仪器分析实验报告

仪器分析实验报告
仪器分析实验报告

《现代分析仪器观摩见习》

实习报告

姓名:朱亚伟

学号: 15124059

院(系): 生物化学系

年级专业:12级化学工程与工艺

《现代分析仪器观摩见习》实习报告

作者:朱亚伟

摘要:随着科学技术的发展,仪器分析的应用日益普遍,而且越来越趋向于快速、准确、自动、灵敏及适应特殊分析的方向发展。所以能够了解现代分析仪器的工作原理和性能及操作步骤,将会对以后的学习和工作有极大的帮助。本次观摩的现在分析仪器有红外吸收光谱仪、气相色谱仪、荧光分光光度计、紫外可见分光光度计、液相色谱和质谱、核磁共振波普仪、等离子光谱仪、原子吸收光谱仪和原子荧光光度计。

关键词:构造操作步骤系统测量

现代仪器分析是利用较特殊的仪器,以测量物质的物理性质为基础的一大类化学分析法。物质几乎所有的物理性质,都可用于分析化学上。可用于分析目的的物理性质及仪器分析方法的分类,可以简单归纳为色谱光谱电化学及其它方面。习惯上也有按分析目的来进行分类为成分分析、分离分析、形态分析、结构分析。现代分析仪器有如下特点:灵敏度高、选择性好、分析速度快、应用范围广、相对误差较大、设备复杂昂贵。

基于以上所述本文将对红外吸收光谱仪、气相色谱仪、荧光分光光度计、紫外可见分光光度计、液相色谱和质谱、核磁共振波普仪、等离子光谱仪、原子吸收光谱仪和原子荧光光度计的原理、构造、以及主要操作步骤做出简述。

一、红外吸收光谱仪(VERTEX80)

1、原理

傅立叶变换红外光谱仪被称为第三代红外光谱仪,利用麦克尔逊干涉仪将两束光程差按一定速度变化的复色红外光相互干涉,形成干涉光,再与样品作用。探测器将得到的干涉信号送入到计算机进行傅立叶变化的数学处理,把干涉图还原成光谱图。如图:

2、仪器构造

光源、单色器、检测器、放大器。

3、操作步骤

(1)、称取烘干的KBr粉末0.5g ,倒入玛瑙研钵中研磨10分钟,过筛(2um),过筛后的药品质量应在0.05-0.08g之间,放到压片磨具中压片,之后装入样品池。

(2)、扫描背景谱图,保存。

(3)、称取烘干的待测样品0.005g放入研钵中,加入0.5gKBr粉末混匀,倒入玛瑙研钵中研磨10分钟,过筛(2um),之后压片。

(4)、扫描样品谱图。

(5)、将待测试样的扫描谱图与标准谱图相比较,确定未知组分。

(6)、在实验预习报告上记录待测试样扫描谱图的最大吸收波长及其强度,画出吸收峰,确定待测组分。

(7)、测量结束后,用无水乙醇将研钵,压片器具清洗干净。

4、仪器应用

应用于染织工业、环境科学、生物学、材料科学、高分子化学、催化、煤结构研究、石油工业、生物医学、生物化学、药学、无机和配位化学基础研究、半导体材料、日用化工等研究领域。

二、气相色谱仪(GC-2010)

1、仪器原理

气相色谱仪是以气体作为流动相(载气)。当样品被送入进样器后由载气携带进入色谱柱。由于样品中各组份在色谱柱中的流动相(气相)和固定相(液相或固相)间分配或吸附系数的差异。在载气的冲洗下,各组份在两相间作反复多次分配,使各组份在色谱柱中得到分离,然后由接在柱后的检测器根据组份的物理化学特性,将各组份按顺序检测出来。

2、仪器构造

气路系统、进样系统、分离系统、温控系统、检测记录系统。

3、操作步骤

(1)、打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀)。

(2)、打开色谱仪气体净化器的氮气开关转到“开”的位置。

(3)、设置各工作部温度。

(4)、点火:待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到150℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。

(5)、打开电脑及工作站,待基线稳定后进样品并同时点击“启动”按钮或按一下色谱仪旁边的快捷按钮,进行色谱数据分析。分析结束时,点击“停止”按钮,数

据即自动保存。

(6)、关机程序:首先关闭氢气和空气气源,使氢火焰检测器灭火。在氢火焰熄灭后再将柱箱的初始温度、检测器温度及进样器温度设置为室温(20-30℃),待温度降至设置温度后,关闭色谱仪电源。最后再关闭氮气。

4、仪器应用

应用于环境保护、生物化学、食品发酵、中西药物、石油加工、有机化学、卫生检查、尖端科学等研究领域。

三、荧光分光光度计(F-4500)

1、仪器原理

荧光分析法是测定物质吸收了一定频率的光以后,物质本身所发射的光的强度。物质吸收的光,称为激发光;物质受激后所发射的光,称为发射光或荧光。如果将激发光用单色器分光后,连续测定相应的荧光的强度所得到的曲线,称为该荧光物质的激发光谱。

2、仪器结构

激发光源、激发单色器、发射单色器、接收系统、显示系统、样品系统3、操作步骤

(1)、打开电脑主机电源

(2)、打开F-4500主机电源。10秒后按下氘灯开关键,当黄灯不熄灭时,打开主板电源。

(3)、打开仪器工作程序窗口。

(4)、将待测溶液倒入荧光比色皿,过滤后放入仪器专用位置,盖好盖子。

(5)、点击“方法”图标,选择扫描方式为“发射”设置好扫描波长。点击“测量”图标开始进行发射光谱扫描。

(6)、点击“方法“图标,选择扫描方式为“激发”设置好扫描波长。点击“测量”图标开始进行激发光谱扫描。

(7)、重复5、6操作直至获得激发波长和发射波长的数值不再明显变化为止。

(8)、点击“方法”图标校正曲线并调整相应参数,在Ex和Em项填写获得的最佳激发波长和发射波长,填写相应的数值。点击“确定”。

(9)、点击“样品”图标,选择测定的样品数目,点击“确定”

(10)、将待测溶液装入荧光比色皿,放入一起荧光架。点击“测量”,按提示逐步操作。记录测量样品溶液的荧光强度、浓度回归方程、相关系数及样品溶液浓度。计算含量。

(11)、结束后清洗荧光比色皿,关闭仪器工作程序窗口。顺序关闭主板电源、主机电源。

4、仪器应用

对经光源激发后产生荧光的物质或经化学处理后产生荧光的物质成份分析,可应用于生物化学、生物医学、环境化工等部门。

四、紫外可见分光光度计(U-4100)

1、仪器原理

分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。它是带状光谱,反映了分子中某些基团的信息,可以用标准光谱图再结合其它手段进行定性分析。

朗伯-比尔定律:当一束平行单色光通过含有吸光物质的稀溶液时,溶液的吸光度与吸光物质浓度、液层厚度乘积成正比,即

A= kcl

式中比例常数k与吸光物质的本性,入射光波长及温度等因素有关。c为吸光物质浓度,l为透光液层厚度。

2、仪器结构

光源、单色器、吸收池、检测器及信号指示系统。

3、操作步骤

(1)、开启电源进行初始化。

(2)、检验吸收池的成套性。

(3)、选择工作波长。

(4)、选择测量方式。

(5)、润洗比色皿,依次加入参比溶液和测量溶液。

(6)、参比溶液与光路中,透射比模式下同时调0和100%

(7)、在吸光模式下,测定溶液的吸光度

4、仪器应用

在水和废水监测中的应用,对于一个水系的监测分析和综合评价,一般包括水相(溶液本身)、固相(悬浮物、底质)、生物相(水生生物)。在水质的常规监测中,紫外可见分光光度法占有较大的比重。由于水和废水的成分复杂多变,待测物的浓度和干扰物的浓度差别很大,在具体分析时必须选择好分析方法。

五、液相色谱质谱联用仪(LTQ ORBITRAP XL)

1、仪器原理

气相色谱法是利用不同物质在固定相和流动相中的分配系数不同,使不同化合物从色谱柱流出的时间不同,达到分离化合物的目的。质谱法是利用带电粒子在磁场或电场中的运动规律,按其核质比(m/z)实现分离分析,测定离子质量及强度分布,他可以给化合物的分子量、元素组成、分子式和分子结构信息,具有定性专属性、灵敏度高、检测快速等特点。

2、仪器结构

真空系统、进样系统、离子源、质量分析器、检测器、采集数据和控制仪器的工作站。

3、操作过程

(1)、通入氮气后开启电源。

(2)、调整柱箱温度和气化室温后加热。

(3)、通入空气、氮气后点火。

(4)、调整基准线后在色谱分析仪中注入试样,同时按动START 键。

(5)、分析完数据后关氢气、空气,关掉加热器。继续通入氮气降温至室温,关电源最后关氮气。

4、仪器应用

检测土壤污染,特别是评估人、动物和植物暴露于的土壤环境,并且尝试降低这种长期暴露,是必须进行的。

气相色谱(GC)和液相色谱(LC)配备质谱(MS)被广泛应用于土壤检测和分析。特别是液相色谱配备三重四级杆质谱仪(LC/MS/MS),为土壤样品中的中等极性、极性和离子型化合物的痕量分析提供了很多优势。

六、核磁共振波普仪(A V ANCEⅡ400)

1、仪器原理

是将物质置于特殊的磁场中,用无线电射频脉冲激发物质内原子核,引起原子核共振,并吸收能量。在停止射频脉冲后,原子核按特定频率发出射电信号,并将吸收的能量释放出来,被接受器收录,经电子计算机处理获得图像。

2、仪器结构

磁铁、探头、射频发生器、射频接收器、扫描发生器、信号放大器及记录仪组成。

3、操作步骤

(1)、打开相关软件进入程序界面。

(2)、使用search打开图谱。

(3)、清洗样品表面,确定样品与转子的相对位置。

(4)、将样品放入磁体样品室内,让样品管旋转。

(5)、观看锁线的状态,输入lock命令,锁场。锁线升高后调整各方向的磁场强度,让锁线达到最高点。

(6)、使用zg命令开始采样,采样后使用efp进行傅立叶变换并将谱图传递到谱图查看窗口。

(7)、保存结果,取出样品,实验结束。

4、仪器应用

主要适于化学、生物、医药、石油化工等领域的分子结构分析、含量测定及反应机理研究等。

七、等离子光谱仪(IRIS IntrepidⅡSP)

1、仪器原理

高频振荡器发生的高频电流,经过耦合系统连接在位于等离子体发生管上端,铜制内部用水冷却的管状线圈上。石英制成的等离子体发生管内有三个同轴氢气流经通道。冷却气(Ar)通过外部及中间的通道,环绕等离子体起稳定等离子体炬及冷却石英管壁,防止管壁受热熔化的作用。工作气体(Ar)则由中部的石英管道引入,开始工作时启动高压放电装置让工作气体发生电离,被电离的气体经过环绕石英管顶部的高频感应圈时,线圈产生的巨大热能和交变磁场,使电离气体的电子、离子和处于基态的氖原子发生反复猛烈的碰撞,各种粒子的高速运动,导致气体完全电离形成一个类似线圈状的等离子体炬区面,此处温度高达6000一10000摄氏度。样品经处理制成溶液后,由超雾化装置变成全溶胶由底部导入管内,经轴心的石英管从喷咀喷入等离子体炬内。样品气溶胶进入等离子体焰时,绝大部分立即分解成激发态的原子、离子状态。当这些激发态的粒子回收到稳定的基态时要放出一定的能量(表现为一定波长的光谱),测定每种元素特有的谱线和强度,和标准溶液相比,就可以知道样品中所含元素的种类和含量。

2、仪器结构

进样系统、等离子体系统、气路控制系统、射频发射器、光学系统和检测器。

3、操作步骤

(1)、依次把稳压器,光谱仪主开关打开,打开氩气钢瓶、冷却循环水、空压机和抽风开关。

(2)、更换清洗吸样管用的高纯水。

(3)、打开计算机,并打开相关程序。

(4)、等离子点火后,吸入蒸馏水仪器稳定大约30分钟后,建立分析方法,然后进行手动分析,进行标准和式样的分析测定并存储数据。

(5)、清洗吸样管,关闭等离子炬,退出软件并关闭计算机和周边设备的电源,关闭氩气主阀、冷却循环水、空压机和抽风开关。

(6)、将空压机和过滤中的水排出。

4、仪器应用

广泛应用于稀土、地质、冶金、化工、环保、临床医药、石油制品、半导体、食品、生物样品、刑事科学、农业研究等各个领域。

八、M6型原子吸收光谱仪(MSRIES)

1、仪器原理

每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,与被测元素的含量成正比:A=lg(1/T)=Kbc

式中K为常数;C为试样浓度;b为吸收池厚度。按上式可从所测未知试样的吸光度,对照着已知浓度的标准系列曲线进行定量分析。

2、仪器结构

光源、原子化器、分光器、检测系统。

3、操作步骤

(1)、接通稳压电源,打开计算机,打印机及原子吸收光谱仪主开关。使待测元素空心阴极灯预热10-20分钟。

(2)、在计算机上确定最佳仪器工作参数。

(3)、打开空压机和乙炔钢瓶开关,调节空气压力为0.3Mpa,乙炔压力为0.06Mpa。

(4)、点火,调节助燃比及燃烧头高度,确定最佳燃烧条件。

(5)、测定标准溶液及待测样品溶液。

(6)测定结束后,依次关闭乙炔钢瓶,空压机主机计算机及稳压器电源。

4、仪器应用

因原子吸收光谱仪的灵敏、准确、简便等特点,现已广泛用于冶金、地质、采矿、石油、轻工、农业、医药、卫生、食品及环境监测等方面的常量及微痕量元素分析。

九、原子荧光光度计(AFS-3100)

1、仪器原理

是利用硼氢化钾或硼氢化钠作为还原剂,将样品溶液中的待分析元素还原为挥发性共价气态氢化物(或原子蒸汽),然后借助载气将其导入原子化器,在氩—氢火焰中原子化而形成基态原子。基态原子吸收光源的能量而变成激发态,激发态原子在去活化过程中将吸收的能量以荧光的形式释放出来,此荧光信号的强弱与样品中待测元素的含量成线性关系,因此通过测量荧光强度就可以确定样品中被测元素的含量。

2、仪器结构

进样系统、激发光源、光学系统、原子化器、检测器、数据处理系统。3、操作步骤

(1)、打开电脑、氩气,压力调节0.2Mpa左右,换上需要的元素灯,打开排风

机。

(2)、打开仪器电源,进入工作站。

(3)、放入调光器,检测调光器

(4)、点击仪器“控制仪器”后点击“参数设置”填写参数后点击应用。

(5)、设置好“进样与测量设置”、“样品浓度”,和“样品设置”。

(6)、根据需要把标准空白、标准曲线、样品空白、样品按照自动进样样品位置设置中的位置放入样品架中,压好泵管,清洗池中倒入载流,放好还原剂和载流的瓶子,并把相应的管子放入瓶中。

(7)、依次点击点火、温控开。

(8)、点击样品测量,等软件左侧的炉温和设置的温度接近时进行自动测量。

(9)、点击标准曲线,根据需要打印测量结果。

(10)、仪器清洗后关闭氩气,退出工作站关闭仪器主机电源,松开泵卡。

4、仪器应用

广泛应用于食品厂、药品厂、化妆品厂、饲料厂、高校、研究所等单位对十二种重金属含量的分析。

总结:

通过这次观摩学习,让我了解到现代科技带给人们的便利。并且仪器分析的应用范围十分广泛,仪器分析与科学四大理论(天体、地球、生命、人类起源和深化)及人类社会面临的五大危机(资源、粮食、能源、人口、环境)问题的解决密切相关,也与工农业生产及人们日常衣食住行用的质量保证等领域密切相关。这次观摩让我更深认识到仪器分析这门课程,对以后的工作学习有极大的帮助。

参考文献:

[1] 中华人民共和国国家计量技术规范(JJG 375-96单光束紫外-可见分光光度计检定规程).

[2] 李昌厚.紫外可见分光光度计书[M],北京:化学工业出版社,2005.

[3] 倪一,黄梅珍,袁波等.紫外可见分光光度计的发展与现状.现代科学仪器,2004,3:3-7.

[4]秦宏伟;朱爱国;姜国华;王剑.原子荧光光度计常见干扰因素与排除.化学分析计量.2009.69-70

仪器分析实验内容(一)

邻二氮菲分光光度法测定试样中的微量铁 一、实验目的 1.掌握邻二氮菲分光光度法测定微量铁的方法原理 2.熟悉绘制吸收曲线的方法,正确选择测定波长 3.学会制作标准曲线的方法 4.通过邻二氮菲分光光度法测定微量铁,掌握721型分光光度计的正确使用方法,并了解此仪器的主要构造。 二、实验原理 邻二氮菲(phen )和Fe 2+在pH3~9的溶液中,生成一种稳定的橙红色络合物Fe(phen)2+3 ,其lg K =21.3,ε508=1.1×104 L·mol -1·cm -1,铁含量在0.1~6μg·mL -1范围内遵守比尔定律。显色 前需用盐酸羟胺或抗坏血酸将Fe 3+全部还原为Fe 2+,然后再加入邻二氮菲,并调节溶液酸度 至适宜的显色酸度范围。有关反应如下: HCl OH NH 2Fe 223?++ ==== 22N Fe 2++↑+ 2H 2O + 4H + + 2Cl - N N Fe 2++ 3 N N Fe 3 2+ 用分光光度法测定物质的含量,一般采用标准曲线法,即配制一系列浓度的标准溶液,在实验条件下依次测量各标准溶液的吸光度A ,以溶液的浓度C 为横坐标,相应的吸光度A 为纵坐标,绘制标准曲线。在同样实验条件下,测定待测溶液的吸光度Ax ,根据测得吸光度值Ax 从标准曲线上查出相应的浓度值Cx ,即可计算试样中被测物质的质量浓度。 三、仪器和试剂 1.仪器 721型分光光度计,1 cm 比色皿。 2.试剂 (1)100 μg ·mL -1铁标准储备溶液。 (2)100 g ·L -1盐酸羟胺水溶液。用时现配。 (3)0.1% 邻二氮菲水溶液。避光保存,溶液颜色变暗时即不能使用。 (4)pH=5.0的乙酸-乙酸钠溶液。 四、实验步骤 1.显色标准溶液的配制 在序号为1~6的6只50 mL 容量瓶中,用吸量管分别加入0, 0.4,0.8,1.2,1.6,2.0 mL 铁标准使用液(含铁约100μg·mL -1),分别加入1.00 mL 100 g ·L -1盐酸羟胺溶液,摇匀后放置2 min ,再各加入5.0 mL 乙酸-乙酸钠溶液,3.00 mL 0.1% 邻二氮菲溶液,以水稀释至刻度,摇匀。 2.吸收曲线的绘制 在分光光度计上,用1 cm 吸收池,以试剂空白溶液(1号)为参比,在480~540 nm 之间进行扫描,测定待测溶液(如5号)的吸光度A ,得到以波长为横坐标,吸光度为纵坐标的吸收曲线,从而选择测定铁的最大吸收波长λmax 。 3.标准曲线的测绘 以步骤1中试剂空白溶液(1号)为参比,用1 cm 吸收池,在选

仪器分析--实验报告

仪器分析方法在食品分析中的应用综合实验 摘要:本文分别采用了气质联用技术检测食品中的塑化剂,用高效液相色谱检测食品中的防腐剂,原子吸收光谱检测食品中的金属元素。并对检测结果进行了分析。 关键词:气质联用技术,高效液相色谱,原子吸收光谱 前言 现代食品的显著特点是食品的营养化、功能化、方便化,并保证食品质量与安全,这就要求食品加工从原理的选择、加工过程到最终产品及保藏整个链条中对食品的成分及成分的变化有全面的把握和认识。传统的分析手段和分析方法尽管能从宏观上了解和掌握成分及其变化,但已不能完全适应现代食品加工业的要求,现代仪器分析技术已经成为食品分析中不可缺少的重要分析手段。 实验内容 一.气-质联用技术检测食品中塑化剂的实验 (一)方法[1] 对于食品中邻苯二甲酸酯类化合物的检测,GB/T21911-2008《食品中邻苯二甲酸酯的测定》中规定了GC-MS作为检测方法。 1仪器: 气相色谱-质谱联用仪,凝胶渗透色谱分离系统,分析天平,离心机,旋转蒸发器,振动器,涡旋混合器,粉碎机,玻璃器皿。 2试剂: 正己烷,乙酸乙酯,环己烷,石油醚,丙酮,无水硫酸钠,16种邻苯二甲酸酯标准品,标准储备液,标准使用液。 3步骤: (1)试样制备:取同一批次3个完整独立包装样品(固体样品不少于500g、液体样品不少于500mL),置于硬质玻璃器皿中,固体或半固体样品粉 碎混匀,液体样品混合均匀,待用。 (2)试样处理(不含油脂液体试样):量取混合均匀液体试样5.0mL,加入正己烷2.0mL,振荡1min,静置分层,取上层清液进行GC-MS分析。 (3)空白试验:实验使用的试剂都按试样处理的方法进行处理后,进行GC-MS分析。 (4)色谱条件: 色谱柱:HP-5MS石英毛细管柱[30m×0.25mm(内径)×0.25μm]; 进样口温度:250℃; 升温程序:初始柱温60℃,保持1min,以20℃/min升温至220℃, 保持1min,再以5℃/min升温至280℃,保持4min; 载气:氦气,流速1mL/min; 进样方式:不分流进样; 进样量:1μL。 (5)质谱条件: 色谱与质谱接口温度:280℃; 电离方式:电子轰击源; 检测方式:选择离子扫描模式; 电离能量:70eV;

实用仪器分析实验报告xrf

实用仪器分析实验报告X射线荧光光谱分析实验 学号: 学生姓名: 指导老师: 学院: 专业班级: 实验日期: 中南大学冶环学院实验中心

图1 X射线荧光光谱仪(岛津XRF-1800) 四、实验步骤 (1)仪器准备 使用仪器前务必检查外部冷却水系统水压是否在,X-射线荧光光谱仪主机板面是否有error灯亮或电脑界面是否显示报错。 仪器的运行环境:室温:23±5℃ 湿度<70% ,室内无明显的震动,无灰尘。

(2)样品准备 使用压样机压制样品,样品要求: a 不受理有可能污染仪器的样品(有机样品,高挥发性物质、低熔点材料和有掉落的粉末等)和磁性样品。 b仪器元素检测范围O~U,若样品含O之前的元素(譬如C、B等),建议改用其他检测手段。 c若样品中可能含有少量贵金属,譬如Ag、Pd等,送样时需明确标注。 d粉末样品过筛200目,务必彻底干燥,送样量2g左右。 e粉末样品若出现质轻,粘样品袋等特征,需混合均匀一定比例分析纯硼酸后再送样,同时明确备注样品与硼酸的质量比。 f无需预制样的样品表面必须平整、光滑、没有瑕疵。 (3)软件操作 打开电脑桌面的“PCXRF”软件。点击“初始化”,点击主菜单上的“Maintenance”项,点击“Component Control”栏中的“X-ray Generator”。“Control”选“Normal”,“Xray”选“ON”,输入“Voltage”20KV、“Current”5MA,点击“Start”。X光指示灯和控制面板上”X-RAY”指示灯同时亮。此时可以日常分析了! (4)样品测试 点击“analysis”,“analytical”设置检测条件,输入对应样品序号。点击仪器上“START”按钮,进行样品测试。 (5)结束操作 测试完毕后,需将X光管及时降至20kV,5mA的低能耗状态。点击主菜单上的“Maintenance”项,点击“Component Control”栏中的“X-ray Generator”。“Control”选“Normal”,“Xray”选“ON”,输入“Voltage”20kV、“Current”5mA,点击“Start”。

仪器分析石墨炉原子吸收实验报告

原子吸收法测定水中的铅含量 课程名称:仪器分析实验实验项目:原子吸收法测定水中的铅含量 原子吸收法测定水中的铅含量 一、实验目的 1。加深理解石墨炉原子吸收光谱法的原理 2。了解石墨炉原子吸收光谱法的操作技术 3. 熟悉石墨炉原子吸收光谱法的应用 二、方法原理 石墨炉原子吸收光谱法,采用石墨炉使石墨管升至2000℃以上的高温,让管内试样中的待测元素分解形成气态基态原子,由于气态基态原子吸收其共振线,且吸收强度与含量成正比,故可进行定量分析。它是一种非火焰原子吸收光谱法。 石墨炉原子吸收法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14g,并可直接测定固体试样.但仪器较复杂、背景吸收干扰较大。在石墨炉中的工作步骤可分为干燥、灰化、原子化和除残渣4个阶段。在选择最佳测定条件下,通过背景扣除,测定试液中铅的吸光度。 三、仪器与试剂 (1)仪器石墨炉原子吸收分光光度计、石墨管、氩气钢瓶、铅空心阴极灯(2) 试剂铅标准溶液(0。5mg/mL)、水样 四、实验步骤 1。设置仪器测量条件 (1)分析线波长 217.0 nm (2)灯电流90(%) (3)通带 0.5nm (4)干燥温度和时间 100℃,30 s (5)灰化温度和时间 1000℃,20 s (6)原子化温度和时间2200℃,3s (7)清洗温度和时间 2800℃,3s (8)氮气或氩气流量100 mL/min 2. 分别取铅标准溶液B,用二次蒸馏水稀释至刻度,摇匀,配制1.00 ,10.00, 20.00, 和50.00 ug/mL铅标准溶液,备用。 3. 微量注射器分别吸取试液注入石墨管中,并测出其吸收值. 4.结果处理 (1)以吸光度值为纵坐标,铅含量为横坐标制作标准曲线. (2)从标准曲线中,用水样的吸光度查出相应的铅含量。 (3)计算水样中铅的质量浓度(μg/mL)

仪器分析色谱实验报告

高效液相色谱法测定食醋和酱油中苯甲酸钠和山梨 酸钾含量 HPLC in soy sauce and vingar sodium benzoate potassium sorber content 指导老师:张志清教授 学生姓名:敬亚娟 摘要:[目的]用高效液相色谱法测定食醋和酱油中苯甲酸钠和山梨酸钾含量。【方法】采用RP-HPLC法以Hyperclone BDS C18 柱(150×4.60 nm,5um,phenomenex)为色谱柱;流动相:甲醇:0.02mol/l 乙醇胺(20 :80);柱温25℃,流速0.8mol/min ,检测波长230nm,进样量(标准进样量:2.5 ,5 ,7.5 ,10 ,15 ul ;样品进样量:5 ul)。【结果】:食醋中的苯甲酸钠含量为127.15899ug/mol,酱油中的苯甲酸钠含量为723.60033ug/mol,未见则出山梨酸钾。 Abstract: [purpose] with high-performance liquid chromatography (HPLC) in soy sauce and vinegar and sodium benzoate sorbic acid potassium content.【 methods 】 the RP-HPLC method with Hyperclone BDS using C18 column (150 x 4.60 nm, 5 um, phenomenex) for chromatographic column; Mobile phase: methanol: 0.02 mol/l ethanol amine (20:80); The column temperature 25 ℃, velocity 0.8 mol/min, detected wavelength 230 nm, into the sample weight (standard sample quantity: 2.5, 5, 10, 15, 7.5; the samples into the sample weight ul: 5 ul). 【 results 】 : the content of sodium benzoate feed vinegar 127.15899 ug/mol, soy sauce, sodium benzoate content of

仪器分析设计实验实验报告

气相色谱法测定异丙醇 赵宏2011051780 应用化学 一、实验目的 1.了解气相色谱法的分离原理和特点 2.熟悉气相色谱仪的基本构造和一般使用方法 二、实验原理 气相色谱法是一种高效、快速而灵敏的分离分析技术。当样品溶液由进样口注入后立即被汽化,并载气带入色谱柱,经过多分配而得以分离的各个组分逐一出色谱柱进入检测器,检测器把各组分的浓度信号转变成电信号后由记录仪或工作站软件记录下来,得到相应信号大小随时间变化的曲线即色谱图。利用色谱峰的保留值可以进行定性分析,利用峰面积或峰高可以进行定量分析。 内标法是一种常用的色谱定量分析方法。在一定量(m)的样品中加入一定量(m is )的内标物。根据待测组分和内标物的峰面积及内标物的质量计算计算待测组分质量(m i )的方法。被没组分的质量分数可用下式计算: P i = %100%100m m i i ??=?m m A f A is is i 式中,A i 为样品溶液中待测组分的峰面积,A is 为样品溶液中内标物的峰面积;m is 为样品溶液中内标物的质量;m 为样品的质量;f i 为待测组分i 相对于内标物的相对定量因子,由标准溶液计算: f i = is i is i is is i i A A m A A m m m f f is i ''''=''?''='' 式中,i A '为标准溶液中待测组分i 的峰面积;is A '为标准溶液中内标物的峰面积;is m '为标准溶液中内标的质量;i m '为标准溶液中标准物质的质量。 用内标法进行定量分析必须选定内标物。内标物必须满足以下条件: 1.就是样品中不存在的、稳定易得的纯物质; 2.内标峰应在各待测组分之间或与相近; 3.能与样品互溶但无化学反应; 4.内标物浓度应恰当,峰面积与等测组分相差不大。 三、实验仪器 气相色谱仪带有氢火焰检测器(FID )和色谱工作站,微量注射器,无水异丙醇(A.R.)无水正丙醇(A.R.),待测液。 四、实验步骤 根据文献资料、理论计算及实验操作,实验小组得出以下色谱操作的最佳条件: 柱温,104度;汽化室温度,160度;检测器温度,140度;N 2(载气)流速,15 mL/min ;H 2流速,50 mL/min ;空气流速,600 mL/min 。其中内标物为正丙醇。 定量标准溶液的配制:准确移取0.50mL 无水异丙醇和0.50mL 正丙醇于10mL 容量瓶中,用乙醚定容,摇匀。

现代仪器分析实验报告.

实验一双波长分光光度法测定混合样品溶液中 苯甲酸钠的含量 一、目的 1 ?熟悉双波长分光光度法测定二元混合物中待测组分含量的原理和方法。 2 ?掌握选择测定波长(入1)和参比波长(& )的方法。 二、原理 混合样品溶液由苯酚和苯甲酸钠组成,在0.04mol/LHCI溶液中测得其吸收光谱,苯甲酸钠的吸收峰 在229nm处,苯酚的吸收峰在210nm处。若测定苯甲酸钠,从光谱上可知干扰组分(苯酚)在229和 251 nm处的吸光度相等,则AA= KC A A仅与苯甲酸钠浓度成正比,而与苯酚浓度无关,从而测得苯甲酸钠的浓度。 三、仪器与试剂紫外分光光度计苯酚苯甲酸钠蒸馏水盐酸 四、操作步骤及主要结果 1 ?样品的制备 (1)标准储备液的配制精密称取苯甲酸钠0.1013g和苯酚0.1115g,分别用蒸馏水溶解,定量转 移至500ml容量瓶中,用蒸馏水稀释至刻度,摇匀,即得浓度为200卩g/ml的储备液,置于冰箱中保存。 (2)标准溶液的配制分别吸取标准苯酚储备液 5.00ml和标准苯甲酸钠储备液 5.00ml至100ml容 量瓶中,用0.04mol/LHCI溶液稀释至刻度,摇匀,即得浓度为10卩g/ml的标准溶液。 2 ?样品的测定(1 )波长组合的选择于可见-紫外分光光度计上分别测定苯酚和苯甲酸钠标准溶 液的吸收光谱(检测波长200~320nm),确定双波长法测定苯甲酸钠含量时的参比波长(入s=257.5nm) 和测定波长(入m=231.2nm)。(2)苯甲酸钠工作曲线的绘制配制不同浓度的I苯甲酸钠/0.04MHCl 溶液。以0.04mol/L HCl溶液为参比溶液,测定系列浓度的苯甲酸钠/0.04M HCl溶液在入m和入s处的吸 光度差值(见表1),计算其回归方程Y=0.0652X+0.0311(R 2=0.999)。(3)测定以0.04mol/L HCl溶液为参比溶液,测定混和溶液的吸光度值(n=3 ),根据回归方程计算混和溶液中苯甲酸钠的含量(X , RSD%)。见表2 表1双波长法测定不同浓度下苯甲酸钠标准溶液的吸光度 标准溶液浓度(ug/ml )231.2 nm 吸光度257.5nm吸光度吸光度差值 20.1630.0120.151 40.3240.0210.303 60.4550.0340.421 80.6050.0460.559 100.7350.0540.681 120.8710.0620.809 表2 混合溶液不同波 长下的吸光度 测量次数231.2 nm 吸光度257.5nm吸光度吸光度差值10.6120.1100.502 20.6140.1130.501 30.613 ,0.1120.501 平均值0.6120.1120.500 RSD 均小于0.1%将Y=0.500 代入回归方程Y=0.0652X+0.0311 得X=7.2 ,则样品浓度为:7.2936ug/ml 则其含量为:7.3*100/1000=0.73mg 五讨论:本试验采用双波长法测定苯酚和苯甲酸钠的混合液中苯甲酸钠的含量,关键是两个波长 的选择,同时应使两波长下苯甲酸钠的吸光度值足够大,以减小测量误差。

仪器分析及实验复习题

精选题及其解 (一)填空题 1在气液色谱中,被分离组分分子与固定液分子的性质越相近,则它们之间的作用力越,该组分在柱中停留的时问越,流出越。 2气液色谱法即流动相是,固定相是的色谱法。样品与固定相间的作用机理是。 3气固色谱法即流动相是,固定相是的色谱法。样品与固定相的作用机理是。 4气相色谱仪中气化室的作用是保证样品气化。气化室温度一般要比柱温高℃,但不能太高,否则会引起样品。 5气相色谱分析的基本程序是从进样,气化了的样品在分离,分离后的各组分依次流经,它将各组分的物理或化学性质的变化转换成电量变化。输给记录仪,描绘成色谱图。 6色谱柱的分离效率用α表示。α越大,则在色谱图上两峰的距离,表明这两个组分分离,通常当α大于时,即可在填充柱上获得满意的分离。 7分配系数K用固定液和载气中的溶质浓度之比表示。待分离组分的K值越大,则它在色谱柱中停留的时间,其保留值。各组分的 K值相差越大,则它们分离。 8一般地说,为了获得较高的柱效率,在制备色谱柱时,固定液用量宜,载体粒度宜,柱管直径宜。 9色谱定性的依据是,定量的依据是。 10为制备一根高性能的填充柱,除选择适当的固定液并确定其用量外,涂渍固定液时力求涂得.装柱时要。 (二)问答题. 1 色谱内标法是一种准确度较高的定量方法。它有何优点 2分离度R是柱分离性能的综合指标。R怎样计算在一般定量、定性或 3 什么是最佳载气流速实际分析中是否一定要选用最佳流速为什么 4在色谱分析中对进样量和进样操作有何要求 5色谱归一化定量法有何优点在哪些情况下不能采用归一化法 6色谱分析中,气化室密封垫片常要更换。如果采用的是热导检测器,在操作过程中更换垫片时要注意什么试说明理由。 7柱温是最重要的色谱操作条件之一。柱温对色谱分析有何影响实际分析中应如何选择柱温 8色谱柱的分离性能可用分离效率的大小来描述。分离效率怎样表示其大小说明什么问题要提高分离效率应当怎么办 9制备完的色谱柱还需要进行老化处理后才能使用。如何使柱子老化老化的作用是什么老化时注意什么 10色谱固定液在使用中为什么要有温度限制柱温高于固定液最高允许温度或低于其最低允许温度会造成什么后果

仪器分析经典实验及练习题超实用

实验报告要求包括以下容: 一、实验目的 二、实验原理 三、实验用品及仪器 四、实验步骤 五、实验结果分析 实验一:紫外可见分光光度计测量高锰酸钾溶液 1、KMnO4储备液配制 称取1.6g高锰酸钾固体,置于烧杯中溶解,1000ml的容量瓶中定容,浓度约为0.01mol?L-1。 2、KMnO4标液配置 用吸量管移取上述高锰酸钾溶液1.0、2.0、3.0mL,分别放入三个50mL容量瓶中,加水稀释至刻度,充分摇匀,各溶液KMnO4浓度分别为0.2、0.4、0.6mmol/L。(教师取xmL放入50mL容量瓶,定容,供学生测定浓度xmmol/L) 3、KMnO4溶液的绘制分子吸收光谱 (1)将配制好的各浓度的KMnO4溶液,用1cm比色皿,以蒸馏水为参比溶液(注意:测定吸收曲线时,每次改变波长后都要用参比液调T为0,及100)在440~580nm波长围,每隔10nm测一次吸光度,在最大吸收波长附近,每隔5nm测一次吸光度(440,450,……515,520,525,530,535……570,580)。 0.2 mmol/L

450 510 540 460 515 550 470 520 560 480 525 570 490 530 580 (3)在坐标纸上,以波长λ为横坐标,吸光度A为纵坐标,绘制A和λ关系的吸收曲线。从吸收曲线上选择最大吸收波长λmax,并观察不同浓度KMnO4溶液的λmax和吸收曲线的变化规律。 (4)吸收曲线的制作 1)在最大吸收峰处(λmax),测定0.2、0.4、0.6mmol/L的吸光度,绘制浓度与吸光度的吸收曲线。 2)测定未知浓度液体的吸光度值,通过工作线查出浓度值。

《仪器分析》实验报告-最终实验报告

仪器分析实验报告 学号:2008011871 姓名:张圆满同组成员:施航,陈天池,李虹禹,吴可荆,韩翔【回答问题】 问题1,相对于液体样品,气体样品中的成份比如苯如何检测?其检测的原理是什么?苯对人体的危害如何? 答:(1)检测苯的方式主要有两种,具体的方式为: 1)热解吸气相色谱法 准确抽取1mg/m3的标准气体100mL、200mL、400mL、1L和2L 通过吸附管,然后用热解吸气相色谱法分别分析吸附管标准系列,以苯的含量(μg)为横坐标,峰高为纵坐标绘制标准曲线。 2)二硫化碳提取气相色谱法 取含量分别为为0.1μg/mL、0.5μg/mL、1.0μg/mL、2μg/mL的标准溶液,取1μL注入气相色谱,以保留时间定性,峰高定量,以苯的含量为横坐标,以峰高为纵坐标,绘制标准曲线。 (2)其检测原理是样品中各物质与流动相之间的作用不同,使得保留时间不同。 (3)危害:高浓度苯对中枢神经系统有麻醉作用,引起急性中毒;长期接触苯对造血系统有损害,引起慢性中毒。急性中毒:轻者有头痛、头晕、恶心、呕吐、轻度兴奋、步态蹒跚等酒醉状态;严重者发生昏迷、抽搐、血压下降,以致呼吸和循环衰竭。慢性中毒:主要表现有神经衰弱综合征;造血系统改变:白细胞、血小板减少,重者出现再生障碍性贫血;少数病例在慢性中毒后可发生白血病( 以急性粒细胞性为多见)。皮肤损害有脱脂、干燥、皲裂、皮炎。可致月

经量增多与经期延长。 问题2,如何检测酒中的甲醛?啤酒中的甲醛残留限制标准是什么?答: (1)检测原理为:甲醛在过量乙酸胺的存在下,与乙酞丙酮和氨离子生成黄色的2,6-二甲基-3,5-二乙酞基-1,4-二氢毗咤化合物,在波长415 nm处有最大吸收,在一定浓度范围,其吸光度值与甲醛含量成正比,与标准系列比较定量。 具体检测方法为: 1)试样处理 吸取已除去二氧化碳的啤酒25 mL移人500 mL蒸馏瓶中,加200 g/L磷酸溶液20 mL于蒸馏瓶,接水蒸气蒸馏装置中蒸馏,收集馏出液于100 mL容量瓶中(约100 mL)冷却后加水稀释至刻度。 2)测定: 精密吸取1.00g/mL的甲醛标准溶液各0.00 mL, 0.50 mL, 1.00 mL, 2.00 mL , 3.00 mL,4.00mL,8.00mL于25mL比色管中,加水至10 mLo 吸取样品馏出液10 mL移人25 mL比色管中。标准系列和样品的比色管中,各加人乙酞丙酮溶液2mL,摇匀后在沸水浴中加热10 min,取出冷却,于分光光度计波长415nm处测定吸光度,绘制标准曲线。3)计算: 根据下式进行计算:=m X V (2)限制标准:啤酒中甲醛残留量限制标准为0.2ppm。

仪器分析经典实验及练习题 超实用

实验报告要求包括以下内容: 一、实验目的 二、实验原理 三、实验用品及仪器 四、实验步骤 五、实验结果分析 实验一:紫外可见分光光度计测量高锰酸钾溶液 1、KMnO4储备液配制 称取1.6g高锰酸钾固体,置于烧杯中溶解,1000ml的容量瓶中定容,浓度约为0.01mol?L-1。 2、KMnO4标液配置 用吸量管移取上述高锰酸钾溶液1.0、2.0、3.0mL,分别放入三个50mL容量瓶中,加水稀释至刻度,充分摇匀,各溶液KMnO4浓度分别为0.2、0.4、0.6mmol/L。(教师取xmL放入50mL容量瓶,定容,供学生测定浓度xmmol/L) 3、KMnO4溶液的绘制分子吸收光谱 (1)将配制好的各浓度的KMnO4溶液,用1cm比色皿,以蒸馏水为参比溶液(注意:测定吸收曲线时,每次改变波长后都要用参比液调T为0,及100)在440~580nm波长范围内,每隔10nm测一次吸光度,在最大吸收波长附近,每隔5nm测一次吸光度(440,450,……515,520,525,530,535……570,580)。 0.2 mmol/L (3)在坐标纸上,以波长λ为横坐标,吸光度A为纵坐标,绘制A和λ关系的吸收曲线。从吸收曲线上选择最大吸收波长λmax,并观察不同浓度KMnO4

溶液的λmax和吸收曲线的变化规律。 (4)吸收曲线的制作 1)在最大吸收峰处(λmax),测定0.2、0.4、0.6mmol/L的吸光度,绘制浓度与吸光度的吸收曲线。 2)测定未知浓度液体的吸光度值,通过工作线查出浓度值。

实训项目二:邻二氮菲分光光度法测定微量铁 实训目的: 1、掌握用邻二氮菲显色法测定铁的原理及方法。 2、学习吸收曲线和工作曲线的绘制,掌握适宜测量波长的选择。 3、学习分光光度计的使用方法。 一、原理 1、邻二氮菲(phen)和Fe2+在pH3~9的溶液中,生成一种稳定的橙红色络合物Fe(phen)32+,铁含量在0.1~6μg·mL-1范围内遵守比尔定律。其吸收曲线如图所示。 显色前需用盐酸羟胺或抗坏血酸将Fe3+全部还原为Fe2+,然后再加入邻二氮菲,并调节溶液酸度至适宜的显色酸度范围。有关反应如下: 2Fe3+ + 2NH2OH·HC1=2Fe2+ +N2↑+2H2O+4H++2C1- 2、用分光光度法测定物质的含量 一般采用标准曲线法,即配制一系列浓度的标准溶液,在实验条件下依次测量各标准溶液的吸光度(A),以溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。在同样实验条件下,测定待测溶液的吸光度,根据测得吸光度值从标准曲线上查出相应的浓度值,即可计算试样中被测物质的质量浓度。 二、实训内容 (一)溶液的配置 1、铁标准储备液的配置(10ug/ml) 0.1g/L 称取0.8634gNH4Fe(SO4)2·12H2O于烧杯中,加少量水和20mL 的6MHCl溶液,溶解后,定量转移到1L容量瓶中,加水稀释至刻度,摇匀,得到100ug/ml的储备液,然后再吸取10ml定容100ml容量瓶,就得到10ug/ml 的工作液。(提前配置) 怎么来的?铁的原子量为55.58,NH4Fe(SO4)2·12H2O的分子量为482.18,

仪器分析实验指导书

仪器分析实验指导书化学教学部衡林森编 重庆邮电学院生物信息学院 2004年2月26日

前言 仪器分析是以物质的物理和物理化学性质为基础建立起来的一种分析方法,测定时,常常需要使用比较特殊或复杂的仪器。它是分析化学的发展方向。仪器分析作为现代的分析测试手段,日益广泛地为许多领域内的科研和生产提供大量的物质组成和结构等方面的信息,因而仪器分析成为高等学校中许多专业的重要课程之一。 对于我们的学生来说,将来并不从事分析仪器制造或者仪器分析研究,而是将仪器分析作为一种科学实验的手段,利用它来获取所需要的信息。仪器分析是一门实验技术性很强的课程,没有严格的实验训练,就不可能有效地利用这一手段来获得所需要的信息。 通过实验教学可以加深对仪器分析方法原理的理解、巩团课堂教学的效果,这只是一方面;更重要的是.通过实验培养学生严格的实事求是的科学作风,独立从事科学实验研究,提出和解决问题的能力。良好的科学作风,独立工作的能力将会对学生的未来发展产生深远的影响。 理论可以指导实验,通过实验可以验证和发展理论。实验验证和发展理论的作用是以对实验现象的严密细心的考察和实验数据的科学分析为基础的,而高超熟练的实验技能是获得精密实验数据的必要和先决条件。一般说来,仪器分析实验特别是大型仪器分析实验,其特点是操作较复杂,影响因素较多,信息量大.需要通过对大量的实验数据的分析和图谱解析来获取有用的信息。这些特点,对培养学生理论联系实际、掌握和提高实验技能、分析推理能力是大有好处的。因此必须充分重视仪器分析实验课的教学。 由于实验室不可能购臵多套同类仪器设备,一般多采用几人一组做仪器分析实验,对于大型分析仪器,让学生自己动手在仪器上做实验有困难的,也尽可能地安排了一些演示实验,或者对该仪器可能提供的分析信息做了必要的介绍。 学生在实验中应认真地观察实验现象,仔细地记录数据与分析结果,积极思考,注意手脑并用,善于发现和解决实验过程中出现的问题,养成良好的实验习惯。 写好实验报告是仪器分析实验的延续和提高。实验报告应包括:实验名称、实验日期、实验方法和原理、实验仪器类型与型号、主要实验步骤或主要实验条件、实验数据(图谱)及其处理以及结果、讨论等。对实验结果的分析与讨论是实验报告的重要部分,其内容虽无固定模式,但是可涉及诸如对实验原理的进一步深化理解,做好实验的关键及自己的体会,实验现象的分析和解释,结果的误差分析以及对该实验的改进意见等方面。以上内容学生都可就其中体会较深者讨论一项或几项。科学实践的经验告诉人们,实验中的“异常”情况的出现、往往是发现新的科学现象的先导、对实验中异常情况的深入分析和解释、有可能启发人们从中发现新的实验事实和苗头,获得意想不到的有价值的试验结果。因此,在实验过程中积极开动脑筋思考问题,在实验后深入进行分析和总结,是提高实验质量的重要环节。

(完整版)仪器分析综合实验

《仪器分析综合实验》教学大纲 一、实验性质 仪器分析是分析专业学生必修的专业课之一,是对工业分析其他专业课的综合应用。本次仪器分析综合实验是在学生学习了《仪器分析技术》知识后,为巩固学生所学的理论知识,加强学生的动手能力,提高学生对分析仪器的操作技能而进行的综合实习。 二、目的和要求 (一)目的 仪器分析是分析化学专业学生的两大专业基础课程之一。分析专业学生经过理论课学习后,掌握了一定的定性定量分析方法,能正确使用分析仪器。通过本次实习巩固学生的仪器分析理论知识,熟悉常见分析仪器的结构,训练学生的正确使用和维护分析仪器的操作技能,培养学生分析问题,解决问题的能力。为今后从事仪器分析工作打下坚实的基础。 (二)要求 1.掌握仪器分析的基本知识,包括仪器的结构、使用方法、仪器的维护保养方法; 2.培养学生理论联系实际,发现问题,分析问题,解决问题的能力; 3.学会阅读分析方案; 4.学会实验安排; 5.培养实事求是的工作作风,坚持严谨的科学态度,养成良好的实验室工作习惯,增强学生专业素质,培养良好的职业道德。 三、实验项目 1.原料药品的吸光系数测定; 2.头发中锌的含量测定; 3.测自来水中铁含量; 4.水中六价铬的测定; 5.酸度计的使用。 四、实习负责人 实习指导教师、各班班主任

五、实验安排 将全班分为几个大组分别进行实验,按实验项目进行交换。 最后半天完成实习报告。 六、成绩评定 1.根据学生在整个实验中的动手能力,分析、解决问题的能力,实习态度和纪律表现和实习报告的完成情况来综合评定成绩。 2.实习成绩按:优、良、中、及格、不及格五个等级评定; 3.实习成绩记入学生学籍档案。

仪器分析实验试题及答案

一、填空题 1、液相色谱中常使用甲醇、乙腈和四氢呋喃作为流动相,这三种溶剂在反相液相色谱中的洗脱能力大小顺序为甲醇<乙腈<四氢呋喃。 2、库仑分析法的基本依据是法拉第电解定律。 3、气相色谱实验中,当柱温增大时,溶质的保留时间将减小;当载气的流速增大时,溶质的保留时间将减小。 二、选择题、 1、、色谱法分离混合物的可能性决定于试样混合物在固定相中___D___的差别。 A. 沸点差 B. 温度差 C. 吸光度 D. 分配系数。 2、气相色谱选择固定液时,一般根据___C__原则。 A. 沸点高低 B. 熔点高低 C. 相似相溶 D. 化学稳定性。 3、在气相色谱法中,若使用非极性固定相SE-30分离乙烷、环己烷和甲苯混合物时,它们的流出顺序为(C ) A. 环己烷、乙烷、甲苯; B. 甲苯、环己烷、乙烷; C. 乙烷、环己烷、甲苯; D. 乙烷、甲苯、环己烷 4、使用反相高效液相色谱法分离葛根素、对羟基苯甲醛和联苯的混合物时,它们的流出顺序为(A ) A. 葛根素、对羟基苯甲醛、联苯; B. 葛根素、联苯、对羟基苯甲醛; C. 对羟基苯甲醛、葛根素、联苯; D. 联苯、葛根素、对羟基苯甲醛 5、库仑滴定法滴定终点的判断方式为(B ) A. 指示剂变色法; B. 电位法; C. 电流法 D. 都可以 三、判断题 1、液相色谱的流动相又称为淋洗液,改变淋洗液的组成、极性可显著改变组分的分离效果。(√) 2、电位滴定测定食醋含量实验中电位突越点与使用酸碱滴定法指示剂的变色点不一致(×) 四、简答题 1、气相色谱有哪几种定量分析方法? 答:气相色谱一般有如下定量分析方法:内标法、外标法、归一法、标准曲线法、标准加入法。 2、归一化法在什么情况下才能应用?

仪器分析实验习题及参考答案

色谱分析习题及参考答案 一、填空题 1、调整保留时间是减去的保留时间。 2、气相色谱仪由五个部分组成,它们是 3、在气相色谱中,常以和来评价色谱 柱效能,有时也用 表示柱效能。 4、色谱检测器按响应时间分类可分为型和型两种,前者的色谱图为 曲线,后者的色谱图为曲线。 5、高效液相色谱是以为流动相,一般叫做, 流动相的选择对分离影响 很大。 6、通过色谱柱的和之比叫阻滞因子, 用符号表示。 7、层析色谱中常用比移值表示。由于比移值Rf重现性较差,通常 用做对照。他表示与移行距离之比。 8、高效液相色谱固定相设计的原则是、以达到 减少谱带变宽的目的。 二、选择题 1、色谱法分离混合物的可能性决定于试样混合物在固定相中______的差别。 A. 沸点差, B. 温度差, C. 吸光度, D. 分配系数。 2、选择固定液时,一般根据_____原则。 A. 沸点高低, B. 熔点高低, C. 相似相溶, D. 化学稳定性。 3、相对保留值是指某组分2与某组分1的_______。 A. 调整保留值之比, B. 死时间之比, C. 保留时间之比, D. 保留体积之比。 4、气相色谱定量分析时______要求进样量特别准确。 A.内标法; B.外标法; C.面积归一法。 5、理论塔板数反映了 ______。

A.分离度; B. 分配系数; C.保留值; D.柱的效能。 6、下列气相色谱仪的检测器中,属于质量型检测器的是 A.热导池和氢焰离子化检测器; B.火焰光度和氢焰离子化检测器; C.热导池和电子捕获检测器; D.火焰光度和电子捕获检测器。 7、在气-液色谱中,为了改变色谱柱的选择性,主要可进行如下哪种(些)操作?() A. 改变固定相的种类 B. 改变载气的种类和流速 C. 改变色谱柱的柱温 D. (A)和(C) 8、进行色谱分析时,进样时间过长会导致半峰宽______。 A. 没有变化, B. 变宽, C. 变窄, D. 不成线性 9、在气液色谱中,色谱柱的使用上限温度取决于 _____ A.样品中沸点最高组分的沸点, B.样品中各组分沸点的平均值。 C.固定液的沸点。 D.固定液的最高使用温度 10 、分配系数与下列哪些因素有关_____ A.与温度有关; B.与柱压有关; C.与气、液相体积有关; D.与组分、固定液的热力学性质有关。 11、对柱效能n,下列哪些说法正确_ ____ A. 柱长愈长,柱效能大; B.塔板高度增大,柱效能减小; C.指定色谱柱对所有物质柱效能相同; D.组分能否分离取决于n值的大小。 12、在气相色谱中,当两组分不能完全分离时,是由于() A 色谱柱的理论塔板数少 B 色谱柱的选择性差 C 色谱柱的分辨率底 D 色谱柱的分配比小 E 色谱柱的理论塔板高度大 13.用硅胶G的薄层层析法分离混合物中的偶氮苯时,以环己烷—乙酸乙酯(9;1)为展开剂,经2h展开后,测的偶氮苯斑点中心离原点的距离为9.5cm,其溶剂前沿距离为24.5cm。偶氮苯在此体系中的比移值R为()f A 0.56 B 0.49 C 0.45 D 0.25 E 0.39 14、气相色谱分析下列那个因素对理论塔板高度没有影响()。 A 填料的粒度 B 载气得流速 C 填料粒度的均匀程度 D 组分在流动相中的扩散系数 E 色谱柱长 三、计算题 1、用一根2m长色谱柱将组分A、B分离,实验结果如下: 空气保留时间30s ;A峰保留时间230s;B峰保留时间250s;B峰底宽 25s。求:色谱柱的理论塔板数n;A、B各自的分配比;相对保留值r;两峰的分离度R;若2,1将两峰完全分离,柱长应该是多少? 2、组分A和B在一1.8m长色谱柱上的调整保留时间t'=3min18s,t'=3min2s,两组BA分峰的半宽分别为W=1.5mm和W=2.0mm,记录仪走纸速度为600mm/h,试

原子吸收实验报告

仪器分析实验报告 实验名称:原子吸收光谱实验 学院:化学工程学院 专业:化学工程与工艺 班级: 姓名:学号 指导教师: 日期:

1.了解AA-6200的结构,了解仪器的开、关程序。 2.了解AA-6200的分析过程。 二、实验原理 原子吸收光谱分析法是基于原子由基态跃迁到激发态时对辐射光吸收的测量。通过选择一定波长的辐射光源,使之满足某一元素的原子由基态跃迁到激发态的能量要求,则辐射后基态的原子数减少,辐射吸收值与基态原子数有关,即由吸收前后辐射光强度的变化可确定待测元素的浓度。 三、仪器和试剂 仪器:日本岛津AA-6200 试剂:蒸馏水、镍标准溶液

以镍溶液标准曲线的绘制及样品的测定为例,实验操作如下: 1.做好实验前的安全工作。首先打开实验室窗户通风,接着打开总电源启 动排气装置—这里主要考虑到实验所用的乙炔气体的危险性,若在密闭环境下积聚浓度太高就有发生爆炸的可能性。乙炔装在白色钢瓶内。2.打开空气压缩机,空气是作为乙炔气体燃烧的助燃气体,它们共同构成 了乙炔—空气燃烧系统。 3.开气体钢瓶,钢瓶总阀开度不必太大,大概旋转45度角即可,同时气体 的流通还受一个微调阀控制,即总阀开启气体并不一定能通过管路。因此,应同时调节总阀与微调阀,使指示计显示正常稳定的压力值。这里需说明,微调阀只需在更换气体后的第一次使用调节完成,以后实验只要调节总阀即可。 4.安装空心阴极灯。空心阴极灯的是根据实验要求来选取的,即测什么元 素就用什么元素的空心阴极灯。空心阴极灯可以从实验室直接拿取,如没有则要提前到市场上购买。AA-6200配备了两个灯座,(HCL-1, HCL-2)这大大提高了实验的方便性,通过灯的轮换装置可以任意切换安装的两盏灯。说明:空心阴极灯的安装应在仪器打开之前完成,因为仪器一旦启动其灯座上可能有电流通过,这时再徒手安装灯就有一定的危险。5.预热仪器。将仪器打开后预热半小时,这是保证仪器运转的稳定性,从 而提高测量的精确性。 6.软件操作。首先打开软件进行元素选择,可以从下拉式菜单中选取也可 以直接从元素周期表中选择,接着点击”connect”按钮,这一步主要是仪器进行自检,确定各个部件都能正常使用,然后是进行参数编辑,选择对应的灯号并将空心阴极灯通电,最后搜索波长,波峰的完美与否可能会影响实验的准确性,因此如出现的波形严重偏离对称性,那么可以重复搜索直到可以接受为止。 7.标准曲线的绘制。做标准前先点火,同时按住黑白两颗按钮直到火焰完 全燃烧,接着在软件上选择“STD”字样,其个数应取决于用于做标准曲线点的个数,每次做完一个点必须要等仪器显示的进样吸光度为零才

《仪器分析》仿真实验

仪器分析实验仿真实验 紫外分光光度计仿真实验 一、实验概述: 在分之中,除了电子相对于原子核的运动之外,还有原子核之间振动和转动引起的相对位移。这三种运功能量都是量子化的,对应有一定的能级。分子的能量是这三种能量的总和。当用一定频率(波长)的电磁波(光)照射分子,其能量恰好等于分子的两个能级差时,则分子就会吸收光的能量而由较低的能级跃迁到较高的能级,同时光的强度(能量)变小。吸光度符合吸收定律: A=lg(I0/I)=K c L 根据这一关系可以用工作曲线法来测定未知溶液中吸光物质的浓度。 二、实验装置: 仪器调节面板:

本实验仿真的设备是UV-754C紫外可见光风光光度计,它具有卤钨灯(30W)、氘灯(2.5A)两种光源,分别适用于360~850nm和200~360nm波段,采用平面光栅作色散元件,GD33光电管作接受器。 三、实验操作: 第一步:选取实验 点击主菜单上的“实验选取”,会出现如下的对话框: 用鼠标左键点中你要做的实验,此文件名会出现在对话框的“文件名”一栏的文本框中,在此实验文件上面双击左键或者点击“打开”按钮打开实验文件。 第二步:打开电源、预热 用鼠标点击紫外分光光度计上的暗箱盖,暗箱盖会自动打开,如下图所示:

然后用鼠标点击仪器右下角的红色电源开关接通电源,这是仪器调节面板会自动显示,并进入开机自检状态,此状态大约持续10秒左右,在这段时间里计算机出现停滞现象是正常的.随后计算机进入预热期, 时间大约为1分钟(真实仪器为20分钟)。预热结束时会听见蜂鸣声,并且会看见预热按钮上方的灯熄灭此时仪器就进入工作状态了。 关状态:开状态: 用鼠标点击主菜单中的“配置试液”按钮,出现配置试液窗口:

仪器分析实验10

实验十气相色谱-质谱法(GC-MS)对酯类混合试样的定性分析 一、实验目的 1. 了解GC-MS的基本结构和工作原理; 2. 初步掌握GC-MS的操作过程; 3. 掌握GC-MS对未知化合物定性的分析方法。 二、基本原理 气相色谱(GC)-质谱(MS)联用仪可看作是以MS为检测器的GC或以GC为进样、分离装置的MS,因此同时具备GC对混合物的高效分离效能和MS对未知物的强定性能力,可在较短时间内实现对多组分混合物质的定性及定量分析。在所有联用技术中,GC-MS的发展最为完善,广泛应用于环保、食品、石油化工、轻工、农药、医药、法医毒品及兴奋剂检测等各个领域。 气相色谱(GC)是以气体为流动相的色谱方法,仪器结构见图9-1,待测样品由进样口注入到色谱分离柱柱顶(进样后瞬间被气化),然后在惰性载气(流动相)的带动下进入色谱柱(常为石英毛细管柱,内壁涂覆固定相),组分在随载气运动的同时与固定相发生作用,由于不同组分与相同固定相的作用力大小不同,因此固定相对不同组分的保留能力不同,作用力小的组分会随流动相在较短时间流出色谱柱,作用力大的组分则需较长的时间才能流出色谱柱,因此实现了分离。利用柱末端的检测器对流出组分的实时测定,就可以获得色谱流出曲线(见图9-2),根据各组分的保留时间(从进样到出现色谱峰值的时间)和峰面积就可分别实现对其的定性和定量分析。但仅利用保留时间定性(相同测定条件下,同一组分的保留时间不变)的可靠性不高,而常用色谱检测器也无法提供其它可反映结构的信息。 图10-1 气相色谱仪器示意图

图10-2 色谱流出曲线 质谱法(MS)是在离子源(能量源)的作用下把待测试样转化为运动的气态离子并按核质比(m/z)大小进行分离记录的方法,测量结果可以质谱图(见图9-3)表示。离子源能量一定时,同一化合物可生成的碎片离子及各离子间的相对强度是一定的,即质谱图可反映化合物的结构特征,因此可用来进行定性及结构解析。此外离子强度(任一离子或总离子强度和)与进样量在一定条件下存在正比关系,这为定量分析提供了依据。 图10-3 采用电子轰击源时谷氨酸的质谱图 质谱仪结构示意图见9-4,离子源、质量分析器和检测器必须处在高真空状态,否则会有以下危害:大量氧会烧坏离子源的灯丝;会使本底增高,干扰质谱图;会引起额外的离子-分子反应,改变裂解方式,使质谱图复杂化;干扰离子源正常调节;用作加速离子的几千伏高压会引起放电等问题。质谱具有很强的定性及结构解析能力,而且灵敏度也很高,但通常仅适于纯试样的测定,对混合物的分析很不理想。 10-4 质谱仪的基本结构示意图

相关文档
最新文档