数字图像处理综合作业2

数字图像处理综合作业2
数字图像处理综合作业2

综合作业二

( 春季学期 )

一.对X1照片图像增强 (3)

1.1 直方图增强 (3)

1.1.1 直方图拉伸增加对比度 (3)

1.1.2直方图均衡 (4)

1.2 伪彩色增强 (5)

1.2.1等密度分割法 (5)

1.2.2多波段合成伪彩色显示 (8)

二.对x2照片图像增强 (10)

2.1 滤波 (10)

2.1.1各种滤波器 (10)

2.1.2 中值滤波 (12)

2.1.3 二阶butterworth滤波 (14)

2.2 直方图增强 (16)

三.边缘提取及增强 (18)

3.1 对x1边缘提取及复合 (18)

3.1.1 对x1边缘提取 (18)

3.1.2 对x1边缘复合 (19)

3.2对x2边缘提取及复合 (20)

3.2.1 直接对原图x2边缘提取 (20)

3.2.2 去噪后边缘提取 (21)

3.2.3 对x2边缘复合 (22)

一.对X1照片图像增强

1.1 直方图增强

1.1.1 直方图拉伸增加对比度

为了增强图像,观察x1,我们考虑增加图像的对比度,看是否能使图像更清晰。

具体的编程思路是,读入x1图像,运用matlab自带的imadjust函数,对比所得结果,具体程序见附录1.1.1(a),实验结果见图1.1.1(1)。

1.1.1(a)

结论:由图1.1.1(a)对比发现,左右两边基本没有区别,基本没有图像增强效果。我们考虑到运用imadjust函数可以得到原图的负片,即将原灰度图白色的地方变成黑色,黑色的地方变成白色,这种效果可能使X1图像自身对比更鲜明,起到图像增强的作用,具体程序见附录1.1.1(2),实验结果见图1.1.1(b)。

1.1.1(b)

结论:由图1.1.1(b)的对比发现,从人眼的视觉角度来看,右图比起左图,在感官上比较舒适,似乎有点图像增强的意思,但总体上,效果还不是很好。

1.1.2直方图均衡

在第三章的作业习题里,我们已经接触过直方图均衡,它是一种利用图像直方图对对比度进行调整的方法,也是图像增强常用的方法之一。

我们的编程思路是运用matlab中自带的一些函数对原图进行处理,具体程序见附录1.1.2,实验结果见图1.1.2。

1.1.2

结论:由图1.1.2的对比,我们可以发现直方图均衡化后的图像整体变亮,图片中部分位置变得清晰一些,部分位置灰度值过高,图像有些发白,没有得到好的图像增强效果,甚至发白部位阻碍医生观察骨骼细节。原因是因为这种方法对处理的数据不加选择,当原图的直方图有高峰时,经处理后对比度会不自然的过分增强。

1.2 伪彩色增强

1.2.1等密度分割法

对图像中各像元亮度值进行统计,确定其最小值和最大值,确定分割的等级N,计算出分割的间隔再对输入图像的每一个像元进行亮度转换,为像元新值赋色。

(1)matlab自带函数grayslice(I,n)(源程序:color1.m)将灰度图X1均匀量化为n个等级,然后利用jet映射将其转化为伪彩色图

像x。程序见附录1.2.1(1)

1.2.1(a) N=8

1.2.1(b) N=64

1.2.1(c) n=256

分析:由上面三组图像可知,当分割等级越大,所呈现的效果越好。(2)自编程序(源程序:color2.m)

将图像X1按灰度分为11份

R=0:256 间隔为256/10

G=0到256 再到0 间隔为256/5

B=256:0 间隔为256/10

1.2.1(d)

分析:从上面各图的分析我们知道n越大,效果越好。但对比利用grayslice(I,n)函数n=8时的效果,自编程序n=11时的效果没有很好,可能是颜色映射不恰当,导致效果不好。

1.2.2多波段合成伪彩色显示

(源程序:color.m)

对同一幅图像在不同波长获得多幅图像,可采用多种变换方式,最后合成R、

G、B图像进而形成为彩色图像显示。在这里使用分段线性映射法。实验结果见

1.2.2.程序见附录1.2.2.

1.2.2

分析:对比利用密度分割法产生的效果,多波段合成伪彩色显示法的效果不是很好,反而将图像变得更加模糊。

结论:通过对图像进行伪彩色处理,主要得出以下两点。

(1)对图像进行伪彩色处理时,不同的伪彩色处理方法有不同的效果,要选择合适的处理方法。

(2)不同的颜色映射法也有不同的效果,根据图像选择合适的颜色映射法。

二.对x2照片图像增强

2.1 滤波

首先我们先分别观察一下X2的在MATLAB中的原始图像和频谱分布情况。因为我们观察到X2是彩色图,所以我们需要利用rgb2gray函数将它转换成灰度图再进行处理。X2的原始图像和频谱分布图如下图2.1所示:

2.1

我们观察到X2的灰度图存在较严重的椒盐噪声,其频谱图也存在一个十字叉的亮线,但是围绕中间亮点又有一个矩型噪声。

综上,X2存在明显的噪声近似于椒盐噪声,所以我们先采用“广撒网,捞大鱼”的方法进行筛选,尝试使用不同类型的滤波器对X2进行滤波处理,分析对比哪种滤波器的滤波效果最好,然后再选择滤波效果最好的滤波器进行各种参数设置,使其滤波效果最好。

2.1.1各种滤波器

在这里我们使用了高斯低通滤波器,均值滤波器,中值滤波器,自适应滤波器,二维统计顺序滤波器,二阶Butterworth滤波器分别对X2图像进行滤波。程序见附录2.1.1

各种滤波结果如下图2.1.1所示:

高斯低通滤波均值滤波

中值滤波自适应滤波

二维统计顺序滤波二阶butterworth滤波

2.1.1

结论:对比分析后我们发现,中值滤波对于去除噪声效果最好,第二好的是二阶butterworth滤波,而自适应滤波去除效果则较差。所以接下来我们针对中值滤波器和二阶butterworth滤波器进行详细的参数设置,通过多次试验使其达到最好的效果。

2.1.2 中值滤波

因为观察X2的原始图像和频谱分布图,我们发现X2存在很明显的椒盐噪声,所以我们可以预见到使用中值滤波对X2进行处理后会有明显的改善。基本思路是先读入待处理图像,因为我们到观察X2是彩色图,所以我们需要利用rgb2gray函数先将它转换成灰度图,再利用中值滤波器对其进行平滑滤波,分别使用3*3窗口,5*5窗口,7*7窗口,11*11窗口进行处理,分析比较处理结果。程序见附录2.1.2

X2的处理结果如下图2.1.2所示:

3*3窗口中值滤波7*7窗口中值滤波

11*11窗口中值滤波 13*13窗口中值滤波

2.1.2

结论:正如预想的那样,中值滤波对X2会产生明显的效果。中值滤波对于去除椒盐噪声效果明显,是因为椒盐噪声只在画面上的部分点随机出现,而中值滤波根据数据排序,将未被污染的点代替噪声点的值的概率较大,所以抑制效果好。但是当我们选择的窗口较小时噪声依然比较严重,当我们把窗口加到11*11时只存在少数噪声,当我们把窗口加到13*13时,噪声基本消除,虽然一些细节也模糊了,但是效果最好。

2.1.3 二阶butterworth滤波

基本步骤与中值滤波相似,这里不再赘述。但是,我们认为二阶butterworth 滤波应该达不到中值滤波的效果。另外,二阶butterworth滤波需要修改与原点的距离d0,来实现最优效果,下图2.1.3分别展示了在d0=10,12,14,16,18,20时的情况。程序见附录2.1.3

d0=10 d0=12

d0=14 d0=16

d0=18 d0=20

2.1.3

结论:显而易见,无论我们怎么修改参数d0,其结果始终没有中值滤波好。同时,我们发现就X2图像而言,当d0=14左右时,二阶butterworth滤波器的效果是最好的。因此,为了达到对X2图像最好的处理效果,我们选择了中值滤波器进行滤波处理。

2.2 直方图增强

由于在之前1.1的(1)中,我们发现通过直方图拉伸来增加对比度的方法几乎没有任何作用,所以对X2不再重复。

因为x2明显存在噪声,所以我们对2.1中去噪后的图进行直方图均衡化处理,具体程序见附录2.2,实验结果见图2.2。

2.2

结论:观察并对比图2.2,我们发现,中值滤波去噪后的图像再做均衡化处理,泛白情况非常严重,严重损害了图像质量,所以直方图均衡的方法不能用于x2图像的增强。

三.边缘提取及增强

图像的边缘部分对应图像上灰度变化剧烈的区域。

图像的边缘提取有多种方法,可以采用一阶微分算子,如sobel算子,Roberts算子,Prewitt算子,Canny算子。也可以采用二阶微分算子,如Laplacian 算子。

各种算子都有对应的优缺点,Sobel算子检测方法对灰度渐变和噪声较多的图像处理效果较好,但Sobel算子对边缘定位不是很准确,图像的边缘不止一个像素。Roberts算子检测方法对具有陡峭的低噪声的图像处理效果较好,但是利用roberts算子提取边缘的结果是边缘比较粗,因此边缘的定位不是很准确。Prewitt算子检测方法对灰度渐变和噪声较多的图像处理效果较好。但边缘较宽,而且间断点多。Laplacian算子法对噪声比较敏感,所以很少用该算子检测边缘,而是用来判断边缘像素视为与图像的明区还是暗区。Canny方法不容易受噪声干扰,能够检测到真正的弱边缘。优点在于,使用两种不同的阈值分别检测强边缘和弱边缘,并且当弱边缘和强边缘相连时,才将弱边缘包含在输出图像,它是目前边缘检测最常用的算法,效果也是最理想的。

3.1 对x1边缘提取及复合

3.1.1 对x1边缘提取

根据上述对边缘提取的分析,我们编写了各个边缘提取的程序,希望找到一

个最好的边缘提取函数,进而得到最好的图像增强效果。X1的具体程序见附录3.1.1,实验结果见图3.1.1。

3.1.1

观察对比图3.1.1,可以很明显地发现Canny方法提取的边缘效果最好,这个结果符合我们之前的分析,所以接下来的复合边缘,我们都采取Canny方法。

3.1.2 对x1边缘复合

因为对x1做直方图均衡化后,部分图像由于对比度过高而泛白,不但没有增强图像,还损害了图像的部分细节,所以复合时不再考虑叠加均衡化后的图,

所以我们的思路是将canny边缘提取图叠加在原图上,进行边缘复合。具体程序见附录3.1.2,实验结果见图3.1.2。

3.1.2

结论:观察并分析3.1.2,利用canny算子提取边缘后的图像与原图进行叠加,复合后的图像轮廓更加清晰,对比度明显增强,达到了图像增强的效果。但是提取的边缘过多,很多细节被模糊了,总体效果不是很理想,这是我们需要解决的问题,但是目前还没找到更好的办法。

3.2对x2边缘提取及复合

3.2.1 直接对原图x2边缘提取

因为x2是彩色图,所以要对其进行灰度转化,其他操作思路同x1。x2的具

数字图像处理课后参考答案

数字图像处理 第一章 1、1解释术语 (2) 数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置与每个像素的灰度级数的图像形式称为数字图像。 (3)图像处理:就是指对图像信息进行加工以满足人的视觉或应用需求的行为。 1、7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。彩色图像、多光谱图像与高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术与方法。 1、8基本思路就是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。 1、9基本思路就是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。 1、10基本思路就是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储与实时传输的应用需求。 1、11基本思路就是,通过数学方法与图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。 1、12基本目的就是,找出便于区分与描述一幅图像中背景与目标的方法,以方便图像中感兴趣的目标的提取与描述。 第二章 2、1解释下列术语 (18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。 (19)灰度分辨率:就是指在灰度级别中可分辨的最小变化,通常把灰度级数L称为图像的灰度级分辨率。 (20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻与垂直相邻的4个像素称为该像素的4邻域像素,她们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。 (21)像素的8邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻与垂直相邻的8个像素称为该像素的8邻域像素,她们的坐标分别为(x-1,y-1)(x-1,y)(x-1,y+1)(x,y-1)(x,y+1)(x+1,y-1)(x+1,y)(x+1,y+1)。 (28)欧氏距离:坐标分别位于(x,y)与(u,v)处的像素P与像素q之间的欧氏距离定义为:D e(p,q)=[(x-u)2+(y-v)2]1/2 (29)街区距离:欧氏距离:坐标分别位于(x,y)与(u,v)处的像素P与像素q之间的街区距离定义为:D4(p,q)=|x-u|+|y-v|。 (30)棋盘距离:欧氏距离:坐标分别位于(x,y)与(u,v)处的像素P与像素q之间的欧氏距离定义为:D8(p,q)=max(|x-u|,|y-v|)。 (33)调色板:就是指在16色或者256色显示系统中,将图像中出现最频繁的16种或者256种颜色组成的一个颜色表,并将她们分别编号为0~15或0~255,这样就使每一个4位或者8位的颜色编号或者颜色表中的24位颜色值相对应。这种4位或者8位的颜色编号称为颜色的索引号,由颜色索引号及对应的24位颜色值组成的表称为颜色查找表,即调色板。 2、7对图像进行描述的数据信息一般应至少包括: (1)图像的大小,也即图像的宽与高 (2)表示每个像素需要的位数,当其值为1时说明就是黑白图像,当其值为4时说明就是16色或16灰度级图像,当其值为8时说明就是256色或256灰度级图像,当其值为24就是说明就是真彩色图像。 同时,根据每个像素的位数与调色板的信息,可进一步指出就是16色彩色图像还就是16灰度级图像;就是256色彩色图像还就是256灰度级图像。 (3)图像的调色板信息。 (4)图像的位图数据信息。 对图像信息的描述一般用某种格式的图像文件描述,比如BMP等。在用图像文件描述图像信息时,相应的要

数字图像处理大作业

大作业指导书 题目:数字图像处理 院(系):物联网工程学院 专业: 计算机 班级:计算机1401-1406 指导老师: 学号: 姓名: 设计时间: 2016-2017学年 1学期

摘要 (3) 一、简介 (3) 二、斑点数据模型 .参数估计与解释 (4) 三、水平集框架 (5) 1.能量泛函映射 (5) 2.水平集传播模型 (6) 3.随机评估方法 (7) 四、实验结果 (8) 五、总结 (11)

基于水平集方法和G0模型的SAR图像分割 Abstract(摘要) 这篇文章提出了一种分割SAR图像的方法,探索利用SAR数据中的统计特性将图像分区域。我们假设为SAR图像分割分配参数,并与水平集模型相结合。分布属于G分布中的一种,处于数据建模的目的,它们已经成功的被用于振幅SAR图像中不同区域的建模。这种统计数据模型是驱动能量泛函执行区域映射的基础,被引用到水平集传播数值方案中,将SAR 图像分为均匀、异构和极其异构区域。此外,我们引入了一个基于随机距离和模型的评估过程,用于量化我们方法的鲁棒性和准确性。实验结果表明,我们的算法对合成和真实SAR 数据都具有准确性。+ 简介 1、Induction(简介) 合成孔径雷达系统是一种成像装置,采用相干照明比如激光和超声波,并会受到斑点噪声的影响。在SAR图像处理过程中,返回的是斑点噪声和雷达切面建模在一起的结果。这个积性模型(文献[1])因包含大量的真实SAR数据,并且在获取过程中斑点噪声被建模为固有的一部分而被广泛应用。因此,SAR图像应用区域边界和目标检测变得更加困难,可能需要斑点去除。因此,斑点去除是必需的,有效的方法可以在文献[2][3][4][5][6][7][8][9][10]中找到。 对于SAR图像分割,水平集方法构成一类基于哈密顿-雅克比公式的重要算法。水平集方法允许有效的分割标准公式,从文献[12]中讨论的传播函数项可以得到。经典方法有着昂贵的计算成本,但现在的水平集的实现配置了有趣的低成本的替换。 水平集方法的一个重要方面,比如传播模型,可以用来设计SAR图像的分割算法。这个传播函数能够依据伽马和伽马平方根法则将斑点统计进行整合,函数已经被广泛地应用于SAR图像中的均质区域分割。Ayed等基于伽马分布任意建模,设计方案将SAR图像分成多个均质区域。尽管多区分割问题已经解决,该方案人需要一定数量的区域作为输入。Shuai 和Sun在文献[16]中提出对这个方法进行了改进,他们使用了一个有效的传播前收敛判断。Marques等引入了一个类似于含有斑点噪声图像中目标检测的框架,将基于本地区域的斑点噪声统计融合进去。这些作者采用伽马平方根对均质区域进行建模并用一个自适应窗口方案检测本地的同质性。 最近,新的SAR数据模型比如K,G,显示出了优势。经典法则受限于均质区域特性的描述,而最近的法则展现出了在数据建模中更有吸引力的特性。法则允许同构、异构和高度异构幅度SAR数据的建模。这个分布族提供了一组参数,可以描述SAR图像中的不同区域。分布的参数信息,可以被广泛的应用于设计SAR图像处理和分类技术。在文献[21]中,Mejail 等人介绍了SAR监督数据分类器,它基于其参数映射并实现了有趣的结果。Gambini等人在文献[22]中使用这个分布的一个参数来量化SAR数据的粗糙度,通过活动轮廓和B样条差值来检测边缘。然而,这种技术需要一个初始分割步骤,并受拓扑限制。一般来说,活动轮廓方法不能解决不连续区域分割的问题。 本文介绍了一种新的水平集算法来实现SAR图像中均质、异构和极其异构区域分割的目标。由于分布能够描述SAR图像的同质性和规模,我们的方法采用分布对斑点数据进行建模。这些分布参数基于每一个域点进行估计,通过这些信息,我们可以在水平集分割框架内得到一个能量泛函来驱动向前传播(front propagation)。该泛函以最大化不同区域平均能量间的差异作为结束。最终水平集阶段以能量带作为依据得到SAR图像的分割结果。

数字图像处理 作业1汇总

数字图像处理 报告标题:01 报告编号: 课程编号: 学生姓名: 截止日期: 上交日期:

摘要 (1)编写函数计算灰度图像的均方误差(MSE)、信噪比(SNR)、峰值信噪比(PSNR)、平均绝对误差(MAE);(2)编写函数对灰度图像经行降采样,直接消除像素以及消除像素前进行简单平滑滤波;(3)编写函数对图像进行放大,分别使用像素直接复制和双线性插值的方法:(4)编写函数用题目给出的量化步骤Q去量化灰度图像,并给出相应的MSE和直方图;(5)编写函数对灰度图像执行直方图均衡化,显示均衡前后的直方图。同时,熟悉使用MATLAB,并且熟练操作对图像进行各种修改变换等。 KEY WORD :MATLAB MSE、PSNR 直方图量化

技术探讨 数字图像处理是基于Matlab来实现的,由于Matlab 独特的功能和对矩阵,图像,函数灵活的处理,因而用于图像的处理相当的方便。 task1 均方误差(MSE),信噪比(SNR),峰值信噪比(PSNR),平均绝对误差(MAE)。可以使用使用for循环语句,分别计算图像MSE/SNR/PSNR/MAE,具体的计算公式见附录代码,下面只附运算原理代码 均方误差(MSE): sum=sum+(a(i,j)-b(i,j))^2; MSE=sum/(M*N) 信噪比(SNR): sum2=sum2+a(i,j)^2; SNR=10*log10(sum2/MSE) 峰值信噪比(PSNR): sum=sum+(a(i,j)-b(i,j))^2; PSNR=10*log10(255^2/MSE) 平均绝对误差(MAE): sum=sum+a(i,j)+b(i,j); MAE=sum/(M*N) 在每次对同一个图像处理时它们的均方误差(MSE),信噪比(SNR),峰值信噪比(PSNR),平均绝对误差(MAE)都会有所不同,因为它是原图像与加噪后的图像比较,而电脑的每次操作都会对加噪过得图像有影响。 task3 按比例缩小灰度图像 (1)直接消除像素点: I1=g(1:m:end,1:m:end);I1 为缩小后的图像,g为原图。 (2)先平滑滤波再消除像素点: 滤波函数,g=imfilter(I,w,'corr','replicate'); task4 对图像的放大运用了pixel repetition法以及双线性插值法: 它有三种插值法:即最近邻插值(pixel repetition)、双线性插值、双三次插值(缩放倍数为0.5) ;缩放与放大由给定的参数来确定。 ;缩放与放大由给定的参数来确定。而缩小则同样适用I1=g(1:m:end,1:m:end); 而放大的代码为“J=imresize(I,m,'nearest');%使用pixel repetition法”和“J=imresize(I,m,'bilinear');%使用双线性插值法” 放大倍数更改m值即可 task4 对图像的量化,使用“J=histeq(I,x); ”,x为可变的量化步长 task5 灰度图像的量化和直方图均衡化直接调用函数。“J=histeq(I)”“imhist(I,64)”

《数字图像处理》结课小论文

2013-2014年第一学期《数字图像处理》科目考查卷 专业:通信工程班级:任课教师:王新新 姓名:学号:成绩: 一 Deblurring Images Using the Wiener Filter ——使用维纳滤波器进行图像去模糊简介 在人们的日常生活中,常常会接触很多的图像画面,而在景物成像的过程中有可能出现模糊,失真,混入噪声等现象,最终导致图像的质量下降,我们现在把它还原成本来的面目,这就叫做图像还原。引起图像的模糊的原因有很多,举例来说有运动引起的,高斯噪声引起的,斑点噪声引起的,椒盐噪声引起的等等,而图像的复原也有很多,常见的例如逆滤波复原法,维纳滤波复原法,约束最小二乘滤波复原法等等。它们算法的基本原理是,在一定的准则下,采用数学最优化的方法从退化的图像去推测图像的估计问题。因此在不同的准则下及不同的数学最优方法下便形成了各种各样的算法。而我接下来要介绍的算法是一种很典型的算法,维纳滤波复原法。它假定输入信号为有用信号与噪声信号的合成,并且它们都是广义平稳过程和它们的二阶统计特性都已知。维纳根据最小均方准则,求得了最佳线性滤波器的的参数,这种滤波器被称为维纳滤波器。 维纳滤波器是最小均方差准则下的最佳线性滤波器,它在图像处理中有着重要的应用。本文主要通过介绍维纳滤波的结构原理,以及应用此方法通过MATLAB 函数来完成图像的复原。关键词:维纳函数、图像复原。

二维纳滤波器结构 维纳滤波自身为一个FIR或IIR滤波器,对于一个线性系统,如果其冲击响应为h(n),则当输入某个随机信号x (n)时, 式(1) 这里的输入 式(2) 式中s(n)代表信号,v(n)代表噪声。我们希望这种线性系统的输出是尽可能地逼近s(n)的某种估计,并用s^(n)表示,即 式(3) 因而该系统实际上也就是s(n)的一种估计器。这种估计器的主要功能是利用当前的观测值 x(n)以及一系列过去的观测值x(n-1),x(n-2),……来完成对当前信号值的某种估计。维纳滤波属于一种最佳线性滤波或线性最优估计,是一最小均方误差作为计算准则的一种滤波。设信号的真值与其估计值分别为s(n)和) s^(n),而它们之间的误差 式(4) 则称为估计误差。估计误差e(n)为可正可负的随机变量,用它的均方值描述误差的大小显然更为合理。而均方误差最小,也就是 式(5) 最小。利用最小均方误差作为最佳过滤准则比较方便,它不涉及概率的描述,而且以它导出的最佳线性系统对其它很广泛的一类准则而言是属最佳。 图1 维纳滤波器一般结构

数字图像处理大作业

1、下图是一用于干涉原理进行测试的干涉场图像,要求判读条纹的间距,请给 出图像处理的方案并说明每一步的作用及其对其它处理步骤可能产生的影响。 解:步骤与思路: ○1.进行模糊处理,消除噪声 ○2.边缘检测,进行图像增强处理 ○3.二值化图像,再进行边缘检测,能够得到很清晰的边界。 ○4.采用横向标号法,根据值为1像素在标号中的相邻位置可以确定间距 I=imread('xz mjt.bmp'); I1=medfilt2(I); %对图像中值滤波 imshow(I1); [m,n]=size(I1); for i=1:m for j=1:n if(I1(i,j)<100) %阈值为100 I1(i,j)=255; else I1(i,j)=0; %进行二值化 end end end figure; imshow(I1);

Y1=zeros(1,25); y2=y1; c=y2; i=100; for j=1:1200 if (I1(i,j)==255&&I1(i,j+1)==0) Y1=j+1; end if (I1(i,j)==0&&I1(i,j+1)==255) Y2=j; end end for i=1:25 c=Y2(i)-Y1(i) end c %找出每两个条纹之间的距离

2. 现有8个待编码的符号m0,……,m7,它们的概率分别为0.11,0.02,0.08,0.04,0.39,0.05,0.06,0.25,利用哈夫曼编码求出这一组符号的编码并画出哈夫曼树。 3. 请以图像分割方法为主题,结合具体处理实例,采用期刊论文格式,撰写一篇小论文。

数字图像处理部分作业答案

3.数字化图像的数据量与哪些因素有关? 答:数字化前需要决定影像大小(行数M、列数N)和灰度级数G的取值。一般数字图像灰度级数G为2的整数幂。那么一幅大小为M*N,灰度级数为G的图像所需的存储空间M*N*g(bit),称为图像的数据量 6.什么是灰度直方图?它有哪些应用?从灰度直方图你能获得图像的哪些信息? 答:灰度直方图反映的是一幅图像中各灰度级像素出项的频率之间的关系。以灰度级为横坐标,纵坐标为灰度级的频率,绘制频率同灰度级的关系图就是灰度直方图。 应用:通过变换图像的灰度直方图可以,使图像更清晰,达到图像增强的目的。 获得的信息:灰度范围,灰度级的分布,整幅图像的平均亮度。但不能反映图像像素的位置。 2. 写出将具有双峰直方图的两个峰分别从23和155移到16和255的图像线性变换。 答:将a=23,b=155 ;c=16,d=255代入公式: 得 1,二维傅里叶变换有哪些性质?二维傅里叶变换的可分离性有何意义? 周期性,线性,可分离性,比例性质,位移性质,对称性质,共轭对称性,差分,积分,卷积,能量。 意义:分离性表明:二维离散傅立叶变换和反变换可用两组一维离散傅立叶变换和反变换来完成。 8.何谓图像平滑?试述均值滤波的基本原理。 答:为了抑制噪声改善图像质量所进行的处理称图像平滑或去噪。 均值滤波是一种局部空间域处理的算法,就是对含有噪声的原始图像f(x,y)的每个像素点取一个领域S,计算S中所有像素的灰度级平均值,作为空间域平均处理后图像g(x,y)像素值。 9.何谓中值滤波?有何特点? 答:中值滤波是对一个滑动窗口内的诸像素灰度值排序,用中值代替窗口中心像素的原来灰度值,它是一种非线性的图像平滑法。 它对脉冲干扰及椒盐噪声的的图像却不太合适。抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。但它对点、线等细节较多 6图像几何校正的一般包括哪两步?像素灰度内插有哪三种方法?各有何特点? 答:1)建立失真图像和标准图像的函数关系式,根据函数关系进行几何校正。 2)最近邻插值,双线性插值,三次卷积法 3)最近邻插值:这种插值方法运算量小,但频域特性不好。 3、若f(1,1)=4,f(1,2)=7,f(2,1)=5,f(2,2)=6,分别按最近邻元法、双线性插值法确定点(1.2,1.6)的灰度值。 最近邻元法:点(1.2,1.6)离(1,2)最近,所以其灰度值为7.双线性法:f(i+u,j+v)=(1-u)(1-v)f(i,j)+(1-u)vf(i,j+1)+u(1-v)f(i+1,j)+uvf(i+1,j+1) 将i=1,j=1,u=0.2,v=0.6代入,求得:f(i+u,j+v)=5.76。四舍五入取整后,得该点其灰度值为6

数字图像处理结课论文...docx

利用拉普拉斯算法对模糊图像进行 锐化处理 学院:电气信息工程学院 专业:通信工程 姓名:田鸿龙 学号:20110107 摘要:本文描述了拉普拉斯高 斯边缘检测算法结合算法在DelphiG编程环境下对BMP格式 的灰度图像进行了边缘检测处理,从而体现其优越性。彩色图

像增强过程中,对图像进行锐化处理是一个重要环节。介绍了 图像锐化处理的槪念和拉普拉斯算子的算法原理。 关键词:边缘检测,图像处理,拉普拉斯高斯算法,Sobel算子。 图像锐化(image sharpening)就是补偿图像的,增强图像的边缘及灰度跳变的部分,使图像变得淸晰,亦分空域处理和频域处理两类。 数字图像的边缘检测是图像分割、区域识别和特征提取等图像分析领域的重要基础。图像的边缘是图像的最基本的特征,是指图像局部亮度变化最显著的地方,通常与图像亮度或图像亮度的一阶导数的不连续性有关。对于数字图像灰度值的显著变化可以用梯度来表示,边缘检测很大程度上来说就是求梯度。边缘检测的好坏直接影响到图像理解和识别的质虽,选择什么样的边缘检测算法就很关键。本文引入拉普拉斯高斯算法,讨论其工作原理,利用Delphi结合拉普拉斯髙斯算法对BMP格式的灰度图像进行了边缘检测处理并对比其它算法给出了拉普拉斯高斯算子的优越性。 一、图像锐化 图像模糊的主要原因是图像中的高频成分低于低频成分,它对图像量的影响体现在两个不同灰度区域的边界部分。图像锐化处理的目的是加强图像中景物的边缘和轮廓,使模糊的图像变得更淸晰。它是一种使图像原有信息变换为有利于人眼观察的质蚩:、消除模糊、好的视觉效果、图像边缘轮解分明。图像的模糊实质就是图像受到平均或积分运算造成的,因此可以对图像进行逆运算如微分运算来使图像清晰化。从频谱角度来分析,图像模糊的实质是其高频分量被衰减,因而可以通过高通滤波操作来淸晰图像。但要注意,能够进行锐化处理的图像必须有较高的性噪比,否则锐化后图像性噪比反而更低,从而使得噪声增加的比信号还要多,因此一般是先去除或减轻噪声后再进行锐化处理。 图像的锐化一般有两种方法一种是微分法,另外一种是高通滤波法拉普拉斯锐化法是属于常用的微分锐化法。 1.1图像锐化的權念 在图像增强过程中,通常利用各类图像平滑算法消除噪声,图像的常见噪声主要有加性噪声、乘性噪声和量化噪声等。一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息也主要集中在其高频部分。这将导致

《数字图像处理》习题解答

胡学龙编著 《数字图像处理(第 3 版)》思考题与习题参考答案 目录 第 1 章概

述 (1) 第 2 章图像处理基本知识 (4) 第 3 章图像的数字化与显示 (7) 第 4 章图像变换与二维数字滤波 (10) 第 5 章图像编码与压缩 (16) 第 6 章图像增强 (20) 第 7 章图像复原 (25) 第 8 章图像分割 (27) 第 9 章数学形态学及其应用 (31) 第 10 章彩色图像处理 (32)

第1章概述 连续图像和数字图像如何相互转换 答:数字图像将图像看成是许多大小相同、形状一致的像素组成。这样,数字图像可以 用二维矩阵表示。将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像 (连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。图像的数字 化包括离散和量化两个主要步骤。在空间将连续坐标过程称为离散化,而进一步将图像的幅 度值(可能是灰度或色彩)整数化的过程称为量化。 采用数字图像处理有何优点 答:数字图像处理与光学等模拟方式相比具有以下鲜明的特点: 1.具有数字信号处理技术共有的特点。(1)处理精度高。(2)重现性能好。(3)灵活性高。 2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。 3.数字图像处理技术适用面宽。 4.数字图像处理技术综合性强。 数字图像处理主要包括哪些研究内容 答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的 图像。 说出图像、视频(video)、图形(drawing)及动画(animation)等视觉信息之间的联系和区别。 答:图像是用成像技术形成的静态画面;视频用摄像技术获取动态连续画面,每一帧可

数字图像处理大作业

大作业要求 1.数字图像处理中的图像增强、图像分割、数学形态学、图像编码这几个章节中,围绕你所感兴趣的题目写一篇综述。 2.要求: (1)在中国知网上下载5篇以上相关文章,结合上课所学内容,确定综述的内容。(2)文字3000字以上,包含 a. 课题背景和概述 b. 国内外研究现状 c. 技术应用(可以实现哪些功能,实 现的方法及结果 d. 结论 e. 学习体会 f.参考文献 (3)综述的排版: 正文层次格式如下: 1(空两格)×××××(居中,三号宋体,加粗,占4行) 1.1×××(左顶格,四号宋体,加粗,占 2.5行,不接排) 1.1.1×××(左顶格,小四号宋体,加粗,占2行,不接排) a.(左空两格,a.后空一格)×××(小4号宋体,加粗) (正文)×××××(小4 号宋体,接排)

(1)(左空两格,(1)后空一格)×××(小4号宋体,加粗) (正文)×××××(小4号宋体,接排) 1)(左空两格,1)后空一格)(小4号宋体,加粗) (正文)×××××(小4号宋体,接排) 正文中段落一律段前、段后0磅,行距为20磅,对齐方式:两端对齐。小4号字体。 论文中的图和表居中,并且有图题和表题。 例如: 图 1 主站工作过程(5号字体,加粗) 表1 不同总线速率下从站的延迟时间(5号字体,加粗) 速率(Kbit/s ) 9.6 19.2 93.75 187.5 500 1500 1200SDR minT (bit T ) 11 11 11 11 11 11 11 SDR maxT (bit T ) 60 60 60 60 100 150 800 参考文献按照下面形式给出: 参考文献 (居中,三号,宋体,加粗,占4行)

数字图像处理期末作业1

上海电力学院 实验报告 实验课程名称:数字图像处理 实验项目名称:实验7 细胞面积计算与个数统计 班级: 2009073 姓名:杨祯 学号: 20092006

一、实验目的 1、熟悉Visual C++开发环境和Windows编程模型。 2、掌握设备无关位图的数据格式。 3、学会使用DIBAPI函数访问设备无关位图。 4、结合实例学习如何在应用程序中添加图像处理算法。 5、运用所学的图像处理方法对细胞图像进行细胞面积计算与个数统计。 二、实验原理 在填充孔洞以后的细胞图像中出现粘连,可以通过较为复杂的算法将粘连细胞分割开来。这里采取如下简单方法进行细胞计数和面积计算. (1)对填充孔洞后后细胞图像进行标记处理,初步计算出细胞的个数; (2)计算不同标记区域的像素数,并用区域的像素数代表其面积; (3)若某个标记区域像素数大于1000,则认为该标记区域为两个粘连在一起的细胞,原细胞数量增加1;若某个标记区域像素数小于70,则视为噪声,原细胞数量减1。 三、实验步骤 1、在资源浏览方式下,选择Menu节点,点击IDR_MAINFRAME,增加操作按钮,见下图,如在菜单“细胞计数”中添加“统计个数和面积”按钮。 2、对该按钮进行编辑,如图:

ID设为ID_CELLCOUNT E,标题设为“统计个数和面积”。 3、(1)按下快捷键CTRL+W,弹出向导对话框,利用向导在CCellCounView类中添加 响应函数—腐蚀OnCellcount,如图: 1、注意类名 2、选择ID 4、点击按钮 3、双击COMMAND 添加函数后的结果 (2)点击Edit Code按钮后,在CCellCountView.cpp文件中便添加了OnCellcount ()函数,此 时需要在该函数中添加实现代码,具体如下: void CCellCountView::OnCellcount() { CCellCountDoc* pDoc=GetDocument(); if( pDoc->m_hDIB!=NULL ) {

《数字图像处理》复习大作业及答案

2014年上学期《数字图像处理》复习大作业及参考答案 ===================================================== 一、选择题(共20题) 1、采用幂次变换进行灰度变换时,当幂次取大于1时,该变换是针对如下哪一类图像进行增 强。(B) A 图像整体偏暗 B 图像整体偏亮 C图像细节淹没在暗背景中D图像同时存在过亮和过暗背景 2、图像灰度方差说明了图像哪一个属性。(B ) A 平均灰度 B 图像对比度 C 图像整体亮度D图像细节 3、计算机显示器主要采用哪一种彩色模型( A ) A、RGB B、CMY或CMYK C、HSI D、HSV 4、采用模板[-1 1]T主要检测( A )方向的边缘。 A.水平 B.45? C.垂直 D.135? 5、下列算法中属于图象锐化处理的是:( C ) A.低通滤波 B.加权平均法 C.高通滤波 D. 中值滤波 6、维纳滤波器通常用于( C ) A、去噪 B、减小图像动态范围 C、复原图像 D、平滑图像 7、彩色图像增强时, C 处理可以采用RGB彩色模型。 A. 直方图均衡化 B. 同态滤波 C. 加权均值滤波 D. 中值滤波 8、__B__滤波器在对图像复原过程中需要计算噪声功率谱和图像功率谱。 A. 逆滤波 B. 维纳滤波 C. 约束最小二乘滤波 D. 同态滤波 9、高通滤波后的图像通常较暗,为改善这种情况,将高通滤波器的转移函数加上一常数量以 便引入一些低频分量。这样的滤波器叫B。 A. 巴特沃斯高通滤波器 B. 高频提升滤波器 C. 高频加强滤波器 D. 理想高通滤波器 10、图象与灰度直方图间的对应关系是 B __ A.一一对应 B.多对一 C.一对多 D.都不 11、下列算法中属于图象锐化处理的是:C A.低通滤波 B.加权平均法 C.高通滤 D. 中值滤波 12、一幅256*256的图像,若灰度级数为16,则存储它所需的比特数是:( A ) A、256K B、512K C、1M C、2M 13、噪声有以下某一种特性( D ) A、只含有高频分量 B、其频率总覆盖整个频谱 C、等宽的频率间隔内有相同的能量 D、总有一定的随机性 14. 利用直方图取单阈值方法进行图像分割时:(B) a.图像中应仅有一个目标 b.图像直方图应有两个峰 c.图像中目标和背景应一样大 d. 图像中目标灰度应比背景大 15. 在单变量变换增强中,最容易让人感到图像内容发生变化的是( C )

数字图像处理作业 1

数字图像处理作业 1 1.基本问题 a.什么是数字图像处理,英语全称是什么? 数字图像处理:对图像进行一些列的操作,以达到预期目的的技术,可分为模拟图像处理和数字图像处理两种方式。英文全称:Image Processing b.数字图像处理与什么领域的发展密切相关? 数字图像处理与数字计算机的发展,医学,遥感,通信,文档处理和工业自动化等许多领域的发展密切相关。 c.人类主要通过什么来感知获取信息的? 主要通过人的视觉、味觉、嗅觉、触觉、听觉以及激光、量子通信、现代计算机网络、卫星通信、遥感技术、数码摄影、摄像等来获取信息。 d.数字图像处理技术与哪些学科领域密切相关? 与数学、物理学、生理学、心理学、电子学、计算机科学等学科密切相关 e.数字图像处理在哪些领域得到广泛应用? 数字图像处理的应用越来越广泛,已渗透到工程、工业、医疗保健、航空航天、军事、科研、安全保卫等各个领域。 f.数字图像处理起源于什么年代? 20世纪20年代 g.现代大规模的图像处理需要具备哪些计算机能力? 需要具备图像处理、图像分析、图像理解计算机能力 h.根据人的视觉特点,图像可分为哪两种图像? 分为可见图像和不可见图像。 i.根据光的波段,图像可分为哪几种图像? 分为单波段、多波段和超波段图像。 j.图像数字与模拟图像的本质区别是什么? 区别: 模拟图像:空间坐标和明暗程度都是连续变化的、计算机无法直接处理。 数字图像:空间的坐标和灰度都不连续、用离散的数字表示,能被计算机处理。 2.通过互联网,查下数字图像处理有哪些应用?选一个应用范例即可。具体描绘如何通过数字图像处理技术来实现其应用。要有图像范例说明。 数字图像处理主要应用领域有:生物医学,遥感领域,工业方面,军事公安领域,通信领域,交通领域等。我就生物医学领域做一个简单介绍。 自伦琴1895年发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理,医学图像在临床诊断、教学科研等方面有重要的作用。目前的医学图像主要包括CT (计算机断层扫描) 图像、MRI( 核磁共振)图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。 医学图像处理跨计算机、数学、图形学、医学等多学科研究领域,医学图像处理技术包括图像变换、图像压缩、图像增强、图像平滑、边缘锐化、图像分割、图像识别、图像融合等等。在此联系数字图像处理的相关理论知识和步骤设计规划系统采集和处理的具体流程同时充分考虑到图像采集设备的拍摄效果以及最终处理结果的准确性。下面是关于人体微血管显微图像的采集实例。

数字图像处理作业

目录 1 引言 (4) 2 基于纹理特征的图像检索方案 (5) 2.1 双树复小波变换原理 (5) 2.2 灰度共生矩阵 (5) 3 图像检索的实验设计 (6) 3.1 图像检索算法的描述 (6) 3.2 双树复小波纹理特征的提取 (7) 3.3 灰度共生矩阵纹理特征的提取 (7) 3.4 相似性度量 (8) 4 实验思路及结果分析 (9) 参考文献 (9)

基于纹理的图像检索技术 摘要本文主要基于图像的纹理特征,在改进DWT小波变换和灰度共生矩阵的缺陷后,进行检索。传统的DWT小波变换在提取图像纹理特征时存在震荡、平移变化、混频和缺乏方向性四种缺陷。为克服这些缺陷,本文采用双树复小波变换对图像检索中的查询图像和目标图像进行分解,提取6个方向上的纹理特征,为了弥补双树复小波变换缺少不同尺度纹理的空间分布特征的缺陷,又利用这两种图像的灰度共生矩阵提取4个统计量特征;最后用Canberra距离进行相似性度量并输出图像检索的结果。 关键字:图像检索;双树复小波;灰度共生矩阵;纹理特征。

ABSTRACT This paper mainly based on image texture feature, the improvement of DWT wavelet transform and the defect of gray level co-occurrence matrix after the search. Traditional DWT wavelet transform in image texture feature extraction are concussion, translation, frequency mixing and lack of direction four kinds of defects. To overcome these defects, this paper adopts double tree after wavelet transform of image retrieval query image and target image decomposition, the texture feature extraction six direction, in order to make up for the double tree after wavelet transform of the spatial distribution of different texture features of the defects, and use of these two kinds of image gray level co-occurrence matrix extract four statistic characteristics; Finally in Canberra distance similarity measure and the results of the output image retrieval. Key words: image retrieval; Double tree complex wavelet; Gray level co-occurrence matrix; Texture feature.

西安交通大学大学数字图像处理大作业

数字图像处理

目录 作业一 (1) 一作业要求 (1) 二源代码 (1) 三运行结果 (3) 作业二 (5) 一作业要求 (5) 二算法描述 (5) 三源代码 (7) 四运行结果 (10)

作业一 一作业要求 在图像的空间域滤波操作中,会出现有部分掩膜矩阵在图像外面的情况,所以需要给图像先加入一个边界,执行完操作之后,再去掉这个边界,保证图像中所有的像素都参与矩阵运算。 二源代码 byte[,] filter(byte[,]f,float[,]mask) { int w = f.GetLength(0); int h = f.GetLength(1); byte[,] g = new byte[w,h]; int M = mask.GetLength(0)/2; int N = mask.GetLength(1)/2; for (int y=N;y255) return 255; if (v<0) return 0; return (byte)v;

} float[,] averagingMask(intM,int N) { float[,] mask = new float[2*M+1,2*N+1]; for (int m=-M;m<=M;m++) for (int n=-N;n<=N;n++) mask[M+m,N+n] = 1.0f/((2*M+1)*(2*N+1)); return mask; } byte[,] addboard(byte[,] f,intM,int N) { int w=f.GetLength(0); int h=f.GetLength(1); intgw=w+2*M; intgh=h+2*N; byte[,] g=new byte[gw,gh]; //add top board and bottom board for(inti=0;i

《数字图像处理》课后作业2015

《数字图像处理》课后作业(2015) 第2章 2.5 一个14mm?14mm的CCD摄像机成像芯片有2048?2048个像素,将它聚焦到相距0.5m远的一个方形平坦区域。该摄像机每毫米能分辨多少线对?摄像机配备了一个35mm镜头。(提示:成像处理模型见教材图2.3,但使用摄像机镜头的焦距替代眼睛的焦距。) 2.10 高清电视(HDTV, High Definition TV )使用1080条水平电视线(TV Line)隔行扫描来产生图像(每隔一行在显像管表面画出一条水平线,每两场形成一帧,每场用时1/60秒,此种扫描方式称为1080i,即1080 interlace scan;对应的有1080p,即1080 progressive scan,逐行扫描)。图像的宽高比是16:9。水平电视线数(水平行数)决定了图像的垂直分辨率,即一幅图像从上到下由多少条水平线组成;相应的水平分辨率则定义为一幅图像从左到右由多少条垂直线组成,水平分辨率通常正比于图像的宽高比。一家公司已经设计了一种图像获取系统,该系统由HDTV图像生成数字图像,彩色图像的每个像素都有24比特的灰度分辨率(红、绿、蓝分量各8比特)。请计算不压缩时存储90分钟的一部HDTV电影所需要的存储容量。 2.22 图像相减常用于在产品装配线上检测缺失的元件。方法是事先存储一幅对应于正确装配的产品图像,称为“金”图像(“golden” image),即模板图像。然后,在同类型产品的装配过程中,采集每一装配后的产品图像,从中减去上述模板图像。理想情况下,如果产品装配正确,则两幅图像的差值应为零。而对于缺失元件的产品,其图像与模板图像在缺失元件区域不同,两幅图像的差值在这些区域就不为零。在实际应用中,您认为需要满足哪些条件这种方法才可行? 第3章 3.5 在位平面分层中, (a)如果将低阶位平面的一半设为零值,对一幅图像的直方图大体上有何影响? (b)如果将高阶位平面的一半设为零值,对一幅图像的直方图又有何影响? 3.6 试解释为什么离散直方图均衡化技术一般不能得到平坦的输出直方图。 3.14 右图所示的两幅图像差异很大,但它们的直方图却相同。假设每幅图像都用一个3×3的均值滤波模板进行模糊处理,那么: (a)模糊后的两幅图像的直方图还相同吗?试解释原因。 (b)如果您认为模糊后的两幅图像的直方图不相同,请画出这两幅 图像的直方图。

(完整版)数字图像处理每章课后题参考答案

数字图像处理每章课后题参考答案 第一章和第二章作业:1.简述数字图像处理的研究内容。 2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容? 3.列举并简述常用表色系。 1.简述数字图像处理的研究内容? 答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面, 将这几个方面展开,具体有以下的研究方向: 1.图像数字化, 2.图像增强, 3.图像几何变换, 4.图像恢复, 5.图像重建, 6.图像隐藏, 7.图像变换, 8.图像编码, 9.图像识别与理解。 2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容? 答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。 根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。 图像处理着重强调在图像之间进行的变换。比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。图像处理主要在图像的像素级上进行处理,处理的数据量非常大。图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。 图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。 第三章图像基本概念

数字图像处理大作业报告

数字图像处理 实验报告 实验选题:选题二 组员: 学号: 班级: 指导老师: 实验日期:2019年5月22日

一、实验目的及原理 1.识别出芯片的引脚 2.熟悉并掌握opencv的某些函数的功能和使用方法 原理:通过滤波、形态学操作得到二值图,再在二值图中设置条件识别引脚部分。 二、实现方案 对图片滤波、调节阈值做边缘检测过滤掉一部分图片中干扰元素;然后通过膨胀、腐蚀操作来减少引脚的空心部分;再通过findContours()函数找到引脚的边缘并得到轮廓的点集,设置特定的长宽比和矩形面积识别引脚部分。 三、实验结果

四、源码 #include #include #include"opencv2/highgui/highgui.hpp" #include"opencv2/imgproc/imgproc.hpp" using namespace std; using namespace cv; int main(int argv, char **argc) { //载入图片 Mat srtImag = imread("2.jpg"); Mat G_blur = srtImag.clone(); //降噪 blur(G_blur, G_blur, Size(5, 5)); //imshow("降噪", G_blur); //Canny边缘检测 Mat Canny_Imag = G_blur; Canny_Imag = Canny_Imag > 176; Canny(G_blur, Canny_Imag, 300, 50, 3); //imshow("边缘检测", Canny_Imag); //膨胀 Mat element = getStructuringElement(MORPH_RECT, Size(10, 10)); dilate(Canny_Imag, Canny_Imag, element); //imshow("膨胀", Canny_Imag); //腐蚀 Mat element_1 = getStructuringElement(MORPH_RECT, Size(11, 11)); erode(Canny_Imag, Canny_Imag, element_1); //imshow("腐蚀", Canny_Imag); //查找轮廓 vector>contours; vectorhierarchy; findContours(Canny_Imag, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE); vector> contour_s(contours.size());//该数组共有contours.size()个轮廓的点集 vector Rec_s(contours.size());//逼近多边形的点集数组

相关文档
最新文档