当前城市燃气火灾爆炸事故特点以及分析完整版

当前城市燃气火灾爆炸事故特点以及分析完整版
当前城市燃气火灾爆炸事故特点以及分析完整版

编号:TQC/K716

当前城市燃气火灾爆炸事故特点以及分析完整版

Through the proposed methods and Countermeasures to deal with, common types such as planning scheme, design scheme, construction scheme, the essence is to build accessible bridge between people and products, realize matching problems, correct problems.

【适用制定规则/统一目标/规范行为/增强沟通等场景】

编写:________________________

审核:________________________

时间:________________________

部门:________________________

当前城市燃气火灾爆炸事故特点以

及分析完整版

下载说明:本解决方案资料适合用于解决各类问题场景,通过提出的方法与对策来应付,常见种类如计划方案、设计方案、施工方案、技术措施,本质是人和产品之间建立可触达的桥梁,实现匹配问题,修正问题,预防未来出现同类问题。可直接应用日常文档制作,也可以根据实际需要对其进行修改。

当前我国城市燃气事业飞速发展,尤其是以西气东输为标志的一系列燃气工程的竣工和投产运行,天然气、液化气、煤气等管道燃气在我国得到快速的普及,瓶装液化气的使用量也不断增加。这一方面拉动了经济的快速增长,提高了居民的生活质量,减少了环境污染;另一方面越来越多的燃气事故的发生也给居民的生命财产带来巨大的损失,成为燃气行业最为关切的焦点和重点。

城市燃气的应用就其本身而言是安全的,如果严格按照国家标准、技术规范、操作规程执行,安全使用是完全有保障的。各类城市燃气安全事故的发生都是在外界条件异常、人为疏忽或故意破坏等前提下出现的。如地震、雷击等不可抗力导致的燃气储存、输配系统的泄漏、爆炸;设备设施缺乏养护失灵、工作人员操作失误所造成的燃气安全事故;以及各类人为破坏燃气基础设施而引发的燃气安全事故。燃气有易燃易爆的特性,随着在城乡的广泛使用和不断增加的工业领域的应用,如果相关配套的燃气燃烧器具如:灶具、胶管、减压阀、热水器、燃气锅炉、空调、调压站(柜)等不能正确使用,就会出

现燃气安全事故,燃气泄漏、爆炸和人员伤亡的情况就会不断增多,给家庭和社会带来不幸。近年来,在我市燃气的储运、使用过程中发生的各类事故也较为频繁。例如:20xx年6月集安市场由于DN200和DN300天然气中低压铸铁管双线被热力管线压断,造成燃气泄漏爆炸,两人重伤。20xx年11月鸿博嘉园小区住户燃气泄漏,用户在开窗放散时明火引发爆炸,小区内86户居民受灾。20xx年10月,黄旗街液化气用户在户内进行液化气放散操作,在室内形成爆炸性液化气混合气体,点火

时引起爆炸,一人烧伤。20xx年12月,在辽东小区和鸿博御园分别发生燃气

泄漏爆炸事故,一人重伤,三人轻伤,230多户居民受波及。20xx年初,新吉林一用户因灶前阀忘记关闭、胶管脱落引起燃气泄漏,遇明火爆炸,2人受伤。20xx年6月昌茂花园小区某住户因灶前胶管安装不牢固,在使用燃气灶时胶管脱落引起燃气泄漏爆炸。可见燃气安全事故总在伴随着燃气使用存在于我们的周围,下面就城市燃气火灾爆炸事故的特点和事故原因做以下分析:

一、燃气特性

l、易燃烧性。我们常用的城市燃气:天然气、液化气、煤气三种燃气的最小点火能量都较低,大约为0.19-0.35毫焦之问,液化气点火温度为466摄氏度,天

然气点火温度为537摄氏度,火焰传播速度每秒可达34-38厘米。

2、易爆炸性。当一定比例的燃气与空气混合后就会形成爆炸性混合气体,遇明火就会发生爆炸,我们称燃气的这个比例范围为爆炸极限,爆炸极限范围越宽,爆炸下限越低,其爆炸危险性越大。例如,天然气爆炸极限为5-15%,液化气爆炸极限为2-10%,人工煤气为6-70%,可见它们的爆炸危险性依次为天然气<液化气<人工煤气。

3、易扩散性。扩散性是指物质在空气或其它介质中的扩散能力,燃气的扩散能力取决于密度与扩散系数两个主要因素。不同种类的燃气密度也不一样,天然气和

人工煤气比空气轻,气态液化气比空气重约O.5倍。它们都有很强的扩散性,燃气扩散能力越强,火势蔓延速度越快,火灾燃烧面积和破坏程度越大。

4、压力供应性。燃气的输配都采用压力输配,天然气、人工煤气等通常以压力管道形式输送,进入家庭时一般都小于0.01大气压,而瓶装液化气钢瓶内约为2-10个大气压,液态液化气变成气态时体积扩大约250倍,在燃气安全事故中的危险性远大于管道燃气。

5、连续供应性。管道燃气较之液化气更容易实现长期、稳定、连续的供应。该特点在一定程度上更易造成持续和大量的燃气泄漏,造成更大范围的爆炸性气体空

间,使事故的波及范围扩大。

二、各类燃气爆炸事故原因分析

1、管道燃气。

常见以管道方式输送的燃气为天然气、管道输送液化气、混空液化气或人工煤气。供气系统通常由气源厂(门站)、气化设备、调压设备、输送管道、户内设施等构成。设备设施较多,地下隐蔽工程量大,任何一个环节上出现不安全因素都可能给整个供气系统和管网用户带来损害。因此,具有较大的火灾危险性。具体分析如下:

(1)、燃气设备、设施老化破损导致燃气泄漏。埋地管道由于使用期限较长,无法经常挖掘出进行检测,当它受到腐蚀、

地壳应力等作用、出现破裂损坏时,不能及时察觉。有些地下管道附属设施如:阀门、法兰等当连接出现问题也会导致燃气泄漏。(2)、设备、设施安全防护装置失效,导致燃气1泄漏。包括管网供气系统中安全阀、防爆阀、防爆片、泄压阀、报警系统等失灵、失效,危险区域防爆电器不防爆、静电接地不可靠、防雷装置失灵等。

(3)、供气企业安全管理措施不到位,缺乏抢险救急专业技术和专业装备。各岗位操作人员培训有死角,各项规章制度、操作规程、建立不完善,应急救援预案编制不具体,没有按要求进行桌面演练和实际演练。出现事故征兆时没有相应专业人

员、技术和装备进行抢险,缺乏应对灾害的能力。

(4)、企业操作人员违反操作规程违章操作。

(5)、用户违章操作、疏于监护。用户在使用燃气时对户内燃气设施缺乏监护,燃气设施出现异常时没能及时向供气企业报修,致使燃气泄漏。在使用燃气过程中操作不正确,如不遵循“火等气”的点火原则或疏忽大意导致烧煮物将火熄灭,燃气外泄。

(6)、其它原因的个人或单位对燃气供气系统的破坏。如:进行地下工程施工前,施工单位未与燃气供气企业会签,挖断燃气管道。燃气管道上违章建筑物占压

管线以及个别人对燃气设施的破坏。

2、瓶装液化石油气。

瓶装液化石油气具有使用灵活、应用面广、重复灌装使用的特点,因此,很难在每次灌装出厂前都对钢瓶做全面系统的监管。加之使用分散,无法照搬管道燃气企业组织大规模安全检查的模式,所以液化气钢瓶的运行状况良莠不齐,具有较大的火灾危险性,具体分析如下:

(1)超量灌装。液化石油气具有热胀冷缩的性质、液态液化气的体积膨胀相当于水的10-16倍,一旦钢瓶内完全充满液态,温度每提高1摄氏度,压力就急剧上升20-30个大气压,钢瓶的爆破压力约为80个大气压,温度只需再上升3、4度,

钢瓶内的压力就可超过爆破压力,引起钢瓶爆破。

(2)钢瓶超期未检。由于钢瓶超期服役,导致钢瓶的角阀、阀杆、阀根、瓶体等部位故障率和安全护具失效率显著增加,甚至不合格、报废钢瓶仍在继续流通使用,形同流动炸弹。

(3)钢瓶受严重腐蚀或外力作用,瓶体受损。液化气钢瓶在使用过程中因使用环境造成钢瓶瓶体腐蚀严重,野蛮装卸、运输造成瓶体受损,钢瓶安全护具或配件缺失破损。

(4)从业人员违章操作。部分从业人员缺乏岗前培训或燃气常识,对用户服务中违章操或错误指导用户操作,造成燃气泄

漏形成爆炸性混合气体。例如:在室内进行液化气放散。

(5)错误操作行为。在使用过程中违反操作规程,如放倒、加热液化气钢瓶、乱倒残液等。

(6)用户监护不当。用户在使用燃气进行烧煮食物时忽视了监护,火被风或烧煮物扑灭、烧干锅、忘记关闭阀门等等,造成燃气的泄漏。

三、确保安全使用燃气的措施和建议

l、制定切实可行的发展规划,抓好落实。各地应当根据自身实际,制定切实可行的整体发展规划和燃气行业专项发展规划,在新、改、扩建工程中必须同时进行燃气配套工程的设计、施工、验收,避免

重复施工以及重复施工过程中造成的破坏。燃气企业的管网资料一定要到规划部门进行备案,避免煤气管线因管网备案资料不健全导致在其它企业施工过程中受到破坏。

2、燃气企业要建立健全规章制度并贯彻落实。各燃气企业一定要高度重视各项规章制度的制定工作,包括:各岗位操作规程、岗位责任制、应急救援预案、消防组织机构、内部巡查巡检记录、设备运行记录、设备检定记录、各种台帐档案等。通过培训、学习、桌面演练、实际演习等多种形式加以贯彻落实,从根源上消除事故隐患,加强防灾救灾能力。

3、严格选材,确保工程质量。在施工

前对所涉及的各类设备、设施、材料、配件要认真选购和进行检测,尤其是高压管线材料更要严格筛选。设计、施工、监理单位资质要齐备,施工中要按图施工,验收过程中对不符合要求的工段要坚决返工整改,确保工程质量符合标准,保障人民生命财产安全。

4、大力宣传贯彻安全使用燃气的常识。燃气安全使用常识的宣传是一项长期的工作、不能间断的工作。目前还有很多群众和用气单位对燃气的危险性认识不足。各级行业管理部门和燃气企业要充分利用广播、电视、报纸等新闻媒介和文艺表演、课外辅导、科普宣传、知识竞赛、发放使用手册等多种途径宣传燃气安全使

用常识。宣传要考虑针对不同层次、不同群体、不同年龄的用户和潜在用户,要浅显易懂、符合实际。燃气企业还要与用户建立良好的沟通渠道,公布报警报修电话,设立联系信箱,制定24小时值班制度,保障沟通渠道畅

通无阻。一方面能迅速的解决用户出现的各类燃气安全问题,消灭隐患于荫芽,防止事态扩大。二是居民在发现有破坏燃气基础设施现象时有方便快捷的方式向企业报警,使企业能够在第一时间进行处置。

5、更新观念及时掌握、接受和引进新技术、新产品。时刻关注燃气业内最新动态,关注最新的燃气安全相关技术和产

品,推广和应用符合自身发展实际并成效显著的新技术、新产品。以科技为武器,提高燃气供应系统的可靠性,创造更加安全的

燃气运行环境。

6、加强燃气行业管理部门的监管职责,落实责任制。各地燃气行业管理部门要制定燃气安全管理体系,从基层抓起,层层落实燃气安全责任制,培养和树立安全观念和安全意识。从而形成良好的安全至上、安全是天的安全风气。切实做好燃气行业的安全管理工作。

本处可输入公司或团队名字

THIS TEMPLATE IS DESIGNED BY FOONSHION

火灾爆炸事故树分析(一)

火灾爆炸事故树分析(一) 引言 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 事故树 1故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑

学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。 2故障树分析的基本程序 FTA法的基本程序:熟悉系统—调查事故—确定顶事件—确定目标—调查原因事件—编制故障树—定性分析—定量分析—安全评价。故障树分析过程大致可分为9个步骤。第1~5步是分析的准备阶段,也是分析的基础,属于传统安全管理;第6步作图是分析正确与否的关键;第7步定性分析,是分析的核心;第8步定量分析,是分析的方向,即用数据表示安全与否;第9步安全性评价,是目的。 3油库静电火灾爆炸故障树的建立 油库静电火花造成油库火灾爆炸的事故树的建立过程,如图1所示。(1)确定顶上事件——“油库静电火灾爆炸”(一层)。 (2)调查爆炸的直接原因事件、事件的性质和逻辑关系。直接原因事件:“静电火花”和“油气达到可燃浓度”。这两个事件不仅要同时发生,而且必须在“油气达到爆炸极限”时,爆炸事件才会发生,因此,用“条件与”门连接(二层)。 (3)调查“静电火花”的直接原因事件、事件的性质和逻辑关系。直接原因事件:“油库静电放电”和“人体静电放电”。这两个事件只要其中一个发生,则“静电火花”事件就会发生。因此,用“或”门连接(三层)。

火灾爆炸事故树分析(油库静电)——措施(4)

编订:__________________ 审核:__________________ 单位:__________________ 火灾爆炸事故树分析(油库静电)——措施(4)Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2700-83 火灾爆炸事故树分析(油库静电) ——措施(4) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或 活动达到预期的水平。下载后就可自由编辑。 静电放电引起火灾爆炸必须具备以下四个条件:(1)有产生静电的来源;(2)使静电得以积聚,并具有足够大的电场强度和达到引起火花放电的静电电压;(3)静电放电的能量达到爆炸性混合物的最小引燃能量;(4)静电放电火花周围有爆炸性的混合物存在,其浓度必须处于爆炸极限内。反之,防止静电事故的措施是从控制这四个条件着手。控制前三个条件实质上是控制静电的产生和积累,是消除静电危害的直接措施。控制第四条件是消除或减少周围环境爆炸的危险,是防止静电危害的间接措施。 在油品的储运过程中,防止静电事故的安全措施主要有以下几个方面: 1 防止爆炸性气体的形成

大爆炸和火灾危险场所采用通风装置加强通风,及时排出爆炸性气体使浓度不在爆炸范围内,以防止静电火花引起爆炸。同时对应于爆炸浓度范围还与温度密切相关,把温度控制在爆炸温度范围之外也是防止静电引起爆炸的途径。对于油面空间不能采用正压通风的办法来防止爆炸性混合气体的形成,可采用惰性气体覆盖的方法(如氮气覆盖),或采用浮顶罐、内浮顶罐。浮顶罐或内浮顶罐虽可消除浮盘以下的油气空间,尤其是内浮顶罐浮顶上面含有较多可燃气体,但浮盘上部的可燃气体发生火花放电现象也应该予以重视。 2 加速静电泄漏,防止或减少静电聚积 静电的产生本身并不危险。实际的危险在于电荷的积聚,因为这样能储存足够的能量,从而产生火花将可燃性气体引燃。为了加速油品电荷的泄漏,可以接地、跨接以及增加油品的电导率。 2.1 接地和跨接 静电接地和跨接是为了导走或消除导体上的静电,

火灾爆炸事故树分析

火灾爆炸事故树分析(油库静电) ——引言(1) 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 火灾爆炸事故树分析(油库静电)——事故树(2) 1 故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。 2 故障树分析的基本程序 FTA法的基本程序:熟悉系统—调查事故—确定顶事件—确定目标—调查原因事件—编制故障树—定性分析—定量分析—安全评价。故障树分析过程大致可分为9个步骤。第1~5步是分析的准备阶段,也是分析的基础,属于传统安全管理;第6步作图是分析正确与否的关键;第7步定性分析,是分析的核心;第8步定量分析,是分析的方向,即用数据表示安全与否;第9步安全性评价,是目的。 3 油库静电火灾爆炸故障树的建立

LNG储罐火灾、爆炸事故树分析

LNG储罐火灾与爆炸事故分析 根据顶时间确定原则,取“LNG储罐火灾、爆炸”作为顶事件。顶事件确定后,分析引起顶事件发生的最直接的、充分和必要的原因。引起LNG储罐火灾、爆炸有两种原因; 一是化学爆炸模式,即罐内LNG泄漏,遇空气、火源发生火灾、爆炸; 二是物理模式,即罐内压力急剧升高,罐体泄压系统失灵,压力超过罐体所能承受的压力,发生爆炸事故。 然后把引起顶时间发生的各种可能原因又分别看做顶事件,采用类似的方法继续推理往下分析,建立以逻辑门符号表示的LNG储罐火灾、爆炸事故树,如图2所示。 该事故树共考虑了25个不同的基本事件,各符号所代表的事件如下表所示。 事件类型表 符号事件类型符号事件类型 T 储罐火灾爆炸X5误操作LNG泄漏 P 爆炸极限X6使用未带阻火器的汽车

F1由火源引起爆炸X7罐区内吸烟 F2储罐超压爆炸X8罐区内违章动火 F3天然气气源存在X9使用电子通信工具 F4火源X10未使用防爆电气 F5安全阀失效X11防爆电气损坏 F6LNG泄漏X12雷击 F7明火X13未安装避雷设施 F8电火花X14接地电阻超标 F9雷击火花X15引下线损坏 F10撞击火花X16接地端损坏 F11静电火花X17使用铁质工具工作 F12避雷器失效X18穿带铁钉的鞋 F13储罐静电X19罐体静电聚集 F14人体静电X20未设静电接地装置 F15避雷器故障X21作业中与导体接触 F16接地失效X22未穿防静电服工作 X1罐区通风不良X23储罐压力超过限 X2阀门密封失效X24安全阀弹簧损坏 X3法兰密封失效X25安全阀选型不当 X4罐体损坏 LNG储罐火灾、爆炸事故树分析 3.1定性分析 定性分析是从事故树结构出发,分析各底时间的发生对顶时间发生所产生的影响程度。定性分析目的是找出事故树的所有最小割集,发现系统故障或导致顶时间发生的全部可能原因,并定性地识别系统的薄弱环节。最小割集时导致顶事件发生的必要且充分的基本事件的集合。得到事故树的所有最小割集如下: X1X2X6,X1X2X7,X1X2X9,,X1X2X10,,X1X2X11,X1X2X17,X1X2X18,X1X2X21,X1X2X22,,X1X3X6,X1X3X7,X1X3X8,X1X3X9,X1X3X10,X1X3X11,X1X3X17,X1X3X18,X1X3X21,X1X3X22,X1X4X6,X1X4X7,X1X4X8,X1X4X9,X1X4X10,X1X4X11,X1X4X17,,X1X4X18,X1X4X21,X1X4X22,X1X5X6,X1X5X7,X1X5X8,X1X5X9,X1X5X10,X1X5X11,X1X5X17,X1X5X18,X1X5X21,X1X5X22,X1X2X12X13,X1X2X12X14,X1X2X12X15,X1X2X12X16,X1X3X14X19,X1X3X12X15,X1X2X12X16,

火灾爆炸事故树分析正式样本

文件编号:TP-AR-L2741 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 火灾爆炸事故树分析正 式样本

火灾爆炸事故树分析正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 引言 当液相与固相之间,液相与气相之间,液相与另 一不相容的液相之间以及固相和气相之间,由于流 动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、 剧烈晃动以及发泡等接触、分离的相对运动,都会在 介质中产生静电。许多石油化工产品都属于高绝缘物 质,这类非导电性液体在生产和储运过程中,产生和 积聚大量的静电荷,静电聚积到一定程度就可发生火 花放电。如果在放电空间还同时存在爆炸性气体,便 可能引起着火和爆炸。油库静电引起火灾爆炸是一种 恶性事故,因而对于油库中防静电危害具有非常重要

的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 事故树 1 故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能

火灾爆炸事故树分析(新编版)

火灾爆炸事故树分析(新编版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0676

火灾爆炸事故树分析(新编版) 引言 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库

静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 事故树 1故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。 2故障树分析的基本程序 FTA法的基本程序:熟悉系统—调查事故—确定顶事件—确定目标—调查原因事件—编制故障树—定性分析—定量分析—安全评价。故障树分析过程大致可分为9个步骤。第1~5步是分析的准备阶段,也是分析的基础,属于传统安全管理;第6步作图是分析正

发生器(乙炔)火灾爆炸事故树分析

发生器(乙炔)火灾爆炸事故树分析 唐俊岩王海瑜 一、前言 乙炔发生器是一种有火灾爆炸危险的设备。采用事故树分析法对电石入水式低压乙炔发生器火灾、爆炸事件进行分析,进而提出了相应的对策措施,为企业消除事故及安全生产提供可靠保障。 乙炔是一种无色的气体,俗称电石气,是最简单的炔烃。乙炔的用途很广,常见的溶解乙炔用于焊接或切割金属材料。目前国内溶解乙炔的生产主要采用电石法。电石法生产乙炔又可分为排水式、联合式、电石入水式和沉浮式等几种。乙炔发生器是利用电石和水相互作用制取乙炔的设备,是乙炔生产的关键设备。由于乙炔的危险性,乙炔发生器有燃烧爆炸危险。本文采用事故树分析法对电石入水式低压乙炔发生器火灾、爆炸事件进行分析,并提出相应的安全对策措施,为企业消除事故及安全生产提供可靠保障。 二、方法简介 事故树(Fault Tree Analysis, FTA),也称故障树,是一种描述事故因果关系的有方向的“树”,是安全系统工程中重要的分析方法之一。它能对各种系统的危险性进行识别评价,既适用于定性分析,又能进行定量分析。 事故树分析是对既定的生产系统或作业中可能出现的事故条件及可能导致的灾害后果,按工艺流程、先后次序和因果关系绘成程序方框图,表示导致灾害、伤害事故(不希望事件)的各种因素之间的逻辑关系,它由输入符号或关系符号组成,用以分析系统的安全问题或系统的运行功能问题,并为判断灾害、伤害的发生途径及与灾害、伤害之间的关系,提供一种最形象、最简洁的表达形式。 三、分析步骤 事故树分析步骤见图1。 图1 FTA步骤

四、重点解决的技术问题 1 绘制事故树 我在广泛收集、整理有关事故资料,认真消化了相关安全规程、操作规程和众多事故案例的基础上作出乙炔发生器发生爆炸事故树。 绘制事故树时,重点注意了以下问题: (1)尽可能全面收集有关的事故案例及规程、标准。 (2)系统、全面地发掘事故的发生原因及事件相互间的逻辑关系。作图过程中充分尊重生产、工艺、操作、安全等方面富有经验的同志的意见。 2 求最小割集 由于事故树较为复杂,计算最小割集时如全部具体到基本事件,则割集十分庞大,既不便于表达,也不便企业采取控制措施。因此,实际处理时本文视情况对事故树取到某一便于采取措施的中间事件作为基本分析单元。 3 结构重要度分析 结构重要度分析,是从事故树结构上分析各基本事件(这里指基本分析单元)的重要程度。即在不考虑各基本事件的发生概率,或者说假定各基本事件的发生概率都相等的情况下,分析各基本事件的发生对顶上事件发生所产生的影响程度。 4 控制措施 从理论上讲,每一组最小割集是反映事故树中可能引起顶上事件发生的一个基本事件组合,据此可有的放矢地制定预防控制措施,但因FTA推出的割集往往数目繁多,实际无法根据它们将应采取的所有措施一一列出。因此,根据目前所掌握的情况,考虑安全生产管理的实际状况及实施的验易程度,针对一些较为重大的问题提出了控制措施。 五、事故树分析 1事故树 乙炔发生器发生爆炸事故树见图2。

仓库火灾事故树分析

香精仓库火灾事故树分析 5.3.1绘制火灾事故树 本项目中香精仓库(即平面图中危险物保管仓库),主要存放香精,(易燃或可燃液体)。该仓库是比较容易发生火灾事故的场所。根据物料发生火灾的特点,按照事故树分析法将“香精仓库火灾”作为顶上事件,作香精仓库火灾事故树图(图5-1)。 T—顶上事件;A、B—中间事件;X—基本事件; 逻辑“或”门 表示下面的输入事件只要有一个发生就会引 起上面输出事件的发生。 逻辑“与”门表示下面的输入事件都发生,才能引起上面输出事件的发生。

图5-1危险品仓库火灾事故树图 图5-1中具体事件的标注如下: T :危险品仓库(易燃液体)火灾 A 1:引燃可燃物导致火灾 A 2:引爆易燃蒸气,导致火灾 B :着火源 X 1:可燃物料(正常事件) X 2:乙类易燃液体(正常事件) X 3:未及时发现火险 X 4:电器火花 X 5:外来火种 X 6:违章动火 X 7:静电火花 X 8:雷电火花 X 9:液体包装不密封 (1)求最小割集 X 1、X 2为正常事件,计算值取1。 T 1=A 1+A 2=X 1B 1+aX 2B 2= X 1X 3(X 4+X 5+X 6+X 7+X 8)+aX 2X 9(X 4 +

X5+X6+X7+X8) =X3X4+X3X5+X3X6+X3X7+X3X8+aX4X9+aX5X9+aX6X9+aX7X9+aX8X9得10个最小割集: K1={ X3 X4 } ;K2={ X3X5} ;K3={ X3X6};K4={ X3X7} ;K5={ X3X8};K6={ax4 X9};K7={aX5 X9};K8={ax6 X9} ;K9={aX7 X9};K10={aX8 X9}; 说明危险品仓库(易燃液体)发生火灾的可能事件10个,应采取相应的安全技术措施。 (2)结构重要度分析 基本事件的结构重要度系数采用估算法进行 1 ∑I(i)=∑ x i∈k J 2ni-1 I a=1/23-1+1/23-1+1/23-1+1/23-1+1/23-1=5/4 I(3)=1/22-1+1/22-1+1/22-1+1/22-1+1/22-1=5/2 I(4)=1/22-1+1/23-1=3/4 I(5)=1/22-1+1/23-1=3/4 I(6)=1/22-1+1/23-1=3/4 I(7)=1/22-1+1/23-1=3/4 I(8)=1/22-1+1/23-1=3/4 I(9)=1/23-1+1/23-1+1/23-1+1/23-1+1/23-1=5/4 因此得到结构重要度顺序:I(3)>I a=I(9)>I(4)=I(5)=I(6)=I(7)=I(8)由以上分析可见,未及时发现火险(未扑灭)对造成易燃物品仓库火灾事故发生的影响最为重要。液体包装不密封、散发的易燃液体蒸气浓度达到爆炸极限两事件的影响次之,应根据基本事件的结构重

火灾爆炸事故树分析

编号:SM-ZD-45746 火灾爆炸事故树分析Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

火灾爆炸事故树分析 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 引言 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,

液化天然气(LNG)储罐火灾和爆炸事故树分析

1.1液化天然气(LNG)储罐火灾和爆炸事故树分析 在整个LNG产业链中,LNG储罐是处于重要的地位,它是连接上游LNG 产业和下游LNG产业的重要中转站。因此,LNG储罐的安全性和可靠性对于LNG的产业链来说是十分重要的。而储罐的事故模型多而繁杂,其中火灾和爆炸是最重要、最一般、最常见、后果影响最严重的事故模型。通过对引起LNG储罐发生火灾、爆炸的因素进行系统分析,建立了以LNG储罐火灾、爆炸为顶事件的事故树,并进行事故树分析,得到了影响顶事件的各阶最小割集。并通过计算底事件的结构重要度,确定了影响储罐事故的主要因素,并提出了相应的改进措施,以提高LNG储罐的安全性和运行可靠性。 因此,预防LNG储罐的事故发生,特别是LNG储罐的火灾、爆炸等恶性事故的发生,提高其储罐系统本质安全并延长使用寿命,对于安全生产和国民经济的稳定发展具有十分重要的意义。事故树分析法作为工程系统可靠性分析与评价的有效方法,为分析LNG储罐火灾、爆炸事故提供了有效手段。通过对LNG储罐火灾、爆炸的分析,可以逐步分析LNG储罐火灾、爆炸事故的发生机理和原因,进而采取相应的安全措施,提高LNG储罐的可靠性和安全使用寿命。 1.1.1事故树的分析程序 事故树的分析程序,常因分析对象、分析目的、粗细程度的不同而不同,但主要的内容包括:熟悉系统、事故调查、确定顶上事故、原因时间调查、建造事故树、修改和简化事故树、定性\定量分析、制定安全措施。如图5-1所示。

图5-1 事故树分析程序 1.1.2 LNG储罐火灾与爆炸事故树分析 根据顶事件确定原则,取“LNG储罐火灾、爆炸”作为顶事件。顶事件确定后,分析引起顶事件件发生的最直接的、充分和必要的原因。引起LNG 储罐火灾、爆炸有两种原因:一是化学爆炸模式,即罐内LNG泄漏,遇空气、火源发生火灾、爆炸;二是物理模式,即罐内压力急剧升高,罐体泄压系统失灵,压力超过罐体所能承受的压力,发生爆炸事故。然后把引起顶事件发生的各种可能原因又分别看作顶事件,采用类似的方法继续往下深入分析,建立以逻辑门符号表示的LNG储罐火灾、爆炸事故树,如图5-2所示,本事故树共考虑了24不同的底事件,图中各符号所代表的事件如表5-5所示。

火灾爆炸事故树分析标准范本

解决方案编号:LX-FS-A48586 火灾爆炸事故树分析标准范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

火灾爆炸事故树分析标准范本 使用说明:本解决方案资料适用于日常工作环境中对未来要做的重要工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 引言 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要

储罐区火灾爆炸-事故树(分析方法与重要度计算)

灌区火灾爆炸――事故树(分析方法与重要度计算) 图-1 贮罐的事故火灾爆炸事故树 将贮罐的事故火灾爆炸事故树转化为成功树如图-2

图-2 贮罐的事故火灾爆炸事故树转化为成功树 贮罐火灾爆炸事故树的分析评价 1 、结构函数式 Tˊ=AˊBˊa=a(Aˊ+Bˊ)=a(X1ˊX2ˊX3ˊX4ˊCˊ+DˊEˊ)=a(X1ˊX2ˊX3ˊX4ˊFˊX5ˊ+X8ˊX9ˊX10ˊX11ˊX12ˊ)=a{X1ˊX2ˊX3ˊX4ˊ(X6ˊ+X7ˊ)X5ˊ+X8ˊX9ˊX10ˊX11ˊX12ˊ}= a(X1ˊX2ˊX3ˊX4ˊX5ˊX6ˊ+X1ˊX2ˊX3ˊX4ˊX5ˊX7ˊ+X8ˊX9ˊX10ˊX11ˊX12ˊ) 2、最小径集 通过计算分析该事故树12个基本事件,可以得出下列3个最小径集:

P1={a,X1ˊ,X2ˊ,X3ˊ,X4ˊ,X5ˊ,X6ˊ} P2={a,X1ˊ,X2ˊ,X3ˊ,X4ˊ,X5ˊ,X7ˊ} P3={a,X8ˊ,X9ˊ,X10ˊ,X11ˊ,X12ˊ} 3、结构重要度分析 根据以上结果,运用结构重要度近似判别式,可以计算出12个基本事件和一个条件事件的结构重要度系数。计算结果如下:由于条件事件a存在于每一个径集中,因此其结构重要度系数I Φ(a)最大; 事件X8、X9、X10、X11、X12是3个径集中基本事件最少的一个径集中出现,其结构重要度系数IΦ(8)、IΦ(9)、IΦ(10)、IΦ(11)、I Φ(12)相等; 事件X1、X2、X3、X4、X5是3个径集中出现两次的基本事件,其结构重要度系数IΦ(1)、IΦ(2)、IΦ(3)、IΦ(4)、IΦ(5)相等; 事件X6、X7是3个径集中只出现一次的基本事件,其结构重要度系数IΦ(6)、IΦ(7)相等; 由此得出结构重要度顺序: IΦ(a)>IΦ(8)=IΦ(9)=IΦ(10)=IΦ(11)=IΦ(12)>IΦ(1)=IΦ(2)=IΦ(3)=IΦ(4)=I Φ(5)> IΦ(6)=IΦ(7) 评价结果分析及其对策措施建议 由事故树分析可知,火源与达到爆炸极限的混合物蒸气构成了液化气贮罐燃爆事故发生的要素。条件事件a(达到爆炸极限)结构重要度最大,是液化气贮罐燃爆事故发生的最重要条件,结合事故案例分析,要求采取以下针对性的措施: 1)贮罐罐体设计应采用不易产生蒸气的内浮顶罐或固定的喷淋冷却系统,最大可能地减少液化气蒸气在空气中达到爆炸极限; 2)在罐附近安装气体报警装置,对混合气浓度进行检测,一旦接

静电火灾爆炸事故树分析(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 静电火灾爆炸事故树分析(通用 版) Safety management is an important part of production management. Safety and production are in the implementation process

静电火灾爆炸事故树分析(通用版) 引言 当液相与固相之间,液相与气相之间,液相与另一不相容的液相之间以及固相和气相之间,由于流动、搅拌、沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发泡等接触、分离的相对运动,都会在介质中产生静电。许多石油化工产品都属于高绝缘物质,这类非导电性液体在生产和储运过程中,产生和积聚大量的静电荷,静电聚积到一定程度就可发生火花放电。如果在放电空间还同时存在爆炸性气体,便可能引起着火和爆炸。油库静电引起火灾爆炸是一种恶性事故,因而对于油库中防静电危害具有非常重要的意义。因此,如何安全有效地管理和维修油库,提高油库的安全可靠性,已是当前油库安全管理工作所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整

改,从而提高油库系统的安全性。 事故树 1故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。 2故障树分析的基本程序 FTA法的基本程序:熟悉系统—调查事故—确定顶事件—确定目标—调查原因事件—编制故障树—定性分析—定量分析—安全评价。故障树分析过程大致可分为9个步骤。第1~5步是分析的准备阶段,也是分析的基础,属于传统安全管理;第6步作图是分析正确与否的关键;第7步定性分析,是分析的核心;第8步定量分析,

火灾爆炸事故树分析示范文本

火灾爆炸事故树分析示范 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

火灾爆炸事故树分析示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 引言 当液相与固相之间,液相与气相之间,液相与另一不 相容的液相之间以及固相和气相之间,由于流动、搅拌、 沉降、过滤、冲刷、喷射、灌注、飞溅、剧烈晃动以及发 泡等接触、分离的相对运动,都会在介质中产生静电。许 多石油化工产品都属于高绝缘物质,这类非导电性液体在 生产和储运过程中,产生和积聚大量的静电荷,静电聚积 到一定程度就可发生火花放电。如果在放电空间还同时存 在爆炸性气体,便可能引起着火和爆炸。油库静电引起火 灾爆炸是一种恶性事故,因而对于油库中防静电危害具有 非常重要的意义。因此,如何安全有效地管理和维修油 库,提高油库的安全可靠性,已是当前油库安全管理工作

所面临的一个重大课题。故障树分析法(FTA法)是分析复杂、大型系统安全可靠性的有效工具。通过油库静电故障树分析,可找出系统存在的薄弱环节,然后进行相应的整改,从而提高油库系统的安全性。 事故树 1 故障树分析法方法 故障树分析方法(FTA)是一种图形演绎法,是从结果到原因描绘事故发生的有向逻辑树分析方法。这种树是一种逻辑分析过程,遵从逻辑学演绎分析原则(即从结果到原因的分析原则)。把系统不希望出现的事件作为故障树的顶事件,用逻辑“与”或“或”门自上而下地分析导致顶事件发生的所有可能的直接原因及相互间的逻辑关系,并由此逐步深入,直到找出事故的基本原因,即为故障树的基本事件。

事故树法分析宿舍火灾

4.2 故障树分析法分析 4.2.1 故障树分析方法简介 故障树分析法的优点是能识别导致事故的基本事件与人为失误的组合,可为人们提供设法避免或减少导致事故基本原因的线索,从而降低事故发生的可能性;便于查明系统内固有的或潜在的各种危险因素,为设计,施工和管理提供科学的依据;并使有关人员,作业人员全面了解和掌握各项防灾要点。但是故障树步骤较多,计算复杂。广泛应用于高度重复性的系统 4.2.2 故障树分析法步骤 1.熟悉系统:要详细了解系统状态及各种参数,绘出工艺流程图或布置图。 2.调查事故:收集事故案例,进行事故统计,设想给定系统可能发生的事故。 3.确定顶上事件:要分析的对象即为顶上事件。对所调查的事故进行全面分析,从中找出后果严重且较易发生的事故作为顶上事件。 4.确定目标值:根据经验教训和事故案例,经统计分析后,求解事故发生的概率(频率),以此作为要控制的事故目标值。 5.调查原因事件:调查与事故有关的所有原因事件和各种因素。 6.画出故障树:从顶上事件起,逐级找出直接原因的事件,直至所要分析的深度,按其逻辑关系,画出故障树。 7.分析:按故障树结构进行简化,确定各基本事件的结构重要度。 8.事故发生概率:确定所有事故发生概率,标在故障树上,并进而求出顶上事件(事故)的发生概率。 9.比较:比较分可维修系统和不可维修系统进行讨论,前者要进行对比,后者求出顶上事件发生概率即可。 10.分析:原则上是上述10个步骤,在分析时可视具体问题灵活掌握,如果故障树规模很大,可借助计算机进行。目前我国故障树分析一般都考虑到第7步进行定性分析为止,也能取得较好效果。 4.2.3 事故树分析 1、事故树的建立 学生宿舍是学校人口密集型场所,针对如何科学合理应对火灾的发生这一问题,提出采用事故树一一找出了发生火灾的基本事件,然后进行定性的合理分析,了解火灾发生的基本原因后建立校园宿舍火灾事故树如下:

液化气罐区火灾爆炸事故树

T A1—形成混合气 A2—遇火源 A3—液态烃泄露A4—未报警A5—静电火花 A6—附近有机动车通行A7—罐爆裂 A8—静电未消除A9—罐超压A10—安全阀未起作用A11—未报警A12—未报警A 13 —无显示 A14—液面无显示 A15—压力无显示 X1—烟头未掐灭X2—阀门泄露X3—法兰片断裂X4—报警器故障X5—无报警器 X6—收油或油排入事故罐过快X7—未安装阻火器X8—阻火器故障X9—无接地线X10—接地线断开X11—收油过量X12—安全阀下部阀门未开 X13—安全阀故障X14—无报警器 X15—报警器故障X16—液面计上下阀门未开X17—液面计故障X18—无液面计 X19—无压力表X20—压力表故障 液化石油气储罐区 火灾爆炸事故树分析

该事故树的结构函数为:T = A1·A2 T= A1·A2 = A3·A4(X1+A5 + A6)= (X2+X3+A7)(X4+X5) (X1+X6+A8+X7+X8)= (X2+X3+A9·A10)(X4+X5) (X1+X6+X9+X10+X7+X8)= [X2+X3+X11·A11·(X12+X13)] (X4+X5)(X1+X6+X7+X8+X9+X10)=[X2+X3+X11·A12·A13 (X12+X13)](X4+X5)(X1+X6+X7+X8+X9+X10) = [X2+X3+X11(X14+X15)(A14+A15)(X12+X13)](X4+X5) (X1+X6+X7+X8+X9+X10) =[X2+X3+X11(X14+X15)(X16+X17+X18+X19+X20)(X12+X13)] (X4+X5)(X1+X6+X7+X8+X9+X10) =[X2+X3+(X11X14+X11X15)(X16+X17+X18+X19+X20)(X12+X13)] (X4+X5) (X1+X6+X7+X8+X9+X10) = [X2+X3+(X11X14X12+X11X14X13+X11X15X12+X11X15X13) (X16+X17+X18+X19+X20)](X4+X5)(X1+X6+X7+X8+X9+X10) = (X2+X3+X11X12X14X16+X11X12X14X17+X11X12X14X18+X11X12X14X19 +X11X12X14X20+X11X12X15X16+X11X12X15X17+X11X12X15X18 +X11X12X15X19+X11X12X15X20+X11X13X14X16+X11X13X14X17 +X11X13X14X18+X11X13X14X19+X11X13X14X20+X11X13X15X16 +X11X13X15X17+X11X13X15X18+X11X13X15X19+X11X13X15X20) (X4X1+X4X6+X4X7+X4X8+X4X9+X4X10+X5X1+X5X6+X5X7+X5X8 +X5X9+X5X10) =X2X4X1+X2X4X6+……+X2X5X10+X3X4X1+X3X4X6+……+X3X5X10

某学校教学楼火灾事故树分析

第三教学楼火灾事故树分析 [摘要]学校教学楼一旦起火,后果将非常严重。本文主要运用事故树分析第三教学楼火灾发生的原因,找出了该事故树的最小割集和最小径集,并对基本事件进行了结构重要度分析。通过比较分析,得出了学校预防教学楼火灾的基本措施。 0前言 学校教学楼是人员非常密集的场所,一旦发生事故,人员伤亡和财产损失将特别严重。并且会给社会带来不必要的影响。但是建国以来由于各种条件的限制,许多教学楼发生了火灾事故。因此对学校教学楼火灾事故进行分析是十分必要的。本文主要通过对第三教学楼火灾进行事故树分析,得出预防火灾发生的基本措施。 1建立火灾事故树 事故树分析(Fault Tree Analysis,简称FTA)也称故障树分析。它从一个可能的事故(顶事件)开始,自上而下、一层一层地寻找顶事件的直接原因事件和间接原因事件,直到基本原因事件(基本事件),并用逻辑图把这些事件之间的逻辑关系表达出来。事故树分析是一种演绎分析方法,即从结果分析原因的方法。 通过对第三教学楼进行的火灾调查发现,导致火灾发生的因素众多。确定以第三教学楼火灾为顶事件,分析顶事件与中间事件以及基本事件的逻辑关系口。(从而得出第三教学楼火灾事故树如图1) 以上事故树中各符号代表的意义见表1: 教学楼内的空气和可燃物充分,所以未对它们再进行分析。另外引起教学楼火灾的电火源种类较多,此处指出了几种有代表性的基本事件。 2.1事故树的最小割集 根据布尔代数运算法则求出事故树的最小割集有77个,分别是:

P1={X3,X16,X1,X2};P2={X3,X14,X1,X2}; P3={X7,X14,X1,X2};p4={X5,X14,X1,X2}; P5={X6,X14,X1,X2};P6={X7,X16,X1,X2}; P7={X3,X17,X1,X2};P8={X3,X18,X1,X2); P9={X3,X19,X1,X2};P10={X3,X20,X1,X2}; P11={X3,X15,X1,X2};P12={X4,X14,X1,X2}; P13={X8,X14,X1,X2};P14={X9,X14,X1,X2}; P15={X10,X14,X1,X2};P16={X11,X14,X1,X2}; P17={X12,X14,X1,X2};P18={X13,X14,X1,X2}; P19={X5,X16,X1,X2};P20={X6,X16,X1,x2}; P21={X7,X17,X1,X2};P22={X7,X18,X1,X2}; P23={X7,X19,X1,X2};P24={X7,X20,X1,X2}; P25={X7,X15,X1,X2};P26={X4,X17,X1,X2}; P27={X4,X18,X1,X2};P28={X4,X19,X1,X2}; P29={X4,X20,X1,X2};P30={X4,X15,X1,X2}; P31={X5,X17,X1,X2};P32={X5,X18,X1,X2}; P33={X5,X19,X1,X2};P34={X5,X20,X1,X2}; P35={X5,X15,X1,X2};P36={X6,X17,X1,X2}; P37={X6,X18,X1,X2};P38={X6,X19,X1,X2}; P39={X6,X20,X1,X2};P40={X6,X15,X1,X2}; P41={X8,X17,X1,X2};P42={X9,X17,X1,X2}; P43={X10,X17,X1,X2};P44={X11,X17,X1,X2}; P45={X12,X17,X1,X2};P46={X13,X17,X1,X2}; P47={X8,X18,X1,X2};P48={X9,X18,X1,X2}; P49={X10,X18,X1,X2};P50={X11,X18,X1,X2}; P51={X12,X18,X1,X2};P52={X13,X18,X1,X2}; P53={X8,X19,X1,X2};P54={X9,X19,X1,X2}; P55={X10,X19,X1,X2};P56={X11,X19,X1,X2}; P57={X12,X19,X1,X2};P58={X13,X19,X1,X2}; P59={X8,X20,X1,X2};P60={X9,X20,X1,X2}; P61={X10,X20,X1,X2};P62={X11,X20,X1,X2}; P63={X12,X20,X1,X2};P64={X13,X20,X1,X2}; P65={X8,X15,X1,X2};P66={X9,X15,X1,X2}; P67={X10,X15,X1,X2};P68={X11,X15,X1,X2}; P69={X12,X15,X1,X2};P70={X13,X15,X1,X2}; P71={X4,X16,X1,X2};P72={X8,X16,X1,X2}; P73={X9,X16,X1,X2};P74={X10,X16,X1,X2}; P75={X11,X16,X1,X2};P76={X12,X16,X1,X2}; P77={X13,X16,X1,X2}。 2.2事故树的最小径集 根据最小径集与最小割集的对偶性,把事故树中的与门换成或门,或门换成与门,求出事故树的最小径集有4个,分别为: P1’={X3,X7,X5,X6,X4,X8,X9,X10,X11,X12,X13}; P2’={X16,X14,X17,X18,X19,X20,X15};

相关文档
最新文档