原因。锥体系和锥体外系。 1. 皮质脊髓束(“锥体束”): 大脑皮层运动区 经内囊 延髓锥体交叉(80%)不交叉(20%) 对侧脊髓外侧索同侧脊髓前索下行 (皮层脊髓侧束)(皮层脊髓前束) 脊髓前角、神经元白质前联合交叉 肌肉 2. 皮质脑干束: 大脑皮层运动区 经内囊 脑干内脑神经核运动神经元 头面部肌肉(下部面肌和舌肌为对侧支配,其余头面部肌肉为双侧支配)●上运动神经元:控制下运动神经元的高位神经元; ●下运动神经元:脊髓前角运动神经元; ●硬瘫:皮层运动区6区损伤,整个运动区损伤; ●软瘫:下运动神经元损伤,皮层运动区4区损伤; ●“中枢性瘫痪”:上运动神经元损伤,硬瘫,肌肉不萎缩,牵张反射增强; ●“周围性瘫痪”:下运动神经元损伤,软瘫,肌肉萎缩,牵张反射减弱或消失; ●锥体束综合征:锥体系和锥体外系合并损伤。上下运动神经元的区分在临床上失去意义。 3.锥体外系: 大脑皮层运动区 脑干内神经核(红核、豆状核、尾状核) 顶盖脊髓束网状脊髓束前庭脊髓束红核脊髓束

脊髓前角运动神经元(调节肌紧张,肌协调、姿势调节) 三、反射 ●在中枢神经系统的参与下,机体对内外环境产生的适应性反应为反射,是运动的很重要的因素。 (一)脊髓水平的反射 (二)脑桥、延髓水平的反射 (三)中脑水平的反射 (四)大脑水平的反射 (一)脊髓水平的反射 ●脊髓反射的主要作用是抵抗重力,支持身体维持姿势,逃避伤害性刺激。生理条件下他受到高位中枢的抑 制,不表现或表现不明显;高位中枢出现病变时,脊髓水平的反射易于表现出来,脊髓水平的反射表现为高兴奋性或亢进。 ● 1.牵张反射 ● 2.屈肌反射 ● 3.交互抑制 ● 4.联合反应 ● 5.共同运动 ● 1.牵张反射 ●骨骼肌受到外力牵拉伸长时,能反射性地引起受牵拉的同一肌肉收缩,称为牵张反射。包括肌紧张和腱反 射两种,感受器为肌梭和腱器官。 (1)肌梭 ●感受肌肉长度和速度变化的感受器,包裹在肌梭囊内,位于梭外肌纤维之间,与梭外肌并联分布。 ●梭外肌纤维,与肌梭并联,受运动神经元支配,大---快肌,小---慢肌,引起骨骼肌随意收缩; ●梭内肌纤维,位于肌梭内,受运动神经元支配,调节肌梭对牵张刺激的敏感性,协调肌肉的运动;梭内肌纤维分为: ●核袋纤维:细胞核集中于肌纤维中部,Ia类传入纤维传入信号,对快速牵拉敏感; ●核链纤维:细胞核分布于整个肌纤维,II类传入纤维传入信号,对缓慢持续牵拉敏感; (2)牵张反射的类型 ①腱反射(位相性牵张反射) ●概念:腱反射是指快速牵拉肌腱时发生的牵张反射。 ●特点:主要是快肌纤维收缩,冲动沿Ia类纤维传入脊髓,与运动神经元形成单突触反射。 ●意义:了解神经系统的功能状态。 ②肌紧张(紧张性牵张反射) ●概念:肌紧张是指缓慢持续牵拉肌腱时发生的牵张反射。 ●特点:表现为受牵拉的肌肉发生紧张性收缩,阻止被拉长,主要是慢肌纤维收缩,为多突触反射,反 射可在同侧或对侧,也可扩布到不同脊髓节段的前根。 ●意义:肌张力产生的机制。 (3)肌张力 ●概念:正常人体的骨骼肌纤维经常发生轮流交替收缩,致使骨骼肌处于一种轻度的持续收缩状态,使 其产生一定的张力,称为肌紧张或肌张力。 ●特点:肌张力的产生是由于骨骼肌抗重力作用,持续而缓慢地牵拉肌肉、刺激肌梭而发生的牵张反射。 人体抗重力肌在上肢主要是屈肌,下肢主要是伸肌。当中枢对脊髓的作用减弱或消失,抗重力肌出现肌张力增高。 (4)腱器官 ●概念:腱器官大部分位于梭外肌的肌腱中,是感受骨骼肌张力变化的一种本体感受器。 ●特点:当肌肉收缩时,肌梭放电减少,器官的放电增加,通过Ib类纤维传入脊髓,抑制和神经元, 调整肌张力不至于过高。 ●意义:防止肌肉过度牵张。

上运动神经元与下运动神经元的区别

如对您有帮助,可购买打赏,谢谢 上运动神经元与下运动神经元的区别 导语:神经元是我们身体运动最主要的部分,运动神经元如果出现问题的话人们的活动行为会受到很大的影响,上运动神经元与下运动神经元虽然名称相差 神经元是我们身体运动最主要的部分,运动神经元如果出现问题的话人们的活动行为会受到很大的影响,上运动神经元与下运动神经元虽然名称相差不多,但事实上这两种神经元所起的作用是截然不同的,所以大家要分清楚,接下来我们就为大家详细的介绍一下上运动神经元与下运动神经元的区别。 锥体系主要包括上、下两个运动神经元。上运动神经元的胞体主要位于大脑皮质体运动区的锥体细胞,这些细胞的轴突组成下行的锥体束,其中下行至脊髓的纤维称为皮质脊髓束;沿途陆续离开锥体束,直接或间接止于脑神经运动核的纤维为皮质核束。 临床上,上运动神经元损伤引起的随意运动麻痹,伴有肌张力增高,呈痉挛性瘫痪;深反射亢进;浅反射(如腹壁反射、提睾反射等)减弱或消失;可出现病理反射(如Babinshi 征);因为下运动神经元正常,病程早期肌不出现萎缩在锥体系中下运动神经元的胞体位于脑神经运动核和脊髓前角运动细胞,它们的突分别组成脑神经和脊神经,支配全身骨骼肌的随意运动。 下运动神经元受损时,由于肌失去神经支配,肌张力降低,呈弛缓性瘫痪;肌因营养障碍而萎缩;因为所有反射弧都中断,浅、深反射均消失;无病理反射 上面的这些内容就是关于上运动神经元与下运动神经元的区别的介绍了,对于这两种神经元大家一定要弄清楚,上运动神经元受到伤害以后所表现出来的症状和下运动神经元不同,只有准确的知道才能对 预防疾病常识分享,对您有帮助可购买打赏

人体微幅运动信号感知系统设计

人体微幅运动信号感知系统设计 通信工程专业曹宇 指导教师王嵩讲师 摘要近年来,随着集成电路和传感器的迅速发展,可穿戴设备正逐步融入人们日常生活和工作中。本文基于开源硬件平台Arduino自主开发一个可穿戴设备,以三轴模拟加速度传感器捕捉人“咬牙”动作并实时记录数据,通过系统信号处理单元分析动作信号特征,输出表示动作有无的‘1’、‘0’布尔值,驱动蜂鸣器鸣响作为动作响应。本系统实现了快速准确感知人体的布尔动作,其设计原理可用于控制MP3、手机、智能眼镜、蓝牙耳机等可穿戴电子设备。 关键词开源硬件,加速度传感器,信号特征分析,可穿戴设备 1 前言 1.1研究背景与意义 穿戴式智能设备拥有多年的发展历史,思想和雏形在20世纪60年代即已出现,而具备智能可穿戴形态的设备则于上世纪70-80年代出现。史蒂夫?曼基于Apple-II 6502型计算机研制的可穿戴计算机原型即是其中的代表。随着计算机软硬件的标准化以及互联网技术的高速发展,可穿戴式智能设备的形态开始变得多样化,逐渐在工业、医疗、军事、教育、娱乐等诸多领域表现出重要的研究价值和应用潜力。 穿戴式智能设备的本意,是探索人与科技的全新交互方式,为每一个人提供专属的、个性化的服务,在个人随身移动设备上形成独一无二的专属数据计算结果。现在,穿戴式智能设备已经从幻想走进现实,它们的出现必将深刻改变现代人的生活方式。 1.2灵感来源 本文作品的灵感来源于智能手环的记步功能,智能手环内嵌的加速度传感器扑捉手的动作轨迹,通过模式识别技术辨识具有特定特征的动作信号。由此类推,监测人类的各种动作,并且通过数据分析,能赋予动作相关联的内容。例如,通过检测每日颈椎、下肢、手腕的活动量来预测由于活动量少而导致的关节疾病。 由于人体在行动时往往具有明显的前后动作关联性,所以我们可以通过探测前一动作来预测其后的意图,从而辅助生成下一个动作想要的结果。例如,当人想通过腕表看时间时,通常会先将胳臂抬起并略微晃动手腕。如果将这个动作捕捉,便可探测出用户的意图,从而预先将电子表点亮激活。这样就增强了体验,省去了用户不必要的动作[1,2]。 作者旨在自主开发一款可穿戴设备,通过咬牙来控制电子设备,从而达到方便人类与电子设备交互的目的。 2平台搭建与算法 2.1实验材料 2.1.1实验设备

刘泉鹏讲解运动神经元科普知识

运动神经元病(MND)是一组病因未明的选择性侵犯脊髓前角细胞、脑干运动神经元、皮层锥体细胞及锥体束的慢性进行性神经变性疾病。发病率约为每年1~3/10万,患病率为每年4~8/10万。由于多数患者于出现症状后3~5年内死亡,因此,该病的患病率与发病率较为接近。MND病因尚不清楚,一般认为是随着年龄增长,由遗传易感个体暴露于不利环境所造成的,即遗传因素和环境因素共同导致了运动神经元病的发生。根据大量流行病学调查,人们发现了许多与ALS发病相关的环境因素,包括重金属、杀虫剂、除草剂、外伤、饮食以及运动等。但是总体来讲,这些因素之间缺乏联系,而且它们与ALS的发生是否存在必然联系以及它们导致ALS发生的机制也有待进一步证实 运动神经元病的疾病类型 运动神经元病包括肌萎缩侧索硬化、进行性脊肌萎缩症、原发性侧索硬化和进行性延髓麻痹。各种类型的运动神经元疾病的病变过程大都是相同的,主要差别在于病变部位的不同。可将肌萎缩侧索硬化症看作是本组疾病的代表,其它类型则为其变型。 肌萎缩侧索硬化(amyotrophic lateral sclerosis,ALS)在早先时期与运动神经元疾病具有完全等同的含义,特指先有下运动神经元损害,之后又有上运动神经元损害的一个独立的疾病。但后来发现还有另外两种变异情况,即病程中始终只累及上运动神经元或下运动神经元,前者称为原发性侧索硬化,后者称为脊髓性肌萎缩。但有些文献仍沿用运动神经元病来专指肌萎缩侧索硬化。 多数学者习惯根据上、下运动神经元受累的不同组合,将运动神经元病分为肌萎缩侧索硬化、原发性侧索硬化和脊髓性肌萎缩三种类型。肌萎缩侧索硬化与多种相关疾病有共同的病理基础,这些疾病包括原发性侧索硬化、ALS-痴呆、ALS-相关性额叶痴呆、进行性脊髓性肌萎缩、多系统萎缩和lewy小体病。病理检查发现这些疾病同样含有泛素阳性包涵体和透明团块包涵体,只是损伤了不同的解剖部位而出现各种各样的临床组合。 运动神经元病的发病机制 确切的发病机制至今尚未清楚。研究主要集中在铜锌超氧歧化酶基因突变学说、兴奋性氨基酸毒性学说、自身免疫学说和神经营养因子学说。 1.铜锌超氧歧化酶基因突变学说 研究表明,20%的家族性ALS有SODI(Cu/Zn过氧化物歧化酶)基因突变。该基因位于人类染色体21q22.1,其突变可致SODl活性丧失,使超氧化的解毒作用减弱,致自由基过量积聚,细胞损伤。一些散发性的ALS可能也存在2lq22位点的突变。 2.兴奋性氨基酸毒性学说 兴奋性氨基酸包括谷氨酸、天冬氨酸及其衍生物红藻氨酸(KA)、使君子氨酸(QA)、鹅膏氨酸(IA)和N-甲基d-天冬氨酸(NMDA)。兴奋性氨基酸的兴奋毒性可能参与LIS的发病。谷氨酸与NMDA受体结合可致钙内流,激活一系列蛋白酶和蛋白激酶,使蛋白质的分解和自由基的生成增加,脂质过氧化过程加强,神经元自行溶解。此外过量钙还可激活核内切酶,使DNA

第三章 躯体运动的神经控制

第三章躯体运动的神经控制 一、名词解释 1.突触延搁 2.本体感受器 3.肌梭 4.兴奋性突触后电位 5.化学突触 6.抑制性突触后电位 7.神经递质 8.位觉 9.腱器官10.受体 11.运动单位12.姿势反射13.感受器14.前庭功能稳定性15.前庭反应 16.牵张反射17.静态牵张反射18.动态牵张反射19.电突触20.屈肌反射 21.最后公路22.迷路紧张反射23.颈紧张反射 二、填空题 1.神经组织由神经细胞和组成,神经细胞又称为。 2.大脑皮质对身体运动的调节功能是通过和下传而完成的。 3.一个神经元通常具有一条细长的圆柱状,将神经元信息传出至另一神经元或效应器。 4.中枢内神经纤维集中的部位称为。 5.神经元依其功能分为三大类:、、。 6.前庭小脑的功能主要是和。 7.视觉系统中对光敏感、接收光的部位是、。分别感受视觉和亮光视觉。 8.从高处跳下时,可反射性引起前臂,下肢,以保持身体的重心,减少震动。 9.外膝体是视觉信息传入大脑的中继站,视觉中枢位于大脑皮质的叶。 10.声音刺激的机械能是通过换能作用将声波转化为电信号来传递声音信息的。 11.翻正反射的中枢在,在人类由引起的翻正反射最重要。 12.脑干对脊髓的运动神经元具有和作用,它们主要是由实现的。 13.声音通过外耳道、、及镫骨底板传到外淋巴后,部分机械能量推动外淋巴从前庭阶经蜗孔及鼓阶到。 14.投掷前的引臂,起跳前的膝屈都是利用的原理,可增加肌肉收缩。 15.动态牵张反射的感受器是受牵拉肌肉中的,效应器是受牵拉肌肉中的纤维。 16.牵张反射是一种单突触反射,可分为和。这两类牵张反射的中枢都在。 17.脊髓中的运动神经元,按功能可分为和,它们的轴突经脊髓直达所支配肌肉。 18.腱器官的传入冲动对同一肌肉的α运动神经元起作用,而肌梭的传入冲动对同一肌肉的α运动神经元起作用。 19.兴奋性突触后电位是由于突触后膜对、尤其是通透性升高而去极化所致。 20.大α运动神经元支配纤维,小α运动神经元支配纤维,γ运动神经元支配骨骼肌中的纤维。 21.肌梭的主要功能是当它所在的那块肌肉被拉长时,可发放牵拉和变化的信号。 22.骨骼肌长度的改变与关节的角度变化密切相关,因此感受器是中枢神经系统了解肢体或体段相关位置的结构 三、判断题 1.神经细胞是神经系统的基本结构与功能单位。( ) 2.运动愈精细的肌肉,大脑皮质对支配该肌肉的下运动神经元具有愈多的单突触联系。() 3.一个神经元通常具有一个树突和多个轴突,树突可将细胞体加工、处理过的信息传出到另一个神经元或效应器。( ) 4.运动区定位从上到下的安排是按躯体组成顺序进行的,头面部肌肉代表区在皮质顶部,下肢肌肉的代表区在皮质底部。( ) 5.在神经细胞任何一个部位所产生的神经冲动,均可传播到整个细胞。( ) 6.以局部电流方式传导的神经信号,不仅传导速度快,而且能量消耗多。( ) 7.电突触主要是单向传递的兴奋性突触;化学突触则是双向传递,并且既有兴奋性的,又有抑制性的。 8.兴奋性递质可导致突触后膜产生去极化效应,产生的后电位称为兴奋性突触后电位。( ) 9.皮质对躯体运动的调节为交叉性支配,即左侧皮质支配右侧肢体,而右侧皮质支配左侧肢体。( ) 10.大脑皮层功能代表区的大小与运动的精细复杂程度有关,运动越精细越复杂,其功能代表区就越小。( ) 11.视网膜是一种光感受器,它包含视杆细胞和视锥细胞。( )

神经系统的躯体运动功能

第五节神经系统的躯体运动功能 重点: 一. 脊髓的躯体运动功能 二. 脑干对骨骼肌运动的控制 三. 小脑的躯体运动 四. 大脑对躯体运动的调节 难点: 一. 网状结构的易化作用和抑制作用 二. 基底神经节的功能 案例: 张健在一次意外事故中头部受伤,医生诊断为右侧颅脑损伤,经手术治疗后意识逐渐清醒,但是出现左侧面、舌瘫和左侧上、下肢体瘫痪。 讨论: 1. 为什么右侧颅脑损伤会出现左侧上下肢体瘫痪? 2. 如何对张健的颅脑损伤进行定位? 课程相关参考资料: 1.帕金森病与线粒体的相关性研究进展广西医学杂志 2007年5期 2.帕金森病基因治疗目的基因的表达及选择中华神经医学杂志 2005年12期 3. 临床神经生理学秦震编著上海科学技术出版社 2004 年 机体的运动功能,从简单的膝跳反射到复杂的随意运动,都是在中枢神经系统不同水平的调节下进行的。简单的反射仅需低位中枢参与,复杂的反射需要高位中枢的参与。为研究不同水平与哪些运动反射有关,在动物实验中常采用不同中枢水平切断脑脊髓的方法。例如,在脊髓第五颈节段下横切(保留隔肌的呼吸运动),使脊髓与延髓以上的中枢离断,这种动物称为脊髓动物。在脊髓动物上,能观察到脊髓的躯体运动功能,例如屈肌反射和牵张反射等。如果在中脑上、下丘之间横切,则动物出现牵张反射亢进的现象。 一、脊髓的躯体运动功能 (一)屈肌反射和对侧伸肌反射

肢体的皮肤受到伤害性刺激时,该侧肢体出现屈曲运动,关节的屈肌收缩而伸肌弛缓,称为屈肌反射。屈肌反射具有保护性意义,使肢体屈缩而避开伤害性刺激。屈肌反射的强度与刺激强度有关,例如足部较弱的刺激只引起踝关节的屈曲;刺激强度加大时,则膝关节和髓关节也可发生屈曲。如刺激强度更大,则可在同侧肢体发生屈肌反射的基础上,出现对侧肢体伸展的反射,称为对侧伸肌反射。动物的一侧肢体屈曲,对侧肢体伸直,以利于支持体重,维持姿势。屈肌反射与对侧伸肌反射的中枢均在脊髓。 (二)牵张反射 当骨骼肌受到外力牵拉而伸长时,能反射地引起受牵拉的同一块肌肉发生收缩,称为牵张反射。由于牵拉的形式不同,肌肉收缩的反射效应也不相同,因此牵张反射又可分为腱反射和肌紧张两种类型。 1.腱反射 腱反射是指快速牵拉肌腱时发生的牵张反射。例如,叩击膝关节以下的股四头肌肌腱,使该肌受到牵拉,则股四头肌发生一次快速收缩,称为膝跳反射;叩击跟腱使小腿腓肠肌受到牵拉,则该肌发生一次快速收缩,称为跟腱反射。腱反射的特点是,叩击肌腱时,肌肉内的肌梭(一种本体感受器)几乎同时受到牵拉,其传入冲动进入中枢后又几乎同时使该肌的运动神经元发生兴奋,于是该肌的肌纤维几乎同时发生一次收缩。临床上常检查腱反射来了解脊髓的功能状态,如果某一腱反射减弱或消失,则提示相应节段的脊髓功能受损;如果腱反射亢进,则提示相应节段的脊髓失去了高位中枢的制约。 2.肌紧张 脊髓动物的骨骼肌仍然保持一定的肌肉张力,称为肌紧张,它也是一种牵张反射。肌紧张是由于肌肉受到缓慢而持续的牵拉而发生的,整个肌肉处于持续的、微弱的收缩状态,以阻止肌肉被拉长。肌紧张的意义在于维持身体的姿势,而不表现明显的动作。在肌紧张发生过程中,同一肌肉内的不同肌纤维轮换地进行收缩,因而能持久维持着肌紧张而不易疲劳。在正常情况下,人和动物的骨骼肌在无明显的运动表现时,也处于持续的、微弱的收缩状态,伸肌和屈肌都有一定的紧张性。但在直立姿势时,伸肌紧张处于主要地位;因为直立时,由于重力的影响,支持体重的关节趋向于被体重所弯曲,被弯曲的关节势必使伸肌受到牵拉,从而引起牵张反射使伸肌的肌紧张加强,以对抗关节的屈曲来维持直立姿势。由于重力持续作用于关节,肌紧张也就持续地发生。 二、低位脑干对肌紧张的调节

肌肉活动神经控制

肌肉活动的神经控制 第一节神经系统概述 一、神经组织 神经系统主要由神经组织构成。组成神经组织的细胞有两大类,即神经细胞(nerve cell )和神经胶质细胞(neuroglia cell )。神经细胞又称神经元,是神经系统的基本结构和功能单位。 1 .神经元 每个神经元依据某些结构特征可分辨出三个组成部分;细胞体(soma )、树突(dendrites )和轴突(axon )。 2 .神经胶质细胞 神经胶质细胞的功能,目前较为确定的大致有以下几方面:①转运功能,构成神经元与血管之间的代谢特质的“转运站”;②参与血脑屏障的组成;③构成神经纤维的髓鞘,具有绝缘作用;④填补神经元的缺损;⑤参与离子和递质的调节,胶质细胞可摄取和贮藏神经元所释放的递质,必要时重新释放出来,以调节神经元间的信息传递过程。 二、神经冲动的产生和传导 1 .神经冲动的产生 (1 )外向电流和电紧张性电流 (2 )局部反应和动作电位 2 .神经冲动的传导 (1 )局部电流学说:无髓鞘性神经纤维上冲动的传导形式。 (2 )跳跃传导学说:髓鞘性神经纤维上冲动的传导形式。 3 .神经传导的一般特征 (1 )生理完整性 (2 )绝缘性 (3 )双向传导 (4 )相对不疲劳性

三、神经无间的信息传递 1 .化学性突触传递 (1 )突触结构:突触前膜突触后膜,两膜之间为突触间隙突触小泡 (2 )突触电位 兴奋性突触后电位(excitatory postsynaptic potential, EPSP )是由于突出触后膜对Na + 、K + ,尤其是Na + 通透性升高而去极化所致。 抑制性递质导致突触后膜的超极化,称为抑制性突触后电位(inhibitory postsynaptic potential, IPSP ), IPSP 的幅度因神经元膜电位水平的不同而改变。IPSP 的机制主要是对K + 和CL ˉ尤其是CL ˉ的通透性升高。 突触后神经元的反应,取决于许多突触的同时或在一段时间内先后施加影响的总和。空间总和时间总和。 2 .电突触传递 电传递的速度快,几乎不存在潜伏期(即突触延搁),电突触常可和比学突触一起构成混合突触。 四、中枢抑制 1 .突触后抑制 (1 )传入侧支性抑制 (2 )回返性抑制 2 .突触前抑制 第二节运动的神经控制 一、脊髓对躯体运动的调节 1 .脊髓神经元 (1 )运动神经元池:一块肌肉通常接受许多运动神经元的支配,支配某一肌肉的一群运动神经元,称为运动神经元池。其中有大小α运动神经元和γ神经元。 (2 )中间神经元:位于传入与传出神经原之间,起介导信号的作用。

正常人体运动学第四章神经系统与运动控制

第六章 神经系统与 运动控制 第一节 与运动相关的神经系统结构与反射 一、大脑皮层的主要运动区: 为中央前回4,6区。 此外还有8区,额上回,扣带回,及额叶内侧面的运动补充区和补充前区。 大脑皮层的主要运动区的功能特点: 1.交叉支配(躯干、头面部除外); 2.倒置安排(头面部正立); 3.机能代表区的大小与运动的精细程度有关; 4.运动柱(motor column): 这可能是在皮层控制存在时,人的肢体可以做单个关节的分离运动的原因。 锥体系和锥体外系。 1. 皮质脊髓束(“锥体束”): 大脑皮层运动区 经内囊 延髓锥体交叉(80%) 不交叉(20%) 对侧脊髓外侧索 同侧脊髓前索下行 (皮层脊髓侧束) (皮层脊髓前束) 神经元 白质前联合交叉 肌肉 2. 皮质脑干束: 大脑皮层运动区 经内囊 脑干内脑神经核运动神经元 头面部肌肉(下部面肌和舌肌为对侧支配,其余头面部肌肉为双侧支配) ● 上运动神经元:控制下运动神经元的高位神经元; ● 下运动神经元:脊髓前角运动神经元; ● 硬瘫:皮层运动区6区损伤,整个运动区损伤; ● 软瘫:下运动神经元损伤,皮层运动区4区损伤; ● “中枢性瘫痪”:上运动神经元损伤,硬瘫,肌肉不萎缩,牵张反射增强; ● “周围性瘫痪”:下运动神经元损伤,软瘫,肌肉萎缩,牵张反射减弱或消失; ● 锥体束综合征:锥体系和锥体外系合并损伤。上下运动神经元的区分在临床上失去意义。 3.锥体外系: 大脑皮层运动区 脑干内神经核(红核、豆状核、尾状核) 顶盖脊髓束 网状脊髓束 前庭脊髓束 红核脊髓束 脊髓前角运动神经元(调节肌紧张,肌协调、姿势调节)

运动神经元病

什么症状是运动神经元病的特点 运动神经元病是一种比较严重的疾病,且危害性较大,相信很多人对于此病还不是很了解,这也是治疗运动神经元病时,患者需要了解的问题,方能更好的治疗。那么,运动神经元病的症状是什么?下面请专家为大家介绍一下什么症状是运动神经元病的特点。 运动神经元病的症状有: 运动神经元病它是选择侵犯脊髓前角细胞和脑神经细胞核以及大脑运动皮质锥体细胞的一组进行变性疾病,该病多发于中老年,快慢不一,可分别为进行性脊肌萎缩,进行性延髓麻痹和肌萎缩侧索硬化。该病初期多误诊为由颈椎压迫神经引起。病变部位有上运动神经元与下运动神经元。 运动神经元病症状表现: 1、单侧或双侧手肌无力、并带有明显颤动,大小鱼际运动神经元病。 2、上肢肌肉及肩胛运动神经元病,抬手困难,梳头无力,下肢呈痉挛性瘫痪,行走缓慢,步态呈剪刀状。 3、声音嘶哑、舌肌萎缩、说话不清,吞咽困难,唾液外流,进食或喝水呛咳,呼吸困难,痰液不易咳出。 专家指出:积极了解运动神经元病的症状表现哪些突出对及时发现病情有很大的帮助,另外专家还提醒大家,在发现病情后要尽快的进行运动神经元病的治疗,帮助患者及早的康复。 在此专家向大家推荐神经细胞渗透修复疗法治疗运动神经元病,神经细胞渗透修复疗法不会发生免疫排斥,患者不用担心治愈后复发,神经细胞重生疗法治疗是最安全有效的治疗方法。 细胞渗透修复疗法的治疗原则 细胞渗透修复疗法的治疗原则是根据细胞是多能细胞,终身具有自我更新能力,可以被诱导分化为各种类型的成熟神经细胞。它是神经系统形成和发育的源泉,主要功能是作为一种后备储备,参与神经系统损伤的修复或正常神经细胞凋亡的更新。通过将神经干细胞移植入受损的中枢神经系统,使受损神经组织的结构重建、相应生理功能得到恢复,细胞渗透修复疗法在治疗运动神经元病疾病上已得到无数患者的认可,是治疗运动神经元病的最佳治疗方法。 运动神经元病的康复训练方法有哪些 运动神经元损伤的康复训练方法有哪些?运动神经元损伤是一种可怕的高发疾病,很多人都认为是一种难治之症。在这个高科技的21世纪新时代里,彻底治疗运动神经元损伤已经不再是一个难题。目前治疗运动神经元损伤效果最显著的方法就是细胞渗透修复疗法。专家说,在治疗过程中,也要结合运动神经元损伤的康复训练,这样对患者的康复更有帮助。运动神经元病的康复训练方法具体如下: 1、运动神经元病康复训练要掌握好运动节奏。 运动神经元病患者的锻炼,在时间间隔上有一定要求。肌肉有了足够的休息时间,疲劳才能充分消除,消耗掉的营养物质也才能得到充分补偿,并通过超量补偿使肌肉逐渐肥大。反之,若锻炼过于频繁,肌肉得不到充分休息,肌力也就不能增强。因此,锻炼要讲究节奏,并非越多越好。 2、运动神经元病康复训练要有针对性地选择运动方式。 锻炼的方法很多,但为了达到尽快增加肌肉的目的,须遵循一条共同的原则:锻炼时,在不增加运动次数和运动时间的前提下,逐渐增加运动量,使肌肉迅速感觉疲劳,达到锻炼肌肉的目的。每次锻炼以能连续做10下为准,如超过10下,就需增加器械的重量;或每次锻炼连续做二、三下,每下坚持6~10秒,超过者也需增加器械的重量。 运动神经元病的康复训练,专家已经做出介绍,希望广大患者能够有所了解,积极的配合治疗,以达到最好的治疗效果。对此专家向患者介绍细胞渗透修复疗法,细胞渗透修复疗法是细胞生物疗法,采用骨髓造血神经细胞,通过专业的技术进行细胞分离、提取、纯化,让具有高纯度、高活性、高浓度的细胞作为临床治疗;通过高端介入技术将细胞输入病灶,使得细胞在最短的时间内起到最佳的治疗作用。所以细胞渗透修复疗法治疗运动神经元病是患者的首选疗法! 帮助运动神经元病患者早日康复的护理 近年来,运动神经元病的发病率不断上升。专家提示:在治疗运动神经元病的同时,患者家属一定要做好运动神经元病的护理工作,科学的护理对运动神经元病可以起到辅助治疗的作用,因此,运动神经元病的护理是很重要的。那么,帮助运动神经元病患者早日康复的护理?接下来就请权威专家为大家具体介绍帮助运动神经元病患者早日康复的护理。 运动神经元病的护理

运动对神经系统机能的改善

运动对中枢神经系统和中枢神经系统障碍的影响 摘要:通过对国内外关于运动对中枢神经系统影响方面的报道,从运动对脑和脊髓形态学的影响,运动与神经递质和神经调质的关系及运动对脑抗氧化能力的影响等方面作了探讨,同时探讨运动对中枢神经障碍和相关疾病的影响进行综述。 关健词:运动;脑;脊髓;神经递质;中枢神经系统障碍 人体的一切活动,都是在神经系统的支配下进行的。反之,各种活动对神经系统也会产生相应的影响,使其机能发生一定的变化。体育锻炼往往要求身体完成一些比日常活动更为复杂的动作,所以中枢神经就必须迅速动员和发挥各器官、系统的机能,使之协调以适应肌肉活动的需要。运动训练可使骨关节、骨骼肌和心血管等器官发生显著的形态结构变化,这已为较多的实验研究资料所证实。机体各器官相互协调的进行复杂的机能活动,依赖于神经系统的支配和调节。本文从运动对中枢神经系统形态学方面的影响,运动与神经递质、神经调质的关系及运动对脑抗氧化能力的影响等方面做以探讨。 肌体在任何时间内都有许多反射同时进行,尽管反射活动很复杂,但彼此都有条不紊的表现出高度协调。这是因为神经中枢的兴奋和抑制过程是相互制约、相互配合的结果。反射弧的组成是:感受器-----传入神经-------中枢神经--------传出神经-------效应器。反射弧中最复杂的部位是中枢神经这一环节。有的反射只是通过中枢神经低级部位来完成,如脊髓的某一节段。有的反射则由低级部位到高级部位—大脑皮层来现的。有效地刺激在神经中枢引起的活动,不是兴奋就是抑制。

1.运动对中枢神经系统的影响 1.1运动对大脑皮质的影响 实验研究表明:生长发育期小鼠进行多形式的体力活动,可以引起大脑皮质躯体感觉区Ⅵ层锥体细胞树突棘数量增多,感觉区Ⅴ层大锥体细胞核仁增大, Ⅵ层中等锥体细胞和尾壳核中等星形细胞树突棘增多,大脑皮质运动区Ⅴ层锥体细胞核仁增大。大脑皮质内数量庞大的神经元之间,通过突触复杂而有序地互相联系着。在各种类型的突触中轴一树突触的可塑性最大,轴—棘突触是最敏感最易变化的。树突棘有放大突触后电位、调节突触效能的作用。哺乳动物的大脑皮质内90%左右的突触是轴—棘突触。小鼠在各种形式的运动中,作为皮质传出神经元的一部分—Ⅵ层锥体细胞所接受的信息必然增多,因而自丘脑皮质纤维人躯体感觉区皮质至皮质传出神经元通路上的锥体细胞,都会受到增多的输人信息的作用,同样能形成新的树突棘,所以我们认为,多种形式的运动能影响人的大脑皮质内众多锥体细胞树突棘的数量增多,因此,体育锻炼能增强人的智能 1.2运动对小脑皮质的影响 运动不仅能促进大脑皮质神经元树突棘数量的增多,而且也作用于小脑皮质神经元。肠对断乳小白鼠在具有多种锻炼器具的生活环境中自由生活35天的实验,观察到小脑purkinje细胞树突野扩大、树突棘增多。笔者认为这是由于运动伴随有许多传人小脑的输人信息增加而诱导的结果。通过对生长发育期动物进行的实验证明,动物生活在具有多种刺激的复杂环境中,能引起中枢神经系统的结构发生变化。如使

神经系统口诀(解剖)

神经系统口诀(解剖).txt爱情是艺术,结婚是技术,离婚是算术。这年头女孩们都在争做小“腰”精,谁还稀罕小“腹”婆呀?高职不如高薪,高薪不如高寿,高寿不如高兴。神经系统口诀(解剖) 神经系统口诀(解剖) (一)概述 1.神经系统的区分 神经区分两部分,中枢周围两系统; 脊髓与脑中枢系,脊脑神经周围系。 2.神经系统的活动方式 内外刺激作反应,所作反应叫反射; 反射基础反射弧,五个环节要记住。 接受信息感受器,感受神经传信息; 传入反射中枢内,运动神经传指令; 效应器中起作用,肌肉收缩作运动。 3.神经系统的常用术语 (1)灰质 中枢神经神经元,胞体树突共集中。 色泽灰暗称灰质,大小脑表为皮质。 (2)神经核 若在中枢神经内,功能相同细胞体; 集中构成灰质团,特称之为神经核。 (3)神经节 若在中枢外,胞体集中处; 形状略膨大,叫作神经节。 (4)纤维束 中枢白质内,神经纤维聚, 功能若相同,称作纤维束。 (二)脊髓 1.外形 位居椎管扁圆柱,纵贯全长六条沟; 枕大孔处连延髓,长落第一腰下缘。 腰骶膨大颈膨大,三十一节要记清; 颈八腰五胸十二,骶五尾节单一个。 2.内部结构 白质周围灰质中,灰质切面倒H形; 胞体树突集中成,前柱胞体为运动。 后柱中间神经元。胸一腰三有侧柱, 交感低级中枢部。骶二三四无侧柱, 前后角间夹细胞,都是副交感中枢。 白质集中有三素,后索内薄外楔束; 精细触觉本体觉,两束传递有分工; 胸四以下薄束传,胸四以上楔束管。

侧索之中下行束,皮质脊髓侧束传;躯干四肢温痛觉,脊髓丘脑侧束传。前索之中共有两,皮脊前束脊丘前。(三)脊神经 颈八腰五胸十二,骶五尾一三十一;胸一腰三前根内,躯体内脏运动全。骶二骶三骶四中,胸一腰三前根同;前支粗大吻合丛,颈丛臂丛腰骶丛;胸部前支单独走,后支细小不成丛。1.膈神经 一至四颈组颈丛,肌皮分支有两种;肌支名为膈神经,胸膜心包达膈肌;右膈神经有特点,肝胆信息它传递。2.臂丛分支 颈五至八胸第一,组成臂丛发长支;肌皮正中尺神经,桡腋神经后束分。3.上肢的神经分布 (1)腋神经 腋神经后束发,三角肌它管辖。(2)臂肌前臂肌神经支配 肌皮神经外侧束,肱二头肌它管理。内侧束发尺神经,前臂屈肌一块半,名为尺侧腕屈肌,指深屈肌尺侧半。其余正中神经管,损伤正中不旋前。上肢伸肌肱桡肌,全受桡神经管理。损伤症状显垂腕,手背桡侧感觉缺。(3)手肌的神经分布 正中神经管手肌,鱼际肌群收除外,一二蚓肌它管理。小鱼际肌拇收肌;三四蚓肌骨间肌,全由尺神经管理。(4)手的皮神经分布 手的掌侧一个半,尺神经支它管理。其余桡侧三个半,正中神经管辖区。手背皮肌更易记,桡尺神经各一半。4.胸神经 胸神经支单独行,上十一对穿肋间;最下一对走肋下,胸腹壁乳肋间肌。二平胸角四乳头,十对水平平脐环;八对恰在肋弓下,腹股韧带中点出。5.下肢和神经分布 (1)股神经 腰丛分支股神经,股四头肌缝匠肌;最长皮支隐神经,小腿内侧足内缘。(2)坐骨神经

第六章 躯体运动的神经控制习题

一、选择题: 1、传导速度最快的方式是(跳跃式传导)。 2、视肝细胞的光感受器介导的是(暗光)。 3、垂直方向直线正负加速度运动的感受器是(暗光)。 4、一般认为受体具有3个特征,即(饱和性、特异性和可逆性)。 5、脊髓灰质前角的α运动神经元是各种信息导致脊髓运动反射的(最后公路)。 6、在中脑上下丘脑之间横断脑干,动物的脊髓反射将出现明显的(易化加强)。 7、在编排复杂的运动程序时和执行运动前的准备状态中(辅助运动区起着重要的作用。 8、前庭小脑的主要功能是(控制躯体和平衡眼球运动)。 9、大脑皮质发动静息运动时,首先通过大脑-小脑回路从(皮质小脑)提取程序,并将它 回输到运动皮质,再通过皮质脊髓束发动运动。 10、内分泌系统的反馈调节是指(下丘脑-垂体-靶腺之间的相互调节)。 11、神经激素是指(由神经细胞分泌的激素)。 12、类固醇激素作用机制的第一步是与靶细胞的(胞浆受体结合)。 13、下列哪种激素不是由腺垂体合成、分泌的(催产素)。 14、对脑和长骨的发育最为重要的激素是(甲状腺激素)。 15、糖皮质激素本身没有缩血管效应,但能加强去甲肾上腺素的缩血管作用,称为(允许 作用) 16、肌肉收缩,产生张力使身体维持或者固定于一定的姿势,而无明显的位移运动,此种 肌肉收缩产生的力量为(静态肌力)。 17、肌肉进行最大随意收缩时表现出来的克服极限负荷阻力的能力称为(最大肌力)。 18、肌肉长时间对抗最大阻力收缩的能力称为(力量耐力)。 19、力量训练引起的肌肉肥大,主要与以下哪一因素的改变有关(肌纤维增粗)。 20、一般情况下,在一次训练课中力量练习的顺序是(大肌群训练在先小肌群训练在后)。 21、举重和投掷运动员为了发展肌肉体积和绝对力量,应采用(5RM)训练。 22、投掷运动员的器械出手速度属于(动作速度)。 23、完成单个动作的时间长短称为(动作速度)而人体对刺激发生反应的快慢,则称为(动 作速度)。 24、无氧耐力是指人体处于(动作速度)情况下,(较长)时间对肌肉收缩供能的能力。

运动与神经系统

神经系统与运动 人在进行体育活动时,神经系统不仅支配着肌肉活动,同时也调整着内脏活动来适应肌肉活动的需要。所以,坚持体育活动的人不仅肌肉发达,其血液循环、呼吸等方面的机能也有提高,表现为精力充沛,体质增强,适应环境的能力较高。而人所表现的这一系列功能上的动态平衡,主要是在神经系统调节下完成的。 神经系统调节各器官系统的基本方式是反射。反射是指在中枢神经系统参与下机体受到内外环境刺激时所产生的应答活动。例如,当火烫到某肢体的皮肤时,该肢体的屈肌就会立即收缩,躲开火烫的刺激。反射分为非条件反射和条件反射两类。非条件反射是指先天就有的反射,它主要是皮层下中枢的功能。条件反射是指在生活环境中通过训练才形成的反射,它主要是大脑皮层的功能。 与肌肉活动相关联的非条件反射是很多的,如牵张反射和姿势反射等。凡正常的骨骼肌受到外力牵拉而伸长时能引起它反射性的收缩,这种反射称为牵张反射。它的反射中枢在脊髓。牵张反射有两种类型,一种为腱反射,另一种为肌紧张。腱反射是指快速牵拉肌腱时发生的收缩,例如临床检查中枢神经系统机能时所采用的膝反射检查。肌紧张是指人体骨骼肌经常保持的一种轻微收缩状态,它是由于重力作用于关节,对肌腱产生缓慢、持续的牵拉而发生的牵张反射。肌紧张是维持躯体姿势最基本的反射活动。一般说来,人体运动的开始都是以一定的姿势为基础的,在完成一定的动作后又恢复到一定的姿势。所以,如果肌紧张发生障碍,不但姿势出现异常,而且人体的运动也会失调。 人和动物在维持身体基本姿势时,经常发生肌肉张力重新调配的反射活动。这种反射活动统称为姿势反射。调节姿势反射的神经中枢在皮层以下部位,所以也是非条件反射。它可分为静位反射和静位运动反射。 静位反射是由于头部姿势改变所引起的一种反射,它又可分为状态反射和翻正反射。 ①状态反射是当头部位置改变时,反射性地引起四肢肌肉张力产生重新调配的一种反射活动。例如,给动物做一种手术,使中枢神经系统低级部位脱离大脑皮层的控制后,将它的头扭向一侧时,会出现同侧的伸肌张力加强,而另一侧的伸肌张力减弱。人体也有这种状态反射,因此在运动实践中往往因头向一侧扭转而两侧肢体的力量大小产生差别。②翻正反射也是人和动物所共有的:当体位不正常时,中枢神经系统调节肢体的肌肉即产生一系列协调活动将体位恢复常态。翻正反射是在本体、迷路及视觉感受器作用下,由中脑的反射中枢实现的。 静位运动反射是指身体在空间发生主动或被动的移位时引起身体肌张力改变的一种反射。由于人和动物身体在空间的位移有角加速度和直线加速度两种运动,所以静位运动反射可分为旋转运动反射和直线运动反射。这些反射活动都是通过延髓及中脑的活动来调整全身肌肉张力的。 小脑在调节人的运动方面有着重要意义。动物实验证明,摘除小脑的动物,可明显地发现肌张力缺乏、姿势不稳定、运动失调、步履蹒跚等现象,反映出摘除小脑使内收肌与外展肌、伸肌与屈肌之间肌张力不平衡,使伸肌紧张反射受到抑制。

生理学:神经系统对运动的调节

生理学:神经系统对运动的调节 昨日思考题思考题(一):最常见的关节结核是什么?最常见 的骨关节结核是什么?最常见的滑膜结核是什么?答案:最常见的关节结核是膝关节,最常见的骨关节结核是脊柱结核,最常见的滑膜结核是膝关节。外科学:关节结核思考题(二):RF 阳性即可确诊类风湿关节炎? 答:不能。RF 阳性只作为参考。确认类风湿关节炎需具备4 条或4 条以上诊断标准。具体类风湿关节炎诊断标准请参照昨日微信推送。 外科学:非化脓性关节炎2011 年第19 题生理学A 型题关于腱反射的叙述,正确的是 A. 高位中枢病变时反射亢进 B. 反射中枢位于延髓 C. 效应器为同一关节的拮抗肌 D. 为多突出反射题目解析 1. 腱反射又称动态牵张反射,是快速牵拉肌腱发生的牵张反射,如膝跳反射,是一种单突触反射(D 错)。 2. 腱反射的感受器是肌梭,中枢在脊髓(B 错),效应器是快肌纤 维(C 错)。 3. 腱反射对辅助诊断疾病具有意义,因其受高位中枢调节,当高位中枢有病变时可以出现腱反射亢进(A 对)。本题可参考《生理学》人卫8 版教材P335。本题答案A 考点讲解 【2017 年大纲生理学(九)神经系统的功能11. 脊髓、脑干、大

脑皮层、基底神经节和小脑对运动和姿势的调控】本题的音频讲解请 点击这里哦当前浏览器不支持播放音乐或语音,请在微信或其他浏 览器中播放13:32 神经系统对躯体运动的调控来自医学生考研 一、脊髓对躯体运动的调控作用 1. 脊髓运动神经元 脊髓前角有许多运动神经元,包括a、B、丫运动神经元,其中a运动神经元是躯体运动反射的最后环节,它发出的冲动直接支配骨骼肌 梭外肌,被称为最后公路。B运动神 经元支配骨骼肌梭内、外肌,Y运动神经元支配骨骼肌梭 内肌。脊髓后角有许多感觉神经元,它们接受躯干、四肢皮肤、肌 肉、关节等的外周传入信息,然后传递给脊髓前角运动神经元。 2. 运动单位 我们将一个a 运动神经元所支配的全部骨骼肌纤维所组成的功能单位称为运动单位,多个运动单位的同步收缩就形 成骨骼肌在空间总和的收缩,所以说骨骼肌的收缩是以运动单位作为基本收缩单位的。 3. 脊髓休克 人和动物在脊髓与高位中枢离断后,反射活动能力暂时丧失而进入无反应状态的现象。脊休克早期由于骶髓初级排尿中枢突然失去高位中枢的调节而出现尿潴留,随后以脊髓为中枢的反射可发生恢复,因此患者又可出现排尿,但由于高位中枢离断,无法上传感觉和下传冲

运动神经元

运动神经元病 ——肌萎缩侧索硬化症(ALS) 运动神经元病是以损害脊髓前角,桥延脑颅神经运动核和锥体束为主的一组慢性进行性变性疾病。以肌肉萎缩、肌无力等症状为最常见。如:说话不清,吞咽困难、活动困难、呼吸困难等等,最后在病人有意识的情况下因无力呼吸而死。所以这种病人也叫“渐冻人”。肌萎缩侧索硬化症,又称“渐冻人症”,是运动神经元病的一种,是累及上运动神经元(大脑、脑干、脊髓),又影响到下运动神经元(颅神经核、脊髓前角细胞)及其支配的躯干、四肢和头面部肌肉的一种慢性进行性变性疾病。临床上常表现为上、下运动神经元合并受损的混合性瘫痪。 该病病因和发病机制尚不清,5%~10%的病者有家族史,称为家族性运动神经元疾病,近年来,在这组有家族史的运动神经元疾病病者中发现了过氧化物歧化酶的基因异常,并认为可能是该组疾病的发病原因,随着应用脊髓前角细胞主动免疫动物产生实验性运动神经元病模型,病人血清中和脑脊液中抗GM1抗体,抗钙离子通道抗体检出率增高和免疫抑制剂治疗的一定疗效以来,自身免疫机制的理论倍受人们注意。 该病于40岁以上的中老年多发,男女之比约3:2,缓慢起病,进行性发展。以上肢周围性瘫痪,下肢中枢性瘫痪,上下运动神经元混合性损害的症状并存为特点。如后组颅神经受损则出现球麻痹症状构音不清、吞咽困难,饮水呛咳等。多无感觉障碍。体检发现可有舌肌萎缩,舌肌纤颤,强哭强笑,情绪不稳等,上肢多见远端为主的肌肉萎缩,以大小鱼际肌、骨间肌为著,同时伴有肌束颤动,双下肢呈痉挛性瘫痪,肌张力增高,腱反射亢进,双侧病理反射阳性。呼吸肌受累则出现呼吸困难。 临床脑脊液穿刺检查压力机成分多正常,血清磷酸肌酸激酶可增高,乙酰胆碱酯酶增高。肌电检查可见纤颤电位,巨大电位,运动神经传导速度多正常。MRI 检查可见与临床受损肌肉相应部位的脊髓萎缩变性。 该病治疗以对症为主。呼吸困难者,吸氧,必要时辅助呼吸;吞咽困难者,鼻饲或静脉高营养,维持营养及水电解质平衡。可使用神经营养药物:胞二磷胆碱,肌生射液,三磷酸腺苷、碱性成纤维细胞生长因子(bFGF)肌注,美络宁(三磷酸胞苷二钠)肌注。口服安坦或妙钠可减轻或改善上运动神经元损害引起的肌肉痉挛,肌张力增高。此外为防止关节强直挛缩可坚持适当体育锻练和理疗,注意肺部感染。

运动神经元疾病的确诊过程

运动神经元病的初期,会从一只胳膊或一条腿的持续无力或痉挛开始,并导致这部分肢体的活动困难;或者从控制说话或吞咽的肌肉开始,并导致这些肌肉功能困难。患者在这个阶段通常忽视这些问题,或到与此并不相关的医生处就诊。 然而,如果这确实是运动神经元病,它不会就此停止。通常它会从身体的一部分扩展到另一部分,常常是邻近的部分。例如从左手扩展到右手,再从上肢扩展到下肢。这样,问题就严重到不能再被忽视的程度。 在正常情况下,病人会被推荐到神经科专家那里,他会在各种可能因素中考虑到运动神经元病的可能性。 完整的医疗史、家族史和身体检查是神经学检查的开始点。病人会经历简单的、室内肌肉和神经功能检测。 如果这时还不能排除运动神经元病的可能性,通常会作进一步的肌电图检查(EMG)。这种检查和人们较熟悉的心电图(EKG)有一些类似之处,它测量神经和肌肉间的信号以及肌肉内部的电活性,来判断它是否是和运动神经元病一致的哪种类型。如果是这样,可能会进行更多的检查。 更多的检查可能包括脊髓和脑的成像(通常是磁共振成像)。有时也包括脑脊液检查(脊椎穿刺或腰椎穿刺),这种检查通过在两个低椎骨之间插入一根针来进行。 为了排除其它疾病的可能性,也进行血液检验。在某些情况下,还进行肌活检(在局部麻醉后取下一小片肌肉样本)。 除了基因检查可以确定一小部分运动神经元病外,运动神经元病的诊断是一个“逐步排除”的过程。即通过特殊检查排除了其它所有的可能性后,才被诊断为运动神经元病。 在类似运动神经元病的情况中有一些是肌肉萎缩(muscular dystrophy)的形式,如神经学方面的脊延髓肌肉萎缩症和成人发病的脊肌萎缩症,神经-肌肉传递障碍疾病方面的重症肌无力及由于肿瘤、畸变引起的脊髓或脑干受压。

相关文档
最新文档