时间序列ARIMA模型在R中的实现

时间序列ARIMA模型在R中的实现
时间序列ARIMA模型在R中的实现

J I A N G S U U N I V E R S I T Y

江苏省餐饮业零售总额分析预测

学校:江苏大学

学院:财经学院

班级:统计1201

组员:韩亚琼3120812015

马海燕3120812022

顾君颖3120812020

王培培3120812009

陆金龙3120812029

白卓3120812028

完成时间:2014年12月13日星期六

一、摘要

二、引言

三、数据分析

原始数据的获取:

本文所有的样本数据均来自《江苏统计年鉴——2014》(https://www.360docs.net/doc/6c6207039.html,/2014nj/nj14.htm)

得到的样本数据参见表1:

表1 按行业分社会消费品零售总额

这里我们仅用到第三列数据,为了方便分析,我们将餐饮业零售总额序列命名为caterts。

第一步序列的平稳性检验

为判断一个序列是否平稳,我们主要通过时序图以及自相关图进行检验。对caterts做时序图,有图形发现有明显的指数趋势,序列非平稳,也可以初步发现江苏省的餐饮业零售总额逐年递增,尤其是在新世纪以后,人们的生活水平逐年提高,对餐饮业的贡献也增大:

图1 caterts序列时序图

因为原序列有明显的指数趋势,故先对数列进行对数变换得到新的数列

logcatets,序列图如下,具有明显的非线性增长趋势:

图2 对数化后的时序图

对具有明显线性趋势的数列常用的平稳化措施是差分,我们对logcaterts序列进行一阶差分得到新的数列difflogcaterts,时序图如下:

图3 对数化和一阶差分后的时序图

通过对时序图分析发现数列具有平稳性,为了方便分析,我们对difflogcaterts 序列进行中心化处理,得到新的数列x。对x进行ADF检验(单位根检验)。R

语言中有专门的fUnitRoots包,里面有urdftest功能,是专门进行序列的ADF单位根检验,通过R软件得到如下结果:

Title:Augmented Dickey-Fuller Unit Root Test

Test Results:

Test regression none

Call:

lm(formula = z.diff ~ https://www.360docs.net/doc/6c6207039.html,g.1 - 1 + https://www.360docs.net/doc/6c6207039.html,g)

Residuals:

Min 1Q Median 3Q Max

-0.224894 -0.051073 0.006261 0.043257 0.242110

Coefficients:

Estimate Std. Error t value Pr(>|t|)

https://www.360docs.net/doc/6c6207039.html,g.1 -0.59259 0.19455 -3.046 0.0047 **

https://www.360docs.net/doc/6c6207039.html,g 0.02909 0.18067 0.161 0.8731

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.08821 on 31 degrees of freedom

Multiple R-squared: 0.2853, Adjusted R-squared: 0.2392

F-statistic: 6.188 on 2 and 31 DF, p-value: 0.005481

Value of test-statistic is: -3.046

Critical values for test statistics:

1pct 5pct 10pct

tau1 -2.62 -1.95 -1.61

从结果可以看出ADF统计量为-3.046,在1%,5%,10%的置信水平下均拒绝原假设,认为序列x平稳。

第二步模型的识别与定阶

模型的识别与定阶主要是通过对序列的自相关和偏自相关观察得到的。通过R 软件的到序列x的自相关和偏自相关图:

图4 序列x的自相关图

图5 序列x的偏自相关图

通过自相关图和偏自相关图,可以发现序列x自相关明显拖尾,偏自相关有结尾的性质,在第十阶的时候,PACF超出了两倍的标准差,这可能是由于偶然因素引起的,可以考虑使用AR(1)和AR(11)模型,但是为了数据的完整性,尽量避免滞后期,可以考虑AR(1)模型。

在R语言中有专门的forecast包,包里的auto.arima函数可以对序列模型进行智能识别建模。通过R语言的智能识别功能得到如下结果:

Series: x

ARIMA(1,0,0) with zero mean

Coefficients:

ar1

0.4126

s.e. 0.1512

sigma^2 estimated as 0.006901: log likelihood=37.33

AIC=-70.65 AICc=-70.28 BIC=-67.54

通过如剑的输出结果我们发现结果与我们预测的一样,均是AR(1)模型。

得到的模型方程为:

X t=0.1426X t?1+a t

第三步模型的适应性检验

模型的适应性检验实质上就是检验残差序列{a t}是否为白噪声序列。其中最主要的是{a t}序列的独立性检验。

通过R软件得到模型的残差序列的时序图(偏)自相关图:

图6 残差序列的时序、自相关和偏自相关图

通过对图形的观察,初步判断残差序列{a t}为白噪声。

R语言中的Box.test函数也可对残差序列进行白噪声检验。且得到的结果如下:

LAG LB p

[1,] 1 0.02128392 0.8840081

[2,] 2 0.08484764 0.9584635

[3,] 3 0.43750962 0.9323894

[4,] 4 0.696146050.9518033

[5,] 5 2.02913305 0.8450994

[6,] 6 2.03204959 0.9167275

[7,] 7 2.24882031 0.9447957

[8,] 8 2.45473056 0.9638085

[9,] 9 8.50017079 0.4846293

[10,] 10 10.925501510.3633515

[11,] 11 10.939876320.4483139

[12,] 12 13.844479050.3107497

可以发现无论滞后几期,P值均大于0.05,所以接受原假设,认为残差序列通过纯随机性检验。故模型最终为ARIMA(1,0,0),即为AR(1)

第四步模型参数的估计

模型参数的估计主要有矩估计,最小二乘估计(ML估计),极大似然估,

这里我们主要用的是最小二乘估计,估计的结果在第二步模型的识别中R语言智能建模中给出了,这里不做重复论述。模型的估计方程如下:

X t=0.1426X t?1+a t

第五步模型的预测

将模型的拟合值与模型的真实值进行画图对比,得到如下图:

图7 拟合值—真实值

发现拟合值与真实值之间有一定差别,这是由于残差序列的存在,将拟合值与残差序列相加得到的结果与X序列作图,结果如下:

图8 加上残差的拟合值—真实值

观察图8,可以发现拟合的特别好,所有的点都落在了真实值上。

我们用拟合的有效模型进行短期预测,比如我们预测2014年、2015年、2016、2017年和2018年的餐饮业零售总额。先预测2014年、2015年、2016年、2017年和2018年的x,再预测餐饮业零售总额。

在R语言中可以使用predict函数对序列进行预测,这里我们进行向前5步预测,得到点预测,区间预测。结果如下:

$pred

Time Series:

Start = 2014

End = 2018

Frequency = 1

[1] -0.025******* -0.010******* -0.0043260335 -0.0017851186 -0.0007366213 $se

Time Series:

Start = 2014

End = 2018

Frequency = 1

[1] 0.08307163 0.08986632 0.09097274 0.09115980 0.09119162

利用公式

X t±Zα

×S.E.

2

可以得到预测值的区间估计,点估计和区间估计具体结果如下:

通过还原零均值、差分和对数变换,就可以得到江苏省餐饮业零售总额(caterts)2014到2015年的预测值:

利用公式:

logcaterts2014=X2014+logcaterts2013+mean(difflogcaterts)

caterts2014=exp?(logcaterts2014)

得到江苏省2014年餐饮业的零售手总额预测值,以此类推,分别得到2015,2016,2017,2018年餐饮业零售总额的预测值。值得一体的是时间序列预测效果越好,则向前预测的阶数就越少。所以在该模型中预测最好的是2014年。

值得一体的是时间序列预测效果越好,则向前预测的阶数就越少。所以在该模型中预测最好的是2014年。

四、参考文献

[1] 王振龙.应用时间序列分析[M].北京:中国统计出版社,2010

[2] Paul Teetor .R语言经典实例[M]. 北京:机械工业出版社,2013

[3] Robert I.Kabacoff.R语言实战[M].北京:人民邮电出版社,2013

五、附录

R语言代码:

```{r}

catering<- read.table("E:\\catering.txt",header=F)

caterts<- ts(catering,start=1978,frequency=1) #数据时间序列化

plot.ts(caterts,main=("CATERING"),ylab="CATERING") #序列图

logcaterts<- log(caterts)

difflogcaterts<- diff(log(caterts)) #对数差分

plot(difflogcaterts, main="logged and diffed")

x <- scale(difflogcaterts,T,F) #零均值化

acf(x,10) #自相关

pacf(x,10) #偏自相关

corr<- acf(x,10)

cov<- acf(x,10,type = "covariance")

library(fUnitRoots) #ADF单位根检验

urdfTest(x)

library(forecast) #建模

fit<- auto.arima(x)

fit

resid<- fit$residual #生成残差序列

resid

plotForecastErrors(fit$residuals)

# 白噪声检验

Result=0

LAG=0

LB=0

p=0

for(i in 1:12){

Btest=Box.test(resid,type="Ljung-Box",lag=i)

LAG[i]=i

LB[i]=Btest$statistic

p[i]=Btest$p.value

Result=cbind(LAG,LB,p)

}

Result #接受原假设,认为resid序列为白噪声

#预测

pre=predict(fit,n.ahead=5)

pre

U=pre$pred + 1.96*pre$se

L=pre$pred - 1.96*pre$se

ts.plot(x,pre$pred,col=1:2)

lines(U,col="blue",lty="dashed")

lines(L,col="blue",lty="dashed")

plot(x,type="o")

lines(fitted(fit),col="2",pch=7)

points(fitted(fit),col="2",pch=7)

plot(x,type="o")

points(fitted(fit)+resid,col="blue",pch=20)

# 预测2014~2015年

x2014<- -0.025*******+logcaterts[36]+mean(difflogcaterts)

x2015<- -0.010*******+x2014+mean(difflogcaterts)

x2016<- -0.0043260335+x2015+mean(difflogcaterts)

x2017<- -0.0017851186+x2016+mean(difflogcaterts)

x2018<- -0.0007366213+x2017+mean(difflogcaterts)

forecast1 <- exp(x2014)

forecast2 <- exp(x2015)

forecast3 <- exp(x2016)

forecast4 <- exp(x2017)

forecast5 <- exp(x2018)

forecast1

forecast2

forecast3

forecast4

forecast5

y <- c(forecast1,forecast2,forecast3,forecast3,forecast4,forecast5) y <- t(t(y))

x_fit<- fitted(fit)

x_fit<- as.matrix(x_fit,ncol=1)

i<- 1

z <- 0

for (i in 1:35) {z[i] <- x_fit[i]+logcaterts[i]+mean(difflogcaterts)} x_fit_p<- as.matrix(z,ncol=1)

s <- c(x2014,x2015,x2016,x2017,x2018)

s <- t(t(s))

x_fit_p<- rbind(x_fit_p,s)

x_fit_pts<- ts(x_fit_p,start=1979,frequency=1)

#真实值与预测值图

plot.ts(caterts,main=("CATERING"),ylab="CATERING",ylim=c(0,4500),xlim=c(197 8,2018),type="l",col="black")

points(exp(x_fit_pts),pch=8,col="red")

```

基于ARIMA模型下的时间序列分析与预测

龙源期刊网 https://www.360docs.net/doc/6c6207039.html, 基于ARIMA模型下的时间序列分析与预测 作者:万艳苹 来源:《金融经济·学术版》2008年第09期 摘要:大多数的时间序列存在着惯性,或者说具有迟缓性。通过对这种惯性的分析,可以由时间序列的当前值对其未来值进行估计。本文以1949年到2004年江苏省社会消费品零售总额数据为研究对象,将这些数据平稳化并做分析,发现ARIMA(1,1,2)模型能比较好的对江苏省社会消费品零售总额进行市时间序列分析和预测,。 关键词:ARIMA;江苏省消费品零售总额;时间序列分析 一、引言 江苏省是一个经济大省,经济一直保持平稳较快增长,城乡居民收入都位于全国前茅,消费品需求旺盛,人们生活水平比较高。其中社会消费品零售总额是反映人民生活水平提高的一个很好的指标。所以对社会消费品零售总额做分析就比较重要。但是影响社会消费品零售总额的因素有很多,包括收入、住房、医疗、教育以及人们的预期等很多因素,而且这些因素之间又保持着错综复杂的联系。因此运用数理经济模型来分析和预测较为困难。所以本文采用ARIMA模型对江苏省的社会消费品零售总额进行分析,得出其规律性,并预测其未来值。 二、ARIMA模型的说明和构建 ARIMA模型又称为博克斯-詹金斯模型。ARIMA模型是由三个过程组成:自回归过程(AR(p));单整(I(d));移动平均过程(MA(q))。AR(p)即自回归过程,是指一个过程的当前值是过去值的线性函数。如:如果当前观测值仅与上期(滞后一期)的观测值有显著的线性函数关系,则我们就说这是一阶自回归过程,记作AR(1)。推广之,如果当前值与滞后p期的观测值都有线性关系则称p阶自回归过程,记作AR(p)。MA(q),即移动平均过程,是指模型值可以表示为过去残差项(即过去的模型拟合值与过去观测值的差)的线性函数。如:MA(1)过程,说明时间序列受到滞后一期残差项的影响。推广之,MA(q)是指时间序列受到滞后q期残差项的

多元时间序列建模分析

应用时间序列分析实验报告

单位根检验输出结果如下:序列x的单位根检验结果:

1967 58.8 53.4 1968 57.6 50.9 1969 59.8 47.2 1970 56.8 56.1 1971 68.5 52.4 1972 82.9 64.0 1973 116.9 103.6 1974 139.4 152.8 1975 143.0 147.4 1976 134.8 129.3 1977 139.7 132.8 1978 167.6 187.4 1979 211.7 242.9 1980 271.2 298.8 1981 367.6 367.7 1982 413.8 357.5 1983 438.3 421.8 1984 580.5 620.5 1985 808.9 1257.8 1986 1082.1 1498.3 1987 1470.0 1614.2 1988 1766.7 2055.1 1989 1956.0 2199.9 1990 2985.8 2574.3 1991 3827.1 3398.7 1992 4676.3 4443.3 1993 5284.8 5986.2 1994 10421.8 9960.1 1995 12451.8 11048.1 1996 12576.4 11557.4 1997 15160.7 11806.5 1998 15223.6 11626.1 1999 16159.8 13736.5 2000 20634.4 18638.8 2001 22024.4 20159.2 2002 26947.9 24430.3 2003 36287.9 34195.6 2004 49103.3 46435.8 2005 62648.1 54273.7 2006 77594.6 63376.9 2007 93455.6 73284.6 2008 100394.9 79526.5 run; proc gplot; plot x*t=1 y*t=2/overlay; symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run; proc arima data=example6_4; identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run; proc arima; identify var=y crrosscorr=x; estimate methed=ml input=x plot; forecast lead=0id=t out=out; proc aima data=out; identify varresidual stationarity=(adf=2); run;

时间序列作业ARMA模型--.

一案例分析的目的 本案例选取2001年1月,到2013年我国铁路运输客运量月度数据来构建ARMA模型,并利用该模型进行外推预测分析。 二、实验数据 数据来自中经网统计数据库

数据来源:中经网数据库 三、ARMA 模型的平稳性 首先绘制出N 的折线图,如图 从图中可以看出,N 序列具有较强的非线性趋势性,因此从图形可以初步判断该序列是非平

稳的。此外,N在每年同期出现相同的变动方式,表明N还存在季节性特征。下面对N 的平稳性和季节季节性进行进一步检验。 四、单位根检验 为了减少N 的变动趋势以及异方差性,先对N进行对数处理,记为LN其曲线图如下:GENR LN = LOG(N) 对数后的N趋势性也很强。下面观察N 的自相关表,选择滞后期数为36,如下: 从上图可以看出,LN的PACF只在滞后一期是显著的ACF随着阶数的增加慢慢衰减至0,因此从偏/自相关系数可以看出该序列表现一定的平稳性。进一步进行单位根检验,打开LN选择存在趋势性的形式,并根据AIC自动选择滞后阶数,单位根检验结果如下:

T统计值的值小于临界值,且相伴概率为0.0001,因此该序列不存在单位根,即该序列是平稳序列。 五、季节性分析 趋势性往往会掩盖季节性特征,从LN的图形可以看出,该序列具有较强的趋势性,为了分析季节性,可以对LN进行差分处理来分析季节性: Genr = DLN = LN – LN (-1) 观察DLN的自相关表,如下:

DLN在之后期为6、12、18、24、30、36处的自相关系数均显著异于0,因此,该序列是以周期6呈现季节性,而且季节自相关系数并没有衰减至0,因此,为了考虑这种季节性,进行季节性差分: GENR SDLN = DLN – DLN(-6) 再做关于SDLN的自相关表,如下: SDLN在滞后期36之后的季节ACF和PACF已经衰减至0,下面对SDLN建立SARMA模型。 六、滞后阶数的初步确定 观察SDLN的自相关、偏自相关图,ACF 和PACF在滞后期1和滞后期6还有滞后期12异于0,其余均与0无异,因此,SARMA(p,q)(k,m)s 中p和q均不超过1,k和m均不超过2.6考虑到高洁移动平均模型估计较为困难,而且自回归模型的检验可以表示无穷的移动平均过程,因此q尽可能取较小的取值。本例拟选择SARMA(1,0)(1,0)6、SARMA(1,0)(1,1)6、SARMA(1,0)(1,2)6、SARMA(1,0)(2,1)6、SARMA(1,1)(1,0)6、SARMA(1,1)(1,1)6、SARMA(1,1)(1,2)6、SARMA(1,1)(0,1)6八个模型来拟合SDLN。

实验三:ARIMA模型建模与预测实验报告

课程论文 (2016 / 2017学年第 1 学期) 课程名称应用时间序列分析 指导单位经济学院 指导教师易莹莹 学生姓名班级学号 学院(系) 经济学院专业经济统计学

实验三ARIMA 模型建模与预测实验指导 一、实验目的: 了解ARIMA 模型的特点和建模过程,了解AR ,MA 和ARIMA 模型三者之间的区别与联系,掌握如何利用自相关系数和偏自相关系数对ARIMA 模型进行识别,利用最小二乘法等方法对ARIMA 模型进行估计,利用信息准则对估计的ARIMA 模型进行诊断,以及如何利用ARIMA 模型进行预测。掌握在实证研究如何运用Eviews 软件进行ARIMA 模型的识别、诊断、估计和预测。 二、基本概念: 所谓ARIMA 模型,是指将非平稳时间序列转化为平稳时间序列,然后将平稳的时间序列建立ARMA 模型。ARIMA 模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA )、自回归过程(AR )、自回归移动平均过程(ARMA )以及ARIMA 过程。 在ARIMA 模型的识别过程中,我们主要用到两个工具:自相关函数ACF ,偏自相关函数PACF 以及它们各自的相关图。对于一个序列{}t X 而言,它的第j 阶自相关系数j ρ为它的j 阶自协方差除以方差,即j ρ=j 0γγ,它是关于滞后期j 的函数,因此我们也称之为自相关函数,通常记ACF(j )。偏自相关函数PACF(j )度量了消除中间滞后项影响后两滞后变量之间的相关关系。 三、实验任务: 1、实验内容: (1)根据时序图的形状,采用相应的方法把非平稳序列平稳化; (2)对经过平稳化后的1950年到2005年中国进出口贸易总额数据建立合适的(,,)ARIMA p d q 模型,并能够利用此模型进行进出口贸易总额的预测。 2、实验要求: (1)深刻理解非平稳时间序列的概念和ARIMA 模型的建模思想; (2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA 模型;如何利用ARIMA 模型进行预测; (3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。 四、实验要求: 实验过程描述(包括变量定义、分析过程、分析结果及其解释、实验过程遇到的问题及体会)。 实验题:对经过平稳化后的1950年到2005年中国进出口贸易总额数据建立合适的(,,)ARIMA p d q 模型,并能够利用此模型进行进出口贸易总额的预测。

时间序列分析基于R——习题答案

第一章习题答案 略 第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 ()0t E x =,2 1 () 1.9610.7 t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115 φ= 3.3 ()0t E x =,10.15 () 1.98(10.15)(10.80.15)(10.80.15) t Var x += =--+++ 10.8 0.7010.15 ρ= =+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-= 1110.70φρ==,2220.15φφ==-,330φ= 3.4 10c -<<, 1121,1,2 k k k c c k ρρρρ--?=? -??=+≥? 3.5 证明: 该序列的特征方程为:32 --c 0c λλλ+=,解该特征方程得三个特征根: 11λ=,2c λ=3c λ=-

ARIMA时间序列建模过程——原理及python实现

ARIMA时间序列建模过程——原理及python实现 ARIMA模型的全称叫做自回归查分移动平均模型,全称是(ARIMA, Autoregressive Integrated Moving Average Model),是统计模型(statistic model)中最常见的一种用来进行时间序列预测的模型,AR、MA、ARMA模型都可以看作它的特殊形式。 1. ARIMA的优缺点 优点:模型十分简单,只需要内生变量而不需要借助其他外生变量。 缺点:要求时序数据是稳定的(stationary),或者是通过差分化(differencing)后是稳定的;本质上只能捕捉线性关系,而不能捕捉非线性关系。 2. ARIMA的参数与数学形式 ARIMA模型有三个参数:p,d,q。 p--代表预测模型中采用的时序数据本身的滞后数(lags) ,也叫做 AR/Auto-Regressive项; d--代表时序数据需要进行几阶差分化,才是稳定的,也叫Integrated项; q--代表预测模型中采用的预测误差的滞后数(lags),也叫做MA/Moving Average项。 差分:假设y表示t时刻的Y的差分。 if d=0, yt=Yt, if d=1, yt=Yt?Yt?1, if d=2, yt=(Yt?Yt?1)?(Yt?1?Yt ?2)=Yt?2Yt?1+Yt?2 ARIMA的预测模型可以表示为: Y的预测值= 白噪音+1个或多个时刻的加权+一个或多个时刻的预测误差。 假设p,q,d已知,

ARIMA用数学形式表示为: yt?=μ+?1?yt?1+...+?p?yt?p+θ1?et?1+...+θq?et?q 其中,?表示AR的系数,θ表示MA的系数 3.Python建模 ##构建初始序列 import numpy as np import matplotlib.pyplot as plt import statsmodels.api as sm from statsmodels.graphics.tsaplots import acf,pacf,plot_acf,plot_pacf from statsmodels.tsa.arima_model import ARMA from statsmodels.tsa.arima_model import ARIMA #序列化 time_series_ = pd.Series([151.0, 188.46, 199.38, 219.75, 241.55, 262.58, 328.22, 396.26, 442.04, 517.77, 626.52, 717.08, 824.38, 913.38, 1088.39, 1325.83, 1700.92, 2109.38, 2499.77, 2856.47, 3114.02, 3229.29, 3545.39, 3880.53, 4212.82, 4757.45, 5633.24, 6590.19, 7617.47, 9333.4, 11328.92, 12961.1, 15967.61]) time_series_.index = pd.Index(sm.tsa.datetools.dates_from_range('1978','2010')) time_series_.plot(figsize=(12,8)) plt.show() 3.1 异常值及缺失值处理 异常值一般采用移动中位数方法: frompandasimportrolling_median threshold =3#指的是判定一个点为异常的阈值 df['pandas'] = rolling_median(df['u'], window=3, center=True).fillna(method='bfill').fillna(method='ffill') #df['u']是原始数据,df['pandas'] 是求移动中位数后的结果,window指的 是移动平均的窗口宽度 difference = np.abs(df['u'] - df['pandas']) outlier_idx = difference > threshold 缺失值一般是用均值代替(若连续缺失,且序列不平稳,求查分时可能出现nan) 或直接删除。

时间序列分析基于R——习题答案

第一章习题答案 第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 Au+ocorreliil. i ons Correlation -1 M 7 6 5 4 3 2 1 0 I ; 3 4 5 6 7 9 9 1 1.00000■Hi ■ K. B H,J B ik L L1■* J.1 jA1-.IM L L* rn^rp ■ i>i?iTwin H'iTiii M[lrp i,*nfr 'TirjlvTilT'1 iBrp O.7QOO0■ill. Ii ill ■ _.ill?L■ ill iL si ill .la11 ■ fall■ 1 ■ rpTirp Tp和阳申■丽轉■晒?|?卉(ft 0.41212■强:料榊<牌■ 0.14343'■讯榊* -.07078■ -.25758, WWHOHHf ■ -.375761 marks two 总t and&rd errors 2.2 (1) 非平稳,时序图如下 (2) - ( 3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

Ctorrelat ion LOOOOO n.A'7F1 0.72171 0.51252 Q,34982 0.24600 0.20309 0.?1021 0.26429 0.36433 0.49472 0.58456 0.60198 0.51841 Q ?菲晡 日 0.20671 0.0013& -,03243 -.02710 Q.01124 0,08275 0.17011 Autocorrel at ions raarka two standard errors 2.3 (1) 自相关系数为: 0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2 )平稳序列 (3) 白噪声序列 2.4 LB=4.83 , LB 统计量对应的分位点为 0.9634 , P 值为0.0363。显著性水平 :-=0.05,序列 不能视为纯随机序列。 2.5 (1) 时序图与样本自相关图如下 AuEocorreI ati ons 弗卅制iti 电卅栅冷卅樹 側樹 榊 惟 1 ■ liihCidi iliihQriHi il>LljU_nll Hnlidiili Hialli iT ,, T^,, T^s ?T* iTijTirr ,^T 1 IT * -i> ■> - ■ ■ *畑** ? ■ ■ 耶曲邯 ? ■ ■ ■ >|{和怦I {册卅KHi 笊出恸 mrpmrp 山!rpEHi erp . 卑*寧* a 1 *

基于时间序列模型的中国GDP增长预测分析

第33卷 第178期2012年7月 财经理论与实践(双月刊) THE THEORY AND PRACTICE OF FINANCE AND ECONOMICS Vol.33 No.178 Jul. 2012 ·信息与统计· 基于时间序列模型的中国GDP增长预测分析 何新易 (南通大学商学院,江苏南通 226019)* 摘 要:作为度量一个国家或地区所有常住单位在一定时期之内所生产和所提供的最终产品或服务的重要总量指标,如果能够对GDP做出正确的预测,必然可以有效引导宏观经济健康发展,为高层管理部门提供决策依据。选用适合短期预测的ARIMA模型对中国1952~2010年的GDP进行计量建模分析,预测结果认为未来五年中国的经济增长仍将处于一个水平较高的上升通道。 关键词:时间序列模型;GDP;预测 中图分类号:F234 文献标识码: A 文章编号:1003-7217(2012)04-0096-04 一、引 言 作为度量一个国家或地区所有常住单位在一定时期之内所生产和所提供的最终产品或服务的重要总量指标,国内生产总值(Gross Domestic Product,GDP)对于判断经济态势运行、衡量经济综合实力、正确制定经济政策等诸多方面,以及在经济研究实际工作中,均起着不可替代的重要作用。 熊志斌(2011)深入分析了时间序列模型与神经网络(NN)模型的优势和劣势,按照两种模型的预测特性,在比较的基础之上,分别构建了ARIMA模型和NN模型,并根据一定算法对两种模型进行了集成。将GDP时间序列的数据结构,根据在非线性空间和线性空间的预测优势,进一步分解为线性非线性残差和自相关主体两部分,即首先用ARIMA分析技术构建线性主体模型,然后用NN模型估计非线性残差,再对序列的整个预测结果进行最终集成。仿真实证结果表明:与单一模型相比,集成模型的预测准确率显著提高,进行GDP预测当然使用集成模型更为有效[1]。桂文林和韩兆洲(2011)认为由于迄今为止,包括季度GDP在内的经季节调整之后的经济数据,中国政府尚未进行公布,不但无法进行国际之间的横向比较,也不利于监测中国宏观经济态势。本文运用1996年第1季度至2009年第4季度的中国实际GDP数据,构建了状态空间模型,使用卡尔曼滤波迭代算法对季节调整模型状态向量的 各分量,进行了最优平滑、预测和估计,并使用极大似然方法估计了超参数。经过对GDP的主要季节和趋势特征的分析,计算出了环比增长率指标来监测和分析经济走势,并与国际通用的TRAMO-SEATS季节调整模型进行了对比,以便鉴别趋势拐点,制定相关的经济政策[2]。高帆(2010)运用1952~2008年的上海GDP增长率数据,实证研究其内在变动机制,将GDP增长率分解为纯生产率效应、纯劳动投入效应、纯生产结构效应、纯劳动结构效应,并分析了这四种效应之间的交互影响。结果表明:在上海GDP增长率提高的四种效应之中,纯生产率效应起到了关键作用。上海GDP增长率自1978年改革开放之后,在整体上对纯生产率效应的依赖度趋于增强。在1978~1989年期间,纯劳动结构效应是GDP增长的主要因素,由于市场化改革的进一步加大,劳动力跨部门流转在很大程度上得以实现。在1990~2008年期间,纯生产率效应是GDP增长的主要因素,正是由于在此历史阶段,由于资本深化进一步加速,从而有效提高了部门劳动生产率。基于实证的研究结论,可以针对性地制定出今后上海市经济实现持续增长的若干宏观政策[3]。腾格尔和何跃(2010)利用中国季度GDP数据分别构建了ARIMA和ARCH模型,同时利用GMDH自组织方法尝试建模,经过Bon-ferroni-Dunn检验,表明与单一模型相比,组合模型的拟合能力更强。研究表明,基于GMDH组合的GDP模 *收稿日期: 2012-02-12 作者简介: 何新易(1966—),男,湖北武汉人,南通大学商学院副教授,经济学博士,研究方向:宏观国民经济问题、中国企业集团融资和投资。

基于时间序列序列分析优秀论文

梧州学院 论文题目基于时间序列分析梧州市财政 收入研究 系别数理系 专业信息与计算科学 班级 09信息与计算科学 学号 200901106034 学生姓名胡莲珍 指导老师覃桂江 完成时间

摘要 梧州市财政收入主要来源于基金收入,地方税收收入和非税收收入等几方面。近年来梧州市在自治区党委、自治区政府和市委的正确领导下,全市广大干部群众深入贯彻落实科学发展观,抢抓机遇,开拓进取,克难攻坚,使得全市经济连续几年快速发展,全市人民的生活水平也大幅度提高,但伴随着发展的同时也存在一些问题,本文主要通过研究分析梧州财政收入近几年的状况,根据采用时间序列分析中的一次简单滑动平均法研究分析梧州市财政收入和支出的情况,得到的结果是梧州市财政收入呈现下降状态,而财政支出却逐年上涨,这种状况将导致梧州市人民生活水平下降,影响梧州市各方面的发展。给予一些有益于梧州市财政发展的建议。本文首先介绍主要运用的时间序列分析的概念及其一次简单滑动平均法的方法,再用图表说明了梧州市财政近几年的财政收入和支出状况,然后建立模型,分析由时间序列分析方法得出的对2012年财政收入状况的预测结果,最后,鉴于提高梧州市财政收入的思想,给予了一些合理性建议,比如:积极实施工业强县战略,壮大工业主导财源;大力发展第三产业,强化地方财源建设;完善公共财政支出机制,着力构建和谐社会。 关键词:梧州市;财政收入;时间序列分析;建立模型;建议

Based onThe Time Series Analysis of Wuzhou city Finance Income Studies Abstract Wuzhou city, fiscal revenue mainly comes from fund income, local tax revenue and the tax revenue etc. Wuzhou city in recent years in the autonomous region party committee, the government of the autonomous region and the municipal party committee under the correct leadership, the cadres and masses thoroughly apply the scientific outlook on development, catch every opportunity, pioneering and enterprising, g hard, make the crucial economic rapid development for several years, the people's living standard has also increased significantly, but with the development at the same time, there are also some problems, this paper mainly through the research and analysis the condition of wuzhou fiscal revenue in recent years, according to the time series analysis of a simple moving average method research and analysis of financial income and expenditure wuzhou city, the result obtained is wuzhou city, fiscal revenue decline present condition, and fiscal spending is rising year by year, the situation will lead to wuzhou city, the people's living standards decline, influence all aspects of wuzhou city development. Give some Suggestions on the development of the financial benefit wuzhou city. This paper first introduces the main use of the time series analysis of the concept and a simple moving average method method, reoccupy chart illustrates the wuzhou city, in recent years the financial revenue and expenditure situation, then set a model, analysis the time series analysis method to draw 2012 fiscal income condition prediction results, finally, in view of wuzhou city, improve the financial income thoughts, give some advice, for instance: rationality vigorously implement the strategy of industrial county, strengthen the industry leading financial sources, A vigorous development of the third industry, and to strengthen the construction of local revenue;

时间序列:ARIMA模型

实验:建立ARIMA模型(综合性实验) 实验题目:某城市连续14年的月度婴儿出生率数据如下表所示: 26.663 23.598 26.931 24.740 25.806 24.364 24.477 23.901 23.175 23.227 21.672 21.870 21.439 21.089 23.709 21.669 21.752 20.761 23.479 23.824 23.105 23.110 21.759 22.073 21.937 20.035 23.590 21.672 22.222 22.123 23.950 23.504 22.238 23.142 21.059 21.573 21.548 20.000 22.424 20.615 21.761 22.874 24.104 23.748 23.262 22.907 21.519 22.025 22.604 20.894 24.677 23.673 25.320 23.583 24.671 24.454 24.122 24.252 22.084 22.991 23.287 23.049 25.076 24.037 24.430 24.667 26.451 25.618 25.014 25.110 22.964 23.981 23.798 22.270 24.775 22.646 23.988 24.737 26.276 25.816 25.210 25.199 23.162 24.707 24.364 22.644 25.565 24.062 25.431 24.635 27.009 26.606 26.268 26.462 25.246 25.180 24.657 23.304 26.982 26.199 27.210 26.122 26.706 26.878 26.152 26.379 24.712 25.688 24.990 24.239 26.721 23.475 24.767 26.219 28.361 28.599 27.914 27.784 25.693 26.881 26.217 24.218 27.914 26.975 28.527 27.139 28.982 28.169 28.056 29.136 26.291 26.987 26.589 24.848 27.543 26.896 28.878 27.390 28.065 28.141 29.048 28.484 26.634 27.735 27.132 24.924 28.963 26.589 27.931 28.009 29.229 28.759 28.405 27.945 25.912 26.619 26.076 25.286 27.660 25.951 26.398 25.565 28.865 30.000 29.261 29.012 26.992 27.897 (1)选择适当模型拟和该序列的发展 (2)使用拟合模型预测下一年度该城市月度婴儿出生率 实验内容: 给出实际问题的非平稳时间序列,要求学生利用R统计软件,对该序列进行分析,通过平稳性检验、差分运算、白噪声检验、拟合ARMA模型,建立ARIMA模型,在此基础上进行预测。 实验要求: 处理数据,掌握非平稳时间序列的ARIMA建模方法,并根据具体的实验题目要求完成实验报告,并及时上传到给定的FTP和课程网站。 实验步骤: 第一步:编程建立R数据集; 第二步:调用plot.ts程序对数据绘制时序图。 第三步:从时序图中利用平稳时间序列的定义判断是否平稳? 第四步:若不满足平稳性,则可利用差分运算是否能使序列平稳?重复第三步步骤第五步:根据Box.test纯随机检验结果,利用LB统计量和白噪声特性检验最后处理的

SAS学习系列39.时间序列分析报告Ⅲ—ARIMA模型

39. 时间序列分析Ⅱ——ARIMA 模型 随着对时间序列分析方法的深入研究,人们发现非平稳序列的确定性因素分解方法(如季节模型、趋势模型、移动平均、指数平滑等)只能提取显著的确定性信息,对随机性信息浪费严重,同时也无法对确定性因素之间的关系进行分析。 而非平稳序列随机分析的发展就是为了弥补确定性因素分解方法的不足。时间序列数据分析的第一步都是要通过有效手段提取序列中所蕴藏的确定性信息。Box 和Jenkins 使用大量的案例分析证明差分方法是一种非常简便有效的确定性信息的提取方法。而Gramer 分解定理则在理论上保证了适当阶数的差分一定可以充分提取确定性信息。 (一)ARMA 模型 即自回归移动平均移动模型,是最常用的拟合平稳时间序列的模型,分为三类:AR 模型、MA 模型和ARMA 模型。 一、AR(p )模型——p 阶自回归模型 1. 模型: 011t t p t p t x x x φφφε--=+++L 其中,0p φ≠,随机干扰序列εt 为0均值、2εσ方差的白噪声序列(()0t s E εε=, t ≠s ),且当期的干扰与过去的序列值无关,即E(x t εt )=0.

由于是平稳序列,可推得均值0 11p φμφφ= ---L . 若00φ=,称为 中心化的AR (p )模型,对于非中心化的平稳时间序列,可以令 01(1)p φμφφ=---L ,*t t x x μ=-转化为中心化。 记B 为延迟算子,1()p p p B I B B φφΦ=---L 称为p 阶自回归多项式,则AR (p )模型可表示为:()p t t B x εΦ=. 2. 格林函数 用来描述系统记忆扰动程度的函数,反映了影响效应衰减的快慢程度(回到平衡位置的速度),G j 表示扰动εt-j 对系统现在行为影响的权数。 例如,AR(1)模型(一阶非齐次差分方程),1, 0,1,2,j j G j φ==L 模型解为0t j t j j x G ε∞ -==∑. 3. 模型的方差 对于AR(1)模型,22 2 1()()1t j t j j Var x G Var εσεφ∞ -===-∑. 4. 模型的自协方差 对中心化的平稳模型,可推得自协方差函数的递推公式: 用格林函数显示表示: 2 00 ()()i j t j t k j j k j i j j k G G E G G γεεσ ∞∞ ∞ ---+=====∑∑∑ 对于AR(1)模型,

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

时间序列建模案例ARIMA(1,1,1)

们可以观察到1978年~2006年我国GDP(现价,生产法)具有明显的上升趋势。在ADF检验时选择含有常数项和时间趋势项,由SIC 准则确定滞后阶数(p=4)。GDP序列的ADF检验如下: 检验结果显示,GDP序列以较大的P值,即100%的概率接受原假设,即存在单位根的结论。 将GDP序列做1阶差分,然后对ΔGDP进行ADF检验 检验结果显示,ΔGDP序列仍接受存在单位根的结论。其他检验方法

的结果也接受原假设,ΔGDP序列存在单位根,是非平稳的。 再对ΔGDP序列做差分,则Δ2GDP的ADF检验(选择不含常数项和趋势项,)如下: 检验结果显示,二阶差分序列Δ2GDP在1%的显著性水平下拒绝原假设,接受不存在单位根的结论,因此可以确定GDP序列是2阶单整序列,即GDP ~I (2)。 GDP序列是2阶单整序列,即GDP ~I (2)。但是检验得到GDP的对数序列ln(GDP)是1阶单整序列,所以本例建立Δln(GDP)序列的ARIMA模型。首先观察Δln(GDP)序列的相关图

图5.10Δl n(G D P)序列的相关图 Δln(GDP)序列的自相关系数和偏自相关系数都在1阶截尾,则取模型的阶数p =1 和q =1,建立ARIMA(1,1,1) 模型(时间期间:1978~2004年,2005和2006年实际数据不参加建模,留作检验):

图5.11Δl n(G D P)序列的A R I M A(1,1,1)模型残差的相关图从图5.11的相关图中可以看出模型的残差不存在序列相关,并且模型的各项统计量也很好。 图5.12是这个模型的拟合和预测(静态)的结果,其中2005年和2006年为预测结果。

基于时间序列模型与线性回归模型的历史数据预测

基于时间序列模型与线性回归模型的历史数据预测 摘要:本文通过具体案例,简要说明根据时间序列数据建立和相应经济理论建立线性回归模型的简要步骤及基本原则,并着重介绍了在模型建立和模型有效性检验过程中需要注意的三个主要问题,最后简单介绍了进行模型修正的相应方法。 一、引言 多元线性回归模型的一般形式为: Y=β0+β1X1+β2X2+…+βkXk+μi(k,i=1,2,…,n) 其中k为解释变量的数目,βk(k=1,2,…,n)称为回归系数,上式也被称为总体回归函数的随机表达式。 从统计意义上说,所谓时间序列模型就是将某一个指标在不同时间上的不同数值,按照时间的先后顺序排列而成的数列。这种数列由于受到各种偶然因素的影响,往往表现出某种随机性,彼此之间存在着统计上的依赖关系。从数学意义上说,如果我们对某一过程中的某一个变量或一组变量X(t)进行观察测量,在一系列时刻t1,t2,…,tn(t为自变量,且t1

相关文档
最新文档