拓展卡尔曼滤波

拓展卡尔曼滤波
拓展卡尔曼滤波

南京航空航天大学

随机信号小论文题目扩展卡尔曼滤波

学生姓名梅晟

学号SX1504059

学院电子信息工程学院

专业通信与信息系统

扩展卡尔曼滤波

一、引言

20世纪60年代,在航空航天工程突飞猛进而电子计算机又方兴未艾之时,卡尔曼发表了论文《A New Approach to Linear Filtering and Prediction Problems》(一种关于线性滤波与预测问题的新方法),这让卡尔曼滤波成为了时域内有效的滤波方法,从此各种基于卡尔曼滤波的方法横空出世,在目标跟踪、故障诊断、计量经济学、惯导系统等方面得到了长足的发展。

二、卡尔曼滤波器

卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器), 它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标及速度。

卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑便使用了这种滤波器。目前,卡尔曼滤波已经有很多不同的实现。卡尔曼最初提出的形式现在一般称为简单卡尔曼滤波器。除此以外,还有施密特扩展滤波器、信息滤波器以及很多Bierman, Thornton 开发的平方根滤波器的变种。也许最常见的卡尔曼滤波器是锁相环,它在收音机、计算机和几乎任何视频或通讯设备中广泛存在。

三、扩展卡尔曼滤波器

3.1 被估计的过程信号

卡尔曼最初提出的滤波理论只适用于线性系统,Bucy,Sunahara等人提出并研究了扩展卡尔曼滤波(Extended Kalman Filter,简称EKF),将卡尔曼滤波理论进一步应用到非线性领域。EKF的基本思想是将非线性系统线性化,然后进行卡尔曼滤波,因此EKF是一种次优滤波。

同泰勒级数类似,面对非线性关系时,我们可以通过求过程和量测方程的偏导来线性化并计算当前估计。假设过程具有状态向量x∈?n,其状态方程为非线性随机差分方程的形式。

x k=f x k?1,u k?1,w k?1(1.1)

观测变量z∈?m为:

z k=?(x k,v k)(1.2)

随机变量w k和v k代表过程激励噪声和观测噪声。它们为相互独立,服从正态分布的白色噪声:

p(w) ~N(0, Q),

p(v) ~N(0, R).

实际系统中,过程激励噪声协方差矩阵Q 和观测噪声协方差矩阵R 可能会随每次迭代计算而变化。但在这我们假设它们是常数。

差分方程式(1.1)中的非线性函数f 将过去k ?1 时刻状态与现在k 时刻状态联系起来。量测方程(1.2)中的驱动函数u k和零均值过程噪声w k是它的参数。非线性函数h 反映了状态变量x k和观测变量z k的关系。实际中我们显然不知道每一时刻噪声w k和v k各自的值。但是,我们可以将它们假设为零,从而估计状态向量和观测向量为:

x k=f x k?1,u k?1,0(1.3)

z k=?(x k,0)(1.4)

其中,x k是过程相对前一时刻k 的后验估计。

有一点非常重要,那就是扩展卡尔曼滤波器的一个基本缺陷:离散随机变量的分布(或连续随机变量的密度)在经过非线性系统转化后不再是正态的了。扩展卡尔曼滤波器其实就是一个通过线性化而达到渐进最优贝叶斯决策的特殊状态估计器。

3.2 滤波器的计算原型

为了估计一个具有非线性差分和量测关系的过程,我们先给出式(1.3)和

式(1.4)的一个新的线性化表示:

x k≈x k+A x k?1?x k?1+Ww k?1(1.5)

z k≈z k+H x k?x k+Vv k(1.6)

其中,

? x k和z k是状态向量和观测向量的真值,

? x k和z k来自1.3式和1.4式,是状态向量和观测向量的近似值,

? x k是k 时刻状态向量的后验估计,

?随机变量w k和v k表示过程激励噪声和观测噪声。

? A 是f 对x 的偏导的雅可比矩阵:

A[i,j]=ef i

j

x k?1,u k?1,0

? W 是f 对w 的偏导的雅可比矩阵:

W[i,j]=ef i

ew j

x k?1,u k?1,0

? H 是h 对x 的偏导的雅可比矩阵:

H[i,j]=e?i

ex j

x k,0

? V 是h 对v 的偏导的雅可比矩阵:

V[i,j]=e?i

j

x k,0

现在我们定义一个新的预测误差的表达式:

e x

k

≡x k?x k(1.7)

和观测变量的残余,

e z

k

≡z k?z k(1.8)

但实际中无法获得(1.7)式中的x k,它是状态向量的真值,也就是要估计的对象。同样,(1.8)式中的z k也是无法获取的,它是用来估计x k的观测向量的真值。由

(1.7)式和(1.8)式我们可以写出误差过程的表达式:

e x

k

≈A x k?1?x k?1+?k(1.9)

e z

k ≈He x

k

+ηk(1.10)

?k和ηk代表具有零均值和协方差矩阵WQW T和VRV T的独立随机变量,Q 和R 分别为过程激励噪声协方差矩阵和观测噪声协方差矩阵。在此我们利用(1.8)

式中的观测残余真值e z

k 去估计(1.9)式中的预测误差e x

k

,估计结果记为e k,结合

(1.7)式可以获得初始非线性过程的后验状态估计:

x k=x k+e k(1.11)

(1.9)式和(1.10)式中的随机变量具有如下概率分布:

p(e x

k )~N(0,E[e x

k

e x

k

T])

p(?k)~N(0,WQ k W T)

p(ηk)~N(0,VR k V T)

令e k的估计值为零,由以上近似,可以写出估计e k的卡尔曼滤波器表达式:

e k=K k e z

k

(1.12)

将(1.8)式和(1.12)式代入(1.11)式,得到:

x k=x k+K k e z

k

=x k+K k(z k?z k)(1.13) 3.3 拓展卡尔曼滤波总结

扩展卡尔曼滤波器的一个重要特性是卡尔曼增益K k的表达式中的雅可比矩阵H k能够正确地传递或“加权”观测信息中的有用部分。例如,如果

通过h 观测变量z k和状态变量没有一一对应的关系,雅可比矩阵H k便通

过改变卡尔曼增益从而使得残余z k??(x k?,0)中真正作用于状态变量的部分被加权。当然,如果整个观测中观测变量z k和状态变量通过h 都没有一个一一对应的关系,那么滤波器很快就会发散。这种情况下过程是不可观测的。

拓展卡尔曼滤波器基本运行流程图如下:

四、Matlab仿真

附程序如下:

clc; close all; clear all;

Xint_v = [1; 0; 0; 0; 0];

wk = [1 0 0 0 0];

vk = [1 0 0 0 0];

for ii = 1:1:length(Xint_v)

Ap(ii) = Xint_v(ii)*2;

W(ii) = 0;

H(ii) = -sin(Xint_v(ii));

V(ii) = 0;

Wk(ii) = 0;

end

Uk = randn(1,200);

Qu = cov(Uk);

Vk = randn(1,200);

Qv = cov(Vk);

C = [1 0 0 0 0];

n = 100;

[YY XX] = EKLMNFTR1(Ap,Xint_v,Uk,Qu,Vk,Qv,C,n,Wk,W,V);

for it = 1:1:length(XX)

MSE(it) = YY(it) - XX(it);

end

tt = 1:1:length(XX);

figure(1); subplot(211); plot(XX); title('ORIGINAL SIGNAL');

subplot(212); plot(YY); title('ESTIMATED SIGNAL');

figure(2); plot(tt,XX,tt,YY); title('Combined plot'); legend('original','estimated'); figure(3); plot(MSE.^2); title('Mean square error');

%--------------------------------------------------------------------

%--------------------------------------------------------------------

function [YY,XX] = EKLMNFTR1(Ap,Xint_v,Uk,Qu,Vk,Qv,C,n,Wk,W,V);

Ap(2,:) = 0;

for ii = 1:1:length(Ap)-1

Ap(ii+1,ii) = 1;

end

inx = 1;

UUk = [Uk(inx); 0; 0; 0; 0];

PPk = (Xint_v*Xint_v');

VVk = [Vk(inx); 0; 0; 0; 0];

Qv = V*V';

for ii = 1:1:length(Xint_v)

XKk(ii,1) = Xint_v(ii)^2; %FIRST STEP end

PPk = Ap*PPk*Ap'; % SECOND STEP

Kk = PPk*C'*inv( (C*PPk*C') + (V*Qv*V') ); % THIRD STEP

for ii = 1:1:length(Xint_v)

XUPK(ii,1) = XKk(ii)^2 + UUk(ii); % UPPER EQUATIONS.

Zk(ii,1) = cos(XUPK(ii)) + VVk(ii); % UPPER EQUATIONS.

end

for ii = 1:1:length(XKk)

XBARk(ii,1)=XKk(ii)+ Kk(ii)*(Zk(ii) - (cos(XKk(ii)))) ; % FOURTH STEP

end

II = eye(5,5);

Pk = ( II - Kk*C)*PPk; % FIFTH STEP %--------------------------------------------------------------------

%--------------------------------------------------------------------

for ii = 1:1:n

UUk = [Uk(ii+1); 0; 0; 0; 0];

PPk = XBARk*XBARk';

VVk = [Vk(ii+1); 0; 0; 0; 0];

XKk = exp(-XBARk); % FIRST STEP PPkM = Ap*PPk*Ap'; % SECOND STEP

Kk = PPkM*C'*inv( (C*PPkM*C') + (V*Qv*V') ); % THIRD STEP

fornn = 1:1:length(XBARk)

XUPK(nn) = exp(-XKk(nn)) + UUk(nn); % UPPER EQUATIONS. Zk(nn) = cos(XUPK(nn)) + VVk(nn); % UPPER EQUATIONS. end

for in = 1:1:length(XUPK)

XNEW(in) = XBARk(in)+Kk(in)*(Zk(in) - cos(XBARk(in))); % FOURTH STEP

end

II = eye(5,5);

Pk = (II - Kk*C)*PPkM; % FIFTH STEP

XBARk = XNEW;

OUTX(ii) = XBARk(1,1);

OUTY(ii) = Zk(1,1);

end

YY = OUTY;

XX = OUTX;

几种非线性滤波算法的研究-内附程序

2017 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:雷达系统导论 学生所在(系):电子与信息工程学院 学生所在学科:电子与同学工程 学生姓名: 学号: 学生类别: 考核结果阅卷人 第 1 页(共页)

几种非线性滤波算法的介绍与性能分析 作者姓名:学号: 专业院系:电信学院电子工程系 电子邮件: 摘要—非线性滤波算法在雷达目标跟踪中有着重要的应用,对雷达的跟踪性能有着至关重要的影响。好的滤波算法有利于目标航迹的建立及保持,能够得到较精确的目标位置,为发现目标后的后续工作提供可靠的数据依据。本文重点介绍了雷达数据处理中的几种非线性滤波算法:扩展卡尔曼滤波(EKF)、不敏卡尔曼滤波(UKF)、粒子滤波(PF),并且给出了一个利用这三种算法进行数据处理的一个实例,通过这个实例对比分析了这三种算法的性能以及优劣。 关键字—非线性滤波算法;扩展卡尔曼滤波;不敏卡尔曼滤波;粒子滤波; I.概述(一级表题格式) 在雷达对目标进行跟踪前要先对目标进行检测。对于满足检测条件的目标就需要进行跟踪,在跟踪的过程中可以利用新获得的数据完成对目标的进一步检测比如去除虚假目标等,同时利用跟踪获得数据可以进一步完成对目标动态特性的检测和识别。因此对目标进行准确的跟踪是雷达性能的一个重要指标。在检测到满足条件的目标后,根据目标运动状态建立目标运动模型,然后对目标跟踪算法进行设计,这是雷达目标跟踪中的核心部分。 目前主要的跟踪算法包括线性自回归滤波,两点外推滤波、维纳滤波、- αβ滤波、加权最小二乘滤波、维纳滤波和卡尔曼滤波[1]。对于线性系统而言最优滤波的方法就是卡尔曼滤波,卡尔曼滤波是线性高斯模型下的最优状态估计算法。但是实际问题中目标的运动模型往往不是线性的,因此卡尔曼滤波具有很大的局限性。目前主要用的非线性滤波算法可以分为高斯滤波和粒子滤波[2]。不敏卡尔曼滤波和扩展卡尔曼滤波就是高斯滤波中的典型代表,也是应用相对较为广泛的。粒子滤波的应用范围比高斯滤波的适用范围要广,对于系统状态非线性,观测模型非高斯等问题都有很好的适用性。本文具体分析阐述了扩展卡尔曼滤波算法,不敏卡尔曼滤波算法,粒子滤波算法,并且通过一个实例利用仿真的方法分析了这三种算法在滤波性能上的优劣,最后对这三种算法做了一定的总结。 我本科毕业设计题目为《基于历史数据的路径生成算法研究》,由于我是跨专业保研到电信学院,该课题所研究内容不属于雷达系统研究范围,是一种城市路网最快路径生成算法。 II.几种非线性滤波算法 A.扩展卡尔曼滤波 扩展卡尔曼滤波是将非线性系统转换为近似的线性系统的一种方法,其核心思想是围绕滤波值将非线性函数展开成泰勒级数并略去二阶及以上的项,得到一个近似的线性化模型,然后应用卡尔曼滤波完成状态估计。 扩展卡尔曼滤波状态空间模型: k k k w x f+ = + ) ( x 1 状态方程 k k k v x h+ =) ( z观测方程 其中(.) f和(.) h为非线性函数 在扩展卡尔曼滤波中,状态的预测以及观测值的预测由非线性函数计算得出,线性卡尔曼滤波中的状态转移矩阵A阵和观测矩阵H阵由f和h函数的雅克比矩阵代替。 对 (.) f和(.) h Taylor展开,只保留一次项有: ) ? ( ) ?( ) ( k k k k k x x A x f x f- + ≈ ) ? ( ) ?( ) ( k k k k k x x H x h x h- + ≈ 其中: k k x x k k dx df A ?= =为f对 1- k x求导的雅克比矩阵 k k x x k k dx dh H ?= =为h对 1- k x求导的雅克比矩阵 ) ?( ? 1-k k x f x=,于是可以得出: k k k k k k k w x A x f x A x+ - + ≈ + ) ? ) ?( ( 1 k k k k k k k v x H x h x H z+ - + ≈ + ) ? ) ?( ( 1 通过以上变换,将非线性问题线性化。接下来EKF 滤波过程同线性卡尔曼滤波相同,公式如下: )) | (?( ) |1 ( X?k k X f k k= + ) ( ) ( ) | ( ) ( ) |1 (P k Q k k k P k k k+ Φ' Φ = + )1 ( )1 ( ) |1 ( )1 ( )1 (S+ + + ' + + = +k R k H k k P k H k )1 ( )1 ( ) |1 ( )1 ( K1+ + ' + = +-k S k H k k P k

卡尔曼滤波简述

Kalman Filter Xianling Wang July23,2016v1.0 目录 一、简介2 二、线性卡尔曼滤波方法2 2.1滤波方法描述 (2) 2.2滤波过程的其他细节 (3) 三、后记4

一、简介 卡尔曼滤波器(Kalman Filter)的核心功能是对观测值进行优化,尽可能降低误差的影响,使其更加贴近系统的实际值。 二、线性卡尔曼滤波方法 2.1滤波方法描述 假设系统在t时刻的状态由x t描述,x t包含了若干个变量,因此以向量的形式出现。同时假设系统状态相对于时间变化的机理是可知的,由式(1)描述,即 x t+1=F t x t+B t u t+w t(1)其中,F t为状态转移矩阵,描述t时刻状态对t+1时刻状态的影响程度;u t表示外界控制因素;B t为控制矩阵,描述外界控制因素对t+1时刻状态的影响程度;w t表示不可控的过程噪声,假设其协方差矩阵为Q t。式(1)所描述的关系是线性的,因此对其误差消除的滤波方法称为线性卡尔曼滤波方法。 假设对系统状态的观测是间接的,而且存在一定误差,即 z t=H t x t+v t(2)其中,z t为所用观测工具可以观测到的直接变量,不一定等同于系统状态中的变量,但却是和系统状态中的变量存在一定线性关系的变量;H t描述直接观测变量和系统状态变量之间的线性关系;v t表示观测误差,假设其协方差矩阵为R t。 虽然t时刻的观测值都是带有误差的,但由于系统状态相对于时间变化的机理是可知的,因此结合t?1时刻的某些信息可以削减该误差,提升t时刻观测值的精确度,得到t时刻的最优估计值,该估计值相对实际值的误差协方差为P t。 为了获得t时刻系统状态的最优估计值,线性卡尔曼滤波器需要以下3个方面的信息: 1.t?1时刻的最优估计值?x t?1; 2.t?1时刻最优估计值相对于实际值的误差协方差P t?1; 3.t时刻的观测值z t; 在获知这些信息的条件下,t时刻系统状态的最优估计值可以依据以下5个公式逐步获得:

ardupilot(EKF)扩展卡尔曼滤波

ardupilot(EKF)扩展卡尔曼滤波 一、初识卡尔曼滤波器 为了描述方便我从网上找了一张卡尔曼滤波器的5大公式的图片。篇幅所限,下图所示的是多维卡尔曼滤波器(因为EKF2是多维扩展卡尔曼滤波器,所以我们从多维说起),为了跟好的理解卡尔曼滤波器可以百度一下,从一维开始。 这5个公式之外还有一个观测模型,根据你实际的观测量来确定,它的主 要作用是根据实际情况来求观测矩阵H。 因为卡尔曼滤波器是线性滤波器,状态转移矩阵A和观测矩阵H是确定的。在维基百科上状态转移矩阵用F表示。在ardupilot EKF2算法中,状态转移矩阵也是用F表示的。下面是维基百科给出的线性卡尔曼滤波器的相关公式。

上述更新(后验)估计协方差的公式对任何增益K k都有效,有时称为约瑟夫形式。为了获得最佳卡尔曼增益,该公式进一步简化为P k|k=(I-K k H k)P k|k-1,它在哪种形式下应用最广泛。但是,必须记住它仅对最小化残差误差的最佳增益有效。 为了使用卡尔曼滤波器来估计仅给出一系列噪声观测过程的内部状态,必须根据卡尔曼滤波器的框架对过程进行建模,这意味着指定一下矩阵:

只要记住一点就行了,卡尔曼滤波器的作用就是输入一些包含噪声的数据,得到一些比较接近真是情况的数据。比如无人机所使用的陀螺仪和加速度计的 读值,他们的读值都是包含噪声的,比如明明真实的角速度是俯仰2°/s,陀螺 仪的读值却是2.5°/s。通过扩展卡尔曼之后的角速度值会变得更加接近2o/s 的真实值,有可能是2.1o/s。 二、扩展卡尔曼滤波器 因为卡尔曼滤波器针对的是线性系统,状态转移模型(说的白话一点就是知道上一时刻被估计量的值,通过状态转移模型的公式可以推算出当前时刻被 估计量的值)和观测模型。注:有的资料显示状态模型中有,有的没有,目前 我也不清楚是为什么,有可能和被估计的对象有关。但看多了你就会发现不管 网上给的公式有怎样的不同,但总体的流程是一样的,都是这5大步骤。我个 人觉得维基百科给的公式较为标准。 因为扩展卡尔曼滤波器(EKF,Extended Kalman filter)的使用场景为非线性系统。所以上面两公式改写为下面所示的样子,我个人的理解是,因为是 非线性系统,所以没有固定的状态转移矩阵和观测矩阵。到这儿为止卡尔曼滤 波器到扩展卡尔曼滤波器的过度就完成了(多说一句,因为传感器的数据采样 是有时间间隔的,算法的运行也是有间隔的,所以本文提到的KF和EKF都是离散型的)。下面是扩展卡尔曼滤波器的相关公式。

卡尔曼滤波算法总结

Kalman_Filter(float Gyro,float Accel) { Angle+=(Gyro - Q_bias) * dt; Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; Pdot[1]= - PP[1][1]; Pdot[2]= - PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; PP[0][1] += Pdot[1] * dt; PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E; K_1 = PCt_1 / E; t_0 = PCt_0; t_1 = C_0 * PP[0][1]; PP[0][0] -= K_0 * t_0; PP[0][1] -= K_0 * t_1; PP[1][0] -= K_1 * t_0; PP[1][1] -= K_1 * t_1; Angle += K_0 * Angle_err; Q_bias += K_1 * Angle_err; Gyro_x = Gyro - Q_bias; } 首先是卡尔曼滤波的5个方程: -=--+(1)先验估计 X k k AX k k Bu k (|1)(1|1)() -=--+(2)协方差矩阵的预测(|1)(1|1)' P k k AP k k A Q

卡尔曼滤波简介及其算法实现代码

卡尔曼滤波简介及其算法实现代码 卡尔曼滤波算法实现代码(C,C++分别实现) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.360docs.net/doc/701866781.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就

时间序列分析方法Kalman滤波

第十三章 卡尔曼滤波 在本章中,我们介绍一种被称为卡尔曼滤波的十分有用的工具。卡尔曼滤波的基本思想是将动态系统表示成为一种称为状态空间表示的特殊情形。卡尔曼滤波是对系统线性投影进行序列更新的算法。除了一般的优点以外,这种算法对计算确切的有限样本预测、计算Gauss ARMA 模型的确切似然函数、估计具有时变参数的自回归模型等,都提供了重要方法。 §13.1 动态系统的状态空间表示 我们已经介绍过一些随机过程的动态表示方法,下面我们在以前的假设基础上,继续分析动态系统的表示方法。 13.1.1 继续使用的假设 假设t y 表示时刻t 观测到的n 维随机向量,一类非常丰富的描述t y 动态性的模型可以利用一些可能无法观测的被称为状态向量(state vector)的r 维向量t ξ表示,因此表示t y 动态性的状态空间表示(state-space representation)由下列方程系统给出: 11+++=t t t v ξF ξ 状态方程(state model) (13.1) t t t w ξH x A y t +'+'= 量测方程(observation model) (13.2) 这里F ,A '和H '分别是阶数为r r ?,k n ?和r n ?的参数矩阵,t x 是1?k 的外生或者前定变量。方程(13.1)被称为状态方程(state model),方程(13.2)被称为量测方程(observation model),1?r 维向量t v 和1?n 维向量t w 都是向量白噪声,满足: ???≠=='τ ττ t t E t ,,)(0Q v v (13.3) ? ??≠=='τττt t E t ,,)(0R w w (13.4) 这里Q 和R 是r r ?和n n ?阶矩阵。假设扰动项t v 和t w 对于所有阶滞后都是不相关的,即对所有t 和τ,有: 0w v =')(τ t E (13.5) t x 是外生或者前定变量的假定意味着,在除了包含在121,,,y y y Λ--t t 内的信息以外,t x 没有为s t +ξ和s t +w (Λ,2,1,0=s )提供任何新的信息。例如,t x 可以包括t y 的滞后值,也可以包括与τξ和τw (任意τ)不相关的变量。 方程系统中方程(13.1)至方程(13.5)可以表示有限观测值的序列 },,,{21T y y y Λ,这时需要状态向量初始值1ξ。假设1ξ与t v 和t w 的任何实现都不

扩展卡尔曼滤波(EKF)应用于GPS-INS组合导航

clear all; %% 惯性-GPS组合导航模型参数初始化 we = 360/24/60/60*pi/180; %地球自转角速度,弧度/s psi = 10*pi/180; %psi角度/ 弧度 Tge = 0.12; Tgn = 0.10; Tgz = 0.10; %这三个参数的含义详见参考文献 sigma_ge=1; sigma_gn=1; sigma_gz=1; %% 连续空间系统状态方程 % X_dot(t) = A(t)*X(t) + B(t)*W(t) A=[0 we*sin(psi) -we*cos(psi) 1 0 0 1 0 0; -we*sin(psi) 0 0 0 1 0 0 1 0; we*cos(psi) 0 0 0 0 1 0 0 1; 0 0 0 -1/Tge 0 0 0 0 0; 0 0 0 0 -1/Tgn 0 0 0 0; 0 0 0 0 0 -1/Tgz 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0;]; %状态转移矩阵 B=[0 0 0 sigma_ge*sqrt(2/Tge) 0 0 0 0 0; 0 0 0 0 sigma_gn*sqrt(2/Tgn) 0 0 0 0; 0 0 0 0 0 sigma_gz*sqrt(2/Tgz) 0 0 0;]';%输入控制矩阵%% 转化为离散时间系统状态方程 % X(k+1) = F*X(k) + G*W(k) T = 0.1; [F,G]=c2d(A,B,T);

H=[1 0 0 0 0 0 0 0 0; 0 -sec(psi) 0 0 0 0 0 0 0;];%观测矩阵 %% 卡尔曼滤波器参数初始化 t=0:T:50-T; length=size(t,2); y=zeros(2,length); Q=0.5^2*eye(3); %系统噪声协方差 R=0.25^2*eye(2); %测量噪声协方差 y(1,:)=2*sin(pi*t*0.5); y(2,:)=2*cos(pi*t*0.5); Z=y+sqrt(R)*randn(2,length); %生成的含有噪声的假定观测值,2维X=zeros(9,length); %状态估计值,9维 X(:,1)=[0,0,0,0,0,0,0,0,0]'; %状态估计初始值设定 P=eye(9); %状态估计协方差 %% 卡尔曼滤波算法迭代过程 for n=2:length X(:,n)=F*X(:,n-1); P=F*P*F'+ G*Q*G'; Kg=P*H'/(H*P*H'+R); X(:,n)=X(:,n)+Kg*(Z(:,n)-H*X(:,n)); P=(eye(9,9)-Kg*H)*P; end %% 绘图代码 figure(1) plot(y(1,:)) hold on; plot(y(2,:)) hold off; title('理想的观测量'); figure(2)

卡尔曼滤波算法(C--C++两种实现代码)

卡尔曼滤波算法实现代码 C++实现代码如下: ============================kalman.h================= =============== // kalman.h: interface for the kalman class. // ////////////////////////////////////////////////////////////////////// #if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__IN CLUDED_) #define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_ #if _MSC_VER > 1000 #pragma once #endif// _MSC_VER > 1000 #include #include "cv.h" class kalman { public: void init_kalman(int x,int xv,int y,int yv); CvKalman* cvkalman; CvMat* state; CvMat* process_noise; CvMat* measurement; const CvMat* prediction; CvPoint2D32f get_predict(float x, float y);

kalman(int x=0,int xv=0,int y=0,int yv=0); //virtual ~kalman(); }; #endif// !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_) ============================kalman.cpp=============== ================= #include "kalman.h" #include /* tester de printer toutes les valeurs des vecteurs*/ /* tester de changer les matrices du noises */ /* replace state by cvkalman->state_post ??? */ CvRandState rng; const double T = 0.1; kalman::kalman(int x,int xv,int y,int yv) { cvkalman = cvCreateKalman( 4, 4, 0 ); state = cvCreateMat( 4, 1, CV_32FC1 ); process_noise = cvCreateMat( 4, 1, CV_32FC1 ); measurement = cvCreateMat( 4, 1, CV_32FC1 ); int code = -1;

卡尔曼滤波简介及其实现(附C代码)

卡尔曼滤波简介及其算法实现代码(C++/C/MATLAB) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.360docs.net/doc/701866781.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5 条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

几种卡尔曼滤波算法理论

自适应卡尔曼滤波 卡尔曼滤波发散的原因 如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。 引起滤波器发散的主要原因有两点: (1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。 (2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。这种由于计算舍入误差所引起的发散称为计算发散。 针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。 自适应滤波 在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。如果所建立的模型与实际模型不符可能回引起滤波发散。自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。 在这里只讨论系统模型参数已知,而噪声统计参数Q和R未知情况下的自适应滤波。由于Q和R等参数最终是通过增益矩阵K影响滤波值的,因此进行自适应滤波时,也可以不去估计Q和R等参数而直接根据量测数据调整K就可以了。

扩展卡尔曼滤波器(EKF):一个面向初学者的交互式教程-翻译

扩展卡尔曼滤波器教程 在使用OpenPilot和Pixhawk飞控时,经常遇到扩展卡尔曼滤波(EKF)。从不同的网页和参考论文中搜索这个词,其中大部分都太深奥了。所以我决定创建自己学习教程。本教程从一些简单的例子和标准(线性)卡尔曼滤波器,通过对实际例子来理解卡尔曼滤波器。 Part 1: 一个简单的例子 想象一个飞机准备降落时,尽管我们可能会担心许多事情,像空速、燃料、等等,当然最明显是关注飞机的高度(海拔高度)。通过简单的近似,我们可以认为当前高度是之前的高度失去了一小部分。例如,当每次我们观察飞行高度时,认为飞机失去了2%的高度,那么它的当前高度是上一时刻高度的98%: altitude current_time=0.98*altitude previous_time 工程上对上面的公式,使用“递归”这个术语进行描述。通过递归前一时刻的值,不断计算当前值。最终我们递归到初始的“基本情况”,比如一个已知的高度。 试着移动上面的滑块,看看飞机针对不同百分比的高度变化。 Part 2:处理噪声 当然, 实际从传感器比如GPS或气压计获得测量高度时,传感器的数据或多或少有所偏差。如果传感器的偏移量为常数,我们可以简单地添加或减去这偏移量来确定我们的高度。不过通常情况下,传感器的偏移量是一个时变量,使得我们所观测到的传感器数据相当于实际高度加上噪声: observed_altitude current_time=altitude current_time+noise current_time 试着移动上面的滑块看到噪声对观察到的高度的影响。噪音被表示为可观测的海拔范围的百分比。

Kalman滤波算法

Kalman 滤波算法 姓名:刘金强 专业:控制理论与控制工程 学号:2007255 ◆实验目的: (1)、掌握klman 滤波实现的原理和方法 (2)、掌握状态向量预测公式的实现过程 (3)、了解Riccati 差分方程实现的过程和新息的基本性质和过程的计算 ◆实验要求: 问题: F=[a1,a2,a3],其中a1=[1.0 0 0]的转置,a2=[0.3 1.0 0]的转置,a3=[0.1 0.2 0.4]的转置,x(0)=[3,-1,2]的转置;C=[b1,b2,b3],其中b1=[0.3 0.5]的转置,b2=[1,0.4]的转置,b3=[0.8 -0.7]的转置;V1(n)=[0 0 n1(n)sin(0.1n)]的转置,V2(n)=[n2(n) n3(n)];n1(n)为均值为零,方差为1的均匀分布白噪声;n2(n),n3(n)为均值为0,方差为0.1的均匀分布白噪声,n1(n),n2(n),n3(n)相互独立,试用卡尔曼滤波器算法估计x^(n). ◆实验原理: 初始条件: 1?(1)x =E{x(1)} K(1,0)=E{[x(1)- (1)x ][x(1)- (1)H x ]},其中(1)x =E{x(1)} 输入观测向量过程: 观测向量序列={y(1),…………y(n)} 已知参数: 状态转移矩阵F(n+1,n) 观测矩阵C(n) 过程噪声向量的相关矩阵1()Q n 观测噪声向量的相关矩阵2()Q n 计算:n=1,2,3,………………. G(n)=F(n+1,n)K(n,n+1) ()H C n 12[()(,1)()()]H C n K n n C n Q n --+ Kalman 滤波器是一种线性的离散时间有限维系统。Kalman 滤波器的估计性能是:它使滤波后的状态估计误差的相关矩阵P(n)的迹最小化。这意味着,kalman 滤波器是状态向量x(n)的线性最小方差估计。 ◆实验结果: ◆程序代码: (1)主程序

卡尔曼滤波的基本原理及应用

卡尔曼滤波的基本原理及应用卡尔曼滤波在信号处理与系统控制领域应用广泛,目前,正越来越广泛地应用于计算机应用的各个领域。为了更好地理解卡尔曼滤波的原理与进行滤波算法的设计工作,主要从两方面对卡尔曼滤波进行阐述:基本卡尔曼滤波系统模型、滤波模型的建立以及非线性卡尔曼滤波的线性化。最后,对卡尔曼滤波的应用做了简单介绍。 卡尔曼滤波属于一种软件滤波方法,其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 最初的卡尔曼滤波算法被称为基本卡尔曼滤波算法,适用于解决随机线性离散系统的状态或参数估计问题。卡尔曼滤波器包括两个主要过程:预估与校正。预估过程主要是利用时间更新方程建立对当前状态的先验估计,及时向前推算当前状态变量和误差协方差估计的值,以便为下一个时间状态构造先验估计值;校正过程负责反馈,利用测量更新方程在预估过程的先验估计值及当前测量变量的基础上建立起对当前状态的改进的后验估计。这样的一个过程,我们称之为预估-校正过程,对应的这种估计算法称为预估-校正算法。以下给出离散卡尔曼滤波的时间更新方程和状态更新方程。 时间更新方程: 状态更新方程: 在上面式中,各量说明如下: A:作用在X k-1上的n×n 状态变换矩阵 B:作用在控制向量U k-1上的n×1 输入控制矩阵 H:m×n 观测模型矩阵,它把真实状态空间映射成观测空间 P k-:为n×n 先验估计误差协方差矩阵 P k:为n×n 后验估计误差协方差矩阵 Q:n×n 过程噪声协方差矩阵 R:m×m 过程噪声协方差矩阵 I:n×n 阶单位矩阵K k:n×m 阶矩阵,称为卡尔曼增益或混合因数 随着卡尔曼滤波理论的发展,一些实用卡尔曼滤波技术被提出来,如自适应滤波,次优滤波以及滤波发散抑制技术等逐渐得到广泛应用。其它的滤波理论也迅速发展,如线性离散系统的分解滤波(信息平方根滤波,序列平方根滤波,UD 分解滤波),鲁棒滤波(H∞波)。 非线性样条自适应滤波:这是一类新的非线性自适应滤波器,它由一个线性组合器后跟挠性无记忆功能的。涉及的自适应处理的非线性函数是基于可在学习

卡尔曼滤波器综述

卡尔曼滤波器综述 瞿伟军 G10074 1、卡尔曼滤波的起源 1960年,匈牙利数学家卡尔曼发表了一篇关于离散数据线性滤波递推算法的论文,这意味着卡尔曼滤波的诞生。斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器,卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。关于这种滤波器的论文由Swerling (1958)、Kalman (1960)与 Kalman and Bucy (1961)发表。 2、卡尔曼滤波的发展 卡尔曼滤波是一种有着相当广泛应用的滤波方法,但它既需要假定系统是线性的,又需要认为系统中的各个噪声与状态变量均呈高斯分布,而这两条并不总是确切的假设限制了卡尔曼滤波器在现实生活中的应用。扩展卡尔曼滤波器(EKF)极大地拓宽了卡尔曼滤波的适用范围。EKF的基本思路是,假定卡尔曼滤滤对当前系统状态估计值非常接近于其真实值,于是将非线性函数在当前状态估计值处进行台劳展开并实现线性化。另一种非线性卡尔曼滤波叫线性化卡尔曼滤波。它与EKF的主要区别是前者将非线函数在滤波器对当前系统状态的最优估计值处线性化,而后者因为预先知道非线性系统的实际运行状态大致按照所要求、希望的轨迹变化,所以这些非线性化函数在实际状态处的值可以表达为在希望的轨迹处的台劳展开式,从而完成线性化。 不敏卡尔曼滤波器(UKF)是针对非线性系统的一种改进型卡尔曼滤波器。UKF处理非线性系统的基本思路在于不敏变换,而不敏变换从根本上讲是一种描述高斯随机变量在非线性化变换后的概率分布情况的方法。不敏卡尔曼滤波认为,与其将一个非线性化变换线性化、近似化,还不如将高斯随机变量经非线性变换后的概率分布情况用高斯分布来近似那样简单,因而不敏卡尔曼滤波算法没

卡尔曼滤波简介和实例讲解.

卡尔曼,美国数学家和电气工程师。1930年5月 19日生于匈牙利首都布达佩斯。1953年在美国麻省理工学院毕业获理学士学位,1954年获理学硕士学位,1957年在哥伦比亚大学获科学博士学位。1957~1958年在国际商业机器公司(IBM)研究大系统计算机控制的数学问题。1958~1964年在巴尔的摩高级研究院研究控制和数学问题。1964~1971年到斯坦福大学任教授。1971年任佛罗里达大学数学系统理论研究中心主任,并兼任苏黎世的瑞士联邦高等工业学校教授。1960年卡尔曼因提出著名的卡尔曼滤波器而闻名于世。卡尔曼滤波器在随机序列估计、空间技术、工程系统辨识和经济系统建模等方面有许多重要应用。1960年卡尔曼还提出能控性的概念。能控性是控制系统的研究和实现的基本概念,在最优控制理论、稳定性理论和网络理论中起着重要作用。卡尔曼还利用对偶原理导出能观测性概念,并在数学上证明了卡尔曼滤波理论与最优控制理论对偶。为此获电气与电子工程师学会(IEEE)的最高奖──荣誉奖章。卡尔曼著有《数学系统概论》(1968)等书。 什么是卡尔曼滤波 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼

滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 卡尔曼滤波的实质是由量测值重构系统的状态向量。它以“预测—实测—修正”的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。 释文:卡尔曼滤波器是一种由卡尔曼(Kalman)提出的用于时变线性系统的递归滤波器。这个系统可用包含正交状态变量的微分方程模型来描述,这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。 卡尔曼滤波的应用 斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表.

拓展卡尔曼滤波

南京航空航天大学 随机信号小论文题目扩展卡尔曼滤波 学生姓名梅晟 学号SX1504059 学院电子信息工程学院 专业通信与信息系统

扩展卡尔曼滤波 一、引言 20世纪60年代,在航空航天工程突飞猛进而电子计算机又方兴未艾之时,卡尔曼发表了论文《A New Approach to Linear Filtering and Prediction Problems》(一种关于线性滤波与预测问题的新方法),这让卡尔曼滤波成为了时域内有效的滤波方法,从此各种基于卡尔曼滤波的方法横空出世,在目标跟踪、故障诊断、计量经济学、惯导系统等方面得到了长足的发展。 二、卡尔曼滤波器 卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器), 它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标及速度。 卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑便使用了这种滤波器。目前,卡尔曼滤波已经有很多不同的实现。卡尔曼最初提出的形式现在一般称为简单卡尔曼滤波器。除此以外,还有施密特扩展滤波器、信息滤波器以及很多Bierman, Thornton 开发的平方根滤波器的变种。也许最常见的卡尔曼滤波器是锁相环,它在收音机、计算机和几乎任何视频或通讯设备中广泛存在。 三、扩展卡尔曼滤波器 3.1 被估计的过程信号 卡尔曼最初提出的滤波理论只适用于线性系统,Bucy,Sunahara等人提出并研究了扩展卡尔曼滤波(Extended Kalman Filter,简称EKF),将卡尔曼滤波理论进一步应用到非线性领域。EKF的基本思想是将非线性系统线性化,然后进行卡尔曼滤波,因此EKF是一种次优滤波。 同泰勒级数类似,面对非线性关系时,我们可以通过求过程和量测方程的偏导来线性化并计算当前估计。假设过程具有状态向量x∈?n,其状态方程为非线性随机差分方程的形式。 x k=f x k?1,u k?1,w k?1(1.1) 观测变量z∈?m为: z k=?(x k,v k)(1.2) 随机变量w k和v k代表过程激励噪声和观测噪声。它们为相互独立,服从正态分布的白色噪声:

卡尔曼滤波研究综述

卡尔曼滤波研究综述 1 卡尔曼滤波简介 1.1卡尔曼滤波的由来 1960年卡尔曼发表了用递归方法解决离散数据线性滤波问题的论文-《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法),在这篇文章里一种克服了维纳滤波缺点的新方法被提出来,这就是我们今天称之为卡尔曼滤波的方法。卡尔曼滤波应用广泛且功能强大,它可以估计信号的过去和当前状态甚至能估计将来的状态即使并不知道模型的确切性质。 其基本思想是以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值。算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。它的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 1.2标准卡尔曼滤波-离散线性卡尔曼滤波 为了描述方便我们作以下假设:物理系统的状态转换过程可以描述为一个离散时间的随机过程;系统状态受控制输入的影响;系统状态及观测过程都不可避免受噪声影响;对系统状态是非直接可观测的。在以上假设前提下,得到系统的状体方程和观测方程。

X ?? 1-1 式中:X k 为状态向量,L k 为观测向量,Φk,k-1为状态转移矩阵,U k-1为控制向量,一般 不考虑,Γk,k-1,B k 为系数矩阵,Ωk-1为系统动态噪声向量,Δk 为观测噪声向量,其随机模 型为 E(Ωk ) =0;E(Δk ) =0;cov(Ωk ,Ωj ) = D Ω(k )δkj , cov(Δk ,Δj ) = D k (k )δkj ;cov(Ωk ,Δj ) =0;E(X 0) =μx(0) var(X 0) = D(X 0);cov(X 0,Ωk ) =0;cov(X 0,Δk ) =0. 1-2 卡尔曼滤波递推公式为 X ∧(k/k) = X ∧(k/k-1)+J k (L k -B k X ∧(k/k-1)), D(k/k) = (E-J k B k )D x (k/k-1), J k = D x (k/k-1)BT k [B k D x (k/k-1)]B T k +D Δ(k)]-1, X ∧ (k/k-1) =Φk ,k-1X ∧ (k-1/k-1), D x (k/k-1) =Φk ,k-1D x (k-1/k-1)ΦT k ,k-1+Γk ,k-1D Δ(k-1)ΓT k ,k-1. 1-3 2 几种最新改进型的卡尔曼滤波算法。 2.1 近似二阶扩展卡尔曼滤波 标准的卡尔曼滤波只适用于线性系统,而工程实际问题涉及的又大多是非 线性系统,于是基于非线性系统线性化的扩展卡尔曼滤波(EKF)在上世纪70年代 被提出,目前已经成为非线性系统中广泛应用的估计方法。近似二阶扩展卡尔曼 滤 波方法(AS-EKF)基于线性最小方差递推滤波框架,应用均值变换的二阶近似从 而得到非线性系统的递推滤波滤波框架 该滤波基于线性最小方差递推框架,状态X 的最小方差估计为

相关文档
最新文档