2007年诺贝尔物理学奖获得者简介

2007年诺贝尔物理学奖获得者简介

2007年诺贝尔物理学奖获得者简介

法国科学家阿尔贝·费尔和德国科学家彼得·格林贝格尔因发现巨磁电阻效应而荣获2007年诺贝尔物理学奖。据悉,巨磁电阻效应相关技术被用于读取硬盘中数据,这项技术是最近几年硬盘小型化实现过程中的关键。

瑞典斯德科尔摩皇家科学院发布的颁奖声明称,阿尔贝·费尔和彼得·格林贝格尔1988年各自独立发现了一种全新的物理效应-巨磁电阻效应,即一个微弱的磁场变化可以在巨磁电阻系统中产生很大的电阻变化。该系统非常有助于从硬盘中读取数据,因为机器在读取数据时必须把用磁记录的信息转换成电流。随着这项发现公布,一些研究者和工程师开始在制作读取头中加以应用,1997年首个应用巨磁电阻效应的读取头研制成功,很快成为标准技术,即便今天最新的读取技术也均由巨磁电阻效应发展而来。

阿尔贝·费尔1938年出生于法国的卡尔卡松,1970年从巴黎十一大获得博士学位,目前是法国巴黎十一大即巴黎南大奥塞混合科学主管。彼得·格林贝格尔1939年出于德国的皮尔森,1969年从达姆施塔特技术大学获得博士学位,自1972年以来一直是德国尤利西研究中心固体研究所的教授。他俩将分享1000万瑞典克朗(约合154万美元)的奖金。

1930年诺贝尔物理学奖——拉曼效应

1930年诺贝尔物理学奖——拉曼效应 1930年诺贝尔物理学奖授予印度加尔各答大学的拉曼(SirChandrasekhara V enkata Raman,1888——1970),以表彰他研究了光的散射和发现了以他的名字命名的定律。 在光的散射现象中有一特殊效应,和X射线散射的康普顿效应类似,光的频率在散射后会发生变化。频率的变化决定于散射物质的特性。这就是拉曼效应,是拉曼在研究光的散射过程中于1928年发现的。在拉曼和他的合作者宣布发现这一效应之后几个月,苏联的兰兹伯格(https://www.360docs.net/doc/7111503041.html,ndsberg)和曼德尔斯坦(L.Mandelstam)也独立地发现了这一效应,他们称之为联合散射。拉曼光谱是入射光子和分子相碰撞时,分子的振动能量或转动能量和光子能量叠加的结果,利用拉曼光谱可以把处于红外区的分子能谱转移到可见光区来观测。因此拉曼光谱作为红外光谱的补充,是研究分子结构的有力武器。 1921年夏天,航行在地中海的客轮“纳昆达”号(S.S.Narkunda)上,有一位印度学者正在甲板上用简便的光学仪器俯身对海面进行观测。他对海水的深蓝色着了迷,一心要追究海水颜色的来源。这位印度学者就是拉曼。他正在去英国的途中,是代表了印度的最高学府——加尔各答大学,到牛津参加英联邦的大学会议,还准备去英国皇家学会发表演讲。这时他才33岁。对拉曼来说,海水的蓝色并没有什么稀罕。他上学的马德拉斯大学,面对本加尔(Bengal)海湾,每天都可以看到海湾里变幻的海水色彩。事实上,他早在16岁(1904年)时,就已熟悉著名物理学家瑞利用分子散射中散射光强与波长四次方成反比的定律(也叫瑞利定律)对蔚蓝色天空所作的解释。不知道是由于从小就养成的对自然奥秘刨根问底的个性,还是由于研究光散射问题时查阅文献中的深入思考,他注意到瑞利的一段话值得商榷,瑞利说:“深海的蓝色并不是海水的颜色,只不过是天空蓝色被海水反射所致。”瑞利对海水蓝色的论述一直是拉曼关心的问题。他决心进行实地考察。于是,拉曼在启程去英国时,行装里准备了一套实验装臵:几个尼科尔棱镜、小望远镜、狭缝,甚至还有一片光栅。望远镜两头装上尼科尔棱镜当起偏器和检偏器,随时都可以进行实验。他用尼科尔棱镜观察沿布儒斯特角从海面反射的光线,即可消去来自天空的蓝光。这样看到的光应该就是海水自身的颜色。结果证明,由此看到的是比天空还更深的蓝色。他又用光栅分析海水的颜色,发现海水光谱的最大值比天空光谱的最大值更偏蓝。可见,海水的颜色并非由天空颜色引起的,而是海水本身的一种性质。拉曼认为这一定是起因于水分子对光的散射。他在回程的轮船上写了两篇论文,讨论这一现象,论文在中途停靠时先后寄往英国,发表在伦敦的两家杂志上。 拉曼1888年11月7日出生于印度南部的特里奇诺波利。父亲是一位大学数学、物理教授,自幼对他进行科学启蒙教育,培养他对音乐和乐器的爱好。他天资出众,16岁大学毕业,以第一名获物理学金奖。19岁又以优异成绩获硕士学位。1906年,他仅18岁,就在英国著名科学杂志《自然》发表了论文,是关于光的衍射效应的。由于生病,拉曼失去了去英国某个著名大学作博士论文的机会。

【历届诺贝尔奖得主(五)】1956年物理学奖得主

物理学奖 美国,布拉顿(WalterHouserBrattain1902-1987),研究半导体、发明晶体管 获奖理由:因对半导体的研究和发现了晶体管效应,与肖克利和巴丁分享了1956年度的诺贝尔物理学奖金。 简历 布拉顿(Brattain,WalterHouser)美国物理学家。1902年2月10日生于中国(父母是美国人)厦门。布拉顿的少年时期是在牧场上度过的。他1924年毕业于惠特曼学院(在华盛顿州沃拉沃拉),1929年在明尼苏达大学取得博士学位。同年,他进入贝尔电话实验室,成为一名物理学研究人员。第二次世界大战期间,他在那里从事潜艇磁探测的工作。他同肖克利和巴丁共同获得1956年诺贝尔物理学奖。1967年,他接受惠特曼学院的聘请,担任了自己母校的教授。 美国,巴丁(JohnBardeen1908-1991),研究半导体、发明晶体管 生平 1908年5月23日生于威斯康星州麦迪逊城,1923年入威斯康星大学电机工程系就学,毕业后即留在该校担任电机工程研究助理。1930-1933年在匹兹堡海湾实验研究所从事地球磁场及重力场勘测方法的研究。1928年获威斯康星大学理学士学位,1929年获硕士学位。1936年获普林斯顿大学博士学位。1933年到普林斯顿大学,在E·P·维格纳的指导下,从事固态理论的研究。1935-1938年任哈佛大学研究员。1936年以《金属功函数理论》的论文从普林斯顿大学获得哲学博士学位。1938-1941年任明尼苏达大学物理学助理教授,1941-1945年在华盛顿海军军械实验室工作,1945-1951年在贝尔电话公司实验研究所研究半导体及金属的导电机制、半导体表面性能等基本问题。1947年和其同事W·H·布喇顿共同发明第一个半导体三极管,一个月后,W·肖克莱发明PN结晶体管。这一发明使他们三人获得1956年诺贝尔物理学奖,巴丁并被选为美国科学院院士。 科研方向与获奖情况 1951年迄今,他同时任伊利诺伊大学物理系和电机工程系教授。他和L·N·库珀、J·R·施里弗合作,于1957年提出低温超导理论(BCS理论),为此,他们三人被授予1972年诺贝尔物理学奖,在同一领域(固态理论)中,一个人两次获得诺贝尔奖,历史上还是第一次。 晚年他研究如何用简单而基本的成分理解大自然非常复杂的性质,对整个近代理论物理学发展提出明确的见解。1980年他发表题为《物质结构的概念统一》的总结性论文,强调相同的基本物理概念可以广泛地用于表面上似乎悬殊的各个问题上,包括固体、液晶、核物质、高能粒子等领域。 巴丁发明了晶体管.1956年和肖拉克一起获得了诺贝尔物理学奖.1972年巴丁,库柏,施里弗一起获得了诺贝尔物理学奖. 巴丁于1991年1月30日上午8时45分去世 美国,肖克利(WilliamBradfordShockley1910-1989),研究半导体、发明晶体管 发明创造 获奖理由:因对半导体的研究和发现了晶体管效应,与巴丁和布拉顿分享了1956年度

2018年剑桥大学诺贝尔奖得主

https://www.360docs.net/doc/7111503041.html, 剑桥大学(英文:University of Cambridge;勋衔:Cantab)坐落于英国剑桥,是一所誉满全球的世界顶级研究型书院联邦制大学,与牛津大学、伦敦大学学院、帝国理工学院、伦敦政治经济学院同属“G5超级精英大学”。立思辰留学360介绍,剑桥大学是英国本土历史最悠久的高等学府之一,学校前身是一个于公元1209年成立的学者协会,是英语世界中第二古老的大学。 在学校800多年的历史中,涌现出牛顿、达尔文等一批引领时代的科学巨匠;造就了培根、凯恩斯等贡献突出的文史学者;培养了弥尔顿、拜伦等开创纪元的艺术大师,从这里走出了8位英国首相,92位诺贝尔奖获得者,4位菲尔兹奖得主曾为此校的师生、校友或研究人员。这些都为剑桥大学奠定了世界近现代学术文化中心的地位。其在数学、物理、医学、法学、商学等多个领域拥有崇高的学术地位及广泛的影响力,被公认为是当今世界最顶尖的高等教育机构之一。 剑桥大学是多个学术联盟的成员之一,亦为英国“金三角名校”及剑桥大学医疗伙伴联盟的一部分,并与产业聚集地硅沼的发展息息相关。学校共设八间文艺及科学博物馆,并有馆藏逾1500万册的图书馆系统及全球最古老的剑桥大学出版社。 诺贝尔奖得主 2016 Oliver Hart (King‘s College, 1966) - 2016 Sveriges Riksbank Prize in Economic Sciences (诺贝尔经济学奖) in Memory of Alfred Nobel for his contributions to contract theory

https://www.360docs.net/doc/7111503041.html, 2016 David Thouless (Trinity Hall, 1952), Duncan Haldane (Christ’s, 1970) and Michael Kosterlitz (Gonville and Caius, 1962) - Nobel Prize in Physics(诺贝尔物理学奖) for theoretical discoveries of topological phase transitions and topological phases of matter 2015 Angus Deaton, FitzwilliamCollege, The Sveriges Riksbank Prize in Economic Sciences (诺贝尔经济学奖) in Memory of Alfred Nobel for his analysis of consumption, poverty, and welfare 2013 Michael Levitt, Gonville and Caius/ Peterhouse Colleges, Nobel Prize in Chemistry(诺贝尔化学奖), for the development of multiscale models for complex chemical systems 2012 John Gurdon, Churchill and Magdalene Colleges: Emeritus Professor in Cell Biology: Nobel Prize in Medicine(诺贝尔生理学或医学奖), for the discovery that mature cells can be reprogrammed to become pluripotent 2010 Robert G. Edwards, Churchill College: Emeritus Professor of Human Reproduction: Nobel Prize in Medicine(诺贝尔生理学或医学奖), for the development of in vitro fertilization 2009 Venki Ramakrishnan, Trinity College: Nobel Prize in Chemistry(诺贝尔化学奖), for studies of the structure and function of the ribosome 2009 Elizabeth H. Blackburn, Darwin College, PhD 1975: Nobel Prize in Physiology or Medicine (诺贝尔生理学或医学奖), for the discovery of how chromosomes are protected by telomeres and the enzyme telomerase 2008 Roger Y. Tsien, Churchill / Caius Colleges: Nobel Prize in Chemistry(诺贝尔化学奖), for the discovery and development of the green fluorescent protein, GFP 2007 Martin Evans, Christ‘s College: Nobel Prize in Medicine(诺贝尔生理学或医学奖), for discoveries of principles for introducing specific gene modifications in mice by the use of embryonic stem cells 2007 Eric Maskin, Jesus College: Prize in Economic Sciences(诺贝尔经济学奖), for having laid the foundations of mechanism design theory 2005 Richard R. Schrock: Nobel Prize in Chemistry(诺贝尔化学奖), for the development of the metathesis method in organic synthesis 2002 Sydney Brenner, King’s College: Nobel Prize in Medicine(诺贝尔生理学或医学奖), for discoveries concerning genetic regulation of organ development and programmed cell death 2002 John Sulston, Pembroke College: Nobel Prize in Medicine(诺贝尔生理学或医学奖), for discoveries concerning genetic regulation of organ development and programmed cell death

2011年诺贝尔物理学奖

2011年10月4日电瑞典皇家科学院4日上午宣布,来自美国和澳大利亚的三名天体物理学家获得2011年诺贝尔物理学奖,以表彰他们因超新星的研究而对宇宙学的贡献。 这三位科学家分别是美国加州大学伯克利分校教授索尔·佩尔马特,出生于美国而拥有美、澳双重国籍的澳大利亚国立大学教授布莱恩·施密特,以及美国约翰斯·霍普金斯大学教授亚当·里斯。 皇家科学院在颁奖声明中说,这三位科学家对超新星的观测证明,宇宙在加速膨胀、变冷,这一发现“震动了宇宙学的基础”。佩尔马特领导的一个研究小组于1988年开始研究超新星,施密特领导的研究小组于1994年也开始这一工作,里斯在施密特的小组中发挥了重要作用。 科学家研究证实宇宙正加速膨胀宇宙最终能够可能变成冰 中新网10月4日电据外媒4日报道,美国加州大学伯克利分校天体物理学家萨尔·波尔马特、美国/澳大利亚布莱恩·施密特以及美国科学家亚当·里斯获得2011年诺贝尔物理学奖。瑞典皇家科学院旨在表彰他们对超新星研究和对宇宙加速膨胀研究的贡献。 瑞典皇家科学院宣布,三人将分享诺贝尔奖金1000万克朗(约146万美元),索尔·佩尔马特将获得一半奖金,剩下的一半由布莱恩·施密特和亚当·里斯分享。瑞典皇家科学院称他们的研究“帮助我们解开了宇宙扩张的面纱”。委员会说:“他们研究了数十个超新星,并发现宇宙正加速扩张。”据悉,这项研究在1998年公布,当时波尔马特、施密特和里斯分别领导的团队得出了惊人一致的结论。“这一结论表

明了如果宇宙膨胀加速,最后整个宇宙将变为冰。”委员会说。 其中,获奖者波尔马特今年52岁,在美国加州大学伯克利分校主要研究宇宙超新星项目。44岁的布莱恩·施密特就职于澳大利亚国立大学;42岁的亚当·里斯在美国巴蒂摩尔约翰霍普金斯大学及空间望远镜研究所研究天文物理。

历年诺贝尔物理学奖得主(1901-2016)汇总

历年诺贝尔物理学奖得主(1901-2016)年份获奖者国籍获奖原因 1901年威廉·康拉德·伦琴德国“发现不寻常的射线,之后以他的名字命名”(即X 射线,又称伦琴射线,并伦琴做为辐射量的单位) 1902年亨得里克·洛仑兹荷兰 “关于磁场对辐射现象影响的研究”(即塞曼效应)彼得·塞曼荷兰 1903年亨利·贝克勒法国“发现天然放射性” 皮埃尔·居里法国“他们对亨利·贝克勒教授所发现的放射性现象的 共同研究” 玛丽·居里法国 1904年约翰·威廉·斯特拉斯英国“对那些重要的气体的密度的测定,以及由这些研究而发现氩”(对氢气、氧气、氮气等气体密度的测量,并因测量氮气而发现氩) 1905年菲利普·爱德华·安 东·冯·莱纳德 德国“关于阴极射线的研究” 1906年约瑟夫·汤姆孙英国"对气体导电的理论和实验研究" 1907年阿尔伯特·迈克耳孙美国“他的精密光学仪器,以及借助它们所做的光谱学和计量学研究” 1908年加布里埃尔·李普曼法国“他的利用干涉现象来重现色彩于照片上的方法” 1909年古列尔莫·马可尼意大利 “他们对无线电报的发展的贡献”卡尔·费迪南德·布劳恩德国 1910年范德华荷兰“关于气体和液体的状态方程的研究”1911年威廉·维恩德国“发现那些影响热辐射的定律” 1912年尼尔斯·古斯塔夫·达伦瑞典“发明用于控制灯塔和浮标中气体蓄积器的自动调节阀” 1913年海克·卡末林·昂内斯荷兰“他在低温下物体性质的研究,尤其是液态氦的制成” 1914年马克斯·冯·劳厄德国“发现晶体中的X射线衍射现象” 1915年威廉·亨利·布拉格英国 “用X射线对晶体结构的研究”威廉·劳伦斯·布拉格英国 1917年查尔斯·格洛弗·巴克拉英国“发现元素的特征伦琴辐射” 1918年马克斯·普朗克德国“因他的对量子的发现而推动物理学的发展” 1919年约翰尼斯·斯塔克德国“发现极隧射线的多普勒效应以及电场作用下谱线的分裂现象” 1920年夏尔·爱德华·纪尧姆瑞士“他的,推动物理学的精密测量的,有关镍钢合金的反常现象的发现” 1921年阿尔伯特·爱因斯坦德国“他对理论物理学的成就,特别是光电效应定律的发现” 1922年尼尔斯·玻尔丹麦“他对原子结构以及由原子发射出的辐射的研究”1923年罗伯特·安德鲁·密立根美国“他的关于基本电荷以及光电效应的工作” 1924年卡尔·曼内·乔奇·塞格 巴恩 瑞典“他在X射线光谱学领域的发现和研究”[3]

2004年诺贝尔物理学奖

2004年诺贝尔物理学奖 2004年物理学奖,由三位美国的物理学家分享,他们是戴维·格罗斯(David J.Gross)、休·普利策(Hugh David Politzer)和弗兰克·维尔泽克(Frank Wilczek。他们提出了量子场中夸克“渐进自由”的理论。 戴维·乔纳森·格罗斯(David Jonathan Gross,1941—),出生于美国华盛顿。1966年获得美国加州大学伯克利分校博士学位。1985年当选为美国科学与艺术学院院士,1986年当选为美国科学院院士,2011年当选为中国科学院外籍院士。格罗斯在理论物理,尤其是规范场理论、粒子物理和超弦理论等方面做出了一系列开创性的研究成果。他是量子色动力学的主要奠基人之一。量子色动力学作为描述自然界四种基本作用力之一的“强相互作用力”的基本理论,成为研究强子性质和原子核物理的基础。 休·戴维·普利策(Hugh David Politzer,1949—),出生于美国纽约。1974年获得哈佛大学的物理学博士学位,后在加利福尼亚理工学院物理系任教授,同时也是该校粒子物理研究领域的学术带头人之一。加州理工学院坐落于帕萨迪纳美丽的圣盖伯利山脚下,是美国声名显赫的名牌私立大学之一。 弗兰克·维尔泽克(Frank Wilczek,1951—),出生在纽约州的米里奥拉,他的祖先来自波兰和意大利。他在昆斯区上中小学。在芝加哥大学物理系本科毕业后,前往普林斯顿大学继续深造,1972年获得数学硕士学位,1974年获得物 1

理学博士学位。毕业后在普林斯顿开始执教生涯。1988年他前往美国西海岸的加利福尼亚大学圣巴巴拉分校担任教授。2000年秋天,他重回东海岸,担任麻省理工学院的物理系教授。他被誉为美国最杰出的理论物理科学家之一。维尔泽克曾是戴维·格罗斯的学生。 近代物理学理论认为,夸克等是比质子和中子等亚原子粒子更基本的物质组成单位,夸克等组成了质子和中子,中子和质子又形成原子核,最终产生原子以及今天的宇宙万物。现有的物理学理论还认为,自然界中存在引力、电磁力、强作用力和弱作用力等4种基本的作用力。其中,夸克通过强作用力组成质子和中子,而这种强作用力主要通过另一种名为胶子的基本粒子来传递。但物理学家们在研究夸克时也发现了一个奇怪的现象,那就是从没有发现过自由的单个夸克,只有2个或3个夸克的集合体才能处于自由状态,通常情况下夸克总是被约束在质子和中子内部。本年度获奖者格罗斯、波利策和维尔切克提出的“渐近自由”理论,为此提供了解释。 1973年,维尔泽克正在普林斯顿大学读研究生,师从格罗斯。师徒二人于1973年发表论文,揭示了粒子物理中强相互作用理论中的渐近自由现象。当时他们分别只有32岁和22岁。同年,普利策也独立发表了相关论文。三位科学家提出的理论认为,强作用力会随着夸克彼此间距离的增加而增大,因此没有夸克可以从原子核中向外迁移,获得真正的自由。通俗地说,这一现象有点像拉一根具有弹性的橡皮筋:橡皮筋拉得越长,其产生的力量越大,人拉起来也更为费劲。同 2

1939年诺贝尔物理学奖——回旋加速器的发明

1939年诺贝尔物理学奖——回旋加速器的发明1939年诺贝尔物理学奖授予美国加利福尼亚州伯克利加州大学的劳伦斯 (Ernest Orlando Lawrence,1901——1958),以表彰他发明和发展了回旋加速器,以及用之所得到的结果,特别是人工放射性元素。 核物理学的诞生揭开了物理学发展史中崭新的一页,它不但标志了人类对物质结构的认识进入了更深的一个层次,而且还意味着人类开始以更积极的方式变革自然、探索自然、开发自然和更充分地利用大自然的潜力。各种加速器的发明对核物理学的发展起了很大的促进作用,而劳伦斯的回旋加速器则是这类创造中最有成效的一项。从30年代起,以劳伦斯不断革新回旋加速器的活动为代表,物理学转入了大规模的集体研究,仪器设备越来越复杂,物理学家越来越多地参加有组织的研究工作,物理学与技术的关系也越来越密切,操作调试要求协调配合,实验室的规模要以工程的尺度来衡量,可以说,大规模物理学的出现是我们时代的特征。 劳伦斯顺应这一形势,走在时代的前列。他以天才的设计思想、惊人的毅力和高超的组织才能,为原子核物理学和粒子物理学的发展作出了重大贡献。 劳伦斯1901年8月8日出生于美国南达科他州南部的坎顿(Canton)教师的家庭里,早年就对科学有浓厚兴趣,喜欢作无线电通讯实验,在活动中表现出非凡的才能,他聪慧博学,善于思考。劳伦斯原想学医,却于1922年以化学学士学位毕业于南达科他大学,后转明尼苏达大学当研究生。导师斯旺(W.F.G.Swann)对劳伦斯有很深影响,使他对电磁场理论进行了深入的学习。劳伦斯获得硕士学位后随斯旺教授转芝加哥大学,在那里他遇见了著名的年轻物理学家康普顿(https://www.360docs.net/doc/7111503041.html,pton)教授。他往往在康普顿的实验室里陪康普顿整夜地进行X射线实验,和康普顿倾谈,从康普顿那里吸取了许多经验。劳伦斯在1925年以钾的光电效应为题完成博士学位。在这期间,业余从事用示波管做显像实验,如果不是有人捷足先登,说不定他会取得电视机的发明专利。他兴趣广泛,思路开阔,深得同行的赞许。劳伦斯在耶鲁大学继续研究两年之后,于1927年当上了助理教授。1928年转到伯克利加州大学任副教授。两年后提升,是最年轻的教授。在这里他一直工作到晚年,使伯克利加州大学由一所新学校变成了核物理的研究基地。 在劳伦斯选择科研方向时,卢瑟福学派的工作吸引了他,使他了解到“实验物理学家下一个重要阵地肯定是原子核”。但是,像卢瑟福那样用镭辐射的α粒子轰击原子核效果毕竟是有限的,因为能量不足,强度也弱。他深知出路在于找到一种办法,人为地使粒子加速,才能取得更好的效果。 1928年前后,人们纷纷在寻找加速粒子的方法。当时实验室中用于加速粒子的主要设备是变压器和整流器、冲击发生器、静电发生器、特斯拉(Tesla)线圈等等。这些方法全都要靠高电压,可是电压越高,对绝缘的要求也越苛刻,否

2010年诺贝尔物理学奖揭晓

2010年诺贝尔物理学奖揭晓 英国曼彻斯特大学2位科学家因在石墨烯方面的开创性实验获奖 安德烈·盖姆 康斯坦丁·诺沃肖罗夫

北京时间10月5日下午5点45分,2010年诺贝尔物理学奖揭晓,英国曼彻斯特大学2位科学家安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)因在二维空间材料石墨烯(graphene)方面的开创性实验而获奖。 安德烈·盖姆(Andre Geim),荷兰公民。1958年出生于俄罗斯索契。1987年从俄罗斯科学院固态物理研究所获得博士学位。英国曼彻斯特大学介观科学与纳米技术中心主任。曼彻斯特大学物理学教授及皇家学会2010周年纪念研究教授。 康斯坦丁·诺沃肖罗夫(Konstantin Novoselov),英国和俄罗斯公民。1974年出生于俄罗斯下塔吉尔。2004年从荷兰内梅亨大学获得博士学位。英国曼彻斯特大学教授及皇家学会研究员。 只有一个原子厚度,看似普通的一层薄薄的碳,缔造了本年度的诺贝尔物理学奖。安德烈·盖姆和康斯坦丁·诺沃肖罗夫向世人展现了形状如此平整的碳元素在量子物理学的神奇世界中所具有的杰出性能。 作为由碳组成的一种结构,石墨烯是一种全新的材料——不单单是其厚度达到前所未有的小,而且其强度也是非常高。同时,它也具有和铜一样的良好导电性,在导热方面,更是超越了目前已知的其他所有材料。石墨烯近乎完全透明,但其原子排列之紧密,却连具有最小气体分子结构的氦都无法穿透它。碳——地球生命的基本组成元素——再次让世人吃惊。 安德烈·盖姆和康斯坦丁·诺沃肖罗夫是从一块普通得不能再普通的石墨中发现石墨烯的。他们使用普通胶带获得了只有一个原子厚度的一小片碳。而在当时,很多人都认为如此薄的结晶材料是非常不稳定的。 然而,有了石墨烯,物理学家们对具有独特性能的新型二维材料的研制如今已成为可能。石墨烯的出现使得量子物理学研究实验发生了新的转折。同时,包括新材料的发明、新型电子器件的制造在内的许多实际应用也变得可行。人们预测,石墨烯制成的晶体管将大大超越现今的硅晶体管,从而有助生产出更高性能的计算机。 由于几乎透明的特性以及良好的传导性,石墨烯可望用于透明触摸屏、导光板、甚至是太阳能电池的制造。 当混入塑料,石墨烯能将它们转变成电导体,且增强抗热和机械性能。这种弹性可用于制造新型超强材料,质薄而轻,且具有弹性。将来,人造卫星、飞机及汽车都可用这种新型合成材料制造。 今年的获奖者在一起工作了很长时间。36岁的康斯坦丁·诺沃肖罗夫最初在荷兰以博士生身份与51岁的安德烈·盖姆开始合作。后来他跟随盖姆去到英国。不过他们两人最初都是在俄罗斯学习并开始物理学家生涯。现在他们均为曼彻斯特大学的教授。 爱玩是他们的特点之一,玩的过程总是会让人学到点东西,没准就这么着中了头彩。就像他们现在这样,凭石墨烯而将自己载入科学的史册。

2015年贵州公务员考试行测真题及答案解析(425联考)

2015年贵州公务员考试行测真题及答案解析(425联考) 试卷说明:题量:120 答题时间:120分总分:100 常识判断 根据题目要求,在四个选项中选出一个最恰当的答案。请开始答题: 1. 下列雕塑作品表现唐太宗李世民生平战功的是: A. 马踏匈奴 B. 击鼓说唱俑 C. 昭陵六骏 D. 乾陵石雕 2. 目前我国正大力推进文化体制改革,特别是对国内的动漫产业和影视剧通过内容管控的方式促进其发展,下列不属于行政手段的是: A. 规定各级电视台每日播出境外各类影视节目时间 B. 设立专项经费用于鼓励本土作家创作优秀剧本 C. 国家出台“限娱令”规范娱乐节目播出类型 D. 每年引进的境外动漫作品同类题材数量设置上限 3. 党的十八届三中全会审议通过了《中共中央关于全面深化改革若干重大问题的决定》(以下简称《决定》),对全面深化改革做出了总体部署。在未来一个阶段,《决定》对普通公民的生活可能带来的改变有:①如果你要考大学,那么可能不必文理分科②如果你是“单独家庭”,那么可以生育二胎③如果你是农村户口,那么宅基地可以私有④如果你是劳动者,那么可能可以延迟退休 A. ①②③ B. ②③④ C. ①②④

D. ①②③④ 4. 中国古代小说塑造了很多莽汉形象,他们外表威猛如金刚,性格天真似儿童,深受读者的喜爱。下列小说中莽汉的时代顺序排列正确的是:①张飞②程咬金③李逵④牛皋 A. ②①③④ B. ②①④③ C. ④②①③ D. ①②③④ 5. 下列情形符合法律规定的是: A. 甲乙二人自由恋爱,因两人均年满20周岁,经双方父母同意,两人可以结婚 B. 丙12岁,玩火酿成火灾,造成重大财产损失,但丙不承担失火罪的刑事责任 C. 丁6岁,春节收到红包若干,其母认为丁尚年幼,红包里的钱应归监护人所有 D. 19岁的大学生戊,认为父母有义务支付他的教育费及生活费至其独立工作为止 6. 下列不属于心理学效应的是: A. 晕轮效应 B. 马太效应 C. 破窗效应 D. 配位效应 7. 所谓硬水是指水中存在较多的矿物质成分,水的硬度指的是水中钙镁离子的总和。下列关于硬水的说法错误的是: A. 加入石灰能降低水的硬度 B. 可以用肥皂水鉴别软硬水

历届诺贝尔物理学奖

历届诺贝尔物理学奖 1901年威尔姆·康拉德·伦琴(德国人)发现X 射线 1902年亨德瑞克·安图恩·洛伦兹、P. 塞曼(荷兰人)研究磁场对辐射的影响 1903年安东尼·亨利·贝克勒尔(法国人)发现物质的放射性皮埃尔·居里(法国人)、玛丽·居里(波兰人)从事放射性研究 1904年J.W.瑞利(英国人)从事气体密度的研究并发现氩元素 1905年P.E.A.雷纳尔德(德国人)从事阴极线的研究 1906年约瑟夫·约翰·汤姆生(英国人)对气体放电理论和实验研究作出重要贡献1907年 A.A.迈克尔逊(美国人)发明了光学干涉仪并且借助这些仪器进行光谱学和度量学的研究 1908年加布里埃尔·李普曼(法国人)发明了彩色照相干涉法(即李普曼干涉定律)1909年伽利尔摩·马可尼(意大利人)、K . F. 布劳恩(德国人)开发了无线电通信O.W.理查森(英国人)从事热离子现象的研究,特别是发现理查森定律 1910年翰尼斯·迪德里克·范德华(荷兰人)从事气态和液态议程式方面的研究1911年W.维恩(德国人)发现热辐射定律 1912年N.G.达伦(瑞典人)发明了可以和燃点航标、浮标气体蓄电池联合使用的自动节装置 1913年H·卡末林—昂内斯(荷兰人)从事液体氦的超导研究 1914年马克斯·凡·劳厄(德国人)发现晶体中的X射线衍射现象 1915年威廉·亨利·布拉格、威廉·劳伦斯·布拉格(英国人)借助X射线,对晶体结构进行分析 1916年未颁奖 1917年 C.G.巴克拉(英国人)发现元素的次级X 辐射的特征 1918年马克斯·卡尔·欧内斯特·路德维希·普朗克(德国人)对确立量子理论作出巨大贡献 1919年J.斯塔克(德国人)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象 1920年 C.E.纪尧姆(瑞士人)发现镍钢合金的反常现象及其在精密物理学中的重要性

1998年诺贝尔物理学奖

·1998年诺贝尔物理学奖——分数量子霍耳效应的发现 1998年诺贝尔物理学奖授予美国加州斯坦福大学的劳克林(Robert https://www.360docs.net/doc/7111503041.html,ughlin,195O—),美国纽约哥伦比亚大学与新泽西州贝尔实验室的施特默(Horst L.St rmer,1949—)和美国新泽西州普林斯顿大学电气工程系的崔琦(Daniel C.Tsui,1939—),以表彰他们发现了一种具有分数电荷激发状态的新型量子流体,这种状态起因于所谓的分数量子霍耳效应。 量子流体早在研究极低温状态下的液氦和超导体时就已有所了解。在这些领域里,已经有好几位物理学家获得过诺贝尔物理学奖。例如,卡末林-昂内斯由于液氦的研究和超导电性的发现获1913年诺贝尔物理学奖;朗道由于液氦和超流理论获1962年诺贝尔物理学奖;巴丁、库珀和施里弗由于提出超导电性的BCS 理论获1972年诺贝尔物理学奖;卡皮查由于发现氦的超流动性获1978年诺贝尔物理学奖;柏诺兹和缪勒由于发现高温超导获1987年诺贝尔物理学奖;戴维·李、奥谢罗夫和R.C.里查森则因发现氦-3的超流动性获1996年诺贝尔物理学奖。这么多的物理学家受到如此殊荣,说明凝聚态物理学在20世纪有极大的发展,而低温和超导在这一领域内又具有特殊重要的地位。分数量子霍耳效应正是继高温超导之后凝聚态物理学又一项崭新课题。 分数量子霍耳效应是继霍耳效应和量子霍耳效应①的发现之后发现的又一项有重要意义的凝聚态物质中的宏观量子效应。冯·克利青由于在1980年发现了量子霍耳效应而于1985年获得诺贝尔物理学奖。图98-1表示冯·克利青所得霍耳电阻随磁场变化的台阶形曲线。台阶高度等于物理常数h/e2除以整数i。e 与h是自然的基本常数——e是电子的基本电荷,h是普朗克常数。h/e2值大约 为25kΩ。图中给出了i=2,3,4,5,6,8,10的各层平台。下面带峰的曲线表示欧姆电阻,在每个平台处趋于消失。量子数i也可用填充因子f 代替,填 充因子f由电子密度和磁通密度确定,可以定义为电子数N与磁通量子数Nφ(=φ/φ0)之比,即f=N/Nφ,其中φ为通过某一截面的磁通,φ0为磁通量子, φ0=h/e=4.1×10-15Vs.当f是整数时,电子完全填充相应数量的简并能级(朗 道能级),这种情况的量子霍耳效应叫做整数量子霍耳效应,以与分数量子霍耳效应相区别。

2015年株洲市中考物理试题(word版含答案)

1 2015年株洲市初中毕业学业考试 物 理 试 题 时量:90分钟 满分:100分 注意事项: 1.答题前,请按要求在答题卡上填写好自己的姓名和准考证号。 [来源:学|科|网][来源:学科网ZXXK][来源:学_科_网Z_X_X_K] 2.答题时,切记答案要填在答题卡上,答在试题卷上的答案无效。 3.考试结束后,请将试题卷和答题卡都交给监考老师。 一、单选题:本大题共12小题,每小题2分,共24分。在每小题给出的四个选项中,只有一项 是符合题目要求的。 1.2014年诺贝尔物理学奖颁给了发明蓝色二极管的三位科学家,他们的这项发明实现了利用二极管呈现白光,且发光效率高。LED 灯(即发光二极管)不具有的特点是 A .亮度高 B .能耗低 C .寿命长 D .发热多 2.如图,从物理学看,足球比赛中,守门员的作用主要是 A .改变足球的动能 B .改变足球的重力势能 C .改变足球的弹性势能 D .改变足球的运动状态 3.下列设备工作时,接收但不发射电磁波的是 A .收音机 B .移动电话 C .通信卫星 D .倒车雷达 4.为了防止因电流过大发生危险,家庭电路中要安装保险丝,以保护用电器或人身安全 A .人体触电是家庭电路中电流过大的原因 B .保险丝的工作原理是磁场对电流的作用 C .制作保险丝的材料熔点较低、电阻较大 D .制作保险丝的材料熔点较高、电阻较小 5.将两个铅柱的底面削平、紧压,两个铅柱结合了起来,在下面吊挂一个重物,它们仍没有分开,如图。该实验说明了 A .分子间存在引力 B .分子间存在斥力 C .分子间存在间隙 D .分子无规则运动 [来源学科网ZXXK]

1984年诺贝尔物理学奖——W±和Z°粒子的发现

1984年诺贝尔物理学奖——W±和Z°粒子的发现1984年诺贝尔物理学奖授予瑞士日内瓦欧洲核子研究中心(CERN)的意大 利物理学家鲁比亚(Carlo Rubbia,1934—)和荷兰物理学家范德米尔(Simon van der Meer,1925—),以表彰他们在导致发现弱相互作用的传播体W±和Z°的大规模研究方案中所起的决定性贡献。 这里所谓的大规模研究方案,就是指的在欧洲核子研究中心的质子-反质子对撞实验。CERN是研究基本粒子的国际中心,有13个欧洲国家参加,它跨越两个国家——瑞士和法国的边界,创建于1952年。来自各个国家的物理学家和工程师通力合作,在这里贡献自己的才能。三十年过去了,由意大利的鲁比亚和荷兰的范德米尔为首的庞大的实验队伍,终于取得了硕果,发现了W±和Z°粒子。人们说:是范德米尔使这项实验方案成为可能,而鲁比亚则使这项实验方案得到了预期的成果。这是因为要实现在粒子对撞实验中产生W±和Z°必须具备两个条件。一个条件是对撞的粒子必须具有足够高的能量,以至于有可能把足够的能量转变为质量,从而产生重粒子W±和Z°;另一个条件是碰撞的次数必须足够多,才会有机会观测到极罕见的特殊情况。前者是鲁比亚的功劳,后者是范德米尔的功劳。鲁比亚曾建议用CERN最大的加速器——SPS,作为正反质子的循环存储环。在存储环中,质子和反质子沿相反的方向作环形运动。这些粒子在环中以每秒十万周的速率绕环旋转。反质子在自然界(至少是在地球上)是不能自然产生的。但在CERN却可从另外的加速器——PS产生。反质子可以存储在一个特制的存储环中,这个存储环是由范德米尔领导的小组建造的。 SPS是CERN的质子同步加速器的代号,1971年开始建造,1976年完工,它的最大能量可达400 GeV,它的主加速器平均直径达2200 m。把SPS改装成质子-反质子对撞机后,质子和反质子可在这里加速到270 GeV,然后进行对撞,这样,所得到的质心系能量相当于155 TeV的静止靶加速器进行同类实验所能达到的能量。 范德米尔想出了一个非常聪明的办法使反质子形成强大的粒子束,他的方法叫做随机冷却(stochatic cooling)。随机冷却是束流冷却中的一种方法,目的是减少在加速过程中粒子束的横向发散度和能散度,粒子束中一部分粒子偏离设计轨道和平均能量意味着各粒子相对于它们的平均速度和轨道作不规则运动,偏离越大,不规则运动的动能也越大。用热学中温度的概念就说是这束粒子的温度较高;反之,减少这种不规则运动,就相当于把粒子束“冷却”。所谓随机冷却,实际上就是通过测量求得粒子束某一截面上的粒子流重心,再用测量后不远的校正(或冷却)装臵的电场使重心逐渐恢复到设计轨道上去,总的效果是最后使粒子得到“冷却”。经过冷却,粒子束可提高粒子流密度,从而提高对撞机的亮度。 在SPS存储环的周边上有两个碰撞点,碰撞点周围有一系列巨大的探测系统,可以记录生成粒子的信息。最大的一台探测器UA1是鲁比亚领导的小组建造和启动的。这个小组共有来自12个研究所的135位物理学家。UA1探测器重

【历届诺贝尔奖得主(八)】1983年物理学奖

1983年12月10日第八十三届诺贝尔奖颁发。 物理学奖 美国科学家昌德拉塞卡因对恒星结构方面的杰出贡献、美国科学家福勒因与元素有关的核电应方面的重要实验和理论而共同获得诺贝尔物理学奖。 苏布拉马尼扬·钱德拉塞卡是一位印度裔美国籍物理学家和天体物理学家。钱德拉塞卡在1983年因在星体结构和进化的研究而与另一位美国体物理学家威廉·艾尔弗雷德·福勒共同获诺贝尔物理学奖。他也是另一个获诺贝尔奖的物理学家拉曼的亲戚。钱德拉塞卡从1937年开始在芝加哥大学任职,直到1995年去世为止。他在1953年成为美国的公民。钱德拉塞卡兴趣广泛,年轻时曾学习过德语,并读遍自莎士比亚到托马斯·哈代时代的各种文学作品。 人物简介 苏布拉马尼扬·钱德拉塞卡(SubrahmanyanChandrasekhar,1910年10月19日 —1995年8月15日),在恒星内部结构理论、恒星和行星大气的辐射转移理论、星系动力学、等离子体天体物理学、宇宙磁流体力学和相对论天体物理学等方面都有重要贡献。1983年因在星体结构和进化的研究而获诺贝尔物理学奖。他是另一个获诺贝尔奖的物理学家拉曼的亲戚。 他一生中写了约四百篇论文和诸多书籍。他兴趣广泛,年青时曾学习德语,读遍自莎士比亚到托马斯·哈代的文学作品。 1937年起钱德拉塞卡在芝加哥大学工作,1953年取得美国国籍。晚年他曾研读牛顿的《自然哲学的数学原理》,并写了《Newton'sPrincipiafortheCommonReader》。此书出版后不久他便逝世了。 他算过白矮星的最高质量,即钱德拉塞卡极限。所谓“钱德拉塞卡极限”是指一颗白矮星能拥有的最大质量,任何超过这一质量的恒星将以中子星或黑洞的形式结束它们的命运。 人物生平 钱德拉塞卡于1910年出生在英属印度旁遮普地区拉合尔(现在的巴基斯坦),在家中排名第3,父亲为印度会计暨审计部门的高阶官员。 钱德拉塞卡的父亲也是一位技术娴熟的卡纳蒂克音乐(Carnaticmusic)演奏者与一些音乐学著作的作者。他的母亲则是一位知识份子,并曾将亨利克·易卜生的剧作《玩偶之家》翻译成泰米尔语。 钱德拉塞卡起初在家中学习,后来则进入清奈的高中就读(1922年至1925年间)。他在1925年至1930年进入了清奈的院长学院(PresidencyCollege),并获得学士学位。钱德拉塞卡在1930年7月获得印度政府的奖学金,于是前往英国剑桥大学深造。他后来进入剑桥三一学院就读,并成为劳夫·哈沃德·福勒(RalphHowardFowler)的学生。在保罗·狄拉克的建议下,钱德拉塞卡花费一年的时间在哥本哈根进行研究,并且认识了尼尔斯·玻尔。 钱德拉塞卡在1933年夏天获得剑桥大学的博士学位,并且在当年十月成为三一学院的研究员(1933年-1937年),他在这段时期认识了天文学家亚瑟·爱丁顿与爱德华·亚瑟·米尔恩(EdwardArthurMilne)。 钱德拉塞卡在1936年与LalithaDoraiswamy结婚。 学术生涯 苏布拉马尼扬·钱德拉塞卡,1930年毕业于印度马德拉斯大学,1933年获得英国剑桥大学三一学院博士学位。 1930~1934年在英国剑桥大学三一学院学习理论物理。

1918年诺贝尔物理学奖——能量子的发现

1918年诺贝尔物理学奖——能量子的发现 1918年诺贝尔物理学奖授予德国柏林大学的普朗克(Max KarlErnst Ludwig Planck ,1858—1947),以承认他发现能量子对物理学的进展所作的贡献。 1895年前后,普朗克正在德国柏林大学当理论物理学教授,由于鲁本斯(H.Rubens )的介绍,经常参加以基本量度基准为主要任务的德国帝国技术物理研究所(Physikalisch Technische Reichsanstalt ,简称PTR )有关热辐射的讨论。这时PTR 的理论核心人物维恩(W.Wien )因故离开PTR ,PTR 的实验研究成果需要有理论研究工作者的配合,普朗克正好补了这个空缺。 维恩在1893年提出了关于辐射能量分布的定律,即著名的维恩分布定律: T a e b u --=5λ 其中u 表示能量随波长λ分布的函数,也叫能量密度,T 表示绝对温度,a ,b 是两个任意常数。 维恩分布定律发表后引起了物理学界的注意。实验物理学家力图用更精确的实验予以检验;理论物理学家则希望把它纳入热力学的理论体系。普朗克认为维恩的推导过程不大令人信服,假设太多,似乎是凑出来的。于是从1897年起,普朗克就投身于这个问题的研究。他企图用更系统的方法以尽量少的假设从基本理论推出维恩公式。经过二三年的努力,终于在1899年达到了目的。他把电磁理论用于热辐射和谐振子的相互作用,通过熵的计算,得到了维恩分布定律,从而使这个定律获得了普遍的意义。 然而就在这时,PTR 成员的实验结果表明维恩分布定律与实验有偏差。1899年卢梅尔(O.R.Lummer )与普林舍姆(E.Pringsheim )向德国物理学会报告说,他们把空腔加热到800K ~1400K ,所测波长为0.2μm ~6μm ,得到的能量分布曲线基本上与维恩公式相符,但公式中的常数,似乎随温度的升高略有增加。第二年2月,他们再次报告,在长波方向(他们的实验测得8μm )有系统偏差。 根据维恩公式,应有:lnu=ln (bλ-5)T a λ- 从而lnu ~T 1曲线应为一根直线。但是,他们却发现温度越高,偏离得越厉害。 接着,鲁本斯和库尔班(F.Kurlbaum )将长波测量扩展到5.2μm 。他们发现在长波区域辐射能量分布函数(即能量密度)与绝对温度成正比。 普朗克刚刚从经典理论推导出的辐射能量分布定律,看来又需作某些修正。正在这时,瑞利(Lord Rayleigh )从另一途径也提出了能量分布定律。

相关文档
最新文档