完全平方公式与平方差公式

完全平方公式与平方差公式
完全平方公式与平方差公式

完全平方公式与平方差公式

内容:8.3完全平方公式与平方差公式(2)P64--型:新授日期:

学习目标:

1、经历探索平方差公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。

2、会推导平方差公式,了解公式的几何背景,会用公式计算。

3、进一步体会数形结合的数学思想和方法。

学习重点:会推导平差方公式,并能运用公式进行简单的计算。

学习难点:掌握平方差公式的结构特征,理解公式中a.b的广泛含义。

学习过程:

一、学习准备

1、利用多项式乘以多项式计算:

(1) (a+1)(a-1)

(2) (x+y)(x-y)

(3) (3a+2b)(3a-2b)

(4) (0.2x+0.04y)(0.2x-0.04y)

观察以上算式及运算结果,你发现了什么?再举两

例验证你的发现。

2、以上算式都是两个数的和与这两个的差相乘,运算结果是这两个数的平方的差。我们把这样特殊形式的

多项式相乘,称为平方差公式,以后可以直接使用。

平方差公式用字母表示为:(a+b)(a-b)=a2-b2

尝试用自己的语言叙述平方差公式:

3、平方差公式的几何意义:阅读课本65页,完成填空。

4、平方差公式的结构特征:(a+b)(a-b)=a2-b2

左边是两个二项式相乘,两个二项式中的项有什么特点?右边的结果与左边的项有什么关系?

注意:公式中字母的含义广泛,可以是,只要题目符合公式的结构特征,就可以运用这一公式,可用符号表示为:(□+○)(□-○)=□2-○2

5、判断下列算式能否运用平方差公式。

(1) (x+y)(-x-y) (2) (-y+x)(x+y)

(3) (x-y)(-x-y) (4) (x-y)(-x+y)

二、合作探究

1、利用乘法公式计算:

(1) (2m+3)(2m-3) (2) (-4x+5y)(4x+5y)

分析:要分清题目中哪个式子相当于公式中的a

(相同的一项),哪个式子相当于公式中的b (互为相反数的一项)

2、利用乘法公式计算:

(1) 999×1001 (2)

分析:要利用完全平方公式,需具备完全平方公式的结构,所以999×1001可以转化为()× (), 可以转化为()×()、利用乘法公式计算:

(1) (x+y+z)(x+y-z) (2) (a-2b+3c)(a+2b-3c)

三、学习体会

对照学习目标,通过预习,你觉得自己有哪些方面的收获?又存在哪些方面的疑惑?

四、自我测试

1、下列计算是否正确,若不正确,请订正;

(1) (x+2)(2-x)=x2-4

(2) (2x+y2)(2x-y2)=2x2-y4

(3) (3x2+1)(3x2-1)=9x2-1

(4) (x+2)(x-3)=x2-6

2、利用乘法公式计算:

(1) (m+n)(m-m)+3n2 (2) (a+2b)(a-2b)(a2+4b4)

(3)1007×993 (4) (x+3)2-(x+2)(x-1)

4、先化简,再求值;

(-b+a)(a+b)+(a+b)2-2a2,其中a=3,b五、思维拓展 1、如果x2-y2=6,x+y=3,则x-2、计算:

20072-4014×2008+20082

3、计算:123462-12345×12、计算:(2+1)(22+1)(24+1)…(22n+1)

平方差公式和完全平方公式基础拔高练习(含答案)

平方差公式 令狐采学 ◆基础训练 1.(a2+b2)(a2-b2)=(____)2-(____)2=______. 2.(-2x2-3y2)(2x2-3y2)=(____)2-(____)2=_____. 3.20×19=(20+____)(20-____)=_____-_____=_____. 4.9.3×10.7=(____-_____)(____+____)=____-_____. 5.20062-2005×2007的计算结果为() A.1 B.-1 C.2 D.-2 6.在下列各式中,运算结果是b2-16a2的是() A.(-4a+b)(-4a-b)B.(-4a+b)(4a-b) C.(b+2a)(b-8a)D.(-4a-b)(4a-b)

7.运用平方差公式计算. (1)102×98 (2)2×3(3)-2.7×3.3 (4)1007×993 (5)12×11(6)-19×20 (7)(3a+2b)(3a-2b)-b(a-b)(8)(a-1)(a-2)(a+1)(a+2) (9)(a+b)(a-b)+(a+2b)(a-2b)(10)(x+2y)(x-2y)-(2x+5y)(2x-5y)(11)(2m-5)(5+2m)+(-4m-3)(4m-3) (12)(a+b)(a-b)-(a-3b)(a+3b)+(-2a+3b)(-2a-3b) ◆综合应用 8.(3a+b)(____)=b2-9a2;(a+b-m)(____)=b2-(a-m)2. 9.先化简,再求值:(3a+1)(3a-1)-(2a-3)(3a+2),其中a=-. 10.运用平方差公式计算:

最新完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()22 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a -3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是

完全平方公式变形的应用练习题

乘法公式的拓展及常见题型整理 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+ a a a a 2)1(1222 +-=+a a a a 拓展二:ab b a b a 4)()(22=--+ ()()2 2 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求 ab b a ++2 2 2。 ⑴如果1,3=-=-c a b a ,那么()()()2 2 2 a c c b b a -+-+-的值是 ⑵1=+y x ,则2221 21y xy x ++= ⑶已知xy 2 y x ,y x x x -+-=---2 22 2)()1(则 = (二)公式组合 例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab ⑴若()()a b a b -=+=2 2 713,,则a b 22 +=____________,a b =_________

平方差与完全平方公式教案与答案

平方差与完全平方公式教案与答案

15.2.1 平方差公式 知识导学 1.平方差公式:(a+b)(a-b)=a2-b2 即两个数的和与这两个数的差的积,等于这两个数的平方差。 2. 平方差公式的灵活运用:通过变形,转化为符合平方差公式的形式,也可以逆用平方差公式,连续运用平方差公式,都可以简化运算。 典例解悟 例1. 计算:(1)(2x+3y)(2x-3y) (2) (-4m2-1)(-4m2+1) 解:(1)(2x+3y)(2x-3y)=(2x)2-(3y)2=4x2-9y2 (2) (-4m2-1)(-4m2+1)=(-4m2)2-12=16m4-1 感悟:正确掌握平方差公式的结构,分清“相同项”与“相反项”,再结合已学知识计算本题。其中第(2)题中的相同项是-4m2,不能误以为含有负号的项一定是相反项。 例2.先化简,再求值:(x+2y)(x-2y)-(2x-y)(-2x-y),其中x=8,y=-8. 解:原式=(x2-4y2)-(y2-4x2)=5x2-5y2. 当x=8,y=-8时,原式=5×82-5×(-8)2=0.

感悟:本题是整式的混合运算,其中两个多项式相乘符合平方差公式的特征。在本题(2x-y)(-2x-y)中,相同项是-y,相反项是2x与-2x,应根据加法的交换律,将此式转化为(-y+2x)(-y-2x)。阶梯训练 A级 1.下列各多项式乘法中,可以用平方差公式计算的是() A.(-a-b)(a+b) B.(-a-b)(a-b) C.(-a+b)(a-b) D.(a+b)(a+b) 2.在下列各式中,计算结果是a2 -16b2 的是() A.(-4b+a)(-4b-a) B.(-4b+a)(4b-a) C.(a+2b)(a-8b) D.(-4b-a)(4b-a) 3.下列各式计算正确的是() A.(x+3)(x-3)=x2 -3 B.(2x+3)(2x-3)=2x2 -9 C.(2x+3)(x-3)=2x2 -9 D.(2x+3)(2x-3)=4x2 -9 4.(0.3x-0.1)(0.3x+0.1)=_________ 5. (2 3x+3 4 y) (2 3 x-3 4 y) = _________ 6.(-3m-5n)(3m-5n)=_________

完全平方公式之恒等变形

§1.6 完全平方公式(2) 班级: 姓名: 【学习重点、难点】 重点: 1、弄清完全平方公式的结构特点; 2、会进行完全平方公式恒等变形的推导. 难点:会用完全平方公式的恒等变形进行运算. 【学习过程】 ● 环节一:复习填空 ()2_____________a b += ()2_____________a b -= ● 环节二: 师生共同推导完全平方公式的恒等变形 ①()222_______a b a b +=+- ②()222_______a b a b +=-+ ③()()22_______a b a b ++-= ④()()22_______a b a b +--= ● 典型例题及练习 例1、已知8a b +=,12ab =,求22a b +的值 变式训练1:已知5a b -=,22=13a b +,求ab 的值 变式训练2:已知6ab =-,22=37a b +,求a b +与a b -的值 方法小结:

提高练习1:已知+3a b =,22+30a b ab =-,求22a b +的值 提高练习2:已知210a b -=,5ab =-,求224a b +的值 例2、若()2=40a b +,()2=60a b -,求22a b +与ab 的值 小结: 课堂练习 1、(1)已知4x y +=,2xy =,则2)(y x -= (2)已知2()7a b +=,()23a b -=,求=+22b a ________,=ab ________ (3)()()2222________a b a b +=-+ 2、(1)已知3a b +=,4a b -=,求ab 与22a b +的值 (2)已知5,3a b ab -==求2()a b +与223()a b +的值。 (3)已知224,4a b a b +=+=,求22a b 与2()a b -的值。

平方差公式完全平方公式拓展

平方差公式完全平方公 式拓展 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

平方差公式、完全平方公式 一、填空 1、(-2x+y )(-2x -y )=______ 2、(-3x 2+2y 2)(______)=9x 4-4y 4 3、(a+b -1)(a -b+1)=(_____)2-(_____)2 4、两个正方形的边长之和为5,边长之差为2,那么较大正方形的面积减去较小的正方形的面积,差是_____ 5、计算:(a+1)(a -1)=______ 6、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=________ 7、一个长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为________ 8、5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________ 9、要使式子+4 1y 2成为一个完全平方式,则应加上________ 10、(4a m+1-6a m )÷2a m -1=________. 29×31×(302+1)=________ 11、已知x 2-5x +1=0,则x 2+21x =________ 12、已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2=________ 13、若x2-7xy+M 是一个完全平方式,那么M 是 14、若x 2-y 2 =30,且x -y=-5,则x+y 的值是 15、若x 2-x -m = (x -m)(x+1)且x ≠0,则m 等于 16、(x +q )与(x +5 1)的积不含x 的一次项,则q 应是 17、计算[(a 2-b 2)(a 2+b 2)]2等于 18、已知(a +b )2=11,ab =2,则(a -b )2的值是 19、已知m 2+n 2-6m+10n+34=0,则m+n 的值是 20、已知0136422=+-++y x y x ,y x 、都是有理数,则y x 的值是 21、已知 2()16,4,a b ab +==则22 3a b +的值是 、2()a b -的值是 22、已知()5,3a b ab -==,则2()a b +的值是 、223()a b +的值是 23、已知6,4a b a b +=-=,则ab 的值是 、22a b +的值是 24、已知224,4a b a b +=+=,则22a b 的值是 、2()a b -的值是 25、已知(a +b)2=60,(a -b)2=80,则a 2+b 2的值是 、a b 的值是

完全平方公式与平方差公式

《完全平方公式与平方差公式》教学设计 第1课时完全平方公式 1.能根据多项式的乘法推导出完全平方公式;(重点) 2.理解并掌握完全平方公式,并能进行计算.(重点、难点) 一、情境导入 计算: (1)(x+1)2; (2)(x-1)2; (3)(a+b)2; (4)(a-b)2. 由上述计算,你发现了什么结论? 二、合作探究 探究点:完全平方公式 【类型一】直接运用完全平方公式进行计算 利用完全平方公式计算: (1)(5-a)2; (2)(-3m-4n)2; (3)(-3a+b)2. 解析:直接运用完全平方公式进行计算即可. 解:(1)(5-a)2=25-10a+a2;

(2)(-3m-4n)2=9m2+24mn+16n2; (3)(-3a+b)2=9a2-6ab+b2. 方法总结:完全平方公式:(a±b)2=a2±2ab+b2.可巧记为“首平方,末平方,首末两倍中间放”. 变式训练:见《学练优》本课时练习“课堂达标训练”第12题 【类型二】构造完全平方式 如果36x2+(m+1)xy+25y2是一个完全平方式,求m的值. 解析:先根据两平方项确定出这两个数,再根据完全平方公式确定m 的值. 解:∵36x2+(m+1)xy+25y2=(6x)2+(m+1)xy+(5y)2,∴(m+1)xy=±2·6x·5y,∴m+1=±60,∴m=59或-61. 方法总结:两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 变式训练:见《学练优》本课时练习“课堂达标训练”第4题 【类型三】运用完全平方公式进行简便计算 利用完全平方公式计算: (1)992; (2)1022. 解析:(1)把99写成(100-1)的形式,然后利用完全平方公式展开计算.(2)可把102分成100+2,然后根据完全平方公式计算.解:(1)992=(100-1)2=1002-2×100+12=10000-200+1=9801; (2)1022=(100+2)2=1002+2×100×2+4=10404. 方法总结:利用完全平方公式计算一个数的平方时,先把这个数写成

完全平方公式变形公式专题

半期复习(3)—- 完全平方公式变形公式及常见题型 一、公式拓展: 拓展一: 拓展二: 拓展三: 拓展四:杨辉三角形 拓展五: 立方与与立方差 二。常见题型: (一)公式倍比 例题:已知=4,求。 (1),则= (2)已知= (二)公式变形 (1)设(5a +3b)2=(5a -3b)2+A,则A = (2)若()()x y x y a -=++22 ,则a 为 (3)如果,那么M 等于 (4)已知(a +b)2=m,(a—b)2=n,则a b等于 (5)若,则N 得代数式就是 (三)“知二求一” 1.已知x﹣y=1,x2+y 2=25,求xy 得值. 2。若x+y=3,且(x +2)(y+2)=12. (1)求xy 得值; (2)求x 2+3xy+y 2得值. 3.已知:x +y=3,xy=﹣8,求: (1)x2+y 2 (2)(x 2﹣1)(y 2﹣1). 4.已知a ﹣b=3,ab=2,求: (1)(a+b)2 (2)a 2﹣6ab+b 2得值、 (四)整体代入 例1:,,求代数式得值、 例2:已知a = x +20,b=x +19,c=x+21,求a 2+b2+c 2-ab-bc-ac 得值 ⑴若,则= ⑵若,则= 若,则= ⑶已知a 2+b 2=6ab 且a 〉b >0,求 得值为

⑷已知,,,则代数式得值就是、 (五)杨辉三角 请瞧杨辉三角(1),并观察下列等式(2): 根据前面各式得规律,则(a+b)6= . (六)首尾互倒 1.已知m2﹣6m﹣1=0,求2m2﹣6m+=。 2、阅读下列解答过程: 已知:x≠0,且满足x2﹣3x=1.求:得值。 解:∵x2﹣3x=1,∴x2﹣3x﹣1=0 ∴,即. ∴==32+2=11. 请通过阅读以上内容,解答下列问题: 已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7, 求:(1)得值;(2)得值。 (七)数形结合 1、如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形。 (1)您认为图(2)中得阴影部分得正方形边长就是多少? (2)请用两种不同得方法求图(2)阴影部分得面积; (3)观察图(2),您能写出下列三个代数式之间得等量关系不? 三个代数式:(m+n)2,(m﹣n)2,mn. (4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值. 2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示. (1)请写出图3图形得面积表示得代数恒等式; (2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2。 (八)规律探求 15.有一系列等式:

平方差公式 完全平方公式 拓展

平方差公式、完全平方公式 一、填空 1、(-2x+y )(-2x -y )=______ 2、(-3x 2+2y 2)(______)=9x 4-4y 4 3、(a+b -1)(a -b+1)=(_____)2-(_____)2 4、两个正方形的边长之和为5,边长之差为2,那么较大正方形的面积减去较小的正方形的面积,差是_____ 5、计算:(a+1)(a -1)=______ 6、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=________ 7、一个长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为________ 8、5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________ 9、要使式子+41 y 2成为一个完全平方式,则应加上________ 10、(4a m+1 -6a m )÷2a m -1=________. 29×31×(302+1)=________ 11、已知x 2-5x +1=0,则x 2 +21x =________ 12、已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2=________ 13、若x2-7xy+M 是一个完全平方式,那么M 是 14、若x 2 -y 2 =30,且x -y=-5,则x+y 的值是 15、若x 2-x -m = (x -m)(x+1)且x ≠0,则m 等于 16、(x +q )与(x +5 1 )的积不含x 的一次项,则q 应是 17、计算[(a 2-b 2)(a 2+b 2)]2等于 18、已知(a +b )2=11,ab =2,则(a -b )2的值是 19、已知m 2+n 2-6m+10n+34=0,则m+n 的值是 20、已知0136422=+-++y x y x ,y x 、都是有理数,则y x 的值是 21、已知 2 ()16,4,a b ab +==则22 3 a b +的值是 、2()a b -的值是 22、已知()5,3a b ab -==,则2()a b +的值是 、223()a b +的值是

初中数学完全平方公式的变形与应用

完全平方公式的变形与应用 提高培优完全平方公式 222222()2,()2a b a a b b a b a a b b 在使用时常作如下变形: (1) 222222()2,()2a b a b a b a b a b a b (2) 2222()()4,()()4a b a b a b a b a b a b (3) 2222 ()()2()a b a b a b (4) 2222 1 [()()]2a b a b a b (5) 22 1 [()()]2a b a b a b (6) 222222 1 [()()()]2a b c a b b c ca a b b c c a 例1 已知长方形的周长为 40,面积为75,求分别以长方形的长和宽为边长的正方形面积之和是多少? 解设长方形的长为α,宽为b ,则α+b=20,αb=75. 由公式(1),有: α2+b 2=(α+b)2-2αb=202-2×75=250. (答略,下同) 例2 已知长方形两边之差 为4,面积为12,求以长方形的长与宽之和为边长的正方形面积. 解设长方形长为 α,宽为b ,则α-b=4,αb=12.由公式(2),有:(α+b)2=(α-b)2+4αb=42+4×12=64. 例3 若一个整数可以表示为两个整数的平方和, 证明:这个整数的2倍也可以表示为两个整数的平方和 . 证明设整数为x ,则x=α2+b 2(α、b 都是整数).

由公式(3),有2x=2(α2+b 2)=(α+b)2+(α-b)2.得证 例4 将长为64cm 的绳分为两段,各自围成一个小正方形,怎样分法使得两个正方形面积之和最小? 解设绳被分成的两部分为x 、y ,则x+y=64. 设两正方形的面积之和为 S ,则由公式(4),有:S=(x 4)2+(y 4)2=116 (x 2+y 2) =132 [(x+y)2+(x-y)2] =132 [642+(x-y)2]. ∵(x-y)2 ≥0,∴当x=y 即(x-y)2=0时,S 最小,其最小值为 64232=128(cm 2). 例5 已知两数的和为 10,平方和为52,求这两数的积. 解设这两数分别为α、b ,则α+b =10,α2+b 2 =52. 由公式(5),有: αb=12 [(α+b)2-(α2+b 2)] =12 (102-52)=24. 例6 已知α=x+1,b=x+2,c=x+3. 求:α2+b 2+c 2-αb-bc-c α的值. 解由公式(6)有: α2+b 2+c 2-αb-bc-αc =12 [(α-b)2+(b-c )2+(c-α)2] =12 [(-1)2+(-1)2+22] =12×(1+1+4)=3.

【名师导航】七年级数学下册 完全平方公式拓展训练专项教程导学案(无答案) 北师大版

9、《完全平方公式》导学案 一、探索公式 问题1.利用多项式乘多项式法则,计算下列各式,你又能发现什么规律? (1)()()()=++=+1112 p p p __________________________. (2)()____________22 =+m =_______________________. (3) ()()()=--=-1112 p p p _____ _______________. (4) ()____________22 =-m =_________________________. (5) ()____________2 =+b a =_________________________ . (6) ()____________2 =-b a =________________________. 问题2.上述六个算式有什么特点?结果又有什么特点? 问题3.尝试用你在问题3中发现的规律,直接写出()2b a +和()2 b a -的结果. 即:2()a b += 2()a b -= 问题4:问题3中得的等式中,等号左边是 ,等号的右边: ,把这个公式叫做(乘法的)完全平方公式 问题5. 得到结论: (1)用文字叙述: (3)完全平方公式的结构特征: 问题6:请思考如何用图15.2- 2和图15.2-3中的面积说 明完全平方公式吗? 问题8. 找出完全平方公式与平方差公式结构上的差异 二、例题分析 例1:判断正误:对的画“√”,错的画“×”,并改正过来. (1)(a +b )2=a 2+b 2; ( ) (2)(a -b )2=a 2-b 2; ( ) (3)(a +b )2=(-a -b )2; ( ) (4)(a -b )2=(b -a )2. ( ) 例2.利用完全平方公式计算 (1) ()24n m + (2)2 21??? ??-y (3) (x +6)2 (4) (-2x +3y )(2x -3y ) 例3.运用完全平方公式计算: (5) 2102 (6) 2 99 三、达标训练 1、运用完全平方公式计算:

完全平方公式变形公式专题

半期复习(3)——完全平方公式变形公式及常见题型一.公式拓展: 2a2b2(a b)22ab 22 拓展一:a b(a b)2ab 11211 2 2 2 a(a)2a(a)2 22 a a a a 2a b2a b22a22b2 2 拓展二:(a b)(a b)4ab 22(a b)2(a b)24ab (a b)(a b)4ab 2222 拓展三:a b c(a b c)2ab2ac2bc 拓展四:杨辉三角形 33232 33 (a b)a a b ab b

444362243 4 (a b) a a b a b ab b 拓展五:立方和与立方差 3b a b a ab b 3223b3a b a ab b 22 a()()a()() 第1页(共5页)

二.常见题型: (一)公式倍比 。 2 2 a b 例题:已知 a b =4,求ab 2 1 1 (1) x y 1,则 2 2 x xy y = 2 2 2 2 x y 2 ) 2 (2) 已知x x x y ,xy ( 1) ( 则= 2 ( 二)公式变形 (1) 设(5a+3b)2=(5a-3b)2+A,则A= 2 2 (2) 若( x y) ( x y) a ,则a 为 (3) 如果 2 ( ) 2 (x y) M x y ,那么M等于(4) 已知(a+b) 2=m,(a —b) 2=n,则ab 等于 2 (2 3 ) 2 ( ,则N的代数式是(5) 若2a b a b N 3 ) (三)“知二求一” 1.已知x﹣y=1,x 2+y2=25,求xy 的值. 2.若x+y=3 ,且(x+2)(y+2)=12. (1)求xy 的值; 2+3xy+y 2 的值. (2)求x

完全平方公式常考题型(经典)

完全平方公式典型题型 一、公式及其变形 1、 完全平方公式:222()+2a b a ab b +=+ (1)222()2a b a ab b -=-+ (2) 公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。 注意: 222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+- 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。 2、公式变形 (1)+(2)得:22 22 ()()2a b a b a b ++-+= (12)-)(得: 22 ()()4 a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=- 3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++ 二、题型 题型一、完全平方公式的应用 例1、计算(1)(- 21ab 2-3 2c )2; (2)(x -3y -2)(x +3y -2); 练习1、(1)(x -2y )(x 2-4y 2)(x +2y );(2)、(a -2b +3c -1)(a +2b -3c -1); 题型二、配完全平方式 1、若k x x ++22是完全平方式,则k = 2、.若x 2-7xy +M 是一个完全平方式,那么M 是 3、如果4a 2-N ·ab +81b 2 是一个完全平方式,则N = 4、如果224925y kxy x +-是一个完全平方式,那么k = 题型三、公式的逆用 1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一: 拓展二: 拓展三: 拓展四:杨辉三角形 拓展五: 立方与与立方差 二.常见题型: (一)公式倍比 例题:已知=4,求。 (1),则= (2)已知= (二)公式变形 (1)设(5a +3b)2=(5a -3b)2+A,则A= (2)若()()x y x y a -=++22 ,则a 为 (3)如果,那么M 等于 (4)已知(a+b)2=m,(a —b)2=n,则ab 等于 (5)若,则N 得代数式就是 (三)“知二求一” 1.已知x ﹣y=1,x 2+y 2=25,求xy 得值. 2.若x+y=3,且(x+2)(y+2)=12. (1)求xy 得值; (2)求x 2+3xy+y 2得值. 3.已知:x+y=3,xy=﹣8,求: (1)x 2+y 2 (2)(x 2﹣1)(y 2﹣1). 4.已知a ﹣b=3,ab=2,求: (1)(a+b)2 (2)a 2﹣6ab+b 2得值. (四)整体代入 例1:,,求代数式得值。 例2:已知a= x +20,b=x +19,c=x +21,求a 2+b 2+c 2-ab -bc -ac 得值 ⑴若,则= ⑵若,则= 若,则=

⑶已知a2+b2=6ab且a>b>0,求得值为 ⑷已知,,,则代数式得值就是. (五)杨辉三角 请瞧杨辉三角(1),并观察下列等式(2): 根据前面各式得规律,则(a+b)6=. (六)首尾互倒 1.已知m2﹣6m﹣1=0,求2m2﹣6m+=. 2.阅读下列解答过程: 已知:x≠0,且满足x2﹣3x=1.求:得值. 解:∵x2﹣3x=1,∴x2﹣3x﹣1=0 ∴,即. ∴==32+2=11. 请通过阅读以上内容,解答下列问题: 已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7, 求:(1)得值;(2)得值. (七)数形结合 1.如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形. (1)您认为图(2)中得阴影部分得正方形边长就是多少? (2)请用两种不同得方法求图(2)阴影部分得面积; (3)观察图(2),您能写出下列三个代数式之间得等量关系吗? 三个代数式:(m+n)2,(m﹣n)2,mn. (4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值. 2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例 如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示. (1)请写出图3图形得面积表示得代数恒等式; (2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2. (八)规律探求 15.有一系列等式:

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+ a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2 222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a-3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是 (三)“知二求一” 1.已知x﹣y=1,x 2+y 2=25,求xy 的值. 2.若x +y=3,且(x+2)(y +2)=12. (1)求xy的值; (2)求x 2+3x y+y2的值.

完全平方公式的变形与应用

完全平方公式的变形与应用 完全平方公式222222()2,()2a b a ab b a b a ab b +=++-=-+在使用时常作如下变形: (1) 222222()2,()2a b a b ab a b a b ab +=+-+=-+ (2) 2222()()4,()()4a b a b ab a b a b ab +=-+-=+- (3) 2222()()2()a b a b a b ++-=+ (4) 22221[()()]2 a b a b a b +=++- (5) 221[()()]2 ab a b a b =+-- (6) 2222221[()()()]2 a b c ab bc ca a b b c c a ++---=-+-+- 例1 已知长方形的周长为40,面积为75,求分别以长方形的长和宽为边长的正方形面积之和是多少? 解 设长方形的长为α,宽为b ,则α+b=20,αb=75. 由公式(1),有: α2+b 2=(α+b)2-2αb=202-2×75=250. (答略,下同) 例2 已知长方形两边之差为4,面积为12,求以长方形的长与宽之和为边长的正方形面积. 解 设长方形长为α,宽为b ,则α-b=4,αb=12. 由公式(2),有: (α+b)2=(α-b)2+4αb=42+4×12=64. 例3 若一个整数可以表示为两个整数的平方和,证明:这个整数的2倍也可以表示为两个整数的平方和. 证明 设整数为x ,则x=α2+b 2(α、b 都是整数).

由公式(3),有2x=2(α2+b 2)=(α+b)2+(α-b)2.得证 例4 将长为64cm 的绳分为两段,各自围成一个小正方形,怎样分法使得两个正方形面积之和最小? 解 设绳被分成的两部分为x 、y ,则x+y=64. 设两正方形的面积之和为S ,则由公式(4),有: S=(x 4)2+(y 4)2=116 (x 2+y 2) =132 [(x+y)2+(x-y)2] =132 [642+(x-y)2]. ∵(x-y)2≥0, ∴当x=y 即(x-y)2=0时,S 最小,其最小值为64232 =128(cm 2). 例5 已知两数的和为10,平方和为52,求这两数的积. 解 设这两数分别为α、b ,则α+b=10,α2+b 2=52. 由公式(5),有: αb=12 [(α+b)2-(α2+b 2)] =12 (102-52)=24. 例6 已知α=x+1,b=x+2,c=x+3. 求:α2+b 2+c 2-αb -bc-cα的值. 解 由公式(6)有: α2+b 2+c 2-αb -bc-αc =12 [(α-b)2+(b-c)2+(c-α)2] =12 [(-1)2+(-1)2+22] =12 ×(1+1+4)=3.

平方差公式和完全平方公式强化练习答案

平方差公式 公式: ( a+b)(a-b)= a 2-b 2 语言叙述:两数的 和乘以这两个数的差等 于这两个数的平方差 , . 。 公式结构特点: 左边: (a+b)(a-b) 右边: a 2-b 2 熟悉公式:公式中的a 和b 既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。 (5+6x)(5-6x) 中 (5+6x) 是公式中的a , (5-6x) 是公式中的b (5+6x) (5+6x) 中 (5+6x) 是公式中的a , (5+6x) 是公式中的b (x-2y)(x+2y) 中 (x+2y)是公式中的a , (x-2y) 是公式中的b (-m+n)(-m-n) 中 (-m-n) 是公式中的a , (-m+n) 是公式中的b (a+b+c )(a+b-c) 中 (a+b+c ) 是公式中的a , (a+b-c) 是公式中的b (a-b+c )(a-b-c) 中 (a-b+c ) 是公式中的a , (a-b-c) 是公式中的b (a+b+c )(a-b-c) 中 (a+b+c ) 是公式中的a , (a-b-c) 是公式中的b 填空: 1、(2x-1)( (2x+1 )=4x 2-1 2、(-4x- 7y )( 7y -4x)=16x 2-49y 2 第一种情况:直接运用公式 1.(a+3)(a-3) 2..( 2a+3b)(2a-3b) = a 2-9 =4a 2 -9b 2 3. (1+2c)(1-2c) 4. (-x+2)(-x-2) =1-4C 2 =x 2-42平方差公式和完全平方公式强化练习答案 5. (2x+12)(2x-12) 6. (a+2b)(a-2b) =4x 2-1/4 =a 2-4b 2 7. (2a+5b)(2a-5b) 8. (-2a-3b)(-2a+3b) =4a 2-25b 2 =4a 2-9b 2 第二种情况:运用公式使计算简便 1、 1998×2002 2、498×502 =(2000-2)(2000+2) =(500-2)(500+2) =4000000-4 =250000-4 =3999996 =249996 3、999×1001 4、1.01×0.99 =(1000-1)(1000+1) =(1+0.1)(1-0.1) =1000000-1 =1-0.01 =999999 =0.99 5、30.8×29.2 6、(100-13)×(99-23) =(30+0.8)(30-0.8) = =900-0.64 =899.46 7、(20-19)×(19-89) =(19+8/9)(19-8/9) =361-64/81 =11032/27 第三种情况:两次运用平方差公式 1、(a+b )(a-b)(a 2+b 2) =(a 2-b 2) (a 2+b 2) =a 4-b 4 2、(a+2)(a-2)(a 2+4) =(a 2-4) (a 2+4) =a 4-16 3、(x- 12)(x 2+ 14)(x+ 12 ) =(x 2-1/4)( (x 2+ 14) =x 4-1/16 第四种情况:需要先变形再用平方差公式

完全平方公式变形

完全平方公式变形 1.已知 ,求下列各式的值: (1) ; (2) . (3)4 41x x 2.已知x+y=7,xy=2,求 (1)2x 2+2y 2; (2)(x ﹣y )2.。 (3)x 2+y 2-3xy 3.已知有理数m ,n 满足(m+n )2=9,(m ﹣n )2=1.求下列各式的值. (1)mn ; (2)m 2+n 2

平方差公式的应用 1.(a+b﹣c)(a﹣b+c)=a2﹣()2. 2.()﹣64m2n2=(a+)(﹣8mn) 3.已知x2﹣y2=12,x﹣y=4,则x+y=. 4.(x﹣y)(x+y)(x2+y2)(x4+y4)…(x2n+y2n)=. 5..(﹣3x+2y)()=﹣9x2+4y2. 6.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,则n=. 7.计算:=. 8.已知a﹣b=1,a2﹣b2=﹣1,则a4﹣b4=. 9.一个三角形的底边长为(2a+4)厘米,高为(2a﹣4)厘米,则这个三角形的面积为. 10观察下列等式19×21=202﹣1,28×32=302﹣22,37×43=402﹣32,…,已知m,n 为实数,仿照上述的表示方法可得:mn=. 11.正方形Ⅰ的周长比正方形Ⅱ的周长长96cm,它们的面积相差960cm2,求这两个正方形的边长 12如图,第一个图中两个正方形如图所示放置,将第一个图改变位置后得到第二个图,两图阴影部分的面积相等,则该图可验证的一个初中数学公式 为. 以下为提高题(请班级前20名学生会做) 13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个这个正整数为“神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“神秘数”.若60是一个“神秘数”,则60可以写成两个连续偶数的平方差为:60=. 14.20082﹣20072+20062﹣20052+…+22﹣12=. 15.(32+1)(34+1)(38+1)…(364+1)×8+1=. 16.(3a+3b+1)(3a+3b﹣1)=899,则a+b=. 17.化简式子,其结果是.

完全平方公式变形的应用练习题_2

(一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 ⑴如果1,3=-=-c a b a ,那么()()()2 22a c c b b a -+-+-的值是 ⑵1=+y x ,则222 121y xy x ++= ⑶已知xy 2y x ,y x x x -+-=---2222)()1(则 = (二)公式组合 例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab ⑴若()()a b a b -=+=22713,,则a b 22+=____________,a b =_________ ⑵设(5a +3b )2=(5a -3b )2+A ,则A= ⑶若()()x y x y a -=++22,则a 为 ⑷如果2 2)()(y x M y x +=+-,那么M 等于 ⑸已知(a+b)2=m ,(a —b)2=n ,则ab 等于 ⑹若N b a b a ++=-22)32()32(,则N 的代数式是 ⑺已知,3)(,7)(22=-=+b a b a 求ab b a ++22的值为 。 ⑻已知实数a,b,c,d 满足53=-=+bc ,ad bd ac ,求) )((2222d c b a ++ (三)整体代入 例1:2422=-y x ,6=+y x ,求代数式y x 35+的值。 例2:已知a= 201x +20,b=201x +19,c=20 1x +21,求a 2+b 2+c 2-ab -bc -ac 的值 ⑴若499,7322=-=-y x y x ,则y x 3+= ⑵若2=+b a ,则b b a 422+-= 若65=+b a ,则b ab a 3052++=

平方差公式和完全平方公式基础+提高练习题

平方差公式和完全平方公式基础+提高 A卷:基础题 1.下列多项式的乘法中,可以用平方差公式计算的是( ) A.(a+b)(b+a) B.(-a+b)(a-b) C.(a+b)(b-a) D.(a2-b)(b2+a)2.下列计算中,错误的有( ) ①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2; ③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y) (x+y)=-x2-y2. A.1个 B.2个 C.3个 D.4个 3.若x2-y2=30,且x-y=-5,则x+y的值是( ) A.5 B.6 C.-6 D.-5 4、判断下列各式是否正确 ,如果错误,请改正在横线上 (1)(a+b)=a+b( )________________ (2) (a+b)=a+2ab+b( )______________ (3) (a-b)=a-b( )________________ (4)(a-2)=a-4( )________________ 5.(-2x+y)(-2x-y)=______. 6.(-3x2+2y2)(______)=9x4-4y4. 7.(a+b-1)(a-b+1)=(_____)2-(_____)2. 8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____. 9.利用平方差公式计算:20×21. 10.计算:(a+2)(a2+4)(a4+16)(a-2). 完全平方式常见的变形有: B卷: 提高题 1、已知x-y=9,x·y=5,求x+y的值.

2、已知a+b=5 ,ab=-2 ,求a+b的值 3、m+=(m+)- . 4、若x-y=9,.则x+y=91, x·y= . 5.已知求与的值。 6.已知求与的值。 7、已知求与的值。 8、已知(a+b)2=60,(a-b)2=80,求a2+b2及ab的值 9、已知,求的值。 10、已知,求的值。 11、,求(1)(2) 12、试说明不论x,y取何值,代数式的值总是正数。 13、已知m2+n2-6m+10n+34=0,求m+n的值 14、已知,都是有理数,求的值。 15、已知 求与的值。 16、若x+mx+4是一个完全平方公式,则m的值为( )

相关文档
最新文档