不可见光红外激光准直器

不可见光红外激光准直器
不可见光红外激光准直器

不可见光红外激光准直器

不可见光红外激光准直器是专为红外夜视系统配置的、远距离红外照明光源;配合红外摄像机、黑白CCD摄像机或微光夜视系统用于夜间及24小时的、全天候条件下的监视摄像。不可见光红外激光准直器照明距离从几米到数公里我们还可以根据用户的要求(光波长、光功率、发散角、供电方式、工作条件、外形等)为您研制专用不可见光红外激光准直器,使您能够在任何环境下,都可以获得最佳的监视效果。

同类产品还有:

半导体红外激光光源、夜视激光准直光源、红外系列激光器、红外夜视激光器、夜视半导体激光器等

红光系列激光器可用在各种工业生产设备上,它能起辅助与定位作用,如:物料的切割,木工机械,包装机械,石材桥切机,轮胎定位及玻璃加工中的定位布料加工、焊接加工、PCB加工;机械制造中钣金加工,钢板划线定位;制衣业面料剪裁、对格与对条,裁床定位,电脑开袋机标线,钣金剪压机械、运动器材加工、玻璃加工机械、电子SMT定位定格、印刷电路板标示定位、印刷机标示定位及建筑装潢,绣花机生产过程中的定位等;也用于设备安装及建筑装修中的定位,用途十分广泛。

红光系列激光器的安装机使用简单方便,可安装在使用机械的垂直或水平面上,使得在整个生产过程中有一条可见的、非接触的定位指导操作过程。

红光系列激光器具有方便生产操作和提高生产效率的优点。其激光形

状可在三维空间任意微调,已达到最佳使用效果。

我公司生产的同类产品还有:

红外线激光器、红光激光定位灯、红外线定位灯、红外线定位仪、半导体一字红光激光器等

波长:532nm 635nm 650nm(可定制)

管芯功率:0~200mw(按要求定制)

工作电流:0~2000mA(可定制)

工作电压:5V 12V 24V 36V

外形尺寸:Φ16×55mm Φ16×80mm Φ22×85mm Φ26×110mm(可选择)

光束发散度:0.3~1.5mrad

出光张角:10 o~135o

光线直径:≤0.5mm@0.5m;≤1.0mm@3.0m;≤1.5mm@6.0m;

直线度:≤1.0mm@3.0m

光学透镜:光学镀膜玻璃或塑胶透镜

工作温度:-10~75℃

储存温度:-40~85℃

工作介质:半导体

等级:Ⅲb

可选配:专用支架、电源

温馨提示:专用电源:具有很强的抗干扰性、高稳定性、抑制浪涌电流及缓启动等特点,特别适于恶劣的工作环境,能有效保证镭射激光产品的稳定性和使用寿命。

专用支架:具有良好零贰玖陆捌伍捌壹柒零捌的导热性和灵活性,使镭射激光产品可安装在任何垂直或水平面,并使之在三维空间任意微调,以达到最佳使用效

果。yxl

售后服务

对本公司售出的产品一律保证一年保修,三年维修的原则,在保修期内出现的任何质量问题将给予认真负责的处理。欢迎用户提供宝贵的改进意见。

红外图像与可见光图像融合笔记

红外图像与可见光图像融合 ——笔记 图像融合是将来自不同传感器在同一时间(或者不同时间)对同一目标获取的两幅或者多幅图像合成为一幅满足某种需求图像的过程。 为了获得较好的融合效果,在研究融合算法之前,对图像预处理理论及方法进行了研究。预处理理论主要包括图像去噪、图像配准和图像增强。图像去噪目的是为了减少噪声对图像的影响。图像配准是使处于不同状态下的图像达到统一配准状态的方法。图像增强是为了突出图像中的有用信息,改善图像的视觉效果,并方便图像的进一步融合。 图像融合评价方法:主观评价和客观评价。指标如:均值、标准差、信息熵等。 针对 IHS 变换和小波变换的优缺点,本文提出了一种基于这两种变换结合的图像融合方法。该算法的具体实现步骤如下:先对彩色可见光图像进行 IHS 变换,对红外图像进行增强,然后将变换后得到的 I 分量与已增强的红外图像进行 2 层小波分解,将获得的低频子带和高频子带使用基于窗口的融合规则,而后对分量进行小波重构和 IHS 逆变换,最后得到融合结果。经仿真实验证明,此结果优于传统 IHS 变换和传统小波变换,获得了较好的融合结果,既保持了可见光图像中的大量彩色信息又保留了红外图像的重要目标信息。 红外传感器反映的是景物温度差或辐射差,不易受风沙烟雾等复杂条件的影响。一般来说,红外图像都有细节信息表现不明显、对比度低、成像效果差等缺点,因此其可视性并不是很理想。 可见光成像传感器与红外成像传感器不同,它只与目标场景的反射有关与其他无关,所以可见光图像表现为有较好的颜色等信息,反应真实环境目标情况,但当有遮挡时就无法观察出遮挡的目标。 利用红外传感器发现烟雾遮挡的目标或在树木后的车辆等。在夜间,人眼不能很好的辨别场景中的目标,但由于不同景物之间存在着一定的温度差,可以利用红外传感器,它可以利用红外辐射差来进行探测,这样所成的图像虽然不能直接清晰的观察目标,但是能够将目标的轮廓显示出来,并能依据物体表面的温度和发射率的高低把重要目标从背景中分离出来,方便人眼的判读。但由于自身成像原理以及使用条件等原因,所形成图像具有噪声大、对比度低、模糊不清、视觉效果差等问题。不利于人眼判读。 可以将两者图像融合在一起,这样可以丰富图像信息,提高图像分辨率,增强图像的光谱信息,弥补单一传感器针对特定场景表达的不全面,实现对场景全面清晰准确的表达。 两者的主要区别有: (1)可见光图像与红外图像的成像原理不同,前者依据物体的反射率的不同进行成像,后者依据物体的温度或辐射率不同进行成像,因此红外图像的光谱信息明显不如可见光图像。

中红外光纤激光器

中红外光纤激光器 摘要 位于2~5μm中红外波段的激光在国防、医疗、通信方面有着特殊的 重要应用。利用固体激光器泵浦稀土离子掺杂的玻璃光纤产生荧光发射是 直接获得2~5 μm 波段中红外激光的有效途径,具有光束质量好、体积 小、转换效率高、散热效果好等优点。本文介绍了中红外光纤激光器的原 理、研究现状和发展前景。对中红外光纤激光器的发展和研究方向进行了 阐述。 关键词:中红外;光纤激光器;稀土离子;硫化物光纤;氟化物光纤 一、中红外光纤激光器简介 1.1 中红外激光 位于2~5μm中红外波段的激光在国防、医疗、通信方面有着特殊的重 要应用。它位于大气“透明窗口”,处于大多数军用探测器的工作波段, 可 以进行战术导弹尾焰红外辐射模拟、人眼安全的激光雷达、激光定向红外 干扰等军事用途。在民用领域可用于遥感化学传感、空气污染控制,它还 可以用于新一代激光手术,使血液迅速凝结,手术创面小、止血性好(水分 子在3μm附近有很强的吸收峰)此外,采用2~5 μm 替代目前广泛使用 的1.55 μm 作为光纤通信工作波长也是一项极具研究价值的课题,由于 材料的Rayleigh 散射与光波长的四次方成反比,采用2~5 μm 作为工 作波长可以有效降低光纤损耗,增加无中继通信的距离。因此,研发中 红外波段的激光器对于国家安全和国民经济建设具有十分重要的意义。 获得中红外激光的方法有间接方法和直接方法。其中间接方法包括: (1) CO2激光器的倍频及差频输出 (2) 利用非线性红外晶体采用非线性频率变换或光学参量振荡技术 将其它波段激光调谐到中红外波段 直接方法包括: (1)以氟化氘等为介质的化学激光器 (2) 以AlGaAsSb,InGaAsSb,InAs/(In)GaSb 等锑化物窄禁带半导 体、过渡金属离子掺杂的Ⅱ–Ⅵ族半导体制作的中红外激光器 (3)近红外半导体激光泵浦的稀土离子或过渡金属离子掺杂的玻璃、

红外图像与可见光图像融合笔记

红外图像与可见光图像融合 笔记 图像融合是将来自不同传感器在同一时间(或者不同时间)对同一目标获取的两幅或者多幅图像合成为一幅满足某种需求图像的过程。 为了获得较好的融合效果,在研究融合算法之前,对图像预处理理论及方法进行了研究。预处理理论主要包括图像去噪、图像配准和图像增强。图像去噪目的是为了减少噪声对图像的影响。图像配准是使处于不同状态下的图像达到统一配准状态的方法。图像增强是为了突出图像中的有用信息,改善图像的视觉效果,并方便图像的进一步融合。 图像融合评价方法:主观评价和客观评价。指标如:均值、标准差、信息熵等。 针对IHS变换和小波变换的优缺点,本文提出了一种基于这两种变换结合的图像融合方法。该算法的具体实现步骤如下:先对彩色可见光图像进行IHS变换,对红外图像进行增强,然后将变换后得到的I分量与已增强的红外图像进 行2层小波分解,将获得的低频子带和高频子带使用基于窗口的融合规则,而后对分量进行小波重构和IHS逆变换,最后得到融合结果。经仿真实验证明,此结果优于传统IHS变换和传统小波变换,获得了较好的融合结果,既保持了可见光图像中的大量彩色信息又保留了红外图像的重要目标信息。 红外传感器反映的是景物温度差或辐射差,不易受风沙烟雾等复杂条件的影响。一般来说,红外图像都有细节信息表现不明显、对比度低、成像效果差等缺点,因此其可视性并不是很理想。 可见光成像传感器与红外成像传感器不同,它只与目标场景的反射有关与其他无关,所以可见光图像表现为有较好的颜色等信息,反应真实环境目标情况,但当有遮挡时就无法观察出遮挡的目标。 利用红外传感器发现烟雾遮挡的目标或在树木后的车辆等。在夜间,人眼不 能很好的辨别场景中的目标,但由于不同景物之间存在着一定的温度差,可以利用红外传感器,它可以利用红外辐射差来进行探测,这样所成的图像虽然不能直接清晰的观察目标,但是能够将目标的轮廓显示出来,并能依据物体表面的温度和发射率的高低把重要目标从背景中分离出来,方便人眼的判读。但由于自身成像原理以及使用条件等原因,所形成图像具有噪声大、对比度低、模糊不清、视觉效果差等问题。不利于人眼判读。 可以将两者图像融合在一起,这样可以丰富图像信息,提高图像分辨率,增强图像的光谱信息,弥补单一传感器针对特定场景表达的不全面,实现对场景全面清晰准确的表达。 两者的主要区别有: (1)可见光图像与红外图像的成像原理不同,前者依据物体的反射率的不同进行成像,后者依据物体的温度或辐射率不同进行成像,因此红外图像的光谱信 息明显不如可见光图像。

基于视觉显著性的红外与可见光图像融合

第38卷第4期 2016年8月 光学仪器 OPTICAL INSTRUMENTS Vol. 38,No. 4 August,2016 文章编号:1005-5630(2016)04-0303-05 基于视觉显著性的红外与可见光图像融合 华玮平S赵巨岭S李梦S高秀敏〃 (1.杭州电子科技大学电子信息学院,浙江杭州310018; 2.上海理工大学光电信息与计算机工程学院,上海200093) 摘要:多波段图像融合可以有效综合各个波段图像中包含的特征信息。针对可见光和红外图 像,提出了一种结合红外图像视觉显著性提取的双波段图像融合方法,一方面旨在凸显红外图 像的目标信息,另一方面又尽可能的保留了可见光图像的丰富细节信息。首先,在局部窗口内 实现红外图像的显著性图提取,并通过窗口尺寸的变化形成多尺度的显著性图,并对这些显著 性图进行最大值的优选叠加,以获取能反映整幅红外图像各个尺寸目标的显著性图;其次,通过 结合显著性图与红外图实现显著性图的加权增强;最后,利用增强的红外显著性图进行双波段 图像的融合。通过两组对比实验,数据表明该方法给出的融合图像视觉效果好,运算速度快,客 观评价值优于对比的7种融合方法。 关键词:图像融合;红外图像增强;视觉显著性 中图分类号:TN 911. 73 文献标志码:A doi:10. 3969/j. issa 1005-5630. 2016. 04. 005 Dual-band image fusion for infrared and visible images based on image visual saliency HUA Weiping1, ZHAO Jufeng1, LI Meng1, GAO Xiumin1,2 (1. Electronics and Information College, Hangzhou Dianzi University, Hangzhou 310018, China; 2. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093,China) Abstract: Dual-band image fusion is able to well synthesize the feature information from the different bands. To fuse visible and infrared images, in this paper, an infrared image visual saliency detection-based approach was proposed. This method aimed to highlight the target information from infrared image, meanwhile preserve abundant detail information from visible one as much as possible. Firstly, visual saliency map was extracted within a local window, and multiple window-based saliency maps could be obtained by changing the size of local window. And the final saliency map was generated by selecting maximum value, and this map could mirror all target information in the infrared image. Secondly,the saliency map was enhanced by combining infrared image and the previous saliency map. Finally, the enhanced saliency map was used for dual-band image fusion. Comparing with other seven methods, the 收稿日期:2015-10-13 基金项目:国家自然科学基金项目(61405052,61378035) 作者简介:华玮平(1994 ),男,本科生,主要从事光学成像等方面的研究。E-m ail:564810049@qq.c〇m 通信作者:赵巨峰(1985 ),男,讲师,主要从事光学成像、图像处理等方面的研究。E-m ail:daba〇zjf@https://www.360docs.net/doc/6b12723896.html,.C n

激光器

激光基础知识2——激光器 中文名称:激光器 英文名称:laser 定义:产生激光的装置。 应用学科:机械工程(一级学科);光学仪器(二级学科);激光器件和激光设备-激光器名称(三级学科) 一、原理 除自由电子激光器外,各种激光器的基本工作原理均相同,产生激光的必不可少的条件是粒子数反转和增益大过损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。 激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。 工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。 激光器中常见的组成部分还有谐振腔,但谐振腔(见光学谐振腔)并非必不可少的组成部分,谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的方向性和相干性。而且,它可以很好地缩短工作物质的长度,还能通过改变谐振腔长度来调节所产生激光的模式(即选模),所以一般激光器都具有谐振腔。 二、激光工作物质 是指用来实现粒子数反转并产生光的受激辐射放大作用的物质体系,有时也称为激光增益媒质,它们可以是固体(晶体、玻璃)、气体(原子气体、离子气体、分子气体)、半导体和液体等媒质。对激光工作物质的主要要求,是尽可能在其工作粒子的特定能级间实现较大程度的粒子数反转,并使这种反转在整个激光发射作用过程中尽可能有效地保持下去;为此,要求工作物质具有合适的能级结构和跃迁特性。

三、激励抽运系统 是指为使激光工作物质实现并维持粒子数反转而提供能量来源的机构或装置。根据工作物质和激光器运转条件的不同,可以采取不同的激励方式和激励装置,常见的有以下四种。 ①光学激励(光泵)。是利用外界光源发出的光来辐照工作物质以实现粒子数反转的,整个激励装置,通常是由气体放电光源(如氙灯、氪灯)和聚光器组成,这种激励方式也称作灯泵浦。 ②气体放电激励。是利用在气体工作物质内发生的气体放电过程来实现粒子数反转的,整个激励装置通常由放电电极和放电电源组成。 ③化学激励。是利用在工作物质内部发生的化学反应过程来实现粒子数反转的,通常要求有适当的化学反应物和相应的引发措施。 ④核能激励。是利用小型核裂变反应所产生的裂变碎片、高能粒子或放射线来激励工作物质并实现粒子数反转的。 四、光学共振腔 通常是由具有一定几何形状和光学反射特性的两块反射镜按特定的方式组合而成。作用为: ①提供光学反馈能力,使受激辐射光子在腔内多次往返以形成相干的持续振荡。 ②对腔内往返振荡光束的方向和频率进行限制,以保证输出激光具有一定的定向性和单色性。 共振腔作用①,是由通常组成腔的两个反射镜的几何形状(反射面曲率半径)和相对组合方式所决定;而作用②,则是由给定共振腔型对腔内不同行进方向和不同频率的光,具有不同的选择性损耗特性所决定的。 五、激光器分类 分别从激光工作物质、激励方式、运转方式、输出波长范围等几个方面进行分类。 5.1按工作物质分类 根据工作物质物态的不同可把所有的激光器分为以下几大类:

中红外光纤激光器技术研究新进展

| 14 先进激光材料及新型激光器技术 中红外光纤激光器技术研究新进展 张云军1,王月珠1 ,鞠有轮1,姚宝权1 ,贺万俊2 ,余正平2 1 哈尔滨工业大学可调谐激光技术国家重点实验室; 2 四川智溢实业有限公司 摘要:光纤激光器和光纤拉曼激光器以其优良的光束质量、高的转换效率、运行稳定和便于热管理等诸多优点,已成为激光器领域发展的一个新的里程碑。其已经在光通信、机械制造、医疗和国防应用上显示了卓越的性能。但是光纤激光器和光纤拉曼激光器的发射波长现在主要集中在1~2μm 波段,这里面以掺Yb 、掺Tm 和掺Er 光纤激光器为代表,其中还有主要以这三种激光器作为泵浦原的光纤拉曼激光器。现阶段利用光纤激光器实现波长大于2μm 高功率激光输出还受到限制,这主要归因于大于2μm 的激光在硅基光纤中存在强烈的共振吸收。 采用大于2μm 波长处具有低的声子损耗的新基质光纤是解决光纤中红外光源的关键,现阶段主要获得2~5μm 光纤激光器的主要光纤有氟化物光纤(ZBLAN fiber ,包括ZrF 4、BaF 2、LaF 3、AlF 3和NaF )、硫化物光纤(三硫化二砷 As 2S 3和三硒化二砷 As 2Se 3)、氧化碲光纤(二氧化碲TeO 2)和高掺GeO 2光纤。以这几种材料为基质的光纤在2~5μm 波段都具有较低的声子能量,对稀土离子具有较好的溶解性,而且它们的折射率都较高。 基于光纤结构实现2~5μm 波段激光输出的方式主要有四种方式:纤芯掺杂稀土离子后采用激光振荡方式:2.1μm 掺Ho 光纤激光器,最高输出达到140W; 2.8μm 掺Er 光纤激光器,最高输出功率达到24W 。采用1.5μm 和2.0μm 的超短脉冲激光作为泵浦源,泵浦中红外光纤获得2~5μm 波段超连续谱激光输出;利用ZBLAN 氟化物光纤获得的1~4μm 超连续激光已达10W 以上;利用As 2Se 3已经获得3~6μm 的超连续谱输出;采用1.5μm 和2.0μm 的激光作为泵浦源,通过拉曼散射方式获得大于2μm 波段激光输出;采用短脉冲激光泵浦微结构光子晶体光纤,通过光纤四波混频实现大于2μm 波段激光输出。 本文将对2~5μm 的光纤激光器、超连续谱光源、光纤拉曼激光器和中红外光纤四波混频的近期发展现状加以总结介绍。 张云军,2000年在哈尔滨工业大学获得学士学位,2007年基于自己在双包 层掺铥光纤激光器方面的研究获得哈尔滨工业大学的博士学位。现任哈尔滨工 业大学可调谐激光技术国家重点实验室讲师。主要研究方向是高功率包层泵浦 掺铥光纤激光器、飞秒激光刻写大芯径2微米波段光纤光栅和中红外高功率激 光器。高功率全光纤化掺铥光纤激光器是他研究的重点。发表掺铥光纤激光器 和光纤光栅的相关学术论文近20篇。

医学中常用的激光器

医学中常用的激光器 自第一台激光器问世后,人们对激光器件及技术进行了大量的研制工作,取得了相当可观的成果。目前能实现激光运转的工作物质达数百种以上,大体上分为气体、固体、半导体、染料等几大类。人们在探索激光产生机理的同时,扩展了激光的频谱范围,几千条谱线遍布于真空紫外到远红外的广阔光谱区域。激光方向性好、强度大,可以使被照物体在1/1000s内产生几千度的高温,瞬间发生汽化。由于激光的物理特性决定了其具有明显的生物学效应,。各种不同的激光具有不同的特性和组织效应,正确认识激光的这些特点,是选择和合理利用激光的基础。 一.气体激光器 气体激光器,按工作物质的性质,大致可分成下列三种:(1)原子激光器:利用原子跃迁产生激光振荡,以氦氖激光器为代表。氩、氪、氙等惰性气体,铜、镉、汞等金属蒸气,氯、溴、碘等卤素,它们的原子均能产生激光。原子激光器的输出谱线在可见和红外波段,典型输出功率为10毫瓦数量级。 (2)分子激光器:利用分子振动或转动状态的变化产生辐射制成的,输出的激光是分子的振转光谱。分 子激光器以二氧化碳(CO 2)激光器为代表,其他还有氢分子(H 2 ),氮分子(N 2 )和一氧化碳(CO)分子等激光 器。分子激光器的输出光谱大多在近红外和远红外波段,输出功率从数十瓦到数万瓦。(3)离子激光器:这类激光器的激活介质是离子,由被激发的离子产生激光放大作用,如氩离子(激活介质为Ar+)激光器。氦镉激光器(激活介质为Cd+)等。离子激光器的输出光谱大多在可见光和紫外波段,输出功率从几毫瓦到几十瓦。 气体激光器是覆盖波谱范围最广的一类器件,能产生连续输出。其方向性、单色性也比其他类型器件好,加之制造方便、成本低、可靠性高,因此成为目前应用最广的一类器体。 1、氦氖激光器 氦氖激光器能输出波长为632.8nm的可见光,具有连续输出的特性。它的光束质量很好(发散角小,单色性好,单色亮度大)。激光器结构简单,成本低,但输出功率较小。氦氖激光器在工业、科研、国防上应用很广,医疗上主要用于照射,有刺激、消炎、镇痛、扩张血管和针灸等作用,广泛用于内科、皮肤科、口腔科及细胞的显微研究。 氦氖激光器有三种结构形式:内腔式、外腔式和半内腔式。它们均由放电管、谐振腔、激励电源等三部分组成。以内腔式为例,放电毛细管是产生气体放电和激光的区域,它的内径很小,约在1到几毫米。电极A为阳极,由钨杆或钼(或镍)筒制成。阴极K为金属圆筒,由铝、钼、钽等制成,它们均有足够的电子发射能力和抗溅射能力。组成谐振腔的两块反射镜紧贴于放电管两端,并镀以多层介质膜。其中一个为全反射镜,另一个则为部分反射镜,整个谐振腔在出厂前已调整完毕,因此使用简单、方便。放电管的管径比放电毛细管粗几十倍,用以保持氦氖气压比及加固谐振腔。为了避免放电管变形而引起激光输出下降,内腔管的长度不宜过大,一般不超过一米。外腔式激光器可以更换不同的反射镜,使输出功率最大,光束发散角最小。也可在反射镜和放电管之间插入光学元件,以研究激光器的输出特性,调制它的频率或幅度,并可制成单频大功率激光器。 2、二氧化碳激光器 二氧化碳激光器的能量转换效率达20~25%(氦氖激光器的能量转换效率仅为千分之几)。它的输出波长为10.6微米,属于远红外区,连续输出功率可达万瓦级,常用电激励,结构比较简单紧凑,使用 方便,是目前最常用的激光器之一,在医学上,CO 2激光器作为手术刀使用日益引起人们的重视。CO 2 激 光器也用于皮肤科、外科、神经外科、整形外科、妇科和五官科的手术,在癌症的治疗上也有一定成效。 最常见的封离型内腔式二氧化碳激光器的管壳是由硬质玻璃或石英材料制成的。常见为三层玻璃套管结构,其最内层是放电管,中间层是水冷套,外层是储气管。在内外层之间有气体循环通路,这是为了保证混合气体的均匀分布而设计的。其光学谐振腔通常用平凹球面腔。球面镜可用石英或其他光学玻璃做基片,然后,在表面上镀层金属膜。平面镜是输出窗片,要求它对10.6μm的激光有很好的透过率,且表面不易损伤,机械性能好等。一般中小功率的激光器常常采用锗单晶做输出片,大功率的用砷化镓

【CN109787073A】一种中红外可调谐的光纤激光器及激光产生、分析方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910153533.6 (22)申请日 2019.02.28 (71)申请人 电子科技大学 地址 610000 四川省成都市高新区(西区) 西源大道2006号 (72)发明人 刘永 韩杰 池皓 吕彦佳 韦晨  (74)专利代理机构 成都时誉知识产权代理事务 所(普通合伙) 51250 代理人 陈千 (51)Int.Cl. H01S 3/067(2006.01) H01S 3/094(2006.01) (54)发明名称一种中红外可调谐的光纤激光器及激光产生、分析方法(57)摘要本发明公开了一种中红外可调谐的光纤激光器及激光产生、分析方法,中红外可调谐的光纤激光器包括依次设置的光纤脉冲激光器、透镜、亚碲酸盐阶跃光纤。中红外可调谐的激光产生方法,包括如下步骤:S1.光纤激光器输出激光;S2.将光纤激光器输出的激光通过透镜耦合到亚碲酸盐阶跃光纤中;其S3.亚碲酸盐阶跃光纤输出中红外可调谐的激光脉冲。激光分析方法通过亚碲酸盐阶跃光纤输出的光谱通过光谱仪进行分析。本发明使用亚碲酸盐作为光纤材料,该材料零色散波长小于现有的中红外光纤激光器的波长,故现有的光纤激光器作为泵浦源时可以位于该材料的反常色散区,不需要对光纤进行微结构的设计,常规的阶跃光纤就可以满足孤子自频移的需求, 降低了实验难度。权利要求书1页 说明书4页 附图2页CN 109787073 A 2019.05.21 C N 109787073 A

权 利 要 求 书1/1页CN 109787073 A 1.一种中红外可调谐的光纤激光器,其特征在于:包括依次设置的光纤脉冲激光器、透镜、亚碲酸盐阶跃光纤。 2.根据权利要求1所述的一种中红外可调谐的光纤激光器,其特征在于:所述亚碲酸盐阶跃光纤选用TeO2-Bi2O3-ZnO-Na2O材料。 3.根据权利要求1或2所述的一种中红外可调谐的光纤激光器,其特征在于:所述亚碲酸盐阶跃光纤的纤芯直径为9μm,包层直径为125μm。 4.根据权利要求1所述的一种中红外可调谐的光纤激光器,其特征在于:所述光纤脉冲激光器为3.5μm光纤脉冲激光器,且作为泵浦源。 5.一种中红外可调谐的激光产生方法,其特征在于:包括如下步骤: S1.光纤激光器输出激光; S2.将光纤激光器输出的激光通过透镜耦合到亚碲酸盐阶跃光纤中;其中,所述述亚碲酸盐阶跃光纤选用TeO2-Bi2O3-ZnO-Na2O材料 S3. 亚碲酸盐阶跃光纤输出中红外可调谐的激光脉冲。 6.根据权利要求5所述的一种中红外可调谐的光纤激光器,其特征在于:所述光纤脉冲激光器为3.5μm光纤脉冲激光器,且作为泵浦源。 7.一种中红外可调谐的激光检测方法,其特征在于:包括如下步骤: 步骤一.将光纤激光器输出激光,通过透镜耦合到亚碲酸盐阶跃光纤中,亚碲酸盐阶跃光纤输出激光脉冲;其中,所述亚碲酸盐阶跃光纤选用TeO2-Bi2O3-ZnO-Na2O材料; 步骤二.将亚碲酸盐阶跃光纤输出的光谱通过光谱仪进行分析。 8.根据权利要求7所述的一种中红外可调谐的光纤激光器,其特征在于:所述光纤脉冲激光器为3.5μm光纤脉冲激光器,且作为泵浦源。 9.根据权利要求7或8所述的一种中红外可调谐的光纤激光器,其特征在于:所述亚碲酸盐阶跃光纤输出激光脉冲为波段在3.5-5μm可调。 2

光纤激光器原理

光纤激光器原理 光纤激光器主要由泵浦源,耦合器,掺稀土元素光纤,谐振腔等部件构成。泵浦源由一个或多个大功率激光二极管阵列构成,其发出的泵浦光经特殊的泵浦结构耦合入作为增益介质的掺稀土元素光纤,泵浦波长上的光子被掺杂光纤介质吸收,形成粒子数反转,受激发射的光波经谐振腔镜的反馈和振荡形成激光输出。 光纤激光器特点 光纤激光器以光纤作为波导介质,耦合效率高,易形成高功率密度,散热效果好,无需庞大的制冷系统,具有高转换效率,低阈值, 光纤激光器原理图1: 峰值功率:脉冲激光器,顾名思义,它输出的激光是一个一个脉

冲,每单个脉冲有一个持续时间,比如说10 ns(纳秒),一般称作单个脉冲宽度,或单个脉冲持续时间,我们用t 表示。这种激光器可以发出一连串脉冲,比如,1 秒钟发出10 个脉冲,或者有的就发出一个脉冲。这时,我们就说脉冲重复(频)率前者为10,后者为1,那么,1 秒钟发出10 个脉冲,它的脉冲重复周期为0.1 秒,而1 秒钟发出1 个脉冲,那么,它的脉冲重复周期为 1 秒,我们用T 表示这个脉冲重复周期。 如果单个脉冲的能量为E,那么E/T 称作脉冲激光器的平均功率,这是在一个周期内的平均值。例如, E = 50 mJ(毫焦),T = 0.1 秒,那么,平均功率P平均= 50 mJ/0.1 s = 500 mW。 如果用 E 除以t,即有激光输出的这段时间内的功率,一般称作峰值功率(peak power),例如,在前面的例子中E = 50 mJ, t = 10 ns, P峰值= 50 ×10^(-3)/[10×10^(-9)] = 5×10^6 W = 5 MW(兆瓦),由于脉冲宽度t 很小,它的峰值功率很大。 脉冲能量E=1mj 脉宽t=100ns 重复频率20-80K 脉冲持续时间T=1s/2k=?秒 平均功率P=E/T=0.001J/0.00005s=20W P峰值功率=E/t 激光的分类: 激光按波段分,可分为可见光、红外、紫外、X光、多波长可调谐,目前工业用红外及紫外激光。例如CO2激光器10.64um红外

红外与可见光图像配准

本科毕业设计论文 题 目 红外与可见光图像配准 专业名称 自 动 化 学生姓名 指导教师 毕业时间 2014.06

毕业 任务书 一、题目 红外与可见光图像配准 二、研究主要内容 选题来源于科研项目。红外与可见光图像由于相关性小,缺乏一致性特征,因此配准的难度较大。针对红外与可见光图像配准的研究,拟采用基于特征的图像配准算法。配准算法中核心的部分在于特征的提取和特征的匹配两个部分。特征提取拟采用Harris 角点或Susan 角点检测算法,这两种算法稳定性好,也适合实时性场合需要。特征匹配阶段根据图像物理特性选择合适的匹配测度及匹配算法。最终实现一种自动、快速、较高性能的配准方法。 三、主要技术指标 1、开发工具采用OpenCV ; 2、配准时间1秒左右,精度小于1个像素。 四、进度和要求 第1-2周:初步查阅与本次毕设有关的背景知识、论文以及书籍,并进行分析、 总结,理解所研究的问题。 第3-4周:学习掌握OpenCV 、图像配准的相关知识。 第5-6周:实现Harris 角点,ORB 或者BRIEF 法对图像特征进行提取。 第7-8周:确定特征匹配算法。 第9-10周:用OpenCV 实现算法的程序。 第11-12周:用OpenCV 实现算法的程序。 第13-14周:程序测试。 第15-16周:撰写毕业设计论文,准备论文答辩。 五、主要参考书及参考资料 [1] 田伟刚。基于点特征的多源遥感图像配准技术。西北工业大学硕士学位论 文,2008年 设计 论文

[2] 苑津莎,赵振兵,高强等。红外与可见光图像配准研究现状与展望。激光与 红外,2009,39(7):693-699 [3] C. Harris,M. Stephens.A combined corner and edge detector.In:Proceedings of the Fourth Alvey Vision Conference.Manchester:the University of Sheffield Printing Unit,1988,pp147~151 [4] S.M. Smith,J.M. Brady.SUSAN-A new approach to low level image processing.Journal of Computer Vision,1997,23:pp45~78 [5] S. Ranade,A. Rosenfeld.Point pattern matching by relaxation.Pattern Recognition,1980,12:pp269~275 [6] D. P. Huttenlocher,G. A. Klanderman,W. J. Rucklidge.Comparing images using the Hausdorff distance.IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(9):pp850~863 [7] M. P. Dubussion,A. K. Jain.A modified algorithm using robust hausdorff distance measures.Proc. of 12th Int. Conf. on Pattern Recognition,Jerusalem,Israel,1994:pp566~568 [8] D.G. Sim,O.K. Kwon,R.H. Park.Object matching algorithm using robust Hausdorff distance measures.IEEE Trans. on Image Process,1999,8(2):425~429 [9] 周成平,蒋煜,李玲玲等。基于改进角点特征的多传感器图像配准。华中科 技大学学报,2005,33(11):pp1~4 学生学号 __________ 学生姓名 指导教师 __________ 系主任

红外激光器与紫外激光器的一些比较

红外激光器与紫外激光器的一些比较 相关网址:https://www.360docs.net/doc/6b12723896.html, https://www.360docs.net/doc/6b12723896.html, https://www.360docs.net/doc/6b12723896.html, https://www.360docs.net/doc/6b12723896.html, 红外YAG激光器(波长为1.06m)是在材料处理方面用得最为广泛的激光源。但是,许多塑料和大量用作柔性电路板基体材料的一些特殊聚合物(如聚酰亚胺),都 关键字:红外激光器,紫外激光器红外激光器与紫外激光器的简单比较 红外YAG激光器(波长为1.06μm)是在材料处理方面用得最为广泛的激光源。但是,许多塑料和大量用作柔性电路板基体材料的一些特殊聚合物(如聚酰亚胺),都不能通过红外处理或"热"处理进行精细加工。因为"热"使塑料变形,在切割或钻孔的边缘上产生炭化形式的损伤,可能导致结构性的削弱和寄生传导性通路,而不得不增加一些后续处理工序以改善加工质量。因此,红外激光器不适用于某些柔性电路的处理。除此之外,即使在高能量密度下,红外激光器的波长也不能被铜吸收,这更加苛刻地限制了它的使用范围。 然而,紫外激光器的输出波长在0.4μm以下,这是处理聚合物材料的主要优点。 与红外加工不同,紫外微处理从本质上来说不是热处理,而且大多数材料吸收紫外光比吸收红外光更容易。高能量的紫外光子直接破坏许多非金属材料表面的分子键,用这种"冷"光蚀处理技术加工出来的部件具有光滑的边缘和最低限度的炭化。而且,紫外短波长本身的特性对金属和聚合物的机械微处理具有优越性.它可以被聚焦到亚微米数量级的点上,因此可以进行细微部件的加工,即使在不高的脉冲能量水平下,也能得到很高的能量密度,有效地进行材料加工 微细孔在工业界中的应用已经相当广泛,主要形成的方式有两种: 一是使用红外激光:将材料表面的物质加热并使其汽化(蒸发),以除去材料,这种方式通常被称为热加工.主要采用YAG激光(波长为1.06μm)。 二是使用紫外激光:高能量的紫外光子直接破坏许多非金属材料表面的分子键,使分子脱离物体,这种方式不会产生高的热量,故被称为冷加工,主要采用紫外激光(波长为355nm)

红外和可见光图像融合算法研究

本科毕业设计论文题目红外和可见光图像融合算法研究 专业名称 学生姓名 指导教师 毕业时间

毕业 任务书 一、题目 红外和可见光图像融合算法研究 二、指导思想和目的要求 本题目来源于科研,主要研究红外和可见光图像的特点,学习适合于红外和可见光图像融合的算法,进而编程实现相关算法。希望通过该毕业设计,学生能达到: 1.利用已有的专业知识,培养学生解决实际工程问题的能力; 2.锻炼学生的科研工作能力和培养学生团队合作及攻关能力。 三、主要技术指标 1.学习红外和可见光图像的特点; 2.研究红外和可见光图像的像素级融合算法; 3.编程实现红外和可见光图像的融合。 四、进度和要求 第01周----第02周: 参考翻译英文文献; 第03周----第04周: 学习红外和可见光图像的特点; 第05周----第08周: 研究红外和可见光图像融合的算法; 第09周----第14周: 编写红外和可见光图像融合程序; 第15周----第16周: 撰写毕业设计论文,论文答辩。 五、主要参考书及参考资料 1. 敬忠良. 图像融合——理论与应用. 高等教育出版社. 2. 郭雷. 图像融合. 电子工业出版社. 3. 匡艳. 可见光与红外图像融合技术研究. 电子科技大学硕士学位论文. 4. 童明强. 红外图像与可见光图像融合的研究. 天津理工大学硕士学位论文. 学生 指导教师 系主任 设计 论文

摘要 红外技术作为人类认识自然、探索自然的一种新的现代工具,已经被各国普遍的应用于生物、医学、地学等科学领域以及军事侦察方面。红外图像直接反映了物体表面温度分布情况,但由于目标的红外辐射十分复杂,而且影响目标红外辐射的因素很多,红外热图像的清晰度远不如可视图像。可见光图像能够很好的描绘场景中各个物体的外形结构,具有较好的轮廓表现力,所以将红外和可见光图像融为一体有非常好的效果。而通过图像融合是实现这一效果的有效方法,融合后的图像可信度更高,模糊较少,可理解性更好,更适合人的视觉及对源图像的进一步分析、理解以及目标检测、识别或跟踪。图像融合充分利用了多个被融合图像中包含的冗余信息和互补信息,同时又不同于一般意义上的图像增强,它是计算机视觉、图像理解领域的一项新技术。 本文针对红外和可见光图像融合算法进行了研究。通过使用计算机图像处理方法,对同一场景的红外图像和可见光图像进行融合处理,得到一副单一的融合图像,它成功包含了两副源图像的信息。本文主要研究了利用MATLAB软件实现对红外和可见光图像的处理和融合,采用对应像素取大值、取小值、平均值,区域能量、区域对比度比较的融合方法,并且对融合结果图像使用信息熵、标准差、平均梯度、空间频率的评价指标进行了分析比较。结果表明,融合结果图像既保留了可见光图像的清晰的轮廓信息,同时也显示了目标物体的表面温度分布情况。 关键字:图像融合,红外图像,可见光图像,MATLAB软件

中红外激光的产生方法

中红外激光的产生方法 摘要 简要概述了产生中红外激光的各种方式,分析了各个方法的有缺点.并对中红外激光的发展进行了展望. 关键词:中红外激光产生发展 引言 激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一个重大发明。它的原理早在 1916 年已被物理学家爱因斯坦发现,但直到 1958 年激光才被首次成功制造。激光是在有理论准备和生产实践迫切需要的背景下应运而生的,它一问世,就获得了飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且导致整个一门新兴产业的出现。激光可使人们有效地利用前所未有的先进方法和手段,去获得空前的效益和成果,从而促进了生产力的发展。 红外激光器是在1960年,由美国物理学家西奥多·梅曼通过一个高强闪光灯管来刺激在红宝石水晶里的铬原子而首次研制出来的。随后红外激光就得到了迅速的发展。 1 线性方法产生红外激光

1.1 半导体量子级联激光器 双异质结体材料结构激光器的有源区的厚度薄至可与电子的德 布罗意波长30nm相比拟时,则电子在该方向的运动会受到限制,其动能将被量子化成分立的能级,和量子力学中一维势阱情况一样,称为量子阱激光器。量子级联激光器是一种基于子带间电子跃迁的新型单极光源,将数个量子阱结构串联在一起。它的输出波长与有源区量子阱厚度有关,可通过温度或电流进行调谐。它的缺点是结构复杂,生长层次繁多,闽值电流密度大,散热性差,作为半导体激光器,输出功率小、光束质量差[1]。 1.2 固体激光器 固体激光器是以掺杂的玻璃、晶体或透明陶瓷等固体材料为工作物质的激光器。固体激光器具有结构紧凑、小巧、牢固、灵活等优点,特别是半导体泵浦的仝固化固体激光器很容易做到高重复频率、高峰值功率脉冲激光输出[2]。 1.3 自由电子激光器 自由电子激光器是利用相对论电子束通过一个称为摇摆器的周 期变化的横向磁感应场来与电磁辐射相互作用产生激光的装置。由于相对论电子束有很高的功率密度,工作介质又是自由电子,不存在击穿问题,因此自由电子激光器能产生很高的功率。自由电子激光器输出波长与电子束能量有关,容易连续调谐,工作的频率范围可以很宽,从厘米波到纳米波。但自由电子激光器体积比较庞大、价格也相对比较贵[3]。

常用激光器简介

几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。例如大气和宇宙通讯、相干探测和导航、超外

激光器工作原理

激光器工作原理 1. 1. 引言 2. 2. 原子基础知识 3. 3. 原子形成激光的核心原理 4. 4. 激光器与原子的关系 5. 5. 激光 6. 6. 红宝石激光器 7.7. 三级激光器 8.8. 激光器类型 9.9. 激光器的波长 10.10. 激光器分类 11.11. 了解更多信息 12.12. 阅读所有物理学类文章 激光器广泛用于各种产品和技术,其种类之多令人惊叹。从CD播放机、牙钻、高速金属切割机到测量系统,似乎所有东西都有激光器的影子,它们都需要用到激光器。但是,到底什么是激光器呢?激光光束和手电筒光束的区别何在呢? NASA供图 美国国家航空航天管理局兰利研究中心(Langley Research Center) 的光学损伤阀值测试装置有三部激光器:高能脉冲钕-钇铝 石榴石激光器、钛-蓝宝石激光器和谐振氦氖激光器。 原子基础知识 整个宇宙中大约只有100多种不同的原子。我们看到的所有东西都是由这100多种原子以穷极无限的方式组合而成。这些原子之间排列组合的方式决定了构成的物体是一杯水、一块金属或是汽水瓶中的泡沫!

原子是永恒运动着的。它们不停地振动、移动和旋转,就连构成我们座椅的原子也是不断运动着的。固体实际上也在运动!原子有几种不同的激发状态,换言之,它们具有不同的能量。如果赋予原子足够的能量,它就可以从基态能量层级上升到激发态能量层级。激发态能量层级的高低取决于通过热能、光能、电能等形式赋予原子的能量有多少。 下图可以很好地阐释原子的结构: 最简单的原子模型 由原子核和沿轨道旋转的电子组成。 简单原子由原子核(含有质子和中子)和电子云组成。我们可以把电子云中的电子想象成沿多个不同轨道环绕原子核运动。 原子形成激光的核心原理 想一想上一页中的原子结构图。即便以现代技术观察原子,我们也无法看到电子的离散轨道,但把这些轨道设想成原子不同的能级会对我们的理解有所帮助。换言之,如果我们对原子加热,处于低能量轨道上的部分电子可能受激发而跃迁到距离原子核更远的高能量轨道。 能量吸收: 原子可以吸收热能、光能、电能等形式的能量。然后电子可以从低能 量轨道跃迁至高能量轨道。

相关文档
最新文档