检测器

检测器
检测器

检测器性能及规格

一、热导检测器

TCD是一种应用较早的通用型检测器,又称导热析气计。

一、原理:由于不同气态物质所具有的热传导系数不同,当它们到达处于恒温下的热敏元件(如Pt, Au, W, 半导体)时,其电阻将发生变化,将引起的电阻变化通过某种方式转化为可以记录的电压信号,从而实现其检测功能。

二、构成:由池体和热敏元件构成。

TCD检测器特点:

三、优点:

1)通用型,应用广泛

2)结构简单

3)稳定性好

4)线性范围宽

5)不破坏组分,可重新收集制备

四、缺点:与其他检测器比灵敏度稍低(因大多数组分与载气热导率差别不大)

五、影响TCD灵敏度的因素:

1)桥电流i:

i 增加——热敏元件温度增加——元件与池体间温差增加——气体热传导增加——灵敏度增加。检测器的响应值S ∝i3,但稳定性下降,基线不稳。桥电流太高时,还可能造成钨丝烧坏,电流通常选择在50~200 mA之间

2)池体温度:

不同温度允许的桥电流值是不同的。温度高时桥电流不能太高,因为可能烧坏钨丝。

TCD灵敏度与热丝和池体温度差成正比。显然,热丝与池体温度相差越大,越有利于热传导,检测器的灵敏度也就越高。增大温差有二种方法:一是提高桥面流,以提高热丝温度,前面已讨论过。二是降低池体温度,但是池体温度不能低于样品的沸点。以防止试样组分在检测器中冷凝。因此对沸点不是很低的样品,采用此法提高灵敏度是有限的。而对于气体样品,特别是永久气体,采用此法可达到较好的效果。

3)载气种类:

载气与试样的热导系数相差越大,在检测器两臂中产生的温差和电阻差也就越大,检测灵敏度越高。载气的热导系数大,通过的桥路电流也可适当加大,则检测灵敏度进一步提高。

通常选择热导系数大的H2 和He 作载气。因为H2、He的热导系数远远大于其它化合物。灵敏度高,峰形正常、线性范围宽、易于定量。氢的热导系数最大,传热好,通过的桥电流也可适当加大,灵敏度进一步提高。氦气也具有较大的热导系数,安全,但价格较高。N2与Ar作载气,灵敏度低,易出W峰,线性范围窄、一般只在分析H2、He气时用。用N2作载气时,热导系数较大的试样(如甲烷)可出现倒峰。

毛细管柱接TCD时,最好加尾吹气,加尾吹气的种类同载气。

六、TCD使用注意事项

(1).确保毛细柱插入TCD深度合适

毛细柱端必须插至测量池腔入口处合适的深度。

(2).避免热丝温度过高被烧断

任何热丝都有一最高承受温度,高于此温度则烧断。热丝温度的高低(桥电流的大小)是由载气种类和池体温度决定的。商品色谱仪出厂时均附有这三者的关系曲线,见下图所示,按此图调节桥电流,就能保证热丝温度不会太高。

(3).通桥电流前,务必要先通载气

为确保热丝不被烧断,在TCD通桥电流前,务必要先通载气,检查整个气路的气密性是否完好,调节TCD出口处的流速,稳定10~15分钟后,才能加桥电流。分析过程中,若需要更换色谱柱、进样垫或钢瓶,务必要先关桥电流,再更换。关机时也一定要先关桥电流,后关载气(否则检测器热丝会烧断),最后关主机电源。

(4).确保载气净化系统正常

载气和尾吹气应加净化装置,以除去氧气。载气净化系统使用一定时间后,因吸附饱和而失效,应立即更换,以确保载气正常净化。如不及时更换,载气净化系统就成了温度诱导漂移的根源。当室温下降时,净化器不再饱和,又开始吸附杂质,于是基线向下漂移。当室温升高,净化器处于气固平衡状态,向气相中解吸杂质增多,于是基线向上漂移。

(5). TCD温度必须高于柱温,否则组分会在池体内冷凝。

二、火焰离子化检测器(FID)

又称氢焰离子化检测器。主要用于可在H2-Air火焰中燃烧的有机化合物(如烃类物质)的检测。

一、原理:含碳有机物在H2-Air火焰中燃烧产生碎片离子,在电场作用下形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离的组分。

二、结构:主体为离子室,内有石英喷嘴、发射极(极化极,此图中为火焰顶端)和收集极。

(1) 在发射极和收集极之间加有一定的直流电压(100—300V)构成一个外加电场。

(2) 氢焰检测器要用到三种气体:

N2 :载气携带试样组分;

H2 :为燃气;

空气:助燃气。

使用时需要调整三者的比例关系,检测器灵敏度达到最佳

三、影响FID灵敏度的因素:

FID检测器可供色谱工作者选择的参数有:毛细柱插入FID喷嘴深度;载气种类;载气、氢气、空气的流速;温度等。

(1)毛细柱插入喷嘴深度

毛细柱插入喷嘴深度对改善峰形十分重要。通常是插入至喷嘴口平面下1~3㎜处。若太浅,组分与金属喷嘴表面接触,产生催化吸附,峰形拖尾。若插入太深,会产生很大噪声,灵敏度要下降。

(2)气体种类、流速和纯度

1.载气、尾吹气种类和流速

2.氢气、空气的流速

3.气体纯度

(3)极化电压:在500V 以下时,电压越高,灵敏度越高。但在500V 以上,则灵敏度增加不明显。通常选择 100~ 300V的极化电压。

(4)FID为质量型检测器:对温度变化不敏感,但柱温变化影响基线漂移,检测器温度变化影响FID灵敏度和噪声,但汽化室温度变化对FID无直接影响。由于FID中氢燃烧产生大量的水蒸气,若检测器温度太低,水蒸气不能从检测器中排出,会冷凝成水,使灵敏度下降,噪声增加。若有氯代溶剂或氯代样品时,还易造成腐蚀。所以FID检测器温度务必在120℃以上。

四、FID 特点:典型的质量型检测器

1)灵敏度高(~10 -12 g/s);

2)线性范围宽(~10 7 数量级);

3)噪声低;

4)结构简单、稳定性好、响应迅速等特点;耐用且易于使用;

5)为质量型检测器,色谱峰高取决于单位时间内引入检测器中组分的质量。在样品量一定时,峰高与载气流速成正比。因此在用峰高定量时,应控制流速恒定!

6)对有机化合物具有很高的灵敏度;对无机物、永久性气体和水基本无响应,因此FID 特别适于水中和大气中痕量有机物分析或受水、N 和S 的氧化物污染的有机物分析。

7)对含羰基、羟基、卤代基和胺基的有机物灵敏度很低或根本无响应。8)样品受到破坏,无法回收。

9)比热导检测器的灵敏度高出近3个数量级,检测下限可达10-12g/g。五、注意事项

(一)注意安全

防氢气泄漏,切勿让氢气泄漏入柱恒温箱中,以防爆炸。注意以下几点即可:在未接色谱柱和柱试漏前,切勿通氢气;卸色谱柱前,先检查一下,氢气是否关好;如果是双柱双检测器我谱仪,只有一个FID检测器工作时,务必要将另一个不用的FID用闷头螺丝堵死;防烫伤,因为FID外壳很烫。(二)保持FID正常性能

1.正常点火

点火时,FID检测器温度务必在120℃以上。点火困难时,适当增大氢气流速,减小空气流速,点着后再调回原来的比例。检测器要高于柱温20~50℃,防水冷凝。

2.定期清洗喷咀

注意线性范围与以下条件有关:一般用N2作载气,载气要净化,除有机物;气体流量比等。

三、电子捕获检测器(ECD)

ECD主要对含有较大电负性原子的化合物响应。它特别适合于环境样品中卤代农药和多氯联苯等微量污染物的分析。

一、原理:电子捕获检测器内有一个放射源(Ni63放射源)作为负极,还有一正极。两极间加适当电压。当载气(N2)进入检测器时,受放射源不断放出β粒子射线的辐照发生电离,生成的正离子和电子分别向负极和正极移动,形成恒定的基流。含有电负性元素的样品AB进入检测器后,就会捕获电子而生成稳定的负离子,生成的负离子又与载气正离子复合。结果导致基流下降。

二、特点:(1)高选择性检测器,

(2)仅对含有卤素、过氧基、醌基、硝基等元素的化合物有很高的灵敏度,检测下限10-14 g /mL,

(3)对大多数烃类没有响应

(4)较多应用于农副产品、食品及环境中农药残留量的测定。

(5)载气用高纯氮气,要用净化管除去氧和水。

三、检测条件的选择:

(一)载气种类、纯度和流速

N2、Ar 、He、H2等均可作ECD的载气。N2 、Ar作载气时之基流之和灵敏度高于He、H2 ,由于氮气价廉易得、响应值大,故N2是一种常用的载气。

载气纯度直接影响ECD的基流,一般用高纯N2(99.999%) 含O2<10 mg/L。若用普通N2(含O2量100 mg/L),必须净化除去残留的氧和水等,因为O2

是电负性物质,可使基流降低很多。

载气与尾吹气流速的调节有不同的目的意义。载气主要从组分分离要求出发,通常用填充柱时载气流量为20~50ml/min。尾吹气流速的调节为减小谱带展宽、保持毛细柱达到一定的柱效;保持ECD 达饱和基流;使峰面积或峰高达到最大响应。

(二)色谱柱和柱温

色谱柱和柱温的选择原则是既保证各组分的分离效果,又要保持ECD洁净,不受柱固定相的污染。因此应尽量选择低配比的耐高温或交联固定相,柱温尽量偏低。可减少固定相的流失。

(三)检测器温度

ECD响应值与温度密切相关。采取升高或降低检测器温度,使被测物组分信号增大,干扰物响应减小,来达到选择性检测的目的。

ECD检测器的响应明显受检测器温度的影响,因此,检测器温度波动必须小于±(0.1~0.3)OC,以保证测量精度在1%以内。另外,在比较同一化合物的响应值或最小检测量时,注意温度应相同,并要标明温度。

四、ECD使用注意事项

电子捕获检测器是常用的检测器,灵敏度高,选择性好。主要缺点是线性范围较窄。

ECD使用中最重要的是始终保持系统的洁净有污染时要及时清理及时排除;要注意安全;为了准确定量,要防止ECD 过载。

(1)是选择性检测器,对卤素及S,P,O,N等化合物响应大,对烃类无响应,对CCl4响应值比正己烷大108倍,因此可与FID组合定性

(2)灵敏度高,最低检测限度很低,检测下限10-14 g /mL,但线形范围窄,约104

四、火焰光度检测器(FPD)

FPD 是对含S、P化合物具有高选择性和高灵敏度的检测器。因此,也称硫磷检测器。主要用于SO2、H2S、COS、石油精馏物的含硫量、有机硫、有机磷的农药残留物分析等。

化合物中硫、磷在富氢火焰中被还原,激发后,辐射出400、550 nm 左右的光谱,可被检测

一、FPD性能特征:高灵敏度和高选择性;对磷的响应为线性;对硫的响应为非线性。用于测含S,P化合物,信号约比C-H化合物大10000倍。用P 滤光片时,P的响应值/S的响应值>20;用S滤光片时,S的响应值/P的响应值>10,对硫的非线性响应已有多种线性化处理方法:双对数曲线法、峰高换算法等。在此不作讨论。

二、原理及工作过程:组分在富氢(H2﹕O2 > 3)的火焰中燃烧时组分不同程度地变为碎片或原子,其外层电子由于互相碰撞而被激发,当电子由激发态返回低能态或基态时,发射出特征波长的光谱,这种特征的光谱通过选择的干涉滤光片进香测量(含有硫、磷、硼、氮、卤素等的化合物均能产生这种光谱,如硫在火焰中产生350-430nm的光谱,磷产生480-600nm的光谱),测量到的光信号经转换变为电信号,再经过光电倍增管放大,得到色谱图。通过测量光谱的强度的变化的大小可进行定量分析。

三、工作条件:通入的氢气量必须多于通常燃烧所需要的氢气量,即在富氢情况下燃烧得到火焰。

一般H2流量是150~160ml/min;N2流量是40~50ml/min。

四、性能与应用:FPD为质量型选择性检测器,主要用于测定含硫、含磷化合物,其信号比碳氢化合物几乎高10000倍。

五、氮磷检测器(NPD)

又名:热离子检测器(thermionic detector, TID),碱焰离子化检测器(alkali FID,AFID)

NPD的结构与FID类似,只是在H2-Air焰中燃烧的低温热气再被一硅酸铷电热头(硅酸铷,Rb2O·SiO2,称作铷珠)加热至600~800oC,从而使含有N或P的化合物产生更多的离子。产生离子的机理目前仍不清楚。一、结构:NPD属于碱盐离子化检测器之一,在喷嘴和收集极之间,加一个小玻璃珠,表面涂一层硅酸铷作离子源,增加组分的电离度,是选择性检测器,对含有能增加碱盐挥发性的有化合物特别敏感,对含氮、磷的有机物灵敏度很高。检测氮、磷化合物。是一种破坏性检测器。

二、特点:

1)对含N、P 化合物的具有选择性:对P 的响应是对N的响应的10倍,是对C 原子的104-106 倍。

2)灵敏度高:与FID对P、N的检测灵敏度相比,NPD分别是FID的500倍(对P);50倍(对N)。

符号TCD FID ECD FPD NPD MSD

检测方法物理常数法气相电离

法气相电离

光度法气相电离

质谱法

工作原理热导率差异火焰电离化学电离分子发射热表面电

离电离与质量色散结合

类型浓度型 通用型

非破坏性质量型

准通用型

破坏性

质量型

选择型

非破坏性

浓度型

选择型

破坏性

质量型

选择型

破坏性

质量选择

灵敏度≥≤10-11g/s ≤10-13g/s 硫≤氮≤5×

2500 mv.ml/mg 10-10g/s

磷≤

10-11g/s 10-11g/s 磷≤2×10-12g/s

线形范围≥104 ≥106 ≥102-104 硫≥102

磷≥

103-104

105 105

应用范围所有化合物有机化合

物电负性化

合物

硫、磷 化

合物

氮、磷化合

物、农药残

所有化合

物(结构检

定)

单通道线圈车辆检测器

单通道线圈车辆检测器 LD100/102 LD100/102是单通道系列车辆检测器的一种,它使用了微处理器和表面封装技术将很多功能集成在一个很小得盒子内。LD100/102在市场上很有竞争力并且非常容易设置和安装。主要应用在停车场和路口收费方面。 检测器的主要特性: ●复位键 按下复位键使得检测器在使用和测试时人工复位, 并使得感应线圈处于检测车辆准备状态。 ●脉冲时间可选 选择脉冲时间,即激活脉冲继电器,脉冲输出宽度1秒和0.2秒可选。 ●脉冲继电器选择 脉冲继电器输出可设置为压到线圈或离开线圈时输出信号。 ●自动提高灵敏度 可使检测灵敏度自动升到最高,以防漏测高底盘的车辆。 ●开关设置灵敏度 检测灵敏度在输出结果时灵敏度系数改变很小(%△L/L)。在微动开关中有8级灵敏度可调,在设置和应用时非常灵活。 ●频率可选 检测线圈的频率决定于线圈的感应系数和频率开关设置。频率开关设为ON,频率就低。 有相邻的线圈可能需要改变频率来防止串扰。 ●永久存在功能

当车辆长时间压在线圈上,检测器的输出信号一直有效。 ●信号过滤 此项功能可使测到车辆的信号输出延迟2秒。主要防止小的和快速移动物体经过线圈的干扰信号。 ●延长输出 可使输出的信号延长2秒。 ●线圈出错指示 当线圈开路或短路时,面板上的LED会有指示。 ●电源指示 LED在有电源时会有指示。 当车辆经过线圈或线圈有问题时,LED会有指示。LED还可以用来测定线圈的频率,按下复位键,数一下LED闪烁的次数乘以10KHz就是该频率。例如,LED闪6次,该频率就是60-70KHz。 继电器功能 继电器有车无车线圈错无电源 N/O 合开合合 存在输出 N/C 开合开开 N/O 脉冲输出合开开开 脉冲继电器 N/C 脉冲输出开合合合 安装指导: 1、检测器应安装在防水的箱内仅可能靠近线圈 2、线圈和馈线应用1.5mm多股铜线,馈线应双绞,每米20绞,使用一根无接点的铜线, 如有接头需要焊接并要防水,虚焊可能导致检测器不正常工作,馈线会被干扰,需用屏蔽线,屏蔽线和检测器的接地相联。 3、线圈是正方形或长方形的,每边至少相距1m,线圈正常绕3圈,周长大于10m的线圈, 绕2圈,小于6m绕4圈,如有2个线圈相距很近,建议一个线圈绕3圈,另一个绕4圈。以防串扰。

频率检测电路

频率检测电路 By Linux1s1s@https://www.360docs.net/doc/7113200340.html, 一:题目要求 设计频率测量电路,满足以下指标: ①:测量频率范围:10Hz----10KHz; ②:精度要求:0.1% 二:设计方案 设计系统框图如下所示: 三:硬件电路图 ①1KHz低通滤波器 1KHz低通滤波器

②1KHz高通滤波器 1KHz高通滤波器 ③放大整形电路结构如下: 放大整形电路 被测信号由三极管电阻组成的网络进行放大,由555组成的施密特触发器对其进行整形,变成矩形脉冲。 ④阀门电路结构 阀门电路

仅当F0为高电平时,闸门才打开,允许被测信号通过,因为当F0为0时,闸门输出就为1。 ⑤计数器电路 计数器电路 四:软件设计 用MCS-51单片机测量频率的定时计数程序: MOV R2 , # 01H ;定时1个0.1秒 ANL TMOD , # 0FH ;设置T0定时T1计数 ORL TMOD , # 51H MOV TH0 , # 38H ;置定时器初值 MOV TL0 , # 00H MOV TH1 , # 00H ;置计数器初值 MOV TL1 , # 00H SETB TR0 ;启动定时 SETB TR1 ;启动计数 XX: JBC TF0 , LOOP ;定时溢出则转移 SJMP XX ;否则继续查询

LOOP: MOV TH0 , # 38H ;置定时初值 MOV TL0 , # 00H DJNZ R2 , XX ;R2不等于0则转移 CLR TR1 ;停止计数 五:小结 以上电路主要分为两个部分,首先将10Hz到10KHZ信号进行滤波处理,因为在保证精度的情况下只能将此频率信号进行分离,分成10Hz到1KHz和1KHz到10KHz两部分,然后将此两部分频率分别采用不同的方法进行测量,对于低频部分宜采用周期测量法,而对于高频部分宜采用计数测量法,将硬件部分按照原理框图连接,并对8031设计相应的程序,即可实现由10Hz到10KHz频率测量,并且可以保证精度0.1%。

四通道车检器TD634ES 用户手册

TD634ES裸卡式用户手册

1.产品简介 TD634ES是一种4通道的卡式车辆检测器,采用欧标形式。TD634ES采用专业化设计,用于交通量的检测,其不断升级的技术参数更能适合交通领域的应用。 当车辆经过埋在路面下的线圈时,由于线圈磁感应会发生变化,从而车辆检测器便能检测到车辆的存在。 车辆检测器专业化的设计使其更易于安装,通过对前面板上DIP开关的设置,可以轻松设置每个通道的存在时间以及灵敏度。板卡上的另外一个DIP开关用于选择检测器板卡的工作频率。 TD634ES在前面板上提供了LED信息指示灯,并与板卡接口的继电器状态相关联。另外,对于4通道的车辆检测器同时提供了故障诊断LED指示灯,当线圈或电源有故障时,此指示灯会输出信号。 TD634ES是一种多功能的检测器,它可以用于很多方面,如流量统计、车速检测以及配合其它交通控制或路旁检测设备使用的启动控制。 2. 技术参数 2.1.结构参数 2.1.1 配置 4通道卡式检测器,由外部低压直流电源供电。 2.1.2 类型多通道,单一多路复用振荡器,并采用各通道同时顺序采样技术。多路复用器的 主/从同步选择。 2.1.3 检测模式它是采用微处理器(Intel 80C52)控制的检测器。当车辆通过埋在路面下的地感 线圈时,由于线圈磁感应的变化导致线圈振荡器频率的变化,从而检测到车辆的 存在。 2.1.4 格式欧标卡式车辆检测器,前面板有2个8位的DIP拨动开关和8个LED指示灯。通过后边 的DIN41612 B型接口实现与其它部件连接,接口的管脚定义请参见有关章节。 2.1.5 复位通过前面板上的按钮可以实现两种功能:节能/复位,并且通过后部接口管脚可 以实现远距离复位。 2.2 性能参数 2.2.1 自动调谐当接通电源或手动复位后,检测器会进行自动调谐,调谐时间为±3s。

基于FPGA的频率测试仪设计

1 引言 频率特性是一个网络性能最直观的反映。频率特性测试仪用于测量网络的幅频特性和相频特性,是根据扫频法的测量原理设计,是一种快速、简便、实时、动态、多参数、直观的测量仪器,可广泛应用于电子工程等领域。由于模拟式扫频仪价格昂贵,不能直接得到相频特性,更不能打印网络的频率响应曲线,给使用带来诸多不便。为此,设计了低频段数字式频率特性测试仪。该测试仪采用数字直接频率合成技术专用的集成电路AD985l产生扫频信号,以单片机和FPGA为控制核心,通过A/D和D/A转换器等接口电路,实现扫频信号频率的步进调整、数字显示及被测网络幅频特性与相频特性的数显等。该系统成本低廉,扫频范围较宽(10 Hz~1MHz),可方便地与打印机连接,实现频率特性曲线的打印。 2 多功能计数器设计方案 2.1 幅频和相频特性测量方案 方案1:利用公式H(s)=R(s)/E(s),以冲击函数为激励,则输出信号的拉氏变换与系统函数相等。但是产生性能很好的冲击函数比较困难,需要对采集的数据做FFT变换,需要占用大量的硬件和软件资源,且精度也受到限制。 方案2:扫频测试法。当系统在正弦信号的激励下,稳态时,响应信号与输入激励信号频率相同,其幅值比即为该频率的幅频响应值,而两者的相位差即为相频特性值。采用频率逐点步进的测试方法。无需对信号进行时域与频域的变换计算,通过对模拟量的测量与计算完成,且精度较高。 综上所述,选择方案2。 2.2 扫描信号产生方案 方案1:采用单片函数发生器。其频率可由外围电路控制。产生的信号频率稳定度低,抗干扰能力差,灵活性差。 方案2:采用数字锁相环频率合成技术。但锁相环本身是一个惰性环节,频率转换时间长,整个测试仪的反应速度就会很慢,而且带宽不高。 方案3:采用数字直接频率合成技术(DDFS)。以单片机和FPGA为控制核心,通过相位累加器的输出寻址波形存储器中的数据,以产生固定频率的正弦信号。该方案实现简单,频率稳定,抗干扰能力强。 综上分析,采用方案3。 2.3 幅度检测方案 方案1:采用二极管峰值检测电路。但是二极管的导通压降会带来较大误差,小信号测量精度不高,而且模拟电路易受到外部的影响,稳定性不高。 方案2:采用真有效值检测器件。该方法电路简单,精度高,稳定性高。 综上所述,采用方案2。 2.4 相位检测方案

红外热像仪用于管道检测

红外热成像技术用于管道检测 管道是生产的重要设备,利用热像仪检测管道堵塞、减薄、腐蚀、渗漏等故障 ,从而避免 对环境及人员造成伤害;也可以使用热像仪对管道的保温进行检测 和评估,从而减少能耗, 达到节 能效果。 红外热像仪在检测管道中的应用 对管道进行温度检测一般有以下应用: 1管道堵塞,由于堵塞部位和其他部位热容量不同 导致温差,这些温差传递到管线外壳,就可以使用红外热像仪在管 道外部拍摄到故障。2管 道内壁受磨损或是腐蚀导致减薄, 其温度会比正常部位温度偏高, 从而可以检测出故障。3 管道由于局部温度波动较大导致材料热疲劳造成裂纹、 泄漏,故障处会渗漏管道内介质, 如 果管道内介质为低温介 质(如氨气)或是高温介质时,管道渗漏介质与管道外壁温差不同, 可使用红外热像仪拍摄到故障。 4管道保温脱落,其脱落处温度偏大,可在热像图中清晰 显示。热像仪还可检测出管道温度, 作为保温是否达到规定 效果的判断依据。5换热器炉 管堵塞或是内漏,导致换热效率降低,影响正常生产和造成能源浪费, 可以使用热像仪检查 出故障。6加热炉或是反应器炉管在高温高压和腐蚀性强的环境下工作,会造成热斑、龟 裂、渗碳、氧化、热裂、减薄等,严重影响其使用寿命。利用 谱盟光电红外热像仪通过窥视 孔对炉内炉管测试,可得到故障的热图像,为维修炉管的实施方案提 供依据。 典型客户: 石化行业:衢州巨化、独山子石化、扬子石化-巴斯夫等 制药行业:强生制药等 冶金行业:武汉钢铁公司、马鞍山钢铁公司、鞍山钢铁公司等 红外热像仪的优点 1管线的积炭、减薄、裂纹;换热器、反应器等设备炉管内漏、堵塞等故障往往肉眼无法发 现,热像仪可以检测出细微 的温度变化,在此基础上,我们可迅速判断出故障。 2 FLIR 已申请专利的画中画及 MSX 多波段动态成像技术除了拍摄红外图像外, 还同时捕获一幅数字 照片,将其融合在一起,有助于识别和定位故障,从而能够在第一时间正确的修复故障。 3 谱盟光电FLIR T400系列热像仪配备了功能强大的软件, 用于存储和分析热图像并生成专业 报告。通过该软件,可以对存储在从 热像仪下载的图像中发射率、反射温度补偿以及调色 管熾与支按岸按处有 保

BCJ-04双通道车辆检测器说明书--电子版

BCJ-04双通道车辆检测器 使用说明书性能指标 调谐全自动 灵敏度面板上两级可调(0.02%~0.5%)ΔL/L 频率四级开关可选频率决定于线圈几何尺 寸 模式存在模式(当车压地感时一直有继电 器信号输出) 响应时间100毫秒 可见指示1×电源LED-红、2×通道状态LED- 绿 继电器输出2×继电器承受电流范围 5A/AC230V 复位按外壳前面底部开关 电涌保护线圈输入端:绝缘变压器、稳压管和 气体放电管保护 电源要求220V AC ±15 % ( 48至60Hz ) 要求:在220V时最大2 V A 存储温度-40℃至+85 ℃ 工作温度-30℃至+70 ℃ 盒体材料 PVC塑料 盒体尺寸 76mm×44mm×83mm 硬件安装 如何安装 BCJ-04双通道车辆检测器设计为支架或DIN插座 安装,控制和可见指示灯在盒体的前面,连接线在盒体 的后端。 电源、线圈和继电器输出端全部连接在盒体后端的 一个11脚的插座上。 双通道车辆检测器功能选择 频率选择:有四种频率可选。 灵敏度:检测器的灵敏度允许检测器根据电感变化量的 不同和车辆检测的需要来选择使用。 复位开关:按动RESET开关,检测器将自动调谐。 双通道车辆检测器功能和应用 BCJ-04双通道车辆检测器能够应用于停车场和大 门/通道等多种不同的环境。 驱动读卡器和售票机。 作为栏杆机/大门/通道的关闭检测器。 作为栏杆机/大门/通道的开启检测器(自由出口)。 为车辆计数提供脉冲。 双通道车辆检测器配置 引脚颜 色 名称 1 红火线220V AC输入 2 黑零线±15%50/60 Hz 3 蓝通道1线圈 通道1线圈 4 蓝 5 黄通道2线圈 通道2线圈 6 黄 7 白通道2 继电器常开接点 8 白继电器公共接点 9 黄 白 保护地线 10 灰通道1继电器常开接点 11 灰继电器公共接点 默认开关设置: 拨码拨码含义默认 值 1、2 频率高 3 CH2灵敏 度 低 4 CH1灵敏 度低 双通道车辆检测器的特点 BCJ-04双通道车辆检测器是基于微处理器设计的 用于停车场和车辆出入控制。BCJ-04的设计使用了许多 最新技术来广泛地适应众多停车场的使用环境,以供客 户选用。对于用户,许多外部功能是有效的。 地感线圈注意事项 为了使BCJ-04双通道车辆检测器工作在最佳状态, 线圈的电感量应保持在100-300 uH之间。在绕制线圈 时,要留出足够长度的导线以便能连接到车辆检测器, 并要确保中间没有接头存在。绕好线圈电缆以后,必须 将引出的电缆做成紧密双绞的形式,要求最少1米绞合 30次。否则,线圈电感值会变得不稳定。输出引线长度 一般不应超过10米,因为探测线圈的灵敏度随引线长度 的增加而降低,所以引线电缆的长度要尽可能短。 线圈规格 线圈 长×宽 4匝5匝6匝7匝 1.5× 1m ---- 136uH 192uH 255uH 2×1m ---- 160uH 228uH 310uH 2.5× 1m 125uH 190uH 268uH ---- 3×1m 146uH 220uH 314uH ---- 4×1m 108uH 182uH 278uH ---- 5×1m ---- ---- 可选用 6匝 问题及解决方法 通电后红色LED不亮或常亮 如果指示灯熄灭,那么,与之相连的电源有问题。 如果常亮表示工作不正常,请重新上电或复位。 初始调谐后,检测指示灯变为绿色,并以50MS或2秒 的周期闪灭 由于线圈或馈线故障,检测器不能成功调谐线圈。 如果线圈电感量过小绿色LED闪亮频率2 S/次,线圈电 感量过大绿色LED闪亮频率50 ms/次,地感线圈接触不 良或断路绿色LED闪亮频率50 ms/次 调谐后,线圈输出LED间歇闪烁,继电器卡嗒作响 由于线圈得到假的检测信号: a) 相邻检测器出现串扰 b) 与之连接的线圈或馈线出现故障 地感线圈布线方法 300mm 1米 最小间距:米(路宽米时) 22 34 米(路宽米时) 根据路面宽度面定 45度倒角 300mm 车流方向对绞 对绞

频率特性测试仪(完整版)

频率特性测试仪 摘要:本实验以DDS芯片AD9851为信号发生器,以单片机MSP430F449为核心控制芯片,以FPGA为辅助,加之于外围电路来实现幅频及相频的检测。系统由6信模块组成:正弦扫频信号模块,待测阻容双T 网络模块,整形模块,幅值检测模块,相位检测模块,及显示模块。先以单片机送给AD9851控制字产生100HZ—100KHZ的扫频信号,经过阻容双T网络检测电路,一路信号通过真有效值AD637JP对有效值进行采集后进入单片机进行幅值转换,另一路信号由整形电路整形后进入FPGA进行相位检测及频率检测,最后由LCD显示输出,最终来完成幅频及相频的简单测试。 关键字:AD9851、 MSP430F449 、FPGA 、阻容双T网络、AD637 LM311比较器、液晶12864

目录 一、方案方案论证与选择 (3) 1. 扫描信号产生方案 (3) 1.1 数字直接频率合成技术(DDFS) (3) 1.2 程控锁相环频率合成 (3) 1.3 数字频率发生器(DDS)AD9851产生 (3) 2.相位检测方案 (4) 2.1 A/D采样查找最值法 (4) 2.2 FPGA鉴相法 (4) 3. 幅值检测方案 (5) 3.1 峰值检波法 (5) 3.2 真有效值芯片AD637检测法 (6) 二、系统总体设计文案及实现方框图 (7) 三、双T网络的原理分析及计算 (7) 1、双T网络的原理 (7) 2、双T网络的设计 (9) 四、主要功能模块电路设计 (11) 1、AD9851正弦信号发生器 (11) 2、减法电路及射极跟随器 (12) 3 整形电路 (13) 4 真有效值检测 (13) 五、系统软件设计 (14) 六、测试数据与分析 (15) 七、总结分析与结论 (17) 参考文献: (17) 附录: (17)

简易频率特性测试仪(E题)要点

2013年全国大学生电子设计竞赛题目:简易频率特性测试仪(E题) 学校:洛阳理工学院 系别:电气工程与自动化系 学生:蔡超越王瑞同葛永要 指导老师:张刚 时间:2013年9月4号---2013年9月7号

题目名称:简易频率特性测试仪(E题) 【摘要】:本实验以DDS芯片AD9851为信号发生器,以单片机STC8051为核心控制芯片,加之于外围电路来实现幅频及相频的检测。系统由5个模块组成:正弦扫频信号模块,待测串联RLC及加法器模块,低通滤波及AD转换模块,单片机最小系统模块,及显示模块。先以单片机送给AD9851控制字产生1MHz-40MHz的正交扫频信号,一路余弦信号经过RLC被测电路转换后,传入乘法器,分别与正交信号相乘。输出两路信号经过低通滤波器、AD转换,在12864上显示幅频特性曲线和相频特性曲线。 【关键词】:DDS STC8051最小系统 RC滤波 Abstract:This experiment is signal generator with DDS chip AD9851, STC8051 MCU as the core control chip, and the peripheral circuit to realize the amplitude frequency and phase frequency detection. System is composed of five modules: sine sweep signal module, serial RLC under test and the adder module, low-pass filtering and AD conversion module, single chip microcomputer minimum system module, and display module. Start with single chip microcomputer to AD9851 control word to produce 1 MHZ - 40 MHZ orthogonal frequency sweep signal, a cosine signal through the RLC circuit to be tested after transformation, the incoming multiplier, with the orthogonal signal multiplication respectively. Output two road signals through a low-pass filter, AD conversion, displayed on the 12864 amplitude-frequency characteristic and phase frequency characteristics curve.【key words】: DDS STC8051 smallest RC filtering system

油气管道内检测的类型及现状

油气管道内检测的类型及现状 管道发生腐蚀后,主要表现为管壁减薄、蚀损斑、腐蚀点坑、应力腐蚀裂纹等。管道内检测就是应用各种检测技术真实地检测和记录包括管道的基本尺寸(壁厚及管径)、管线直度、管道内外腐蚀状况(腐蚀区大小、形状、深度及发生部位)、焊缝缺陷以及裂纹等情况。目前,国内外在油气管线内腐蚀方面做了大量的工作,提出了多种检测技术,其中部分技术已被应用并取得了良好的效果。这些技术包括:漏磁检测技术、超声波检测技术、涡流检测技术、射线检测技术、基于光学原理的无损检测技术。 1漏磁检测技术 漏磁检测技术是建立在如钢管、钢棒等铁磁性材料的高磁导率这一特性上的。其基本原理如图1所示,钢管中因腐蚀而产生缺陷处的磁导率远小于钢管的磁导率;钢管在外加磁场作用下被磁化,当钢管中无缺陷时,磁力线绝大部分通过钢管,此时磁力线均匀分布;当钢管内部有缺陷时,磁力线发生弯曲,并且有一部分磁力线泄漏出钢管表面,检测被磁化钢管表面逸出的漏磁通,就可判断缺陷是否存在,通过分析磁敏传感器的测量结果,即可得到缺陷的有关信息。 图1漏磁检测原理 该方法以其在线检测能力强、自动化程度高等独特优点而满足管道运营中的连续性、快速性和在线检测的要求,使得漏磁检测成为到目前为止应用最为广泛的一种磁粉检测方法,在油田管道检测中使用极为广泛。此外与常规的磁粉检测相比,漏磁检测具有量化检测结果、高可靠性、高效、低污染等特点。 2超声波检测仪 超声波检测是用灵敏的仪器接收和处理采集到的声发射信号,通过对声发射源特征参数的分析和研究,推断出材料或结构内部活动缺陷的位置、状态变化程度和发展趋势。其基本原理如图2所示。

图2超声波裂纹检测原理 该方法是利用超声波的脉冲反射原理来测量管壁腐蚀后的厚度,检测时将探头垂直向管道内壁发射超声脉冲,探头首先接受到由管壁内表面的反射脉冲,然后超声探头又会接受到来自管壁外表面的反射脉冲,这两个反射脉冲之间的间距反映了管壁的厚度。 超声检测是管道腐蚀缺陷深度和位置的直接检测方法,测量精度高,被测对象范围广、检测数据简单,缺陷定位准确且无需校验,检测数据非常适合用于管道最大允许输送压力的计算,为检测后确定管道的使用期限和维修方案提供了极大的方便;适用于大直径、厚管壁管道的检测;能够准确检测出管道的应力腐蚀破裂和管壁内的缺陷如夹杂等。因此超声检测技术是国内外应用最广泛、使用频度最高且发展最快的一种无损检测技术。 但在实际现场应用中,超声检测会遇到一些问题:检测过程中,探头与管壁间需有连续的耦合剂,也需要声波的传播介质,如油或水等;超声波在空气中衰减很快,在气体管道上的应用还存在一定困难;对薄壁管道环缝缺陷的检测有一定难度。最近,德国ROSEN公司研发出了一种使用电磁声波传感检测技术(EMAT)的新型高分辨率超声波检测器,提供了一种能有效和精确地检测裂纹的新方法。研究人员从实验室获得的大量数据,证明了EMAT探测管道应力腐蚀开裂和其他结构缺陷的可行性,这一新型检测器已经通过了工业试验,可以判断SCC、涂层剥落、其他裂纹缺陷、异常沟槽、人为缺陷等。该技术的最大优点是借助电子声波传感器代替了传统的压电传感器,使超声波能在一种弹性导电介质中得到激励,不需要机械接触或液体耦合,适用于天然气管道的超声裂纹检测器。 3涡流检测技术 涡流检测是以电磁场理论为基础的电磁无损探伤方法。该技术的基本原理是:在涡流式检测器的两个初级线圈内通以微弱的电流,使钢管表面因电磁感应而产生涡流,用次级线圈进行检测。若管壁没有缺陷,每个初级线圈上的磁通量均与次级线圈上的磁通量相等;由于反相连接,次级线圈上不产生电压。若被测管道表面存在缺陷,磁通发生紊乱,磁力线扭曲,使次级线圈的磁通失去平衡而产生电压。通过对该电压的分析,获取被测管道的表面缺陷和腐蚀情况。在实际的工业生产中,涡流检测具有可达性强、应

常用的几种管道检测方法

常用的几种管道检测方法 管道运输是石油、天然气运输采用的主要方式。目前,在我国近70%的原油、100%的天然气是通过管道来进行运输的。据不完全统计,我国已建成的石油、天然气管道总里程已超过了2万公里,正在兴建和拟建的管道也有近万公里、油田集输管网、炼厂、城市管网累计达数十万公里。由于输送管线穿越地域广阔,服役环境复杂,位置隐蔽,一旦发生失效破坏,往往造成巨大的经济损失,导致人身伤亡等灾难性事故,对环境也会造成很大的破坏。据统计,我国现有的长距离油气输送管线中已有70%进入了事故多发期,每年因为管线老化造成的管道事故十分频繁,存在着极大的潜在危险。为了解决管道安全生产的问题,世界上一些先进国家早在20世纪60年代就开始管内检测设备的研制。经过几十年的发展和完善,目前,这项技术已日渐成熟,被国内外广泛采用的管道内检测技术有超声波检测法和漏磁检测法两种类型。这两种检测设备都可以在管道输送介质的驱动下,在线检测出管道上存在的各种缺陷,为管道事故的预防及管道的合理维护提供了科学的依据。 超声波检测技术是利用超声波在匀速传播且可在金属表面发生部分反射的特性,进行管道探伤检测的。检测器在管内运行时由检测器探头发射的超声波分别在管道内外表面反射后被检测器探头接收。检测器的数据处理单元便可通过计算探头接收到的两组反射波的时间差乘以超声波传播的速度,得出管道的实际壁厚。由于超声波的传导必须依靠液体介质,且容易被蜡吸收,所以超声波检测器不适合在气管线和含蜡很高的油管线进行检测,具有一定的局限性。 漏磁式管道腐蚀检测设备的工作原理是利用自身携带的磁铁,在管壁全圆周上产生一个纵向磁回路场。如果管壁没有缺陷,则磁力线囿于管壁之内,均匀分布。如果管内壁或外壁有缺陷,则磁通路变窄,磁力线发生变形,部分磁

2013年全国大学生电子设计竞赛简易频率特性测试仪(E)资料

2013年全国大学生电子设计竞赛 简易频率特性测试仪(E) 【本科组】 2013年9月6日

摘要 本作品以FPGA和单片机为控制核心及数据处理核心,采用高分辨率DDS9854芯片产生1MHz-40MHz以0.1MHz为最小步进单位的任意频率正交扫描信号,其频率稳定度、幅度平衡误差、幅度平坦度及扫频时间均满足要求。通过精确的参数选择制作的RLC串联谐振电路其中心频率误差、有载品质因数、有载最大电压增益符合设计要求。利用零中频正交解调原理,经乘法器、低通滤波器、A/D转换后将信号送入FPGA控制模块运算得到被测RLC网络的幅频特性和相频特性数据,最终在液晶显示屏和示波器上同时显示幅频特性和相频特性数据及曲线。用键盘通过单片机控制系统设置点频、扫频步进和扫频频率范围,人机交互界面友好。报告中阐明了软硬件设计依据及相关电路,给出了系统功能和性能测试结果。 关键词:正交解调原理;扫频;频率特性测试仪;FPGA;DDS

Abstract This work is based on FPGA and single chip microcomputer as the control core and the data processing core, using high resolution DDS9854 chip generate 1MHz to 40MHz any frequency orthogonal scanning signal, whose smallest step unit is 0.1MHz. The frequency stability, amplitude balance error, amplitude flatness and frequency sweeping time are all satisfy the design requirements. Through choosing the precise parameters, produced the RLC series resonant circuit, whose center frequency error, loaded quality factor, loaded maximum voltage gain are all meet the design requirements. Using the zero if quadrature demodulation principle, make the signal through the multiplier, low pass filter, A/D conversion in turn, and then put it into the FPGA control module to calculate the amplitude frequency characteristic and the phase frequency characteristic data of the tested RLC network, finally show the amplitude frequency characteristic and phase frequency characteristic data and curve on both LCD screen and oscilloscope. Using the single chip controlled keyboard set point frequency, sweep frequency step and sweep frequency range, it also has friendly man-machine interface. The report describes the software and hardware design basis and relevant circuit, the test results of system function and performance are also presented. Keywords: Quadrature demodulation principle, sweep frequency, frequency characteristic tester, FPGA, DDS

油气管道内检测新技术举例

油气管道内检测新技术举例 摘要管道检测技术是完整性的一部分,也是获取管道有关信息的最佳手段。管道检测可以监测管道受到的危害或潜在危害,在管道未发生事故前进行有计划的修理,可以避免大量的不必要维修,节约资金,在管道的日常维护中占有非常重要的地位。本文主要针对管道检测技术中的常用的几种内检测技术作了简要的介绍,并指出了各种技术的要点。 关键词: 管道内检测新技术 1.内检测器的分类 管道是输送危险液体和气体最为安全有效的方式。但随着时间的推移和周围环境的变化,会出现缺陷,也会导致事故的发生。 管道中可以被检测到的缺陷可以分为三个主要类型: ①几何形状异常(凹陷、椭圆变形、位移等); ②金属损失(疲劳、划伤等); ③裂纹(疲劳裂纹、应力腐蚀开裂等)。 管道内检测技术通过装有无损检测设备及数据采集、处理和存储系统的智能清管器在管道中运行,完成对管体的逐级扫描,达到对缺陷大小、位臵的检测目的。 针对上述三种缺陷类型,各大检测专业公司都根据市场和用户的需要研发了多种检测器,并不断更新换代。内检测器按其功能可分为用于检测管道几何形状异常的变形检测器,用于检测管道金属损失的金属损失检测器,用于裂纹、应力腐蚀开裂检测的裂纹检测器。 2.几何形状异常的检测技术

管道几何形状的异常多因受到外部机械力或焊接残余应力等原因造成,通过使用适当的检测装臵可以检测各种原因造成的、影响管道有效内径的几何异常现象并确定其程度和位臵。 测径器是用于检测、定位和测量管壁几何形状异常的大小。正常的管线,应当有一个圆环形横断面。在管道铺设过程或长期运行中,第三方的干扰可以造成凹陷。合格的测经器应可对任何管段横断面的临界变化进行检测并确定大小,是进行管道金属损失或裂纹内检测之前非常重要的一步。 常用的测径器使用一定排列的机械抓手或有机械抓手的辐射架。机械抓手压着管道内壁并会因横断面的任何变化引起偏移。这些偏移可能是由于一个凹陷、偏圆、褶皱或附着在管壁上的碎屑引起的。捕捉到的偏移信号被转换为电子信号存储到机载的存储器上。讲一次运行后的数据取出并使用合适的软件加以分析和显示,从而确定那些可影响到管道完整性的异常点。目前,市场上的测径器,提供的被测管径范围从100-1500mm不等,其灵敏度通常为管段直径的0.2%~1%,精度大约为0. 1%-2%。 3.金属损失检测技术 漏磁(MFL)技术因其可检测出腐蚀或擦伤造成的管道金属损失缺陷,甚至能够检测到那些不足以威胁管道结构完整性的小缺陷(硬斑点、毛刺、结疤、夹杂物和各种其他异常和缺陷),偶尔也可检测到裂纹缺陷、凹痕和起皱。漏磁技术应用相对较为简单,对检测环境的要求不高,具有很高的可信度,而且可兼用于输油和输气管道,所以,这种技术被广泛应用并在不断的发展。 对于很浅、长且窄的金属损失缺陷,MFL信号就难以检测出来。检测精度也受多种因素的影响。在对管道进行检测时,要求管壁达到完全磁性饱和,因此测试精度与管壁厚度有关,厚度越大,精度越低,其使用的壁厚范围通常在12mm以下。另外,检测器在管道中的运行速度也可影响检测结果的准确性。有关研究机构正在研究其速度控制技术,指在不影响正常输量的前提下提高检测的准确性。 近来,美国哥伦比亚输气公司结合现场经验及有关研究发现并已证实了MFL数据的采集受管内废杂物的影响,影响有三个:

四通道凝血四项检测仪

四通道凝血四项检测仪 血凝仪用于出血和凝血的检查分析,对临床检测意义重大,血凝仪检测项目包括四项,分别是:凝血酶原时间PT、活化部分凝血活酶时间APTT、纤维蛋白原FIB和凝血酶时间测定TT,今天我们将就这四项检测做简单介绍。 PT:主要反映外源性凝血系统状况,其中INR常用于监测口服抗凝剂。延长见于先天性凝血因子ⅡⅤⅦⅩ缺乏及纤维蛋白原缺乏,后天凝血因子缺乏主要见于维生素K缺乏、严重的肝脏疾病、纤溶亢进、DIC、口服抗凝剂等;缩短见于血液高凝状态和血栓性疾病等; APTT:主要反映内源性凝血系统状况,常用于监测肝素用量。增高见于血浆因子Ⅷ、因子Ⅸ和因子XI水平减低:如血友病A、血友病B及因子XI缺乏症;降低见于高凝状态:如促凝物质进入血液及凝血因子的活性增高等情况; FIB:主要反映纤维蛋白原的含量。增高见于急性心肌梗死减低见于DIC消耗性低凝溶解期、原发性纤溶症、重症肝炎、肝硬化; TT:主要反映纤维蛋白原转为纤维蛋白的时间。增高见于DIC纤溶亢进期,低(无)纤维蛋白原血症,异常血红蛋白血症,血中纤维蛋白(原)降解产物(FDPs)增高;降低无临床意义。 目前国内外各生产厂家生产的半自动血凝仪都是基于凝固法对血液凝固因子以无活性酶原形式存在,当某一凝血因子被激活后,被成为“瀑布样学说”。这种“瀑布样学说”产生的激变在血液的生物物理特性上变现为,电阻增大(电流法)粘度增强(磁珠法),浊度上升(光学发法)。由于电流法测量可靠性差,因此为磁珠法和光学法所替代。利用血凝仪进行血栓与止血的实验室检查,可为出血性和血栓性疾病的诊断、溶栓以及抗凝治疗的检测从传统的手工方法发展到全自动血凝仪,从单一的凝固法发展到免疫法和生物化学法,血栓与止血的检测也因此变得简便、迅速、准确、可靠。 海力孚光电磁珠法血凝仪能够真正的消除黄疸、溶血、乳糜、浑浊,气泡等的影响,可检测多种血栓与止血指标,为出血和血栓性疾病诊断、溶栓与抗凝治疗监测及疗效观察提供了有价值的指标。 海力孚血凝仪可以进行四通道一键双模式切换,可同时检测四人同项或同人四项,检测快速准确。而且试剂用量少,试剂减半,节省试剂,为用户节约成本。它独特的设计原理通用于所有高血脂、黄疸、溶血等特殊标本,可用各种澄清或浑浊的试剂和标本特殊的测量位置,防止外并光线和污染的干扰,提高了测定的准确性和重复性。 四通道血凝分析仪可一键双模式切换,可检测四人的同一检测项目或者同一个人的四项检测项目,这四项检测项目包括:凝血酶原时间PT、活化部分凝血

第六章频率特性测试仪

第六章频率特性测试仪 6.1 概述 频域测量是把信号作为频率的函数进行分析,主要讨论线性系统频率特性的测量和信号的频谱分析。 主要仪器:频率特性测试仪;外差式频谱分析仪;失真度测试仪。 6.2 线性系统频率特性的测量 6.2.1 测量方法 1、1、点频测量法 是一种静态测量方法,比较繁琐。 2、2、扫频测量法 是一种动态测量方法,较好。 6.2.2频率特性测试仪的工作原理 是根据扫频测量法的原理设计、制造而成的。它是将扫频信号源及示波器的X--Y显示功能结合为一体,用于测量网络的幅频特性。 1、1、基本工作原理 扫频仪的原理框图如图所示: 扫描电压发生器产生的扫描电压既加至X轴,又加至扫频信号发生器。 2、2、扫频信号发生器的主要共作特性 3、3、产生扫频信号的方法

4、4、频标电路 6.3 频谱分析仪 要求: 重点掌握频谱分析的基本内容、频谱分析仪的分类方法和分类;了解各种信号的付氏变换及信号频谱的特性 6.3.1 频谱分析的基本概念 广义上,信号频谱是指组成信号的全部频率分量的总集,频谱测量就是在频域内测量信号的各频率分量,以获得信号的多种参数。狭义上,在一般的频谱测量中常将随频率变化的幅度谱称为频谱。对信号进行频域分析就是通过研究频谱来研究信号本身的特性。从图形来看,信号的频谱有两种基本类型:①离散频谱,又称线状谱线;②连续频谱。实际的信号频谱往往是上述两种频谱的混合。 1)1)信号频谱分析的内容 信号的频谱分析包括对信号本身的频率特性分析,如对幅度谱、相位谱、能量谱、功率谱等进行测量,从而获得信号在不同频率上的幅度、相位、功率等信息;还包括对线性系统非线性失真的测量,如测量噪声、失真度、调制度等。 2)2)频谱分析仪的基本原理 频谱分析仪就是使用不同方法在频域内对信号的电压、功率、频率等参数进行测量并显示的仪器。一般有FFT分析(实时分析)法、非实时分析法两种实现方法。非实时分析方式有扫频式、差频式(或外差式)两种。外差式分析是频谱仪最常采用方法。 3)3)频谱分析仪的分类 按照分析处理方法的不同,可分为模拟式频谱仪、数字式频谱仪和模拟/数字混合式频谱仪;按照基本工作原理,可分为扫描式频谱仪和非扫描式频谱仪;按照处理的实时性,可分为实时频谱仪和非实时频谱仪;按照频率轴刻度的不同,可分为恒带宽分析式频谱仪、恒百分比带宽分析式频谱仪;按照输入通道的数目,可分为单通道、多通道频谱仪;按照工作频带的高低,可分为高频、射频、低频等频谱仪……等等。 6.3.2 外差式频谱仪 外差式频谱仪是目前应用最广泛的一种频谱仪,它利用无线电接收机中普遍使用的自动调谐方式,通过改变本地振荡器的频率来捕获欲接收信号的不同频率分量。其频率变换原理与超外差式收音机的变频原理完全相同,只不过把扫频振荡器用作本振而已,所以也被称为扫频外差式频谱仪。在高频段扫频外差式占据优势地位。

管道内检测相关知识

管道内检测相关知识 1、管道内检测的定义 管道内检测技术已经发展成管道管理的必要手段,内检测结果是管道业主进行管道维修、维护、改造、判废乃至完整性管理的重要依据。 管道内检测 intelligent pigging or smart pigging 利用在管道内运行的可实时采集并记录管道信息的检测器所完成的检测,也叫做智能检测。 将经过电气调试好的检测器通过发送装置送入管道,检测器靠输送介质的压差驱动沿管道运行,在运行的同时检测并记录管道信息。检测后通过对检测器记录仪中的数据信号进行识别、量化,最终得出被检测管道上缺陷及其他管道特征的信息,形成检测报告。 2、被检测管道应具备的条件 2.1收发球筒 收发球筒如图1所示,收发球筒的设计尺寸在满足相应规范的基础上还应满足以下条件: 图1 收发球筒示意图 表1 收发球筒应具备的条件

对于长输管线上安装的收发球筒,以前多用于管道清管器的收发,在SY/T0533-94《清管设备设计技术规定》中有明确要求,本次制定标准考虑到检测器收发球筒的设计、安装不仅要满足清管器的要求,还要满足发送和接收检测器的特殊要求。检测器一般都比同规格清管器的长度长、重量大、多节组合,收发操作要借助于辅助机具,因此对球筒的长度与操作场地的面积都有要求。由于不同规格,不同类型的检测设备没有统一长度,因此规定中以特定的检测器长度为单位长度提出要求。 2.2三通 2.2.1 开孔直径大于30%管道正常外径的三通应设置挡条或挡板。 参照国内外相关规定以及多年来清管检测的施工经验,直径大于30%管道正常外径的开孔有可能对检测设备运行产生影响或造成卡球,应按照相关规定设置档条或者挡板。 2.2.2 套管三通开孔区域轴向长度应不大于管道外径。 检测器的运行一般由多节组成,以第一节为驱动节,牵引检测器沿管道运行。其两皮碗密封长度一般为管道外径的1.1--1.4倍,如套管三通开孔区域长度大于皮碗间距,就有可能造成泄流,导致检测器或清管器的卡堵。 2.2.3 两相邻三通(开孔直径大于30%管道正常外径的三通)中心间距离应大于管道外径的2.5倍。 检测器在管道中运行过程中应确保其至少有一个以上的皮碗处于完全密封状态,规定要求两相邻三通中心>2.5D,是为了确保两个等径三通之间的密封距离大于1.5D,也就是大于两个密封皮碗的间距,不会出现两个同时在三通位置产生泄流现象。 2.3弯头

油气管道内检测器定位技术

龙源期刊网 https://www.360docs.net/doc/7113200340.html, 油气管道内检测器定位技术 作者:吴江涛 来源:《科技经济市场》2017年第02期 摘要:当今机械自动化技术以及计算机技术飞速发展,因而管道内检测器定位技术也得到了广泛应用和普及,本文分别对里程轮定位法、射线定位法以及静磁场定位法还有GPS/INS 组合导航系统定位法、压力波法、低频电磁波定位法等的技术基本原理以及技术的主要优缺点进行了详细的介绍。同时对内检测器定位技术的未来应用和该技术的发展趋势进行了分析,为进一步研究内检测器定位技术提供了良好的参考。 关键词:油气管道;内检测器;定位技术;里程轮;压力波;低频电磁波 0引言 如今,油气管道老化成了世界性的问题,如何确保这些管道安全是当前研究的热点。管道检测技术是确保管道安全的重要环节,依据检测仪器的位置可以将检测管道技术划分成两种:外检测、内检测。其中,内部检测由于其干涉管道的正常运行,又不受外部地理环境的限制,具有十足的优势,所以被大众所接受。但是在运用内检测技术时,掌握内检测的传感器的位置信息十分必要,尤其是需要对检测设备进行维修时,定位技术就尤其关键。 1内检测常见的定位技术 1.1里程轮定位 作为传统计程方式的里程轮,在当今的管道检测中经常被采用,常用的是利用光电式的转速传感器实现定位。利用里程轮检测管道时,其发出周期性的脉冲,地面的定位检测设备就可以根据脉冲的数量确定内检测设备的位置。该方法成本低,但是由于该方法本身存在一定的误差以及打滑失效等情况存在会影响其准确性。在现代的工程中,一般情况下会对里程轮进行适当的改进或者同时利用多个里程轮来减少误差,从而提高定位的准确性。 1.2射线定位 若内部检测器上安装一个射线发生器,同时在管道外安装感光胶片,那么射线发生器工作时发射射线,将会引起感光胶片曝光,从而可以确定内部检测器的位置。该类型的定位器的电路简单而且具有良好的控制效果,而且不受其他工业的干扰。成都理工大学的科研团队对该类型的探测器进行了深入的研究,他们在射线定位的基础上结合视频识别技术,从而可清晰的、方便的查看曝光情况,所以定位的准确性更高,但该技术具有复杂的系统,无法利用遥控内检测器,同时放射性指令源存在风险,运用、存储以及运输涉及很多的困难。解决这个问题通常的办法是利用x射线取代放射性的射线。基于X射线检测技术,优势是检测结果十分直观,而且无论被检对象尺寸、材质如何,都能实施检测。因此,X射线检测技术多被采用。

相关文档
最新文档