高中物理 第五章 曲线运动 微型专题2 平抛运动规律的应用学案 新人教版必修2

高中物理 第五章 曲线运动 微型专题2 平抛运动规律的应用学案 新人教版必修2
高中物理 第五章 曲线运动 微型专题2 平抛运动规律的应用学案 新人教版必修2

微型专题2 平抛运动规律的应用

[学习目标] 1.能熟练运用平抛运动规律解决问题.2.会分析平抛运动与其他运动相结合的问题.3.会分析类平抛运动.

一、平抛运动的两个重要的推论及应用

平抛运动的两个推论

(1)某时刻速度、位移与初速度方向的夹角θ、α的关系为tanθ=2tanα.

(2)做平抛运动的物体在任意时刻瞬时速度的反向延长线一定通过此时水平位移的中点. 例1如图1所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上,物体与斜面接触时速度与水平方向的夹角φ满足(空气阻力不计)( )

图1

A.tanφ=sinθ

B.tanφ=cosθ

C.tanφ=tanθ

D.tanφ=2tanθ

答案 D

解析物体从抛出至落到斜面的过程中,位移方向与水平方向夹角为θ,落到斜面上时速度方向与水平方向夹角为φ,由平抛运动的推论知tanφ=2tanθ,选项D正确.

【考点】平抛运动推论的应用

【题点】平抛运动推论的应用

二、与斜面有关的平抛运动

与斜面有关的平抛运动,包括两种情况:

(1)物体从空中抛出落在斜面上;

(2)物体从斜面上抛出落在斜面上.

在解答该类问题时,除要运用平抛运动的位移和速度规律外,还要充分利用斜面倾角,找出斜面倾角同位移和速度的关系,从而使问题得到顺利解决.

两种情况的特点及分析方法对比如下:

方法

内容 斜面

飞行时间

总结

分解速度

水平方向:v x =v 0

竖直方向:v y =gt 特点:tan θ=v x v y =v 0gt

t =v 0

g tan θ

分解速度,构

建速度三角形

分解位移

水平方向:x =v 0t

竖直方向:y =12gt

2

特点:tan θ=y x =gt

2v 0

t =

2v 0tan θg

分解位移,构

建位移三角形

例2 如图2所示,以9.8m/s 的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的固定斜面上,这段飞行所用的时间为(不计空气阻力,g 取9.8 m/s 2

)( )

图2

A.23

s B.22

3

s C.3s D.2s

答案 C

解析 如图所示,把末速度分解成水平方向的分速度v 0和竖直方向的分速度v y ,则有tan30°=v 0

v y ,v y =gt ,联立得t =

v 0

g tan30°=3v 0

g

=3s ,故C 正确.

【考点】平抛运动与斜面的结合问题 【题点】对着斜面水平抛物问题

本题中物体垂直落到斜面上,属于知道末速度方向的题目.此类题目的分析方法一般是将物体的末速度进行分解,由速度方向确定两分速度之间的关系.

例3 如图3所示,AB 为固定斜面,倾角为30°,小球从A 点以初速度v 0水平抛出,恰好落到B 点.求:(空气阻力不计,重力加速度为g )

图3

(1)A 、B 间的距离及小球在空中飞行的时间;

(2)从抛出开始,经过多长时间小球与斜面间的距离最大?最大距离为多大? 答案 (1)4v 02

3g 23v 03g (2)3v 03g 3v 0

2

12g

解析 (1)设飞行时间为t ,则水平方向位移l AB cos30°=v 0t , 竖直方向位移l AB sin30°=12gt 2

解得t =2v 0g tan30°=23v 03g ,l AB =4v 0

2

3g .

(2)方法一(常规分解)

如图所示,小球的速度方向平行于斜面时,小球离斜面的距离最大,设经过的时间为t ′,则此时有tan30°=v y v 0=

gt ′

v 0

故运动时间为t ′=

v 0tan30°g =3v 0

3g

此时小球的水平位移为x ′=v 0t ′=3v 0

2

3g

又此时小球速度方向的反向延长线交横轴于x ′

2处,故小球离斜面的最大距离为H =1

2

x ′sin30°=3v 0

2

12g

.

方法二(结合斜抛运动分解)

如图所示,把初速度v 0、重力加速度g 都分解成沿斜面和垂直斜面的两个分量.在垂直斜面

方向上,小球做的是以v 0y 为初速度、g y 为加速度的“竖直上抛”运动. 小球到达离斜面最远处时,速度v y =0, 由v y =v 0y -g y t ′可得

t ′=v 0y g y =v 0sin30°g cos30°=v 0g tan30°=3v 0

3g

小球离斜面的最大距离y =v 0y 22g y =v 02sin 230°2g cos30°=3v 0

2

12g

.

【考点】平抛运动与斜面的结合问题 【题点】从斜面顶端水平抛物问题

1.物体从斜面抛出后又落到斜面上,属已知位移方向的题目,此类题的解题方法一般是把位移分解,由位移方向确定两分位移的关系.

2.从斜面上开始又落于斜面上的过程中,速度方向与斜面平行时,物体到斜面的距离最大,此时已知速度方向,需将速度进行分解.

针对训练 两相同高度的固定斜面倾角分别为30°、60°,两小球分别由斜面顶端以相同水平速率v 抛出,如图4所示,不计空气阻力,假设两球都能落在斜面上,则分别向左、右两侧抛出的小球下落高度之比为( )

图4

A.1∶2

B.3∶1

C.1∶9

D.9∶1

答案 C

解析 根据平抛运动的规律以及落在斜面上的特点可知,x =v 0t ,y =12gt 2,tan θ=y

x ,分别

将30°、60°代入可得左、右两球平抛所经历的时间之比为1∶3,两球下落高度之比为1∶9,选项C 正确.

【考点】平抛运动与斜面的结合问题 【题点】从斜面顶端水平抛物问题 三、类平抛运动

类平抛运动是指物体做曲线运动,其运动可以分解为互相垂直的两个方向的分运动:一个方向做匀速直线运动,另一个方向是在恒定合外力作用下的初速度为零的匀加速直线运动. (1)类平抛运动的受力特点

物体所受的合外力为恒力,且与初速度的方向垂直.

(2)类平抛运动的运动规律 初速度v 0方向上:v x =v 0,x =v 0t . 合外力方向上:a =

F 合m ,v y =at ,y =12

at 2

. 例4 如图5所示的光滑固定斜面长为l 、宽为b 、倾角为θ,一物块(可看成质点)沿斜面左上方顶点P 水平射入,恰好从底端Q 点离开斜面,试求:(重力加速度为g ,不计空气阻力)

图5

(1)物块由P 运动到Q 所用的时间t ; (2)物块由P 点水平射入时的初速度v 0; (3)物块离开Q 点时速度的大小v . 答案 (1)

2l

g sin θ

(2)b g sin θ

2l (3)(b 2+4l 2

)g sin θ

2l

解析 (1)沿斜面向下的方向有mg sin θ=ma ,l =12at 2

联立解得t =

2l

g sin θ

.

(2)沿水平方向有b =v 0t

v 0=b t =b

g sin θ

2l

. (3)物块离开Q 点时的速度大小

v =v 02+(at )2

(b 2+4l 2

)g sin θ

2l

.

【考点】类平抛物体的运动 【题点】类平抛物体的运动

1.(平抛运动规律的推论)如图6所示,从倾角为θ的斜面上某点先后将同一小球以不同的初速度水平抛出,小球均落在斜面上,当抛出的速度为v 1时,小球到达斜面时速度方向与斜面的夹角为α1;当抛出速度为v 2时,小球到达斜面时速度方向与斜面的夹角为α2,不计空气阻力,则( )

图6

A.当v 1>v 2时,α1>α2

B.当v 1>v 2时,α1<α2

C.无论v 1、v 2关系如何,均有α1=α2

D.α1、α2的关系与斜面倾角θ有关 答案 C

解析 小球从斜面某点水平抛出后落到斜面上,小球的位移与水平方向的夹角等于斜面倾角

θ,即tan θ=y x =

12

gt 2

v 0t =gt 2v 0,小球落到斜面上时速度方向与水平方向的夹角的正切值tan

β=v y v x =gt

v 0

,故可得tan β=2tan θ,只要小球落到斜面上,位移方向与水平方向夹角就总

是θ,则小球的速度方向与水平方向的夹角也总是β,故速度方向与斜面的夹角就总是相等,与v 1、v 2的关系无关,C 选项正确. 【考点】平抛运动与斜面的结合问题 【题点】从斜面顶端水平抛物问题

2.(类平抛运动)A 、B 两个质点以相同的水平速度v 0抛出,A 在竖直平面内运动,落地点为

P 1.B 沿光滑斜面运动,落地点为P 2,不计阻力,如图7所示,下列关于P 1、P 2在x 轴上远近

关系的判断正确的是( )

图7

A.P 1较远

B.P 2较远

C.P 1、P 2一样远

D.A 、B 两项都有可能

答案 B

解析 A 质点水平抛出后,只受重力,做平抛运动,在竖直方向有h =12gt 12

.B 质点水平抛出

后,受重力和支持力,在斜面平面内所受合力为mg sin θ,大小恒定且与初速度方向垂直,

所以B 质点做类平抛运动.在沿斜面向下方向上h sin θ=12

g sin θ·t 22

,由此得t 2>t 1,由于

二者在水平方向(x 轴方向)上都做速度为v 0的匀速运动,由x =v 0t 知x 2>x 1.

【考点】类平抛物体的运动 【题点】类平抛物体的运动

3.(与斜面有关的平抛运动)如图8所示,运动员踏着专用滑雪板,不带雪杖在助滑路上(未画出)获得一速度后水平飞出,在空中飞行一段距离后着陆.设一位运动员由斜坡顶的A 点沿水平方向飞出的速度v 0=20 m/s ,落点在斜坡底的B 点,斜坡倾角θ=37°,斜坡可以看成一斜面,不计空气阻力.(g 取10 m/s 2

,sin 37°=0.6,cos37°=0.8)求:

图8

(1)运动员在空中飞行的时间t ; (2)A 、B 间的距离s . 答案 (1)3s (2)75m

解析 (1)运动员由A 点到B 点做平抛运动,则水平方向的位移x =v 0t 竖直方向的位移y =12

gt 2

又y x

=tan θ,联立得t =2v 0tan θg

=3s (2)由题意知sin θ=y s =12

gt 2

s

得A 、B 间的距离s =gt 22sin θ

=75m.

【考点】平抛运动与斜面的结合问题 【题点】从斜面顶端水平抛物问题

4.(与斜面有关的平抛运动)如图9所示,小球以15 m/s 的水平初速度向一倾角为37°的斜面抛出,飞行一段时间后,恰好垂直撞在斜面上.不计空气阻力,在这一过程中,求:(g 取10 m/s 2

,sin 37°=0.6,cos 37°=0.8)

图9

(1)小球在空中的飞行时间; (2)抛出点距撞击点的竖直高度.

答案 (1)2s (2)20m

解析 (1)将小球垂直撞在斜面上时的速度分解,如图所示.

由图可知θ=37°, tan θ=v 0gt

,则t =

v 0

g tan θ

=2s.

(2)h =12gt 2=12×10×22

m =20m.

【考点】平抛运动与斜面的结合问题 【题点】对着斜面水平抛物问题

一、选择题

考点一 平抛运动推论的应用

1.如图1所示,从某高度水平抛出一小球,经过时间t 到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g ,下列说法正确的是( )

图1

A.小球水平抛出时的初速度大小为gt tan θ

B.小球在t 时间内的位移方向与水平方向的夹角为θ

2

C.若小球初速度增大,则平抛运动的时间变长

D.若小球初速度增大,则θ减小 答案 D

解析 速度、位移分解如图所示,v y =gt ,v 0=v y tan θ=gt

tan θ,故A 错.设位移方向与水平方

向夹角为α,则tan θ=2tan α,α≠θ

2

,故B 错.平抛运动的落地时间由下落高度决定,

与水平初速度无关,故C错.由tanθ

v y

v0

知,v0增大则θ减小,D正确.

【考点】平抛运动推论的应用

【题点】平抛运动推论的应用

2.某军区某旅展开的实兵实弹演练中,某火箭炮在山坡上发射炮弹,所有炮弹均落在山坡上,炮弹轨迹简化为平抛运动,如图2所示,则下列选项说法正确的是( )

图2

A.若将炮弹初速度减为

v0

2

,炮弹落在斜面上速度方向与斜面夹角不变

B.若将炮弹初速度减为

v0

2

,炮弹落在斜面上速度方向与斜面夹角变小

C.若将炮弹初速度减为

v0

2

,炮弹落在斜面上的速度方向与斜面夹角变大

D.若将炮弹初速度减为

v0

2

,炮弹位移变为原来的

1

2

答案 A

解析因为炮弹落在斜面上的位移方向不变,所以落在斜面上的速度方向不变,B、C项错误,A项正确.由tanθ=

1

2

gt2

v0t

得:t=

2v0tanθ

g

,而h=

1

2

gt2,故h∝v02,若将炮弹初速度减为

v0

2

,则炮弹下落高度变为原来的

1

4

,位移也变为原来的

1

4

,D项错误.

【考点】平抛运动推论的应用

【题点】平抛运动推论的应用

考点二与斜面有关的平抛运动

3.如图3所示,在斜面顶端先后水平抛出同一小球,第一次小球落到斜面中点,第二次小球落到斜面底端,从抛出到落至斜面上(忽略空气阻力)( )

图3

A.两次小球运动时间之比t 1∶t 2=1∶ 2

B.两次小球运动时间之比t 1∶t 2=1∶2

C.两次小球抛出时初速度之比v 01∶v 02=1∶2

D.两次小球抛出时初速度之比v 01∶v 02=1∶4 答案 A

解析 平抛运动竖直方向为自由落体运动,h =12gt 2

,由题意可知两次平抛的竖直位移之比

为1∶2,所以运动时间之比为t 1∶t 2=1∶2,A 对,B 错;水平方向为匀速直线运动,由题意知水平位移之比为1∶2,即v 01t 1∶v 02t 2=1∶2,所以两次抛出时的初速度之比v 01∶v 02=1∶2,选项C 、D 错.

【考点】平抛运动与斜面的结合问题 【题点】从斜面顶端水平抛物问题

4.如图4所示,从斜面上的A 点以速度v 0水平抛出一个物体,飞行一段时间后,落到斜面上的B 点,已知AB =75m ,α=37°,不计空气阻力,g =10m/s 2

,下列说法正确的是( )

图4

A.物体的位移大小为60m

B.物体飞行的时间为6s

C.物体的初速度v 0大小为20m/s

D.物体在B 点的速度大小为30m/s 答案 C

解析 物体的位移等于初、末位置的距离,位移大小l =AB =75m ,A 错误.平抛运动的竖直位移h =AB sin α=75×0.6m =45m ,根据h =12

gt 2

得,物体飞行的时间t =

2h g

2×45

10s =3s ,B 错误.物体的初速度v 0=AB cos αt =75×0.83

m/s =20 m/s ,C 正确.物体落到B 点的竖直分速度v By =gt =10×3m/s =30 m/s ,根据平行四边形定则知,物体落在B

点的速度v B =v 02+v By 2

=400+900m/s =1013m/s ,D 错误. 【考点】平抛运动与斜面的结合问题 【题点】从斜面顶端水平抛物问题

5.在一斜面顶端,将甲、乙两个小球分别以v 和v

2的速度沿同一方向水平抛出,两球都落在

该斜面上.甲球落至斜面时的速率是乙球落至斜面时速率的( ) A.2倍 B.4倍 C.6倍 D.8倍

答案 A

解析 如图所示,可知:

x =vt ,

x ·tan θ=1

2

gt 2,

则x =2tan θg

·v 2,即x ∝v 2

v y =gt =2tan θ·v

甲、乙两球抛出速度为v 和v

2,则相应水平位移之比为4∶1,由相似三角形知,下落高度之

比也为4∶1,由自由落体运动规律得,落在斜面上竖直方向速度之比为2∶1,则可得落至斜面时速率之比为2∶1.

6.斜面上有P 、R 、S 、T 四个点,如图5所示,PR =RS =ST ,从P 点正上方的Q 点以速度v 水平抛出一个物体,物体落于R 点,若从Q 点以速度2v 水平抛出一个物体,不计空气阻力,则物体落在斜面上的( )

图5

A.R 与S 间的某一点

B.S 点

C.S 与T 间的某一点

D.T 点 答案 A

解析 平抛运动的时间由下落的高度决定,下落的高度越高,运动时间越长.如果没有斜面,增大速度后物体下落至与R 等高时恰位于S 点的正下方,但实际当中斜面阻碍了物体的下落,物体会落在R 与S 点之间斜面上的某个位置,A 项正确. 【考点】平抛运动与斜面的结合问题 【题点】对着斜面水平抛物问题

7.如图6所示,B 点位于斜面底端M 点的正上方,并与斜面顶端A 点等高,且高度为h ,在

A 、

B 两点分别以速度v a 和v b 沿水平方向抛出两个小球a 、b (可视为质点),若a 球落到M 点

的同时,b 球恰好落到斜面的中点N ,不计空气阻力,重力加速度为g ,则( )

图6

A.v a =v b

B.v a =2v b

C.a 、b 两球同时抛出

D.a 球比b 球提前抛出的时间为(2-1)2h g

答案 B

解析 据题意,由于a 球落到斜面底端M 点时b 球落到斜面中点,则可知a 球的水平位移和竖直位移都是b 球的两倍,即x a =2x b ,h a =2h b ,由h =12

gt 2和x =vt 得v =x

g 2h ,故v a v b =21

,v a =2v b ,故选项A 错误,选项B 正确;由于抛出时两球所在的高度相同,下落高度不同,

如果同时抛出,b 球应该先到达斜面中点,故选项C 错误;a 球的运动时间为:t a =

2h

g

b 球的运动时间为:t b =

h

g ,a 球先运动,Δt =t a -t b =(2-1)h

g

,故选项D 错误. 【考点】平抛运动与斜面的结合问题 【题点】对着斜面水平抛物问题 考点三 平抛运动规律的综合应用

8.如图7所示,B 为竖直圆轨道的左端点,它和圆心O 的连线与竖直方向的夹角为α.一小球在圆轨道左侧的A 点以速度v 0平抛,恰好沿B 点的切线方向进入圆轨道.已知重力加速度为g ,则A 、B 之间的水平距离为( )

图7

A.v 02tan αg

B.2v 02

tan αg

C.

v 02

g tan α

D.2v 02

g tan α

答案 A

解析 如图所示,对在B 点时的速度进行分解,小球运动的时间t =v y g =

v 0tan α

g

,则A 、B

间的水平距离x =v 0t =v 02tan α

g

,故A 正确,B 、C 、D 错误.

【考点】平抛运动规律的综合应用 【题点】平抛运动和圆的结合

9.如图8所示,水平地面上有一个坑,其竖直截面为半圆,O 为圆心,AB 为沿水平方向的直径.若在A 点以初速度v 1沿AB 方向平抛一小球,小球将击中坑壁上的最低点D 点;而在C 点以初速度v 2沿BA 方向平抛的小球也能击中D 点.已知∠COD =60°,则两小球初速度大小之比为(小球视为质点)( )

图8

A.1∶2

B.1∶3

C.3∶2

D.6∶3

答案 D

解析 小球从A 点平抛击中D 点:R =v 1t 1,R =12gt 12

;小球从C 点平抛击中D 点:R sin60°

=v 2t 2,R (1-cos60°)=12gt 22,联立解得v 1v 2=6

3,D 正确.

【考点】平抛运动规律的综合应用

【题点】平抛运动和圆的结合

10.(多选)如图9所示,从半径为R =1m 的半圆AB 上的A 点水平抛出一个可视为质点的小球,经t =0.4s 小球落到半圆上,已知当地的重力加速度g =10m/s 2

,则小球的初速度v 0可能为( )

图9

A.1 m/s

B.2 m/s

C.3 m/s

D.4 m/s

答案 AD

解析 由于小球经0.4s 落到半圆上,下落的高度h =12gt 2

=0.8m ,位置可能有两处,如图所

示,第一种可能:小球落在半圆左侧,v 0t =R -R 2

-h 2

=0.4m ,v 0=1m/s ,第二种可能:小球落在半圆右侧,v 0′t =R +R 2

-h 2

=1.6m ,v 0′=4m/s ,选项A 、D 正确.

【考点】平抛运动推论的应用 【题点】平抛运动推论的应用 二、非选择题

11.(平抛运动规律的综合应用)如图10所示,一小球从平台上水平抛出,恰好落在平台前一倾角为α=53°的固定斜面顶端并刚好沿斜面下滑,已知平台到斜面顶端的高度为h =0.8m ,不计空气阻力,g =10m/s 2

,sin53°=0.8,cos53°=0.6,求:

图10

(1)小球水平抛出的初速度大小v 0; (2)斜面顶端与平台边缘的水平距离x . 答案 (1)3m/s (2)1.2m

解析 小球从平台运动到斜面顶端的过程中做平抛运动,由平抛运动规律有:x =v 0t ,h =

12

gt 2,v y =gt

由题图可知:tan α

=v y v 0=

gt

v 0

代入数据解得:v 0=3m/s ,x =1.2m. 【考点】平抛运动规律的综合应用 【题点】平抛运动规律的综合应用

12.(与斜面有关的平抛运动)如图11所示,在倾角为37°的斜面上从A 点以6m/s 的初速度水平抛出一个小球,小球落在B 点,求:(g 取10 m/s 2

,sin37°=0.6,cos37°=0.8,不计空气阻力)

图11

(1)A 、B 两点间的距离和小球在空中飞行的时间;

(2)小球刚碰到斜面时的速度方向与水平方向夹角的正切值. 答案 (1)6.75m 0.9s (2)32

解析 (1)如图所示,设小球落到B 点时速度的偏转角为α,运动时间为t .

则tan37°=h x =12gt 2v 0t =5

6t

又因为tan37°=3

4,解得t =0.9s

所以x =v 0t =5.4m

则A 、B 两点间的距离l =x

cos37°=6.75m

(2)在B 点时,tan α=v y v 0=

gt v 0=3

2

. 13.(与斜面有关的平抛运动)如图12所示,一个小球从高h =10m 处以水平速度v 0=10m/s 抛出,撞在倾角θ=45°的斜面上的P 点,已知AC =5m.g =10m/s 2

,不计空气阻力,求:

图12

(1)P 、C 之间的距离;

(2)小球撞击P 点时速度的大小和方向.

答案 (1)52m (2)102m/s 方向垂直于斜面向下

解析 (1)设P 、C 之间的距离为L ,根据平抛运动规律有AC +L cos θ=v 0t ,h -L sin θ=

1

2

gt 2

联立解得L =52m ,t =1s

(2)小球撞击P 点时的水平速度v 0=10m/s 竖直速度v y =gt =10m/s

所以小球撞击P 点时速度的大小v =v 02

+v y 2

=102m/s

设小球撞击P 点时的速度方向与水平方向的夹角为α,则tan α=v y

v 0

=1 解得α=45°

故小球撞击P 点时速度方向垂直于斜面向下. 【考点】平抛运动与斜面的结合问题 【题点】对着斜面水平抛物问题

14.(平抛运动规律的综合应用)如图13所示,斜面体ABC 固定在地面上,小球p 从A 点静止下滑.当小球p 开始下滑时,另一小球q 从A 点正上方的D 点水平抛出,两球同时到达斜面底端的B 处.已知斜面AB 光滑,长度l =2.5m ,斜面倾角θ=30°.不计空气阻力,g 取10m/s 2

,求:

图13

(1)小球p 从A 点滑到B 点的时间. (2)小球q 抛出时初速度的大小. 答案 (1)1s (2)53

4

m/s

解析 (1)设小球p 从斜面上下滑的加速度为a ,由牛顿第二定律得:a =mg sin θ

m

=g sin θ①

设下滑所需时间为t 1,根据运动学公式得

l =12

at 12②

由①②得

t 1=

2l

g sin θ

解得t 1=1s ④

(2)对小球q :水平方向位移x =l cos θ=v 0t 2⑤ 依题意得t 2=t 1⑥ 由④⑤⑥得

v 0=l cos θt 1=534

m/s.

【考点】平抛运动和直线运动的物体相遇问题 【题点】平抛运动和直线运动的物体相遇问题

高中物理专题复习之运动学

高中物理专题复习——运动学 [知识要点复习] 1.位移(s):描述质点位置改变的物理量,是矢量,方向由初位置指向末位置,大小是从初位置到末位置的直线长度。 2.速度(v):描述物体运动快慢和方向的物理量,是矢量。 做变速直线运动的物体,在某段时间内的位移与这段时间的比值叫做这段时间内平均速度。 它只能粗略描述物体做变速运动的快慢。 瞬时速度(v):运动物体在某一时刻(或某一位置)的速度,瞬时速度的大小叫速率,是标量。 3.加速度(a):描述物体速度变化快慢的物理量,它的大小等于 矢量,单位m/s2。 4.路程(L ):物体运动轨迹的长度,是标量。 5.匀速直线运动的规律及图像 (1)速度大小、方向不变 (2)图象 6.匀变速直线运动的规律 (1)加速度a 的大小、方向不变

2)图像 7.自由落体运动只在重力作用下,物体从静止开始的自由运动。 8.牛顿第一运动定律一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止,这叫牛顿第一运动定律。 惯性:物体保持原匀速直线运动状态或静止状态的性质叫惯性,因此牛顿第一定律又叫惯性定律。惯性是物体的固有属性,与物体的受力情况及运动情况无关;惯性的大小由物体的质量决定,质量大,惯性大。 9.牛顿第二运动定律物体加速度的大小与所受合外力成正比,与物体质量成反比,加速度的方向与合外力的方向相同。 10.牛顿第三运动定律两个物体之间的作用力和反作用力总是大小相等、方向相反,作用在一条直线上。作用力与反作用力大小相等,性质相同,同时产生,同时消失,方向不同、作用在两个不同且相互作用的物体上,可概括为“三同,两不同”。 11.超重与失重:当系统具有竖直向上的加速度时,物体对支持物的压力或对悬挂物的拉力大于其重力的现象叫超重;当系统具有竖直向下的加速度时,物体对支持物的压力或对悬挂物的拉力小于其重力的现象叫失重。 12. 曲线运动的条件物体所受合外力的方向与它速度方向不在同一直线,即加速度方向与速度方向不在同一直线。 若用θ表示加速度a 与速度v0的夹角,则有:0°<θ<90°,物体做速率变大的曲线运动;θ=90°时,物体做速率不变的曲线运动;90° <θ<180°时,物体做速率减小的曲线运动。 13.运动的合成与分解 (1)合运动与分运动的关系 a.等时性:合运动与分运动经历的时间相等; b.独立性:一个物体同时参与了几个分运动,各分运动独立进行,不受其它分运动的影响。 c.等效性:各分运动叠加起来与合运动规律有完全相同的效果。 (2)运动的合成与分解的运算法则遵从平行四边形定则,运动的合成与分解是指位移、速度、加速度的合成与分解。 (3)运动分解的原则

曲线运动、平抛运动、圆周运动练习题.doc

《曲线运动》练习题 一选择题 1 . 关于运动的合成的说法中,正确的是() A.合运动的位移等于分运动位移的矢量和 B.合运动的时间等于分运动的时间之和 C.合运动的速度一定大于其中一个分运动的速度 D.合运动的速度方向与合运动的位移方向相同 2. 物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物体的运动情况可能是() A.静止B.匀加速直线运动C.匀速直线运动D.匀速圆周运动 3 . 某质点做曲线运动时() A.在某一点的速度方向是该点曲线的切线方向 B.在任意时间内,位移的大小总是大于路程 C.在某段时间里质点受到的合外力可能为零 D.速度的方向与合外力的方向必不在同一直线上 5. 一个质点在恒力 F 作用下,在 xOy 平面内从 O点运动到 A 点的轨迹如图所示,且在 A 点的速度方向与x 轴平行,则恒力 F 的方向不可能()y A. 沿 x 轴正方向 B. 沿 x 轴负方向 A C. 沿 y 轴正方向 D. 沿 y 轴负方向 O x 6 在光滑水平面上有一质量为2kg 的物体,受几个共点力作用做匀速直线运动。现突然将与速度反方向的2N 力水平旋转 90o,则关于物体运动情况的叙述正确的是() A. 物体做速度大小不变的曲线运动 B. 物体做加速度为在2 m/s2的匀变速曲线运动 C.物体做速度越来越大的曲线运动 D.物体做非匀变速曲线运动,其速度越来越大 7.做曲线运动的物体,在运动过程中一定变化的物理量是() A. 速度 B. 加速度 C.速率 D. 合外力 9 关于曲线运动,下面说法正确的是() A.物体运动状态改变着,它一定做曲线运动 B.物体做曲线运动,它的运动状态一定在改变 C.物体做曲线运动时,它的加速度的方向始终和速度的方向一致 D.物体做曲线运动时,它的加速度的方向始终和所受到的合外力方向一致 10 物体受到几个力的作用而处于平衡状态,若再对物体施加一个恒力,则物体可能做() A. 静止或匀速直线运动 B. 匀变速直线运动 C. 曲线运动 D. 匀变速曲线运动 14.关于物体的运动,下列说法中正确的是() A.物体做曲线运动时,它所受的合力一定不为零 B.做曲线运动的物体,有可能处于平衡状态 C.做曲线运动的物体,速度方向一定时刻改变 D.做曲线运动的物体,所受的合外力的方向有可能与速度方向在一条直线上 17.加速度不变的运动() A .可能是直线运动B.可能是曲线运动C.可能是匀速圆周运动D.一定是匀变速运动 18. 如图所示,蜡块可以在竖直玻璃管内的水中匀速上升,若在蜡块从 A 点开始匀速上升的同时,玻璃管从AB 位置 水平向右做匀加速直线运动,则蜡块的实际运动轨迹可能是图中的A.直线 P B.曲线 Q C .曲线 R D .三条轨迹都有可能B (C) Q P R A D

【物理】物理曲线运动练习题含答案及解析

【物理】物理曲线运动练习题含答案及解析 一、高中物理精讲专题测试曲线运动 1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求: (1)子弹射入小球的过程中产生的内能; (2)当小球运动到圆形轨道的最低点时,木板对水平面的压力; (3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围. 【答案】(1)2038mv (2) 2 164mv mg R + (3)042v gR ≤或04582gR v gR ≤≤【解析】 本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111 422 Q mv mv =-? 代入数值解得:2038 Q mv = (2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式 得2 11(3)(3)m m v F m m g R +-+= 以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2 木板对水平面的压力的大小20 2164mv F mg R =+ (3)小球不脱离圆形轨有两种可能性: ①若小球滑行的高度不超过圆形轨道半径R 由机械能守恒定律得: ()()211 332 m m v m m gR +≤+

高中物理曲线运动综合复习测试题附答案详解

■专题测试 《曲线运动》专题测试卷(时间:90分钟,满分:120分) 班级姓名学号得分 一、选择题(本题共12小题。每小题4分,共48分。在每小题给出的四个选项中,有 的只有一个选项正确,有的有多个选项正确,全选对的得4分,选对但不全的得2分,有选 错或不答的得0分。) 1.平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,在同一 坐标系中作出两个分运动的v-t图象,如图1所示,则以下说法正确的是() A.图线1表示水平方向分运动的v-t图线 B.图线2表示竖直方向分运动的v-t图线 C.t1时刻物体的速度方向与初速度方向夹角为45° D.若图线2的倾角为θ,当地重力加速度为g,则一定有g = θ tan 2.如图2所示,在地面上某一高度处将A球以初速度v1水平抛出,同时在A球正下 方地面处将B球以初速度v2斜向上抛出,结果两球在空中相遇,不计空气阻力,则两球从 抛出到相遇过程中() A.A和B初速度的大小关系为v1< v2 B.A和B加速度的大小关系为a A> a B C.A做匀变速运动,B做变加速运动 D.A和B的速度变化相同 3.如图3所示,蹲在树枝上的一只松鼠看到一个猎人正在用枪水平对准它,就在子弹 出枪口时,松鼠开始运动,下述各种运动方式中,松鼠不能逃脱厄运而被击中的是(设树枝 足够高): A.自由落下 B.竖直上跳 C.迎着枪口,沿AB方向水平跳离树枝 D.背着枪口,沿AC方向水平跳离树枝 4.在同一点O抛出的三个物体,做平抛运动的轨迹如图4所示,则 三个物体做平抛运动的初速度v A.v B、v C的关系和三个物体做平跑运动的 时间t A.t B、t C的关系分别是() A.v A>v B>v C t A>t B>t C B.v A=v B=v C t A=t B=t C C.v At B>t C D.v A>v B>v C t A

高一物理复习运动学专题复习

高一物理运动学专题复习 知识梳理: 一、机械运动 一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等运动形式. 二、参照物 为了研究物体的运动而假定为不动的物体,叫做参照物. 对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,灵活地选取参照物会给问题的分析带来简便;通常以地球为参照物来研究物体的运动. 三、质点 研究一个物体的运动时,如果物体的形状和大小属于无关因素或次要因素,对问题的研究没有影响或影响可以忽略,为使问题简化,就用一个有质量的点来代替物体.用来代管物体的有质量的做质点.像这种突出主要因素,排除无关因素,忽略次要因素的研究问题的思想方法,即为理想化方法,质点即是一种理想化模型. 四、时刻和时间 时刻:指的是某一瞬时.在时间轴上用一个点来表示.对应的是位置、速度、动量、动能等状态量. 时间:是两时刻间的间隔.在时间轴上用一段长度来表示.对应的是位移、路程、冲量、功等过程量.时间间隔=终止时刻-开始时刻。 五、位移和路程 位移:描述物体位置的变化,是从物体运动的初位置指向末位置的矢量. 路程:物体运动轨迹的长度,是标量.只有在单方向的直线运动中,位移的大小才等于路程。 六、速度 描述物体运动的方向和快慢的物理量. 1.平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间内的平均速度,即V =S/t ,单位:m / s ,其方向与位移的方向相同.它是对变速运动的粗略描述.公式V =(V 0+V t )/2只对匀变速直线运动适用。 2.瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述.瞬时速度的大小叫速率,是标量. 3.速率:瞬时速度的大小即为速率; 4.平均速率:质点运动的路程与时间的比值,它的大小与相应的平均速度之值可能不相同。 七、匀速直线运动 1.定义:在相等的时间里位移相等的直线运动叫做匀速直线运动. 2.特点:a =0,v=恒量. 3.位移公式:S =vt . 八、加速度 1.加速度的物理意义:反映运动物体速度变化快慢...... 的物理量。 加速度的定义:速度的变化与发生这一变化所用的时间的比值,即a = t v ??=t v v ?-1 2。 加速度是矢量。加速度的方向与速度方向并不一定相同。 2.加速度与速度是完全不同的物理量,加速度是速度的变化率。所以,两者之间并不存在“速度大加速度也大、速度为0时加速度也为0”等关系,加速度和速度的方向也没有必然相同的关系,加速直线运

高一物理曲线运动练习题(含答案)

第五章 第一节 《曲线运动》练习题 一 选择题 1. 关于运动的合成的说法中,正确的是 ( ) A .合运动的位移等于分运动位移的矢量和 B .合运动的时间等于分运动的时间之和 C .合运动的速度一定大于其中一个分运动的速度 D .合运动的速度方向与合运动的位移方向相同 A 此题考查分运动与合运动的关系,D 答案只在合运动为直线时才正确 2. 物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物 体的运动情况可能是 ( ) A .静止 B .匀加速直线运动 C .匀速直线运动 D .匀速圆周运动 B 其余各力的合力与撤去的力等大反向,仍为恒力。 3.某质点做曲线运动时 (AD ) A.在某一点的速度方向是该点曲线的切线方向 B.在任意时间内,位移的大小总是大于路程 C.在某段时间里质点受到的合外力可能为零 D.速度的方向与合外力的方向必不在同一直线上 4 精彩的F 1赛事相信你不会陌生吧!车王舒马赫在2005年以8000万美元的年收入高居全世界所有运动员榜首。在观众感觉精彩与刺激的同时,车手们却时刻处在紧张与危险之中。这位车王在一个弯道上突然高速行驶的赛车后轮脱落,从而不得不遗憾地退出了比赛。关于脱落的后轮的运动情况,以下说法正确的是( C ) A. 仍然沿着汽车行驶的弯道运动 B. 沿着与弯道垂直的方向飞出 C. 沿着脱离时,轮子前进的方向做直线运动,离开弯道 D. 上述情况都有可能 5.一个质点在恒力F 作用下,在xOy 平面内从O 点运动到A 点的轨迹如图所示,且在A 点的速度方向与x 轴平行, 则恒力F 的方向不可能( ) A.沿x 轴正方向 B.沿x 轴负方向 C.沿y 轴正方向 D.沿y 轴负方向 ABC 质点到达A 点时,Vy=0,故沿y 轴负方向上一定有力。 6在光滑水平面上有一质量为2kg 2N 力水平旋转90o,则关于物体运动情况的叙述正确的是(BC ) A. 物体做速度大小不变的曲线运动 B. 物体做加速度为在2m/s 2的匀变速曲线运动 C. 物体做速度越来越大的曲线运动 D. 物体做非匀变速曲线运动,其速度越来越大 解析:物体原来所受外力为零,当将与速度反方向的2N 力水平旋转90o后其受力相当于如图所示,其中,是F x 、F y 的合力,即F=22N ,且大小、方向都不变,是恒力,那么物体的加速度为2 22== m F a m /s 2=2m /s 2恒定。又因为F 与v 夹角<90o,所以物体做速度越来越大、加速度恒为2m /s 2的匀变速曲线运动,故正确答案是B 、C 两 项。 7. 做曲线运动的物体,在运动过程中一定变化的物理量是( ) A.速度 B.加速度 C.速率 D.合外力 A 曲线运动的几个典型例子是匀变速曲线运动像平抛和匀速圆周运动,故 B 、 C 、 D 均可不变化,但速度一定变化。 8. 关于合力对物体速度的影响,下列说法正确的是(ABC ) O A x y

重点高中物理运动学专题

重点高中物理运动学专题

————————————————————————————————作者:————————————————————————————————日期:

运动学 第一讲基本知识介绍 一.基本概念 1.质点 2.参照物 3.参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点) 4.绝对运动,相对运动,牵连运动:v 绝=v 相 +v 牵 二.运动的描述 1.位置:r=r(t) 2.位移:Δr=r(t+Δt)-r(t) 3.速度:v=lim Δt→0 Δr/Δt.在大学教材中表述为:v=d r/dt, 表示r对t 求导数 4.加速度a=a n +a τ。 a n :法向加速度,速度方向的改变率,且a n =v2/ρ,ρ叫 做曲率半径,(这是中学物理竞赛求曲率半径的唯一方法)a τ : 切向加速度,速度大小的改变率。a=d v/dt 5.以上是运动学中的基本物理量,也就是位移、位移的一阶导数、位移的二阶导数。可是三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。(a对t的导数叫“急动度”。) 6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较 好 三.等加速运动 v(t)=v 0+at r(t)=r +v t+1/2 at2 一道经典的物理问题:二次世界大战中物理学家曾 经研究,当大炮的位置固定,以同一速度v 沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的 包络线。此抛物线为在大炮上方h=v2/2g处,以v 平抛物体的轨迹。) 练习题: 一盏灯挂在离地板高l 2,天花板下面l 1 处。灯泡爆裂,所有碎片以同样大小 的速度v 朝各个方向飞去。求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。) 四.刚体的平动和定轴转动 1.我们讲过的圆周运动是平动而不是转动 2.角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt 3.有限的角位移是标量,而极小的角位移是矢量 4.同一刚体上两点的相对速度和相对加速度 两点的相对距离不变,相对运动轨迹为圆弧, V A =V B +V AB ,在AB连线上

高中物理曲线运动、运动合成和分解练习题

第一讲曲线运动、运动合成和分解(1课时) 一.考点基础知识回顾及重点难点分析 知识点1、曲线运动的特点:做曲线运动的物体在某点的速度方向就是曲线在该点的切线方 向,因此速度的方向是时刻的,所以曲线运动一定是运动 过关练习1 1.做曲线运动的物体,在运动过程中,一定变化的物理量是( A.速率 B.速度 C.加速度 D.合外力 2.关于质点做曲线运动的下列说法中,正确的是() A .曲线运动一定是匀变速运动 B .变速运动一定是曲线运动 C .曲线运动轨迹上任一点的切线方向就是质点在这一点的瞬时速度方向 D .有些曲线运动也可能是匀速运动 方法点拨和归纳:曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动 不一定是曲线运动。 知识点2、物体做曲线运动的条件是:合外力(加速度)方向和初速度方向同一直线; 与物体做直线运动的条件区别是。 过关练习2:

1.物体运动的速度(v )方向、加速度(a )方向及所受合外力(F )方向三者之间的关系为 A .v 、a 、F 三者的方向相同() B .v 、a 两者的方向可成任意夹角,但a 与F 的方向总相同 C .v 与F 的方向总相同,a 与F 的方向关系不确定 D .v 与F 间或v 与a 间夹角的大小可成任意值 2.下列叙述正确的是:( A .物体在恒力作用下不可能作曲线运动 B .物体在变力作用下不可能作直线运动 C .物体在变力或恒力作用下都有可能作曲线运动 D .物体在变力或恒力作用下都可能作直线运动 3.物体受到几个外力的作用而做匀速直线运动,如果突然撤掉其中一个力,它不可能做() A .匀速直线运动 B.匀加速直线运动 C .匀减速直线运动 D.曲线运动 4.质量为m 的物体受到两个互成角度的恒力F 1和F 2的作用,若物体由静止开始,则它将做 运动,若物体运动一段时间后撤去一个外力F 1,物体继续做的运动是运动。 方法点拨和归纳: ①物体做曲线运动一定受外力。

高中物理曲线运动知识点归纳

高中物理曲线运动知识点归纳 第一章曲线运动 (一)曲线运动的位移 研究物体的运动时,坐标系的选取十分重要.在这里选择平面直角坐标系.以抛出点为坐标原点,以抛出时物体的初速度v 0方向为x 轴的正方向,以竖直方向向下为y 轴的正方向,如下图所示. 当物体运动到A 点时,它相对于抛出点O 的位移是OA ,用l 表示. 由于这类问题中位移矢量的方向在不断变化,运算起来很不方便,因此要尽量用它在坐标轴方向的分矢量来表示它. 由于两个分矢量的方向是确定的,所以只用A 点的坐标(x A 、y A )就能表示它,于是使问题简化. (二)曲线运动的速度 1、曲线运动速度方向:做曲线运动的物体,在某点的速度方向,沿曲线在这一点的切线方向. 2.对曲线运动速度方向的理解 如图所示, AB 割线的长度跟质点由A 运动到B 的时间之比,即v =Δx AB Δt , 等于AB 过程中平均速度的大小,其平均速度的方向由A 指向B .当B 非常非常接近A 时,AB 割线变成了过A 点的切线,同时Δt 变为极短的时间,故AB 间的平均速度近似等于A 点的瞬时速度,因此质点在A 点的瞬时速度方向与过A 点的切线方向一致. (三)曲线运动的特点 1、曲线运动是变速运动:做曲线运动的物体速度方向时刻在发生变化,所以曲线运动是变速运动.(曲线运动是变速运动,但变速运动不一定是曲线

运动) 2、做曲线运动的物体一定具有加速度 曲线运动中速度的方向(轨迹上各点的切线方向)时刻在发生变化,即物体的运动状态时刻在发生变化,而力是改变物体运动状态的原因,因此,做曲线运动的物体所受合力一定不为零,也就一定具有加速度.(说明:曲线运动是变速运动,只是说明物体具有加速度,但加速度不一定是变化的,例如,抛物运动都是匀变速曲线运动.) (四)物体做曲线运动的条件: 物体所受的合外力的方向与速度方向不在同一直线上,也就是加速度方向与速度方向不在同一直线上.(只要物体的合外力是恒力,它一定做匀变速运动,可能是直线运动,也可能是曲线运动) 当物体受到的合外力方向与速度方向的夹角为锐角时,物体做曲线运动的速率将增大;当物体受到的合外力方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合外力方向与速度的方向垂直时,该力只改变速度方向,不改变速度的大小. (五)曲线运动的轨迹 做曲线运动的物体,其轨迹向合外力所指一方弯曲, 若已知物体的运动轨迹,可判断出物体所受合力的大致方 向.速度和加速度在轨迹两侧,轨迹向力的方向弯曲,但不会达到力的方向.(六)运动的合成与分解的方法 1、合运动与分运动的定义 如果物体同时参与了几个运动,那么 物体实际发生的运动就是合运动,那几个

高三物理第一轮复习运动学部分专题

一.平均速度:任意运动的平均速度公式和匀变速直线运动的平均速度公式的理解 ①t s ??= 一v 普遍适用于各种运动;②v =20t V V +只适用于加速度恒定的匀变速直线运动 ③t V V S t 2 0+= 仅适用于匀变速直线运动 1.物体由A 沿直线运动到B ,在前一半时间内是速度为v 1的匀速运动,在后一半时间内是速度为v 2的匀速运动.则物体在这段时间内的平均速度为( ) A .221v v + B .21v v + C .21212v v v v + D .2 121v v v v + 2.一个物体做变速直线运动,前一半路程的平均速度是v 1,后一半路程的平均速度是v 2,则全程的平均速度是( ) A .221v v + B .21212v v v v + C .21212v v v v ++ D .2 121v v v v + 3.一辆汽车以速度v 1行驶了1/3的路程,接着以速度v 2=20km/h 跑完了其余的2/3的路程,如果汽车全程的平均速度v=27km/h ,则v 1的值为( ) A .32km/h B .345km/h C .56km/h D .90km/h 4.甲乙两车沿平直公路通过同样的位移,甲车在前半段位移上以v 1=40km/h 的速度运动,后半段位移上以v 2=60km/h 的速度运动;乙车在前半段时间内以v 1=40km/h 的速度运动,后半段时间以v 2=60km/h 的速度运动,则甲、乙两车在整个位移中的平均速度大小的关系是 A .V 甲=V 乙 B .V 甲 < V 乙 C .V 甲 > V 乙 D .因不知位移和时间故无法确定 二.加速度公式的理解:a=(v t -v 0 )/t 公式中各个部分物理量的理解 匀加速运动:速度随时间均匀增加,v t >v 0,a 为正,此时加速度方向与速度方向相同。 匀减速运动:速度随时间均匀减小,v t <v 0,a 为负,此时加速度方向与速度方向相反。 1.对于质点的运动,下列说法中正确的是( ) A .质点运动的加速度为零,则速度变化量也为零 B .质点速度变化率越大,则加速度越大 C .物体的加速度越大,则该物体的速度也越大 D .质点运动的加速度越大,它的速度变化量越大 2.下列说法正确的是( ) A .加速度增大,速度一定增大 B .速度改变△V 越大,加速度就越大 C .物体有加速度,速度就增加 D .速度很大的物体,其加速度可能很小 3.关于加速度与速度,下列说法中正确的是( ) A .速度为零,加速度可能不为零 B .加速度为零时,速度一定为零 C .若加速度方向与速度方向相反,则加速度增大时,速度也增大 D .若加速度方向与速度方向相同,则加速度减小时,速度反而增大 4.一物体做匀变速直线运动,某时刻速度的大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的( ) A .位移的大小可能小于4m B .位移的大小可能大于10m C .加速度的大小可能小于4m/s 2 D .加速度的大小可能大于10m/s 2

高中物理曲线运动经典题型总结(可编辑修改word版)

42+ 32 【题型总结】 专题五曲线运动 一、运动的合成和分解 1.速度的合成:(1)运动的合成和分解(2)相对运动的规律v甲地=v甲乙+v乙地 例:一人骑自行车向东行驶,当车速为 4m/s 时,他感到风从正南方向吹来,当车速增加到 7m/s 时。他感到风从东南方向(东偏南45o)吹来,则风对地的速度大小为() A. 7m/s B. 6m/s C. 5m/s D. 4 m/s 解析:“他感到风从正南方向(东南方向)吹来” ,即风相对车的方向是正南方向(东南方向)。而风相 对地的速度方向不变,由此可联立求解。 解:∵θ=45°∴V 风对车=7—4=3 m/s ∵V 风对车 +V 车对地 =V 风对地 V 风对 ∴V 风对地= =5 答案:C 2.绳(杆)拉物类问题 m/s V 风对 V 车对 ① 绳(杆)上各点在绳(杆)方向上的速度相等 ②合速度方向:物体实际运动方向 分速度方向:沿绳(杆)伸(缩)方向:使绳(杆)伸(缩) 垂直于绳(杆)方向:使绳(杆)转动 例:如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ 角,且重物下滑的速率为v 时,小车的速度为多少? 解:方法一:虚拟重物M 在Δt 时间内从A 移过Δh 到达C的运动,如图(1)所示,这个运动可设想为两 个分运动所合成,即先随绳绕滑轮的中心轴O 点做圆周运动到B,位移为Δs1,然后将绳拉过Δs2到C. 1 若Δt 很小趋近于0,那么Δφ→0,则Δs1=0,又OA=OB,∠OBA=β=2 (180°- Δφ)→90°.亦即Δs1近似⊥Δs2,故应有:Δs2=Δh·cosθ ?s 2 因为?t = ?h ?t ·cosθ,所以v′=v·cosθ 方法二:重物M 的速度v 的方向是合运动的速度方向,这个v 产生两个效果:一是使绳的这一端绕滑轮做顺时针方向的圆周运动;二是使绳系着重物的一端沿绳拉力的方向以速率v′运动,如图(2)所示,由图可知,v′=v·cosθ. (1)(2) V 风对 θ

曲线运动、平抛运动、圆周运动练习题

《曲线运动》练习题 一 选择题 1. 关于运动的合成的说法中,正确的是 ( ) A .合运动的位移等于分运动位移的矢量和 B .合运动的时间等于分运动的时间之和 C .合运动的速度一定大于其中一个分运动的速度 D .合运动的速度方向与合运动的位移方向相同 2. 物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物 体的运动情况可能是 ( ) A .静止 B .匀加速直线运动 C .匀速直线运动 D .匀速圆周运动 3.某质点做曲线运动时 ( ) A.在某一点的速度方向是该点曲线的切线方向 B.在任意时间内,位移的大小总是大于路程 C.在某段时间里质点受到的合外力可能为零 D.速度的方向与合外力的方向必不在同一直线上 5.一个质点在恒力F 作用下,在xOy 平面内从O 点运动到A 点的轨迹如图所示,且在A 点的速度方向与x 轴平行, 则恒力F 的方向不可能( ) A.沿x 轴正方向 B.沿x 轴负方向 C.沿y 轴正方向 D.沿y 轴负方向 6在光滑水平面上有一质量为2kg 的物体,受几个共点力作用做匀速直线运动。现突然将与速度反方向的2N 力水平旋转90o,则关于物体运动情况的叙述正确的是( ) A. 物体做速度大小不变的曲线运动 B. 物体做加速度为在2m/s 2的匀变速曲线运动 C. 物体做速度越来越大的曲线运动 D. 物体做非匀变速曲线运动,其速度越来越大 7. 做曲线运动的物体,在运动过程中一定变化的物理量是( ) A.速度 B.加速度 C.速率 D.合外力 9 关于曲线运动,下面说法正确的是( ) A. 物体运动状态改变着,它一定做曲线运动 B. 物体做曲线运动,它的运动状态一定在改变 C. 物体做曲线运动时,它的加速度的方向始终和速度的方向一致 D. 物体做曲线运动时,它的加速度的方向始终和所受到的合外力方向一致 10 物体受到几个力的作用而处于平衡状态,若再对物体施加一个恒力,则物体可能做( ) A. 静止或匀速直线运动 B. 匀变速直线运动 C. 曲线运动 D. 匀变速曲线运动 14.关于物体的运动,下列说法中正确的是( ) A. 物体做曲线运动时,它所受的合力一定不为零 B. 做曲线运动的物体,有可能处于平衡状态 C. 做曲线运动的物体,速度方向一定时刻改变 D. 做曲线运动的物体,所受的合外力的方向有可能与速度方向在一条直线上 17.加速度不变的运动( ) A .可能是直线运动 B .可能是曲线运动 C .可能是匀速圆周运动 D .一定是匀变速运动 18.如图所示,蜡块可以在竖直玻璃管内的水中匀速上升,若在蜡块从A 点开始匀速上升的同时,玻璃管从AB 位置 水平向右做匀加速直线运动,则蜡块的实际运动轨迹可能是图中的) A .直线P B .曲线Q C .曲线R D .三条轨迹都有可能

高中物理曲线运动常见题型及答题技巧及练习题(含答案)及解析

高中物理曲线运动常见题型及答题技巧及练习题(含答案)及解析 一、高中物理精讲专题测试曲线运动 1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求: (1)盘的转速ω0多大时,物体A开始滑动? (2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少? 【答案】(1) g l μ (2) 3 4 mgl kl mg μ μ - 【解析】 【分析】 (1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0. (2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x. 【详解】 若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力. (1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有: μmg=mlω02, 解得:ω0= g l μ 即当ω0= g l μ A开始滑动. (2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12, r=l+△x 解得: 3 4 mgl x kl mg μ μ - V= 【点睛】 当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.

高中物理专题复习 曲线运动

曲线运动 单元切块: 按照考纲的要求,本章内容可以分成三部分,即:运动的合成和分解、平抛运动;圆周运动;其中重点是平抛运动的分解方法及运动规律、匀速圆周运动的线速度、角速度、向心加速度的概念并记住相应的关系式。难点是牛顿定律处理圆周运动问题。 运动的合成与分解 平抛物体的运动 教学目标: 1.明确形成曲线运动的条件(落实到平抛运动和匀速圆周运动); 2.理解和运动、分运动,能够运用平行四边形定则处理运动的合成与分解问题。 3.掌握平抛运动的分解方法及运动规律 4.通过例题的分析,探究解决有关平抛运动实际问题的基本思路和方法,并注意到相 关物理知识的综合运用,以提高学生的综合能力. 教学重点:平抛运动的特点及其规律 教学难点:运动的合成与分解 教学方法:讲练结合,计算机辅助教学 教学过程: 一、曲线运动

1.曲线运动的条件:质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上。 当物体受到的合力为恒力(大小恒定、方向不变)时,物体作匀变速曲线运动,如平抛运动。 当物体受到的合力大小恒定而方向总跟速度的方向垂直,则物体将做匀速率圆周运动.(这里的合力可以是万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、弹力——绳拴着的物体在光滑水平面上绕绳的一端旋转、重力与弹力的合力——锥摆、静摩擦力——水平转盘上的物体等.) 如果物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直. 2.曲线运动的特点:曲线运动的速度方向一定改变,所以是变速运动。需要重点掌握的两种情况:一是加速度大小、方向均不变的曲线运动,叫匀变速曲线运动,如平抛运动,另一是加速度大小不变、方向时刻改变的曲线运动,如匀速圆周运动。 二、运动的合成与分解 1.从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。重点是判断合运动和分运动,这里分两种情况介绍。 一种是研究对象被另一个运动物体所牵连,这个牵连指的是相互作用的牵连,如船在水上航行,水也在流动着。船对地的运动为船对静水的运动与水对地的运动的合运动。一般地,物体的实际运动就是合运动。 第二种情况是物体间没有相互作用力的牵连,只是由于参照物的变换带来了运动的合成问题。如两辆车的运动,甲车以v甲=8 m/s的速度向东运动,乙车以v乙=8 m/s的速度向北运动。求甲车相对于乙车的运动速度v甲对乙。 2.求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。 3.合运动与分运动的特征: ①等时性:合运动所需时间和对应的每个分运动时间相等 ②独立性:一个物体可以同时参与几个不同的分运动,各个分运动独立进行,互不影响。 4.物体的运动状态是由初速度状态(v0)和受力情况(F合)决定的,这是处理复杂运动的力和运动的观点.思路是:

高中物理运动学专题

运动学 第一讲基本知识介绍 一.基本概念 1.质点 2.参照物 3.参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点) 4.绝对运动,相对运动,牵连运动:v 绝=v 相 +v 牵 二.运动的描述 1.位置:r=r(t) 2.位移:Δr=r(t+Δt)-r(t) 3.速度:v=lim Δt→0 Δr/Δt.在大学教材中表述为:v=d r/dt, 表示r对t 求导数 4.加速度a=a n +a τ。 a n :法向加速度,速度方向的改变率,且a n =v2/ρ,ρ叫 做曲率半径,(这是中学物理竞赛求曲率半径的唯一方法)a τ : 切向加速度,速度大小的改变率。a=d v/dt 5.以上是运动学中的基本物理量,也就是位移、位移的一阶导数、位移的二阶导数。可是三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。(a对t的导数叫“急动度”。) 6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较 好 三.等加速运动 v(t)=v 0+at r(t)=r +v t+1/2 at2 一道经典的物理问题:二次世界大战中物理学家曾经 研究,当大炮的位置固定,以同一速度v 沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的包 络线。此抛物线为在大炮上方h=v2/2g处,以v 平抛物体的轨迹。) 练习题: 一盏灯挂在离地板高l 2,天花板下面l 1 处。灯泡爆裂,所有碎片以同样大小 的速度v 朝各个方向飞去。求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。) 四.刚体的平动和定轴转动 1.我们讲过的圆周运动是平动而不是转动 2.角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt 3.有限的角位移是标量,而极小的角位移是矢量 4.同一刚体上两点的相对速度和相对加速度 两点的相对距离不变,相对运动轨迹为圆弧,V A =V B +V AB , 在AB连线上

曲线运动 平抛运动 专项练习-2021届高考物理二轮复习

课练11曲线运动平抛运动 ———[狂刷小题夯基础]——— 练基础小题 1.(多选)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则() A.质点一定做匀变速直线运动B.质点可能做匀变速曲线运动 C.质点单位时间内速度的变化量相同 D.质点速度的方向总是与该恒力的方向相同 2. 如图所示,P、Q和M、N分别是坐标系x轴与y轴上的两点,Q为OP的中点,N为OM的中点,a、b、c表示三个可视为质点的物体做平抛运动的轨迹,a、b抛出点的位置相同,a、c落点的位置相同,以v a、v b、v c表示三个物体的初速度,t a、t b、t c表示三个物体做平抛运动的时间,则有() A.v a:v b=1:2 B.v b:v c=2:4 C.t a:t b=1: 2 D.t b:t c=2:1 3.如图所示,河水的流速保持不变,船在静水中的速度大小也一定,当船头的指向分别沿着图中4个箭头的方向,下列说法中正确的是() A.①方向小船一定向上游前进 B.②方向小船一定沿图中虚线前进 C.②方向和④方向小船不可能到达对岸的同一地点 D.③方向小船过河时间一定最短 4.

如图所示,一工人利用定滑轮和轻质细绳将货物提升到高处.已 知该工人拉着绳的一端从滑轮的正下方水平向右匀速运动,速度大小恒为v ,直至绳与竖直方向夹角为60°.若滑轮的质量和摩擦阻力均不计,则该过程( ) A .货物也是匀速上升 B .绳子的拉力大于货物的重力 C .末时刻货物的速度大小为v 2 D .工人做的功等于货物动能的增加量 5.如图所示,长为L 的直杆一端可绕固定轴O 无摩擦转动,另一端靠在以水平速度v 匀速向左运动、表面光滑的竖直挡板上,当直杆与竖直方向夹角为θ时,直杆端点A 的线速度为( ) A.v sin θ B .v sin θ C.v cos θ D .v cos θ 6. 如图所示,某一运动员从弧形雪坡上沿水平方向飞出后,又落到 斜面雪坡上,若斜面雪坡的倾角为θ,飞出时的速度大小为v 0,不计空气阻力,运动员飞出后在空中的姿势保持不变,重力加速度为g ,则( ) A .运动员落到雪坡时的速度大小是v 0cos θ B .运动员在空中经历的时间是2v 0tan θg C .如果v 0不同,则该运动员落到雪坡时的速度方向也就不同 D .不论v 0多大,该运动员落到雪坡时的速度方向与水平方向的夹角α=2θ

高一物理曲线运动测试题及答案

曲线运动单元测试 一、选择题(总分41分。其中1-7题为单选题,每题3分;8-11题为多选题,每题5分,全部选对得5分,选不全得2分,有错选和不选的得0分。) 1.关于运动的性质,以下说法中正确的是( ) A .曲线运动一定是变速运动 B .变速运动一定是曲线运动 C .曲线运动一定是变加速运动 D .物体加速度大小、速度大小都不变的运动一定是直线运动 2.关于运动的合成和分解,下列说法正确的是( ) A .合运动的时间等于两个分运动的时间之和 B .匀变速运动的轨迹可以是直线,也可以是曲线 C .曲线运动的加速度方向可能与速度在同一直线上 D .分运动是直线运动,则合运动必是直线运动 3.关于从同一高度以不同初速度水平抛出的物体,比较它们落到水平地面上的时间(不计空气阻力),以下说法正确的是( ) A .速度大的时间长 B .速度小的时间长 C .一样长 D .质量大的时间长 4.做平抛运动的物体,每秒的速度增量总是( ) A .大小相等,方向相同 B .大小不等,方向不同 C .大小相等,方向不同 D .大小不等,方向相同 5.甲、乙两物体都做匀速圆周运动,其质量之比为1∶2 ,转动半径之比为1∶2 ,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为( ) A .1∶4 B .2∶3 C .4∶9 D .9∶16 6.如图所示,在不计滑轮摩擦和绳子质量的条件下,当小车匀速向右运动时,物体A 的受力情况是( ) A .绳的拉力大于A 的重力 B .绳的拉力等于A 的重力 C .绳的拉力小于A 的重力 D .绳的拉力先大于A 的重力,后变为小于重力 7.如图所示,有一质量为M 的大圆环,半径为R ,被一轻杆固定后悬挂在O 点,有两个质量为m 的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。两小环同时滑到大环底部时,速度都为v ,则此时大环对轻杆的拉力大小为( ) A .(2m +2M )g

高中物理曲线运动练习题及答案

高中物理曲线运动练习题及答案 一、高中物理精讲专题测试曲线运动 1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数μ满足0.1≤μ≤0.3,g 取10m /s 2,求 (1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ; (3)A 在小车上滑动过程中产生的热量Q (计算结果可含有μ). 【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3 时, 22111 ()22A A m v m M v -+ 【解析】 【分析】 (1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ; (3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】 (1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律: 0=A A B B m v m v - 由能量关系:22 11=22 P A A B B E m v m v - 解得v A =2m/s ;v B =4m/s (2)设B 经过d 点时速度为v d ,在d 点:2d B B v m g m R = 由机械能守恒定律:22d 11=222 B B B B m v m v m g R +? 解得R=0.32m (3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律: =()A A A m v m M v +由能量关系:()2 211122 A A A A m gL m v m M v μ= -+ 解得μ1=0.2

相关文档
最新文档