自考线性代数(04184)经管类复习提纲内含经典例题分类讲解

自考线性代数(04184)经管类复习提纲内含经典例题分类讲解
自考线性代数(04184)经管类复习提纲内含经典例题分类讲解

线性代数复习提纲

第一部分:基本要求(计算方面)

四阶行列式的计算;

N阶特殊行列式的计算(如有行和、列和相等);

矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);

求矩阵的秩、逆(两种方法);解矩阵方程;

含参数的线性方程组解的情况的讨论;

齐次、非齐次线性方程组的求解(包括唯一、无穷多解);

讨论一个向量能否用和向量组线性表示;

讨论或证明向量组的相关性;

求向量组的极大无关组,并将多余向量用极大无关组线性表示;

将无关组正交化、单位化;

求方阵的特征值和特征向量;

讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;

通过正交相似变换(正交矩阵)将对称矩阵对角化;

写出二次型的矩阵,并将二次型标准化,写出变换矩阵;

判定二次型或对称矩阵的正定性。

第二部分:基本知识

一、行列式

1.行列式的定义

用n^2个元素aij组成的记号称为n阶行列式。

(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;

2.行列式的计算

一阶|α|=α行列式,二、三阶行列式有对角线法则;

N阶(n>=3)行列式的计算:降阶法

定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。

特殊情况

上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;

(2)行列式值为0的几种情况:

Ⅰ行列式某行(列)元素全为0;

Ⅱ行列式某行(列)的对应元素相同;

Ⅲ行列式某行(列)的元素对应成比例;

Ⅳ奇数阶的反对称行列式。

二.矩阵

1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);

2.矩阵的运算

(1)加减、数乘、乘法运算的条件、结果;

(2)关于乘法的几个结论:

①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);

②矩阵乘法一般不满足消去律、零因式不存在;

③若A、B为同阶方阵,则|AB|=|A|*|B|;

④|kA|=k^n|A|

3.矩阵的秩

(1)定义非零子式的最大阶数称为矩阵的秩;

(2)秩的求法一般不用定义求,而用下面结论:

矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。

求秩:利用初等变换将矩阵化为阶梯阵得秩。

4.逆矩阵

(1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立);

(2)性质:(AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B的逆矩阵,你懂的)(注意顺序)

(3)可逆的条件:

①|A|≠0;②r(A)=n;③A->I;

(4)逆的求解

伴随矩阵法A^-1=(1/|A|)A*;(A* A的伴随矩阵~)

②初等变换法(A:I)->(施行初等变换)(I:A^-1)

5.用逆矩阵求解矩阵方程:

AX=B,则X=(A^-1)B;

XB=A,则X=B(A^-1);

AXB=C,则X=(A^-1)C(B^-1)

三、线性方程组

1.线性方程组解的判定

定理:

(1) r(A,b)≠r(A)无解;

(2) r(A,b)=r(A)=n 有唯一解;

(3)r(A,b)=r(A)

特别地:对齐次线性方程组AX=0

(1) r(A)=n 只有零解;

(2) r(A)

再特别,若为方阵,

(1)|A|≠0只有零解

(2)|A|=0 有非零解

2.齐次线性方程组

(1)解的情况:

r(A)=n,(或系数行列式D≠0)只有零解;

r(A)

X=c1α1+c2α2+…+Cn-rαn-r。

(3)求解的方法和步骤:

①将增广矩阵通过行初等变换化为最简阶梯阵;

②写出对应同解方程组;

③移项,利用自由未知数表示所有未知数;

④表示出基础解系;

⑤写出通解。

3.非齐次线性方程组

(1)解的情况:

利用判定定理。

(2)解的结构:

X=u+c1α1+c2α2+…+Cn-rαn-r。

(3)无穷多组解的求解方法和步骤:

与齐次线性方程组相同。

(4)唯一解的解法:

有克莱姆法则、逆矩阵法、消元法(初等变换法)。

四、向量组

1.N维向量的定义

注:向量实际上就是特殊的矩阵(行矩阵和列矩阵)。2.向量的运算:

(1)加减、数乘运算(与矩阵运算相同);

(2)向量内积α'β=a1b1+a2b2+…+anbn;

(3)向量长度

|α|=√α'α=√(a1^2+a2^2+…+an^2) (√根号)

(4)向量单位化(1/|α|)α;

(5)向量组的正交化(施密特方法)

设α1,α 2,…,αn线性无关,则

β1=α1,

β2=α2-(α2’β1/β1’β)*β1,

β3=α3-(α3’β1/β1’β1)*β1-(α3’β2/β2’β2)*β2,………。

3.线性组合

(1)定义若β=k1α1+k2α 2+…+knαn,则称β是向量组α1,α2,…,αn的一个线性组合,或称β可以用向量组α1,α 2,…,αn的一个线性表示。

(2)判别方法将向量组合成矩阵,记

A=(α1,α 2,…,αn),B=(α1,α2,…,αn,β)

若r (A)=r (B),则β可以用向量组α1,α 2,…,αn的一个线性表示;

若r (A)≠r (B),则β不可以用向量组α1,α 2,…,αn的一个线性表示。

(3)求线性表示表达式的方法:

将矩阵B施行行初等变换化为最简阶梯阵,则最后一列元素就是表示的系数。

4.向量组的线性相关性

(1)线性相关与线性无关的定义

设 k1α1+k2α2+…+knαn=0,

若k1,k2,…,kn不全为0,称线性相关;

若k1,k2,…,kn全为0,称线性无关。

(2)判别方法:

① r(α1,α 2,…,αn)

r(α1,α 2,…,αn)=n,线性无关。

②若有n个n维向量,可用行列式判别:

n阶行列式aij=0,线性相关(≠0无关) (行列式太不好打了)

5.极大无关组与向量组的秩

(1)定义极大无关组所含向量个数称为向量组的秩

(2)求法设A=(α1,α 2,…,αn),将A化为阶梯阵,则A的秩即为向量组的秩,而每行的第一个非零元所在列的向量就构成了极大无关组。

五、矩阵的特征值和特征向量

1.定义对方阵A,若存在非零向量X和数λ使AX=λX,则称λ是矩阵A的特征值,向量X称为矩阵A的对应于特征值λ的特征向量。

2.特征值和特征向量的求解:

求出特征方程|λI-A|=0的根即为特征值,将特征值λ代入对应齐次线性方程组(λI-A)X =0中求出方程组的所有非零解即为特征向量。

3.重要结论:

(1)A可逆的充要条件是A的特征值不等于0;

(2)A与A的转置矩阵A'有相同的特征值;

(3)不同特征值对应的特征向量线性无关。

六、矩阵的相似

1.定义对同阶方阵A、B,若存在可逆矩阵P,使P^-1AP=B,则称A与B相似。

2.求A与对角矩阵∧相似的方法与步骤(求P和∧):

求出所有特征值;

求出所有特征向量;

若所得线性无关特征向量个数与矩阵阶数相同,则A可对角化(否则不能对角化),将这n 个线性无关特征向量组成矩阵即为相似变换的矩阵P,依次将对应特征值构成对角阵即为

∧。

3.求通过正交变换Q与实对称矩阵A相似的对角阵:

方法与步骤和一般矩阵相同,只是第三歩要将所得特征向量正交化且单位化。

七、二次型

n

1.定义n元二次多项式f(x1,x2,…,xn)=∑a ij x i x j称为二次型,若a ij=0(i≠j),则称为二交型的标准型。

i,j=1

2.二次型标准化:

配方法和正交变换法。正交变换法步骤与上面对角化完全相同,这是由于对正交矩阵Q,Q^-1=Q',即正交变换既是相似变换又是合同变换。

3.二次型或对称矩阵的正定性:

(1)定义(略);

(2)正定的充要条件:

①A为正定的充要条件是A的所有特征值都大于0;

②A为正定的充要条件是A的所有顺序主子式都大于0;

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

自学考试线性代数经管类资料重点考点

线性代数(经管类)考点逐个击破 第一章 行列式 (一)行列式的定义 行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数. 1.二阶行列式 由4个数)2,1,(=j i a ij 得到下列式子: 11122122 a a a a 称为一个二阶行列式,其运算规则为 2112221122 211211a a a a a a a a -= 2.三阶行列式 由9个数)3,2,1,(=j i a ij 得到下列式子:33 323123222113 1211a a a a a a a a a 称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念. 3.余子式及代数余子式 设有三阶行列式 33 323123222113 12113a a a a a a a a a D = 对任何一个元素ij a ,我们划去它所在的第i 行及第j 列,剩下的元素按原先次序组成一个二阶行列式,称它为元素ij a 的余子式,记成ij M 例如 33 32232211a a a a M = ,33 32131221a a a a M = ,23 22131231a a a a M = 再记 ij j i ij M A +-=)1( ,称ij A 为元素ij a 的代数余子式. 例如 1111M A =,2121M A -=,3131M A = 那么 ,三阶行列式3D 定义为 我们把它称为3D 按第一列的展开式,经常 31 312121111133 323123222113 12113A a A a A a a a a a a a a a a D ++==

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式41 234334461 5671122 D ==-,试求4142A A +与4344A A +、 三、利用多项式分解因式计算行列式 1.计算2211 23122313 1513 19x D x -=-、 2.设()x b c d b x c d f x b c x d b c d x =,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1、设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2、设A 为三阶方阵,*A 为A 的伴随矩阵,且1||2 A =,试计算行列式1*(3)22.A A O O A -??-???? 3、设A 就是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式

||.A 4、设矩阵210120001A ????=?????? ,矩阵B 满足**2ABA BA E =+,则||_____.B = 5、设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1、若四阶矩阵A 与B 相似,矩阵A 的特征值为1111,,,2345 ,则行列式1||________.B E --= 2、设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1、设,,A B A B +都就是可逆矩阵,求:111().A B ---+ 2、设0002100053123004 580034600A ????????=???????? ,求1.A -

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

自学考试试卷 线性代数(经管类)

2015年10月高等教育自学考试全国统一命题考试 线性代数(经管类) 试卷 (课程代码04184) 本试卷共3页,满分l00分,考试时间l50分钟。 考生答题注意事项: 1.本卷所有试题必须在答题卡上作答。答在试卷上无效,试卷空白处和背面均可作草稿纸。2.第一部分为选择题。必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。3.第二部分为非选择题。必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。4.合理安排答题空间。超出答题区域无效。 说明:在本卷中。A T表示矩阵A的转置矩阵。A*表示矩阵A的伴随矩阵,E是单位矩阵,︱A ︱表示方阵A的行列式,r(A)表示矩阵A的秩。 第一部分选择题 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。未涂、错涂或多涂均无分。 1.已知2阶行列式 A.-2 B.-l C.1 D.2 3.设向量组可由向量组线性表出,则下列结论中 正确的是 A.若s≤t,则必线性相关 B.若s≤t,则必线性相关 C.若线性无关,则s≤t D.若线性无关,则s≤t 4.设有非齐次线性方程组Ax=b,其中A为m×n矩阵,且r(A)=r1,r(A,b)=r2,则 下列结论中正确的是 A.若r1=m,则Ax=O有非零解 B.若r1=n,则Ax=0仅有零解 C.若r2=m,则Ax=b有无穷多解 D.若r2=n,则Ax=b有惟一解 5. 设n阶矩阵A满足︱2E-3A︱=0,则A必有一个特征值=

第二部分非选择题 二、填空题 (本大题共l0小题。每小题2分,共20分) 请在答题卡上作答。 6.设行列式中元素a ij的代数余子式为A ij(i,j=1,2),则a11A21+a12+A22=__________.7.已知矩阵,则A2+2A+E=___________. 8.设矩阵,若矩阵A满足AP=B,则A=________. 9.设向量,,则由向量组线性表出的表示式为=____________. 10.设向量组a1=(1,2,1)T,a2=(-1,1,0)T,a3=(0,2,k)T线性无关,则数k的取值应 满足__________. 11.设3元非齐次线性方程组Ax=b的增广矩阵(A,b)经初等行变换可化为 若该方程组无解,则数k=_________. 12.设=-2是n阶矩阵A的一个特征值,则矩阵A—3E必有一个特征值是________.13.设2阶矩阵A与B相似,其中,则数a=___________. 14.设向量a1=(1,-l,0)T,a2=(4,0,1)T,则=__________. 15.二次型f(x1,x2)=-2x12+x22+4x1x2的规范形为__________. 三、计算题(本大题共7小题,每小题9分,共63分) 请在答题卡上作答。 16. 计算行列式的值. 17. 已知矩阵,若矩阵x满足等式AX=B+X,求X.

《经济数学》线性代数学习辅导与典型例题解析

《经济数学》线性代数学习辅导及典型例题解析 第1-2章行列式和矩阵 ⒈了解矩阵的概念,熟练掌握矩阵的运算。 矩阵的运算满足以下性质 ⒉了解矩阵行列式的递归定义,掌握计算行列式(三、四阶)的方法;掌握方阵乘积行列式定理。 是同阶方阵,则有: 若是阶行列式,为常数,则有: ⒊了解零矩阵,单位矩阵,数量矩阵,对角矩阵,上(下)三角矩阵,对称矩阵,初等矩阵的定义及性质。

⒋理解可逆矩阵和逆矩阵的概念及性质,掌握矩阵可逆的充分必要条件。 若为阶方阵,则下列结论等价 可逆满秩存在阶方阵使得 ⒌熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,会解简单的矩阵方程。 用初等行变换法求逆矩阵: 用伴随矩阵法求逆矩阵:(其中是的伴随矩阵) 可逆矩阵具有以下性质: ⒍了解矩阵秩的概念,会求矩阵的秩。 将矩阵用初等行变换化为阶梯形后,所含有的非零行的个数称为矩阵的秩。 典型例题解析 例1 设均为3阶矩阵,且,则。 解:答案:72 因为,且

所以 例2设为矩阵,为矩阵,则矩阵运算()有意义。 解:答案:A 因为,所以A可进行。 关于B,因为矩阵的列数不等于矩阵的行数,所以错误。 关于C,因为矩阵与矩阵不是同形矩阵,所以错误。 关于D,因为矩阵与矩阵不是同形矩阵,所以错误。 例3 已知 求。 分析:利用矩阵相乘和矩阵相等求解。 解:因为 得。

例4 设矩阵 求。 解:方法一:伴随矩阵法 可逆。 且由 得伴随矩阵 则=

方法二:初等行变换法 注意:矩阵的逆矩阵是唯一的,若两种结果不相同,则必有一个结果是错误的或两个都是错误的。 例4 设矩阵 求的秩。 分析:利用矩阵初等行变换求矩阵的秩。 解: 。

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

线性代数总结材料汇总情况+经典例题

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则

7、n阶(n≥2)德蒙德行列式 数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式:

(1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解 (2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)

考研线性代数重点内容和典型题型

考研线性代数重点内容和典型题型 线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《xx 年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、

伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx 年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、

自考线性代数(经管类)试题及答案解析2020年1月

1 全国2018年1月高等教育自学考试 线性代数(经管类)试题 课程代码:04184 试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A*表示A 的伴随矩阵;秩(A )表示矩 阵A 的秩;|A|表示A 的行列式;E 表示单位矩阵。 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A 为三阶方阵且,2-=A 则=A A T 3( ) A.-108 B.-12 C.12 D.108 2.如果方程组?? ???=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( ) A.-2 B.-1 C.1 D.2 3.设A 、B 为同阶方阵,下列等式中恒正确的是( ) A.AB=BA B.()111---+=+B A B A C.B A B A +=+ D.()T T T B A B A +=+ 4.设A 为四阶矩阵,且,2=A 则=*A ( ) A.2 B.4 C.8 D.12 5.设β可由向量α1 =(1,0,0)α2 =(0,0,1)线性表示,则下列向量中β只能是 A.(2,1,1) B.(-3,0,2) C.(1,1,0) D.(0,-1,0) 6.向量组α1 ,α2 ,…,αs 的秩不为s(s 2≥)的充分必要条件是( ) A. α1 ,α2 ,…,αs 全是非零向量

2 B. α1 ,α2, …,αs 全是零向量 C. α1 ,α2, …,αs 中至少有一个向量可由其它向量线性表出 D. α1 ,α2, …,αs 中至少有一个零向量 7.设A 为m n ?矩阵,方程AX=0仅有零解的充分必要条件是( ) A.A 的行向量组线性无关 B.A 的行向量组线性相关 C.A 的列向量组线性无关 D.A 的列向量组线性相关 8.设A 与B 是两个相似n 阶矩阵,则下列说法错误.. 的是( ) A.B A = B.秩(A )=秩(B ) C.存在可逆阵P ,使P -1AP=B D.λE-A =λE-B 9.与矩阵A =???? ??????200010001相似的是( ) A.???? ??????100020001 B.??????????200010011 C.??????????200011001 D.???? ??????100020101 10.设有二次型,x x x )x ,x ,x (f 232221321+-=则)x ,x ,x (f 321( ) A.正定 B.负定 C.不定 D.半正定 二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。错填、不填均无分。 11.若,02 11=k 则k=___________. 12.设A=???? ??????411023,B=,010201??????则AB=___________.

自学考试线性代数经管类试卷及答案

自学考试线性代数经管 类试卷及答案 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

2015年4月高等教育自学考试全国统一命题考试 04184 线性代数(经管类)试卷 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个选项是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设行列式D 1= 22 11 b a b a ,D 2=2 22 111 3232a b a a b a --,则D 2= 【 】 2、若A=???? ??1x 1021,B =??? ? ??y 24202,且2A =B ,则 【 】 =1,y=2 =2,y=1 =1,y=1 =2,y=2 3、已知A 是3阶可逆矩阵,则下列矩阵中与A 等价的是 【 】 A.????? ??000000001 B.????? ??000010001 C.????? ??100000001 D.???? ? ??100010001

4、设2阶实对称矩阵A 的全部特征值味1,-1,-1,则齐次线性方程组 (E +A )x =0的基础 解系所含解向量的个数为 【 】 5、矩阵??? ? ??--3113有一个特征值为 【 】 二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。错填、不填均无分。 6、设A 为3阶矩阵,且A =3,则13-A = . 7、设A =??? ? ??5312,则A * = . 8、已知A =???? ??1201,B =??? ? ??-211111,若矩阵X 满足AX =B ,则X = . 9、若向量组=1α(1,2,1)T ,=2α(k-1,4,2)T 线性相关,则数 k= .

20XX考研数学线代典型题型分析.doc

试题中得以体现。行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶。但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握。常见题型有:数字型行列式的计算、抽象行列式的计算、含参数 的行列式的计算。 矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的始终。这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程。涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。这几年还经常出现有关初等变换与初等矩阵的命题。常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程

组等相联系,从各个侧面加强对线性相关性的理解。常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求A、有关实对称矩阵的问题。由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法。重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。

自考04184线性代数经管类讲解矩阵

阵矩第二章 2.1矩阵的概念 n2.1.1m×由定义个数 ai=12…mj=12…n)排成,,,,,,;(ij mn 数 表一个列的行用 大小括号表示mn列矩阵。称为一个行nm×这矩阵的含义是:个数排成一个矩形阵列。aij列元素称为矩阵的第其中行第 ij i=12…mj=12…ni,而,,,,);,,(jij列的变称为行标,称为列标。第行与第ij 。,)叉位置记为(ABC等表示,通常用大写字母,mn,和列数矩阵。有时为了标明矩阵的行数也可记为A=aaA 或))或((nm ×nm×ijnm×ij m=nA=a n阶为时,称)(当nijn×2n nn阶方阵是由矩阵,或者称为。阶方阵个数排成一个正方形表,它不是一个数(行n阶行列式是两个完),它与列式是一个数全不同的概念。只有一阶方阵才是一个数。nA

中从左上角到右下角的这条阶方阵一个An阶方阵的主对。的主对角线对角线称为aa…a,称为此方,角线上的元素,,nn1122阵的对角元。在本课程中,对于不是方阵的矩阵,我们不定义对角元。元素全为零的矩阵称为零矩阵。用OO(大写字)表示。或者nm×a…m=1α=a,(时,称,,特别,当12a n1×n 矩阵。。它是)为维行 向量n m n=1维列向量为时,。称当 1 m×它是矩阵。向量是特殊的矩阵,而且它们是非常重要的特殊矩阵。abc3维 行向量,)是,,(例如, 3维列向量。是几种常用的特殊矩阵:1.n阶对角矩阵或简写形如 A)念为(那不是“尖”,,的矩阵,

称为对角矩阵 是一个三阶对角矩阵,例如,。也可简写为 2.数量矩阵n阶数量矩阵对角矩阵的主对角线上的元当 有如下形式:素都相同时,称它为数量 矩阵。。或N没标就不阶矩阵,(标了角标的就是知是多少的)na=1阶单位矩阵当时,称特n EI,单位 记为它为或阶nn别,矩阵。即 或E或在不会引起混淆时,也可以用 I 表示单位矩阵。naEaI表示。或阶数量矩阵常用nn2.2 节中的数乘矩阵运算。其含义见 n3.n阶下三角矩阵阶上三角矩阵与

自考04184线性代数经管类讲义

自考高数线性代数课堂笔记 第一章行列式 线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。 1.1行列式的定义 (一)一阶、二阶、三阶行列式的定义 )定义:符号叫一阶行列式,它是一个数,其大小规定为:。 注意:在线性代数中,符号不是绝对 值。 例如,且; )定义:符号叫二阶行列

所以二阶行列式的值等于两个 例如 )符号叫三阶行列式,它也 例如 =0 三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆

方法是:在已给行列式右边添加已给行列式的第一列、第二列。我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。 例如: (1) =1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9 =0 (2) (3)

(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如 例1a为何值时, [答疑编号10010101:针对该题提问] 解因为 所以8-3a=0,时

例2当x取何值时, [答疑编号10010102:针对该题提问] 解: 解得0

线性代数典型例题

A = C 1,: 2,: 3), B =(:1 : 2 : 3, j 2 24 3√ 1 3: 2 9 3) 线性代数 第一章行列式 典型例题 、利用行列式性质计算行列式 、按行(列)展开公式求代数余子式 四、抽象行列式的计算或证明 1. 设四阶矩阵 A=[2>,3 2,4 3, 4],B=「,2 2,3 3,4 4],其中2, 3, 4 均为四 维列向量,且已知行列式|A| = 2,|B|=-3,试计算行列式|A - B|. A 1 2. 设A 为三阶方阵,A 为A 的伴随矩阵,且IAI=',试计算行列式 2 "(3A ) j -2A * 0〕 2 L :O AT 3. 设A 是n 阶(n 工2)非零实矩阵,元素a ij 与其代数余子式A j 相等,求行列式|A|. 2 1 0 4. 设矩阵 A= 1 2 0 ,矩阵 B 满足 ABA * = 2BA*+E ,则 |B|= ________ . '0 0 1 J 5. 设>1√?2, : 3均为3维列向量,记矩阵 已知行列式D 4 = 1 3 1 1 2 3 5 1 3 4 6 2 4 4 7 2 =-6 ,试求 A 41 A 42 与 A 43 ' A 44. 三、利用多项式分解因式计算行列式 1 1 、t W 1 2 — X 1 ?计算D = 1 5 1 9-x 2 2 ?设 f(x)= X b b b b X C C C C X d d d ,则方程f (X) =O 有根X = d

如果I A ∣=1,那么| B |= __ . 五、n阶行列式的计算 六、利用特征值计算行列式 1. 若四阶矩阵A与B相似,矩阵A的特征值为丄丄,则行列式 2 3 4 5 1 IB -E∣= _________ . 2. 设A为四阶矩阵,且满足|2E ? A∣=0,又已知A的三个特征值分别为-1,1,2,试计算行列式|2A 3E |. 第二章矩阵 典型例题 一、求逆矩阵 1. 设代B, A ■ B都是可逆矩阵,求:(A J■ B」)」. -00021〕 00053 2.设 A =12300,求A JL 45800 34600 一 二、讨论抽象矩阵的可逆性 1. 设n阶矩阵A满足关系式A3? A2- A- E =0,证明A可逆,并求A^l. 2. 已知A3 =2E,B = A2 -2A ? 2E ,证明B可逆,并求出逆矩阵。 3. 设A = E Xy T ,其中X, y均为n维列向量,且X T y = 2 ,求A的逆矩阵。 4. 设代B为n阶矩阵,且E-AB可逆,证明E - BA也可逆。 三、解矩阵方程 1 1 -1 1. 设矩阵A= -1 1 1 ,矩阵X满足A*X=A*+2X,求矩阵X . J -1 1 J 1 0 0 0 1 1

自考线性代数(经管类)公式汇总(精髓版)

第一章 行列式 一.行列式的定义和性质 1. 余子式ij M 和代数余子式ij A 的定义 2.行列式按一行或一列展开的公式 1)1 1 ,1,2, ;(,1,2, )n n ij ij ij ij ij ij n n i j A a a A j n A a a A i n ========∑∑ 2)11 ; 00 n n ij ik ij kj i j k j k i A A a A a A k j k i ====??==??≠≠??∑∑ 测试点 行列式的任意一行(列)与另一行(列)元素的代数余子式的乘积之和为零. 3.行列式的性质 1).T A A = 2)用数k 乘行列式的某一行(列)所得新行列式=原行列式的k 倍.推论 3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论 4)如果行列式中两行(列)对应元素成比例,则行列式值为0. 5)行列式可以按任一行(列)拆开. 6)行列式的某一行(列)的k 倍加到另一行(列)上,所得新行列式与原行列式的值相等. 例 设行列式22 11 b a b a =1,22 11 c a c a =2,则2 22 1 11 c b a c b a ++=( 3 ) 二.行列式的计算 1.二阶行列式和三角形行列式的计算. 2. 对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形行列式的计算. 3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开. 4.行列式中各行元素之和为一个常数的类型. 5. 范德蒙行列式的计算公式 例(性质4) (1)(1)(2) (2)(1)(3) 123233 100 233 100203249 4992004992004090.367677 300677 300607 +-+-= = = 例(各行元素之和为常数的行列式的计算技巧)

2015年10月自考线性代数(经管类)试卷及答案

2015年10月自考线性代数(经管类)试卷及答案

2015年10月高等教育自学考试全国统一命题考试 线性代数(经管类) 试卷 (课程代码04184) 说明:在本卷中。A T表示矩阵A的转置矩阵。A* 表示矩阵A的伴随矩阵,E是单位矩阵, ︱A ︱表示方阵A的行列式,r(A)表示矩 阵A的秩。 第一部分选择题 一、单项选择题(本大题共5小题,每小题2分, 共10分) 在每小题列出的四个备选项中只有一个是符 合题目要求的,请将其选出并将“答题卡” 的相应代码涂黑。未涂、错涂或多涂均无分。 1.已知2阶行列式 A.-2 B.-l C.1 D.2 3.设向量组可由向量组线性 表出,则下列结论中 正确的是

A.若s≤t,则必线性相关 B.若s≤t,则必线性相关 C.若线性无关,则s≤t D.若线性无关,则s≤t 4.设有非齐次线性方程组Ax=b,其中A为m×n 矩阵,且r(A)=r 1,r(A,b)=r 2 ,则 下列结论中正确的是 A.若r 1 =m,则Ax=O有非零解 B.若r 1 =n,则Ax=0仅有零解 C.若r 2 =m,则Ax=b有无穷多解 D.若r 2 =n,则Ax=b有惟一解 5. 设n阶矩阵A满足︱2E-3A︱=0,则A必有一个特征值= 第二部分非选择题 二、填空题 (本大题共l0小题。每小题2分,共20分) 请在答题卡上作答。 6.设行列式中元素a ij 的代数余子式为 A ij (i,j=1,2),则a 11 A 21 +a 12 +A 22 =__________. 7.已知矩阵,则A2+2A+E=___________.

8.设矩阵,若矩阵A满足AP=B,则A=________. 9.设向量,,则由向量组线性表出的表示式为=____________. 10.设向量组a 1=(1,2,1)T,a 2 =(-1,1,0)T, a 3 =(0,2,k)T线性无关,则数k的取值应 满足__________. 11.设3元非齐次线性方程组Ax=b的增广矩阵(A,b)经初等行变换可化为 若该方程组无解,则数k=_________.12.设=-2是n阶矩阵A的一个特征值,则矩阵A—3E必有一个特征值是________. 13.设2阶矩阵A与B相似,其中,则数a=___________. 14.设向量a 1=(1,-l,0)T,a 2 =(4,0,1)T,则 =__________. 15.二次型f(x 1,x 2 )=-2x 1 2+x 2 2+4x 1 x 2 的规范形为

(2020年编辑)自考线性代数(经管类)试题及答案

全国2012年1月自考《线性代数(经管类)》试题 课程代码:04184 说明:本卷中,A-1表示方阵A的逆矩阵,r(A)表示矩阵A的秩,||α||表示向量α的长度,αT 表示向量α的转置,E表示单位矩阵,|A|表示方阵A的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设行列式 111213 212223 313233 a a a a a a a a a =2,则 111213 313233 213122322333 333 a a a a a a a a a a a a --- --- =() A.-6 B.-3 C.3 D.6 2.设矩阵A,X为同阶方阵,且A可逆,若A(X-E)=E,则矩阵X=()A.E+A-1B.E-A C.E+A D.E-A-1 3.设矩阵A,B均为可逆方阵,则以下结论正确的是() A.?? ? ?? A B 可逆,且其逆为 -1 -1 ?? ? ?? A B B. ?? ? ?? A B 不可逆 C.?? ? ?? A B 可逆,且其逆为 -1 -1 ?? ? ?? B A D. ?? ? ?? A B 可逆,且其逆为 -1 -1 ?? ? ?? A B 4.设α1,α2,…,αk是n维列向量,则α1,α2,…,αk线性无关的充分必要条件是 ()

A .向量组α1,α2,…,αk 中任意两个向量线性无关 B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0 C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示 D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示 5.已知向量2(1,2,2,1),32(1,4,3,0),T T +=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)T B .(-2,0,-1,1)T C .(1,-1,-2,0)T D .(2,-6,-5,-1)T 6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( ) A .1 B .2 C .3 D .4 7.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是 ( ) A .α+β是Ax =0的解 B .α+β是Ax =b 的解 C .β-α是Ax =b 的解 D .α-β是Ax =0的解 8.设三阶方阵A 的特征值分别为11 ,,324,则A -1的特征值为( ) A .1 2,4,3 B .111,,243 C .11,,324 D .2,4,3 9.设矩阵A =1 21 -,则与矩阵A 相似的矩阵是( )

相关文档
最新文档