2007年天津市高考数学试卷(理科)及解析

2007年天津市高考数学试卷(理科)

一、选择题(共10小题,每小题5分,满分50分)

1.(5分)i是虚数单位=()

A.1+i B.﹣1+i C.1﹣i D.﹣1﹣i

2.(5分)设变量x,y满足约束条件,则目标函数z=4x+y的最大值

为()

A.4 B.11 C.12 D.14

3.(5分)“”是“”的()

A.充分而不必要条件B.必要而不充分条件

C.充分必要条件D.既不充分也不必要条件

4.(5分)已知双曲线的一条渐近线方程是,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为()

A.B.

C.D.

5.(5分)函数的反函数是()

A.y=4x﹣2x+1(x>2)B.y=4x﹣2x+1(x>1)C.y=4x﹣2x+2(x>2)D.y=4x ﹣2x+2(x>1)

6.(5分)设a,b为两条直线,α,β为两个平面,下列四个命题中,正确的命题是()

A.若a,b与α所成的角相等,则α∥b

B.若a∥α,b∥β,α∥β,则a∥b

C.若a?α,b?β,α∥b,则α∥β

D.若a⊥α,b⊥β,α⊥β,是a⊥b

7.(5分)在R上定义的函数f(x)是偶函数,且f(x)=f(2﹣x).若f(x)在区间[1,2]上是减函数,则f(x)

()

A.在区间[﹣2,﹣1]上是增函数,在区间[3,4]上是增函数

B.在区间[﹣2,﹣1]上是增函数,在区间[3,4]上是减函数

C.在区间[﹣2,﹣1]上是减函数,在区间[3,4]上是增函数

D.在区间[﹣2,﹣1]上是减函数,在区间[3,4]上是减函数

8.(5分)设等差数列{a n}的公差d不为0,a1=9d.若a k是a1与a2k的等比中项,则k=()

A.2 B.4 C.6 D.8

9.(5分)已知a、b、c均为正数,且满足,,,

则()

A.a<b<c B.c<a<b C.c<b<a D.b<a<c

10.(5分)设两个向量和,其中λ,m,α为实数.若,则的取值范围是()

A.[﹣6,1]B.[4,8]C.(﹣∞,1]D.[﹣1,6]

二、填空题(共6小题,每小题4分,满分26分)

11.(4分)若(x2+)6的二项展开式中x3的系数为,则a=(用数字作答).

12.(4分)一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为.

13.(4分)设等差数列{a n}的公差d是2,前n项的和为S n,则=.

14.(4分)已知两圆x2+y2=10和(x﹣1)2+(y﹣3)2=20相交于A,B两点,则直线AB的方程是.

15.(4分)如图,在△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上一点,

DC=2BD,则?=.

16.(4分)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色.要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有种(用数字作答).

三、解答题(共6小题,满分76分)

17.(12分)已知函数f(x)=2cosx(sinx﹣cosx)+1,x∈R.

(Ⅰ)求函数f(x)的最小正周期;

(Ⅱ)求函数f(x)在区间上的最小值和最大值.

18.(12分)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现在从甲、乙两个盒内各任取2个球.

(Ⅰ)求取出的4个球均为黑色球的概率;

(Ⅱ)求取出的4个球中恰有1个红球的概率;

(Ⅲ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.19.(12分)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.

(Ⅰ)证明:CD⊥AE;

(Ⅱ)证明:PD⊥平面ABE;

(Ⅲ)求二面角A﹣PD﹣C的大小.

20.(12分)已知函数f(x)=(x∈R),其中a∈R.

(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;

(Ⅱ)当a≠0时,求函数f(x)的单调区间与极值.

21.(14分)在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),其中λ>0.(Ⅰ)求数列{a n}的通项公式;

(Ⅱ)求数列{a n}的前n项和S n;

(Ⅲ)证明存在k∈N*,使得对任意n∈N*均成立.

22.(14分)设椭圆=1(a>b>0)的左、右焦点分别为F1,F2,A是椭圆上的一点,AF2⊥F1F2,原点O到直线AF1的距离为.

(I)证明:;

(II)设Q1,Q2为椭圆上的两个动点,OQ1⊥OQ2,过原点O作直线Q1Q2的垂线OD,垂足为D,求点D的轨迹方程.

2007年天津市高考数学试卷(理科)

参考答案与试题解析

一、选择题(共10小题,每小题5分,满分50分)

1.(5分)(2007?天津)i是虚数单位=()

A.1+i B.﹣1+i C.1﹣i D.﹣1﹣i

【分析】化简复数的分子,同时对复数的分子、分母同乘分母的共轭复数,化简即可.

【解答】解:

故选C.

2.(5分)(2007?天津)设变量x,y满足约束条件,则目标函数z=4x+y

的最大值为()

A.4 B.11 C.12 D.14

【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=4x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.

【解答】解:易判断公共区域为三角形区域,如图所示:

三个顶点坐标为(0,1)、(2,3)、(1,0),

将(2,3)代入z=4x+y得到最大值为11.

故选B.

3.(5分)(2007?天津)“”是“”的()

A.充分而不必要条件B.必要而不充分条件

C.充分必要条件D.既不充分也不必要条件

【分析】根据当时成立判断是

成立的充分条件,当tanθ=0时不成立,进而可判断是成立的不必要条件.

【解答】

可知充分,当θ=0°时可知不必要.

故选A

4.(5分)(2010?天津)已知双曲线的一条渐近线方程是,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为()A.B.

C.D.

【分析】由抛物线标准方程易得其准线方程为x=﹣6,而通过双曲线的标准方程可见其焦点在x轴上,则双曲线的左焦点为(﹣6,0),此时由双曲线的性质a2+b2=c2可得a、b的一个方程;再根据焦点在x轴上的双曲线的渐近线方程为y=±x,可得=,则得a、b的另一个方程.那么只需解a、b的方程组,问题即可解决.

【解答】解:因为抛物线y2=24x的准线方程为x=﹣6,

则由题意知,点F(﹣6,0)是双曲线的左焦点,

所以a2+b2=c2=36,

又双曲线的一条渐近线方程是y=x,

所以,

解得a2=9,b2=27,

所以双曲线的方程为.

故选B.

5.(5分)(2007?天津)函数的反函数是()A.y=4x﹣2x+1(x>2)B.y=4x﹣2x+1(x>1)C.y=4x﹣2x+2(x>2)D.y=4x ﹣2x+2(x>1)

【分析】本题考查指数式与对数式的互化、反函数的求法、函数的值域的求法等相关的知识和方法;

可以有两种方法:

一种是常规方法,即将看做方程解出x,然后由原函数的值域确定反函数的定义域;

另一种方法是针对选择题的特点,利用其图象关于y=x对称的特征,通过选取特殊点代入的方法进行验证获得.

【解答】解:法一:由得:

由此解得:x=4y﹣2y+2,即:y=4x﹣2x+2

又原函数的定义域为:x>0

∴原函数的值域为:y>2

∴函数的反函数是y=4x﹣2x+2(x>2)

故选C

法二:特值排除法,∵原函数过(﹣4,1)

∴其反函数过(1,﹣4)

从而排除A、B、D,

故选C

6.(5分)(2007?天津)设a,b为两条直线,α,β为两个平面,下列四个命题中,正确的命题是()

A.若a,b与α所成的角相等,则α∥b

B.若a∥α,b∥β,α∥β,则a∥b

C.若a?α,b?β,α∥b,则α∥β

D.若a⊥α,b⊥β,α⊥β,是a⊥b

【分析】根据题意,依次分析选项,A、用直线的位置关系判断.B、用长方体中的线线,线面,面面关系验证.C、用长方体中的线线,线面,面面关系验证.D、由a⊥α,α⊥β,可得到a?β或a∥β,再由b⊥β得到结论.

【解答】解:A、直线a,b的方向相同时才平行,不正确;

B、用长方体验证.如图,设A1B1为a,平面AC为α,BC为b,平面A1C1为β,显然有a∥α,b∥β,α∥β,但得不到a∥b,不正确;

C、可设A1B1为a,平面AB1为α,CD为b,平面AC为β,满足选项C的条件却得不到α∥β,不正确;

D、∵a⊥α,α⊥β,

∴a?β或a∥β

又∵b⊥β

∴a⊥b

故选D

7.(5分)(2007?天津)在R上定义的函数f(x)是偶函数,且f(x)=f(2﹣x).若f(x)在区间[1,2]上是减函数,则f(x)

()

A.在区间[﹣2,﹣1]上是增函数,在区间[3,4]上是增函数

B.在区间[﹣2,﹣1]上是增函数,在区间[3,4]上是减函数

C.在区间[﹣2,﹣1]上是减函数,在区间[3,4]上是增函数

D.在区间[﹣2,﹣1]上是减函数,在区间[3,4]上是减函数

【分析】根据函数的性质,作出函数的草图,观察图象即可得答案.

【解答】解:由f(x)=f(2﹣x)可知f(x)图象关于x=1对称,

又∵f(x)为偶函数,∴f(x)=f(x﹣2)

∴f(x)为周期函数且周期为2,结合f(x)在区间[1,2]上是减函数,

可得f(x)草图.

故选B.

8.(5分)(2007?天津)设等差数列{a n}的公差d不为0,a1=9d.若a k是a1与a2k的等比中项,则k=()

A.2 B.4 C.6 D.8

【分析】由a k是a1与a2k的等比中项,知a k2=a1a2k,由此可知k2﹣2k﹣8=0,从而得到k=4或k=﹣2.

【解答】解:因为a k是a1与a2k的等比中项,

则a k2=a1a2k,[9d+(k﹣1)d]2=9d?[9d+(2k﹣1)d],

又d≠0,则k2﹣2k﹣8=0,k=4或k=﹣2(舍去).

故选B.

9.(5分)(2007?天津)已知a、b、c均为正数,且满足,,

,则()

A.a<b<c B.c<a<b C.c<b<a D.b<a<c

【分析】由对数函数的真数一定大于0确定a、b、c的范围,再由,,对其范围再缩小即可.

【解答】解:∵a>0∴1<∴0<a<

∵b>0∴0<<1∴<b<1

∵0<∴c>1

∴a<b<c

故选A.

10.(5分)(2007?天津)设两个向量和,其中λ,m,α为实数.若,则的取值范围是()A.[﹣6,1]B.[4,8]C.(﹣∞,1]D.[﹣1,6]

【分析】利用,得到λ,m的关系,然后用三角函数的有界性求解的比值,为了简化,把换元.

【解答】解:由,,,

可得,

设代入方程组可得

消去m化简得,

再化简得

再令代入上式得(sinα﹣1)2+(16t2+18t+2)=0

可得﹣(16t2+18t+2)∈[0,4]

解不等式得

因而解得﹣6≤k≤1.

故选A.

二、填空题(共6小题,每小题4分,满分26分)

11.(4分)(2007?天津)若(x2+)6的二项展开式中x3的系数为,则a=2(用数字作答).

【分析】利用二项展开式的通项公式求出展开式的第r+1项,令x的指数为3,求出展开式中x3的系数,列出方程求出a.

=C6r?a﹣r x12﹣3r,

【解答】解:通项T r

+1

当12﹣3r=3时,r=3,

所以系数为C63?a﹣3=,得a=2.

故答案为2

12.(4分)(2007?天津)一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为14π.

【分析】由题意可知,长方体外接球直径长等于长方体体对角线长,求出长方体的对角线长,就是求出球的直径,然后求出球的表面积.

【解答】解:长方体外接球直径长等于长方体体对角线长,

即,

由S=4πR2=14π.

故答案为:14π

13.(4分)(2007?天津)设等差数列{a n}的公差d是2,前n项的和为S n,则=3.

【分析】由首项a1和公差d等于2,利用等差数列的通项公式及前n项和的公式表示出a n和S n,然后把表示的式子代入到极限中,求出极限的值即可.

【解答】解:由公差d=2,得到a n=a1+2(n﹣1)=2n+a1﹣2,S n=na1+×2=n2+n(a1﹣1)

==

=3

故答案为3.

14.(4分)(2007?天津)已知两圆x2+y2=10和(x﹣1)2+(y﹣3)2=20相交于A,B两点,则直线AB的方程是x+3y=0.

【分析】当判断出两圆相交时,直接将两个圆方程作差,即得两圆的公共弦所在的直线方程.

【解答】解:因为两圆相交于A,B两点,则A,B两点的坐标坐标既满足第一个圆的方程,又满足第二个圆的方程

将两个圆方程作差,得直线AB的方程是:x+3y=0,

故答案为x+3y=0.

15.(4分)(2007?天津)如图,在△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上一点,DC=2BD,则?=.

【分析】法一:选定基向量,将两向量,用基向量表示出来,再进行数量积运算,求出的值.

法二:由余弦定理得可得分别求得,

又夹角大小为∠ADB,

所以=.

【解答】解:法一:选定基向量,,由图及题意得,=

∴=()()=+==

法二:由题意可得

BC2=AB2+AC2﹣2AB?ACcosA=4+1+2=7,

∴BC=,

∴cosB===

AD==,

∵,

∴=.

故答案为:﹣.

16.(4分)(2007?天津)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色.要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有390种(用数字作答).

【分析】由题意选出的颜色只能是2种或3种,然后分别求出涂色方法数即可.【解答】解:用2色涂格子有C62×2=30种方法,

用3色涂格子,第一步选色有C63,第二步涂色,从左至右,第一空3种,第二空2种,第三空分两张情况,一是与第一空相同,一是不相同,共有3×2(1×1+1×2)=18种,

所以涂色方法18×C63=360种方法,

故总共有390种方法.

故答案为:390

三、解答题(共6小题,满分76分)

17.(12分)(2007?天津)已知函数f(x)=2cosx(sinx﹣cosx)+1,x∈R.(Ⅰ)求函数f(x)的最小正周期;

(Ⅱ)求函数f(x)在区间上的最小值和最大值.

【分析】(I)先利用二倍角公式和两角和公式对函数解析式化简整理,然后利用正弦函数的性质求得函数的最小正周期.

(II)根据正弦函数的单调性和x的范围,进而求得函数的最大和最小值.

【解答】解:(I)f(x)=2cosx(sinx﹣cosx)+1=sin2x﹣cos2x=.因此,函数f(x)的最小正周期为π.

(II)因为在区间上为增函数,在区间上为减函数,

又,

故函数f(x)在区间上的最大值为,最小值为﹣1.

18.(12分)(2007?天津)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现在从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为黑色球的概率;

(Ⅱ)求取出的4个球中恰有1个红球的概率;

(Ⅲ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.

【分析】(1)取出的4个球均为黑色球包括从甲盒内取出的2个球均黑球且从乙

盒内取出的2个球为黑球,这两个事件是相互独立的,根据相互独立事件同时发生的概率得到结果.

(2)取出的4个球中恰有1个红球表示从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红红,1个是黑球或从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球两种情况,它们是互斥的.

(3)ξ为取出的4个球中红球的个数,则ξ可能的取值为0,1,2,3.结合前两问的解法得到结果,写出分布列和期望.

【解答】解:(I)设“从甲盒内取出的2个球均为黑球”为事件A,

“从乙盒内取出的2个球均为黑球”为事件B.

∵事件A,B相互独立,

且.

∴取出的4个球均为黑球的概率为P(A?B)=P(A)?P(B)=.

(II)设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件C,

“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件D.

∵事件C,D互斥,

且.

∴取出的4个球中恰有1个红球的概率为P(C+D)=P(C)+P(D)=.

(III)ξ可能的取值为0,1,2,3.

由(I),(II)得,

又,

从而P(ξ=2)=1﹣P(ξ=0)﹣P(ξ=1)﹣P(ξ=3)=.

ξ的分布列为

ξ0123

P

ξ的数学期望.

19.(12分)(2007?天津)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.

(Ⅰ)证明:CD⊥AE;

(Ⅱ)证明:PD⊥平面ABE;

(Ⅲ)求二面角A﹣PD﹣C的大小.

【分析】(I)由题意利用线面PA⊥底面ABCD得线线PA⊥CD,进而得线面CD⊥平面PAC,即可得证;

(II)由题意可得AE⊥PC,由(I)知,AE⊥CD,进而得到AE⊥平面PCD,在由线线垂直得PD⊥平面ABE;

(III)因为AE⊥平面PCD,AM在平面PCD内的射影是EM,则EM⊥PD.因此∠AME是二面角A﹣PD﹣C的平面角,然后再在三角形中求出即可.

【解答】解:(I)证明:在四棱锥P﹣ABCD中,

因PA⊥底面ABCD,CD?平面ABCD,故PA⊥CD.

∵AC⊥CD,PA∩AC=A,

∴CD⊥平面PAC.

而AE?平面PAC,

∴AE⊥CD.

(II)证明:由PA=AB=BC,∠ABC=60°,可得AC=PA.

∵E是PC的中点,∴AE⊥PC.

由(I)知,AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.

而PD?平面PCD,∴AE⊥PD.

∵PA⊥底面ABCD,PD在底面ABCD内射影是AD,AB⊥AD,∴AB⊥PD.

又AB∩AE=A,综上得PD⊥平面ABE.

(III)过点A作AM⊥PD,垂足为M,连接EM.

由(II)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则EM⊥PD.

因此∠AME是二面角A﹣PD﹣C的平面角.

由已知,得∠CAD=30°.设AC=a,可得.在Rt△ADP中,∵AM⊥PD,∴AM.PD=PA.AD.则.在Rt△AEM中,.

所以二面角A﹣PD﹣C的大小是.

20.(12分)(2007?天津)已知函数f(x)=(x∈R),其中a∈R.

(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;

(Ⅱ)当a≠0时,求函数f(x)的单调区间与极值.

【分析】(I)把a=1代入,先对函数求导,然后求f(2),根据导数的几何意义可知,该点切线的斜率k=f′(2),从而求出切线方程.

(II)先对函数求导,分别解f′(x)>0,f′(x)<0,解得函数的单调区间,根据函数的单调性求函数的极值.

【解答】解:

(I)解:当a=1时,.

又.

所以,曲线y=f(x)在点(2,f(2))处的切线方程为,即6x+25y﹣32=0.

(II)解:=.

由于a≠0,以下分两种情况讨论.

(1)当a>0时,令f'(x)=0,得到.当x变化时,f'(x),f (x)的变化情况如下表:

x a(a,+

∞)

f′(x)﹣0+0﹣

f(x)↘极小值↗极大值↘

所以f(x)在区间,(a,+∞)内为减函数,在区间内为增函数.

函数f(x)在处取得极小值,且.

函数f(x)在x2=a处取得极大值f(a),且f(a)=1.

(2)当a<0时,令f'(x)=0,得到.当x变化时,f'(x),f (x)的变化情况如下表:

x(﹣∞,a

a)

f′(x)+0﹣0+

f(x)增极大值减极小值增

所以f(x)在区间(﹣∞,a)内为增函数,在区间内为减函数.

函数f(x)在x1=a处取得极大值f(a),且f(a)=1.

函数f(x)在处取得极小值,且.

21.(14分)(2007?天津)在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),其中λ>0.

(Ⅰ)求数列{a n}的通项公式;

(Ⅱ)求数列{a n}的前n项和S n;

(Ⅲ)证明存在k∈N*,使得对任意n∈N*均成立.

【分析】(Ⅰ)解法一:由题设条件可猜想出数列{a n}的通项公式为a n=(n﹣1)λn+2n.然后用数学归纳法证明.

解法二:由a n

=λa n+λn+1+(2﹣λ)2n(n∈N*),λ>0,可知为

+1

等数列,其公差为1,首项为0.由此可求出数列{a n}的通项公式.

(Ⅱ)设T n=λ2+2λ3+3λ4+…+(n﹣2)λn﹣1+(n﹣1)λn,λT n=λ3+2λ4+3λ5+…+(n﹣2)λn+(n﹣1)λn+1.然后用错位相减法进行求解.

(Ⅲ)证明:通过分析,推测数列的第一项最大.然后用分析法进行证明.

【解答】解:(Ⅰ)解法一:a2=2λ+λ2+(2﹣λ)×2=λ2+22,a3=λ(λ2+22)+λ3+(2﹣λ)×22=2λ3+23,

a4=λ(2λ3+23)+λ4+(2﹣λ)×23=3λ4+24.

由此可猜想出数列{a n}的通项公式为a n=(n﹣1)λn+2n.

以下用数学归纳法证明.

(1)当n=1时,a1=2,等式成立.

(2)假设当n=k时等式成立,即a k=(k﹣1)λk+2k,

=λa k+λk+1+(2﹣λ)2k=λ(k﹣1)λk+λ2k+λk+1+2k+1﹣λ2k=[(k+1)﹣1]λk+1+2k+1.那么,a k

+1

这就是说,当n=k+1时等式也成立.根据(1)和(2)可知,等式a n=(n﹣1)λn+2n 对任何n∈N*都成立.

解法二:由a n

=λa n+λn+1+(2﹣λ)2n(n∈N*),λ>0,可得

+1

所以为等差数列,其公差为1,首项为0.故,所以数列{a n}的通项公式为a n=(n﹣1)λn+2n.

(Ⅱ)解:设T n=λ2+2λ3+3λ4+…+(n﹣2)λn﹣1+(n﹣1)λn①

λT n=λ3+2λ4+3λ5+…+(n﹣2)λn+(n﹣1)λn+1.②

当λ≠1时,①式减去②式,得(1﹣λ)T n=λ2+λ3+…+λn﹣(n﹣1)λn+1=,

这时数列{a n}的前n项和.

当λ=1时,.这时数列{a n}的前n项和.(Ⅲ)证明:通过分析,推测数列的第一项最大.下面证明:

.③

由λ>0知a n>0.要使③式成立,只要2a n+1<(λ2+4)a n(n≥2).因为(λ2+4)a n=(λ2+4)(n﹣1)λn+(λ2+4)2n>4λ.(n﹣1)λn+4×2n=4(n﹣1)λn+1+2n+2≥2nλn+1+2n+2=2a n+1,n>2.

高考数学试题分类大全

2015年高考数学试题分类汇编及答案解析(22个专题) 目录 专题一集合..................................................................................................................................................... 专题二函数..................................................................................................................................................... 专题三三角函数............................................................................................................................................ 专题四解三角形............................................................................................................................................ 专题五平面向量............................................................................................................................................ 专题六数列..................................................................................................................................................... 专题七不等式................................................................................................................................................. 专题八复数..................................................................................................................................................... 专题九导数及其应用................................................................................................................................... 专题十算法初步............................................................................................................................................ 专题十一常用逻辑用语 .............................................................................................................................. 专题十二推理与证明................................................................................................................................... 专题十三概率统计 ....................................................................................................................................... 专题十四空间向量、空间几何体、立体几何...................................................................................... 专题十五点、线、面的位置关系 ............................................................................................................ 专题十六平面几何初步 .............................................................................................................................. 专题十七圆锥曲线与方程.......................................................................................................................... 专题十八计数原理 ..................................................................................................................................... 专题十九几何证明选讲 ............................................................................................................................ 专题二十不等式选讲.................................................................................................................................

[历年真题]2016年天津市高考数学试卷(理科)

2016年天津市高考数学试卷(理科) 一、选择题 1.(5分)已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4} 2.(5分)设变量x,y满足约束条件,则目标函数z=2x+5y的最小值 为() A.﹣4 B.6 C.10 D.17 3.(5分)在△ABC中,若AB=,BC=3,∠C=120°,则AC=() A.1 B.2 C.3 D.4 4.(5分)阅读如图的程序图,运行相应的程序,则输出S的值为() A.2 B.4 C.6 D.8 5.(5分)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n +a2n<0”的() ﹣1 A.充要条件B.充分而不必要条件

C.必要而不充分条件D.既不充分也不必要条件 6.(5分)已知双曲线﹣=1(b>0),以原点为圆心,双曲线的实半轴长为半 径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为() A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则?的值为() A.﹣ B.C.D. 8.(5分)已知函数f(x)=(a>0,且a≠1)在R上单 调递减,且关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a的取值范围是() A.(0,]B.[,]C.[,]∪{}D.[,)∪{} 二、填空题 9.(5分)已知a,b∈R,i是虚数单位,若(1+i)(1﹣bi)=a,则的值为.10.(5分)(x2﹣)8的展开式中x7的系数为(用数字作答) 11.(5分)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为 m3

试论近三年高考数学试卷分析

HR Planning System Integration and Upgrading Research of A Suzhou Institution 近三年高考数学试卷分析 陈夏明 近三年的数学试卷强调了对基础知识的掌握、突出运用所学知识解决实际问题的能力.整套试卷遵照高考考试大纲的要求,从题型设置、考察知识的范围和运算量,书写量等方面保持相对稳定,体现了考查基础知识、基本运算方法和基本数学思想方法的特点.好多题都能在课本上找到影子,是课本题的变形和创新.这充分体现了高考数学试题“来源于课本”的命题原则,同时,也注重了知识之间内在的联系与综合,在知识的交汇点设计试题的原则。 2009年高考数学考试大纲与往年对比,总体保持平稳,个别做了修改,修改后更加适合中学实际和现代中学生的实际水平,从大纲来看,高考主干知识八大块:1.函数;2.数列;3.平面向量;4.不等式(解与证);5.解析几何;6.立体几何;7.概率与统计。仍为考查的重点,其中函数是最核心的主干知识. 考试要求有变化: 今年数学大纲总体保持平稳,并在平稳过渡中求试题创新,试题难度更加适合中学教学实际和现代中学生的实际水平;适当加大文理卷的差异,力求文理学生成绩平衡,文科试题“适当拉大试题难度的分布区间,试题难度的起点应降低,而试题难度终点应与理科相同”。 试题难度没有太大变化,但思维量进一步加大,更加注重基础知识、基本技能的考查.注重通性通法,淡化特殊技巧,重视数学思想方法的考查.不回避重点知识的考查。函数、数列、概率(包括排列、组合)、立体几何、解析几何等知

识仍是考查的重点内容.保持高考改革的连续性、稳定性,严格遵循《考试大纲》命题. 针对高考变化教师应引导学生: 1.注重专题训练,找准薄弱环节 2.关注热点问题进行有针对性的训练 3.重视高考模拟试题的训练 4.回归课本,查缺补漏。 5.重视易错问题和常用结论的归纳总结 6.心理状态的调整与优化 (1)审题与解题的关系: 我建以审题与解题的关系要一慢一快:审题要慢,做题要快。 (2)“会做”与“得分”的关系: 解题要规范,俗话说:“不怕难题不得分,就怕每题都扣分”所以务必将解题过程写得层次分明,结构完整.这非常重要,在平时训练时要严格训练. (3)快与准的关系: 在目前题量大、时间紧的情况下,“准”字则尤为重要。只有“准”才能得分,只有“准”才可不必考虑再花时间检查,而“快”是平时训练的结果. (4)难题与容易题的关系: 拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,因此不要在某个卡住的题上打“持久战”,特别不要“小题大做”那样既耗费时间又未心能拿分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,而且解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难。 因此,我建议答题应遵循: 三先三后: 1.先易后难 2.先高(分)后低(分) 3.先同后异。

2019年天津市高考数学试卷(理科) 及答案解析

绝密★启用前 2019年普通高等学校招生全国统一考试(天津卷) 理科数学 答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。 祝各位考生考试顺利! 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)设集合A={﹣1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=() A.{2} B.{2,3} C.{﹣1,2,3} D.{1,2,3,4} 2.(5分)设变量x,y满足约束条件则目标函数z=﹣4x+y的最大值为() A.2 B.3 C.5 D.6 3.(5分)设x∈R,则“x2﹣5x<0”是“|x﹣1|<1”的() A.充分而不必要条件B.必要而不充分条件 C.充要条件D.既不充分也不必要条件 4.(5分)阅读如图的程序框图,运行相应的程序,输出S的值为()

A.5 B.8 C.24 D.29 5.(5分)已知抛物线y2=4x的焦点为F,准线为l.若l与双曲线﹣=1(a>0,b >0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为() A.B.C.2 D. 6.(5分)已知a=log52,b=log0.50.2,c=0.50.2,则a,b,c的大小关系为()A.a<c<b B.a<b<c C.b<c<a D.c<a<b 7.(5分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,将y =f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(x)的最小正周期为2π,且g()=,则f()=()A.﹣2 B.﹣C.D.2 8.(5分)已知a∈R.设函数f(x)=若关于x的不等式f(x) ≥0在R上恒成立,则a的取值范围为() A.[0,1] B.[0,2] C.[0,e] D.[1,e] 二、填空题:本大题共6小题,每小题5分,共30分.

2017高考数学(理)(全国II卷)详细解析

绝密★启用前 2017年普通高等学校招生全国统一考试 新课标II卷 理科数学 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的. 1. A.B.C.D. 【答案】D 2.设集合,.若,则 A.B.C.D. 【答案】C 【解析】 试题分析:由得,即是方程的根,所以,,故选C. 【考点】交集运算、元素与集合的关系 【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算的准确性. 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A.1盏B.3盏C.5盏D.9盏

4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A. B. C. D. 【答案】B 【解析】 试题分析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱, 其体积,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积 ,故该组合体的体积.故选B. 【考点】三视图、组合体的体积 【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解. 5.设,满足约束条件,则的最小值是 A.B.C.D.

高考真题理科数学解析版

理科数学解析 一、选择题: 1.C【解析】本题考查集合的概念及元素的个数. 容易看出只能取-1,1,3等3个数值.故共有3个元素. 【点评】集合有三种表示方法:列举法,图像法,解析式法.集合有三大特性:确定性,互异性,无序性.本题考查了列举法与互异性.来年需要注意集合的交集等运算,Venn图的考查等. 2.D【解析】本题考查常有关对数函数,指数函数,分式函数的定义域以及三角函数的值域. 函数的定义域为,而答案中只有的定 义域为.故选D. 【点评】求函数的定义域的依据就是要使函数的解析式有意义的自变量的取值范围.其求解根据一般有:(1)分式中,分母不为零;(2)偶次根式中,被开方数非负;(3)对数的真数大于0:(4)实际问题还需要考虑使题目本身有意义.体现考纲中要求了解一些简单函数的定义域,来年需要注意一些常见函数:带有分式,对数,偶次根式等的函数的定义域的求法. 3.B【解析】本题考查分段函数的求值. 因为,所以.所以. 【点评】对于分段函数结合复合函数的求值问题,一定要先求内层函数的值,因为内层函数的函数值就是外层函数的自变量的值.另外,要注意自变量的取值对应着哪一段区间,就使用

哪一段解析式,体现考纲中要求了解简单的分段函数并能应用,来年需要注意分段函数的分段区间及其对应区间上的解析式,千万别代错解析式. 4.D【解析】本题考查三角恒等变形式以及转化与化归的数学思想. 因为,所以.. 【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式转化;另外,在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的.体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意二倍角公式的正用,逆用等. 5.B【解析】本题以命题的真假为切入点,综合考查了充要条件,复数、特称命题、全称命题、二项式定理等. (验证法)对于B项,令,显然,但不互为共轭复数,故B为假命题,应选B. 【点评】体现考纲中要求理解命题的概念,理解全称命题,存在命题的意义.来年需要注意充要条件的判断,逻辑连接词“或”、“且”、“非”的含义等. 6.C【解析】本题考查归纳推理的思想方法. 观察各等式的右边,它们分别为1,3,4,7,11,…, 发现从第3项开始,每一项就是它的前两项之和,故等式的右

2017年天津市高考数学试卷(理科)

2017年天津市高考数学试卷(理科) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)设集合A={1,2,6},B={2,4},C={x∈R|﹣1≤x≤5},则(A∪B)∩C=() A.{2}B.{1,2,4}C.{1,2,4,5}D.{x∈R|﹣1≤x≤5} 2.(5分)设变量x,y满足约束条件,则目标函数z=x+y的最大值 为() A.B.1 C.D.3 3.(5分)阅读右面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为() A.0 B.1 C.2 D.3 4.(5分)设θ∈R,则“|θ﹣|<”是“sinθ<”的() A.充分而不必要条件B.必要而不充分条件 C.充要条件D.既不充分也不必要条件

5.(5分)已知双曲线﹣=1(a>0,b>0)的左焦点为F,离心率为.若 经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为() A.=1 B.=1 C.=1 D.=1 6.(5分)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为() A.a<b<c B.c<b<a C.b<a<c D.b<c<a 7.(5分)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<x.若f()=2,f()=0,且f(x)的最小正周期大于2π,则() A.ω=,φ=B.ω=,φ=﹣ C.ω=,φ=﹣D.ω=,φ= 8.(5分)已知函数f(x)=,设a∈R,若关于x的不等式f(x)≥|+a|在R上恒成立,则a的取值范围是() A.[﹣,2]B.[﹣,]C.[﹣2,2] D.[﹣2,] 二.填空题:本大题共6小题,每小题5分,共30分. 9.(5分)已知a∈R,i为虚数单位,若为实数,则a的值为.10.(5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为. 11.(5分)在极坐标系中,直线4ρcos(θ﹣)+1=0与圆ρ=2sinθ的公共点的个数为. 12.(5分)若a,b∈R,ab>0,则的最小值为. 13.(5分)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ

三年高考(2016-2018)数学(理)真题分类解析:专题14-与数列相关的综合问题

专题14 与数列相关的综合问题 考纲解读明方向 分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等. 2018年高考全景展示 1.【2018年浙江卷】已知成等比数列,且 .若 , 则 A. B. C. D. 【答案】B 【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断. 详解:令则 ,令 得,所以当时, ,当 时, ,因此 , 若公比 ,则 ,不合题意;若公比 ,则

但,即 ,不合题意;因此, ,选B. 点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如 2.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________. 【答案】27 【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值. 点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如). 3.【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.

(I)求和的通项公式; (II)设数列的前n项和为, (i)求; (ii)证明. 【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析. 【解析】分析:(I)由题意得到关于q的方程,解方程可得,则.结合等差数列通项公式可得(II)(i)由(I),有,则. (ii)因为,裂项求和可得. 详解:(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得 从而故所以数列的通项公式为,数列的通项公式为 (II)(i)由(I),有,故 . (ii)因为, 所以. 点睛:本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力.

2015年天津市高考数学试卷(理科)及解析

2015年天津市高考数学试卷(理科)及解析2015年天津市高考数学试卷(理科) 一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1((5分)(2015?天津)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A??B=( ) U A({2 ,5} B( {3,6} C( {2,5,6} D({2 ,3,5,6,8} 2((5分)(2015?天津)设变量x,y满足约束条件则目标函数z=x+6y的最大值为( ) A( B( C( D( 3 4 18 40 3((5分)(2015?天津)阅读如图的程序框图,运行相应的程序,则输出S的值为( ) A(, 10 B( C( D( 6 14 18

24((5分)(2015?天津)设x=R,则“|x,2|,1”是“x+x,2,0”的( ) A(充分而不必要条件 B( 必要而不充分条件 C( 充要条件 D(既不充分也不必要条件 5((5分)(2015?天津)如图,在圆O中,M、N是弦AB的三等分点,弦CD,CE 分别经过点M,N,若CM=2,MD=4,CN=3,则线段NE的长为( ) 第1页(共21页) A( B( C( D( 3 6((5分)(2015?天津)已知双曲线,=1 (a,0,b,0)的一条渐近线过点(2,), 2且双曲线的个焦点在抛物线y=4x的准线上,则双曲线的方程为( ) A( B( ,=1 ,=1 C( D( ,=1 ,=1 ,|xm|((5分)(2015?天津)已知定义在R上的函数f(x)=2,1(m为实数)为偶函数,7 记a=f(log3),b=f(log5),c=f(2m),则a,b,c的大小关系为( ) 0.52 A(a ,b,c B( a,c,b C( c,a,b D(c ,b,a

2018高考江苏数学试题与答案解析[解析版]

2017年普通高等学校招生全国统一考试(卷) 数学I 一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2017年,1,5分】已知集合}2{1A =,,23{},B a a =+.若{}1A B =I ,则实数a 的值为_______. 【答案】1 【解析】∵集合}2{1A =,,23{},B a a =+.{}1A B =I ,∴1a =或231a +=,解得1a =. 【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用. (2)【2017年,2,5分】已知复数()()1i 12i z =-+,其中i 是虚数单位,则z 的模是_______. 【答案】10 【解析】复数()()1i 12i 123i 13i z =-+=-+=-+,∴() 2 21310z = -+=. 【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题. (3)【2017年,3,5分】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取_______件. 【答案】18 【解析】产品总数为2004003001001000+++=件,而抽取60辆进行检验,抽样比例为606 1000100 = ,则应从丙 种型号的产品中抽取6 30018100 ?=件. 【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例, 即样本容量和总体容量的比值,在各层中进行抽取. (4)【2017年,4,5分】如图是一个算法流程图:若输入x 的值为1 16 ,则输出y 的值是_______. 【答案】2- 【解析】初始值116 x =,不满足1x ≥,所以41 216 222log 2log 2y =+=-=-. 【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于 基础题. (5)【2017年,5,5分】若1tan 46πα? ?-= ?? ?.则tan α=_______. 【答案】7 5 【解析】tan tan tan 114tan 4tan 161tan tan 4 π απααπαα--??-= == ?+? ?+Q ,∴6tan 6tan 1αα-=+,解得7tan 5α=. 【点评】本题考查了两角差的正切公式,属于基础题. (6)【2017年,6,5分】如如图,在圆柱12O O 有一个球O ,该球与圆柱的上、下底面及母线均相 切。记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12 V V 的值是________. 【答案】3 2 【解析】设球的半径为R ,则球的体积为:3 43 R π,圆柱的体积为:2322R R R ππ?=.则313223423 V R R V ππ==. 【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力. (7)【2017年,7,5分】记函数2()6f x x x =+- 的定义域为D .在区间[45]-,上随机取一个数x ,则x ∈D

2017年高考数学试题分项版解析几何解析版

2017年高考数学试题分项版—解析几何(解析版) 一、选择题 1.(2017·全国Ⅰ文,5)已知F 是双曲线C :x 2 -y 2 3 =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( ) A .13 B .12 C .23 D .32 1.【答案】D 【解析】因为F 是双曲线 C :x 2- y 2 3 =1的右焦点,所以F (2,0). 因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ). 因为P 是C 上一点,所以4-y 2P 3=1,解得y P =±3, 所以P (2,±3),|PF |=3. 又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32. 故选D. 2.(2017·全国Ⅰ文,12)设A ,B 是椭圆C :x 23+y 2 m =1长轴的两个端点.若C 上存在点M 满 足∠AMB =120°,则m 的取值范围是( ) A .(0,1]∪[9,+∞) B .(0,3]∪[9,+∞) C .(0,1]∪[4,+∞) D .(0,3]∪[4,+∞) 2.【答案】A 【解析】方法一 设焦点在x 轴上,点M (x ,y ). 过点M 作x 轴的垂线,交x 轴于点N , 则N (x,0). 故tan ∠AMB =tan(∠AMN +∠BMN ) =3+x |y |+3-x |y |1-3+x |y |· 3-x |y |=23|y |x 2+y 2-3. 又tan ∠AMB =tan 120°=-3, 且由x 23+y 2m =1,可得x 2 =3-3y 2 m , 则23|y |3-3y 2m +y 2-3=23|y |(1-3m )y 2=- 3.

高考数学试题分类汇编个专题

2017年高考数学试题分类汇编及答案解析(22个专题)目录 专题一 集合 ............................................................................................................................................................................... 1 专题二 函数 ............................................................................................................................................................................... 6 专题三 三角函数...................................................................................................................................................................... 21 专题四 解三角形...................................................................................................................................................................... 32 专题五 平面向量...................................................................................................................................................................... 40 专题六 数列 ............................................................................................................................................................................. 48 专题七 不等式 ......................................................................................................................................................................... 68 专题八 复数 ............................................................................................................................................................................. 80 专题九 导数及其应用 .............................................................................................................................................................. 84 专题十 算法初步.................................................................................................................................................................... 111 专题十一 常用逻辑用语 ........................................................................................................................................................ 120 专题十二 推理与证明 ............................................................................................................................................................ 122 专题十三 概率统计 ................................................................................................................................................................ 126 专题十四 空间向量、空间几何体、立体几何 .................................................................................................................... 149 专题十五 点、线、面的位置关系 ........................................................................................................................................ 185 专题十六 平面几何初步 ........................................................................................................................................................ 186 专题十七 圆锥曲线与方程 .................................................................................................................................................... 191 专题十八 计数原理 .............................................................................................................................................................. 217 专题十九 几何证明选讲 ...................................................................................................................................................... 220 专题二十 不等式选讲 .......................................................................................................................................................... 225 专题二十一 矩阵与变换 ........................................................................................................................................................ 229 专题二十二 坐标系与参数方程 .. (230) 专题一 集合 1.(15年北京文科)若集合{}52x x A =-<<,{} 33x x B =-<<,则A B =I ( ) A .{} 32x x -<< B .{} 52x x -<< C .{} 33x x -<< D .{} 53x x -<< 【答案】A 考点:集合的交集运算. 2.(15年广东理科) 若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =I A .? B .{}1,4-- C .{}0 D .{}1,4

2016年高考数学试卷分析

2016年高考数学试卷分析 随着2016年高考的结束,,作为一线教师,也应该是对今年的高考试题进行一番细致的研究了。陕西省是即课改后首次使用全国卷。2015年的陕西卷已经为下一年的平稳过度做好了铺垫。首先在题型设置上,与全国卷保持一致,这已给师生做好了思想工作,当2016年的高考数学进入人们眼帘的时候,似乎也不是很陌生,很有老朋友相见的感觉。 今年的全国卷数学试题从试题结构与去年相比变化不大,严格遵守考试大纲说明,五偏题,怪题现象。试卷难度呈阶梯型分布,试题更灵活。入口容易出口难,有利于高校选拔新生。 一、总体分析: 1,试题的稳定性: 从文理试卷整体来看,考查的内容注重基础考查,又在一定的程度上进行创新。知识覆盖全面且突出重点。高中知识“六大板块”依旧是考查的重点。无论大小体目90%均属于常规题型,难度适中。是学生训练时的常见题型。其中,5,15,18注重考查了数学在实际中的应用能力。这就提示我们数学的教学要来源实际,回归生活,既有基础与创新的结合,又能增

加学生的自信心,发挥自己的最佳水平。 试题的变化: 有些复课中的重点“二项式定理”,“线性规划”,“定积分”。“均值不等式”等知识点并没有被纳入,而“条件概率”则出现在大题中,这也对试题的难度进行区分。 在难度方面,选择题的12题,填空题的16题,对学生造成较大困扰。这也有利于对人才的选拔。解答题中的20,21题第一问难度适中,第二问都提高了难度。这也体现了入口易,出口难,对人才的选拔非常有利。 今年的高考数学试题更注重了试题的广度,而简化了试题的深度。而这对陕西高考使用全国卷的过度上起到了承上启下的作用。平稳过度已是事实。给学生,教师都增加了信心。 试题的详细分析: 选择题部分 (1),考查复数,注重的是知识点的考查。对负数的运算量则降低要求,这要求我们不仅要求对运算过关,更强调知识点的全面性(2)集合的运算:集合的交并补三种运算应是同等对待。在平时的教学中,出现的交集运算比较多,。并集,补集易被忽略。(而

高考文科数学试题解析分类汇编

2013年高考解析分类汇编16:选修部分 一、选择题 1 .(2013年高考大纲卷(文4))不等式 222x -<的解集是 ( ) A .()-1,1 B .()-2,2 C .()()-1,00,1U D .()()-2,00,2U 【答案】D 2|2|2 <-x ,所以?????->-<-222222 x x ,所以402 <2, 则关于实数x 的不等式||||2x a x b -+->的解集是______. 【答案】R 考察绝对值不等式的基本知识。函数||||)(b x a x x f -+-=的值域为:

相关文档
最新文档