水塔液位测量控制系统

水塔液位测量控制系统
水塔液位测量控制系统

工程测试技术课程设计

报告书

设计题目水塔液位检测及控制系统设计院(系)机械工程与应用电子技术学院班级 070101

指导教师崔玲丽

组长张超 07010131

组员唐凯 07010129

付博研 07010124

杨雪 07010119

西迪 07010151

李海新 06010122

2010 年 6月 21日

北京工业大学

目录

一、课题背景 (3)

二、水位检测控制原理 (3)

2.1 控制方案 (3)

2.2 控制的实现 (4)

2.2.1 水位信号的获取 (4)

2.2.2 信号的采集与输出转换 (4)

2.2.3 LabVIEW功能要求 (4)

2.2.4 信号输出与注、排水功能的实现 (4)

三、LabVIEW控制程序的设计 (5)

3.1 前面板介绍 (5)

3.2 程序框图原理 (6)

3.2.1 信号采集部分 (6)

3.2.2 工作状态显示部分 (8)

3.2.3 程序逻辑部分 (8)

3.2.4 信号输出部分 (11)

四、硬件系统的选择及搭建 (11)

4.1 硬件的选择 (11)

4.1.1 传感器的选择 (11)

4.1.2 电机的选择 (13)

4.1.3 电磁阀的选择 (14)

4.1.4 继电器的选择 (15)

4.1.5 信号采集卡的选择 (15)

4.1.6 外部放大电路的制作 (16)

4.2 硬件的连接 (16)

五、系统测试完善 (19)

5.1 系统测试 (19)

5.1.1手动水位控制调试 (19)

5.1.2区间水位控制调试 (20)

5.1.2精确水位控制调试 (22)

5.2 系统完善 (23)

六、小组成员及分工 (23)

张超 (23)

唐凯 (24)

付博研 (25)

杨雪 (26)

西迪 (27)

李海新 (27)

七、参考文献 (28)

一、课题背景

水塔的应用十分广泛,现今存在的水塔液位控制主要有机械式、电气式、

光电、电磁式等,这些控制虽能满足控制水位的要求,但是自动化程度都不

够高,本设计系统利用LabVIEW软件自动检测并控制水塔的液位,操作人

员只需在LabVIEW控制程序中设定好相关的参数即可实现对水塔液位系统

的实时精确控制。

二、水位检测控制原理

2.1 控制方案

按照常规的控制系统设计的思路,总体设计分为三个部分:信号的采集、信号的处理显示和信号的显示输出控制。针对本课题水塔水位检测及控制,画出其原理图如图 1 水塔检测控制系统原理图。利用传感器获取水位信息,经A/D转化之后将模拟信号转换为计算机课处理的数字信号,通过具体的电压与水位的关系,由电压转换得到水位,按照一定的逻辑关系对水位进行处理,得到信号输出,控制后续电路的工作,进而控制水位的变化,实现水位检测和控制。

图 1 水塔检测控制系统原理图

2.2 控制的实现

2.2.1 水位信号的获取

通常来说,对水位检测有接近式电容开关和电容式压差变送器两种,这里我们显然要测出任意时刻水位的具体值,接近式电容开关无法满足要求,须选用电容式压差变送器,将传感器敏感部分放入水底,其信号输出部分输出一个电压信号。将这个信号经过程序处理显示成具体的液位,并根据相应的程序关系再输出一个信号。满足这样要求的传感器常用的为液位变送器,根据现有条件,选择SENSE INSTRUMENTS公司生产的STK633型传感器。其相应参数介绍在后续硬件选择中。

2.2.2 信号的采集与输出转换

采集的信号为一模拟量电压信号,要想将信号应用还需要经过一个A/D转换才能使用。同理,计算机程序给出的也只是一个数字信号,必须经过D/A转换,才能把数字信号转化为模拟信号,控制后续电路的工作。我们采用实验室的National Instruments公司的USB6251采集卡来实现要求的A/D和D/A转换。采集的模拟电压信号从a01的68、67这两个端口接收到电脑程序中,模拟电压量的输出从21、22、55这三个口输出,得到两个输出电压,分别控制注水和排水电机工作。

2.2.3 LabVIEW功能要求

我们这个水塔水位系统的功能要求如下:

1.实时检测水塔液位并显示出来。

2.用户自己设定一个具体水位值,系统自动保持水位在这个值。

3.用户也可设置一个水位范围,系统自动保持水位在这个范围。

4.用户还可通过软件手动控制水塔水位。

以上四个功能是本设计系统的主要部分,LabVIEW程序的设计都是根据这几个功能来完成的。具体的程序设计将在第二部分着重介绍。

2.2.4 信号输出与注、排水功能的实现

经过LabVIEW处理过的信号将会根据一定的逻辑关系输出一个信号控制电机工作来完成水位的调节,由USB6251输出的信号是不能直接驱动电机转动的,我们需要设计一个电路来完成这个功能。

电机转动我们只需要一个开关来控制即可,考虑到电机断电之后还会由于惯性转动,是水位发生变化,影响系统的精度,我们在电机相应的回路位置串接一个电磁阀,电磁阀随电机一起同时工作,这样即使电机转动,电磁阀关闭也会限制水的流动,从而精确控制。而开关的控制则需要LabVIEW给出的信号来控制,LabVIEW系统给出的电压信号是不能直接驱动电机和电磁阀的,电机电压220V,电磁阀工作电压24V,这样就考虑用继电器来完成相应的控制,继电器工作,电机和电磁阀工作。只需控制继电器的工作即可。为完成此功能,设计一个简单的放大电路实现继电器的工作,继电器的两个开关分别控制电机和其相应的电磁阀。采用两组电路,即可完成排水和注水的两部分。如图 2 注水、排水控制电路所示,M为继电器。

图 2 注水、排水控制电路

三、LabVIEW控制程序的设计

3.1 前面板介绍

在设计的介绍中我们已经明确了水塔水位检测控制系统的基本要求,程序的设计就是完成这些功能。首先,我们设计出满足基本功能的前面板,如图 3 LabVIEW控制系统前面板所示。

第一部分功能为水塔液位的检测,在前面板上给出一直观清晰的显示,既能通过具体读数显示,又给人以形象展示,如图3左侧部分。

第二部分为功能显示灯部分,这一部分只是让我们能更清楚的知道系统现在的工作状态,分为注水、排水指示灯部分和水位上下限报警部分。当水位超过90或低于10的时候,可能导致系统无法正常工作,分别给予上限报警或下限报

警,用高亮的红色显示报警。控制系统的功能在实现的时候,电机和响应电磁阀工作,我们需要给出一个指示,注水和排水电机分别高亮绿色显示。

第三部分是控制部分,为主要部分。系统的三个工作功能选项,精确水位控制、区间水位控制、手动控制。这三个功能是并行的,只能选择其中一种工作状态,一种工作状态起作用,另外两种就不起作用。工作时,相应指示灯高亮。

图 3 LabVIEW控制系统前面板

3.2 程序框图原理

根据前面板的设计,程序框图出现相应的控件,将各种控件按照一定的逻辑关系连接在一起即可完成整体控制系统的设计。整体分为信号采集部分、工作状态显示部分、程序逻辑部分以及信号输出部分。

3.2.1 信号采集部分

通过DAQ助手,选择采集模拟量,选用的National Instruments公司的USB6251采集卡,选用a01通道,信号便可采集到电脑。模拟信号转变为数字信号,首先动态数据转换为数组,再经过索引数组即可变成我们程序可处理的数字量,这个量就是传感器输出的电压。电压与液面高度是有一定关系的,这跟传

感器的类型有一定的关系。我们选用的是STK633液位变送器,其输出电压为1—5v,测量范围1-100cm,先进行标定。测得数据如表 1 液位变送器电压——水位表所示

将得到的数据进行拟合,得到对应的电压与水位的关系,如图 4 液位变送器电压水位拟合曲线所示

图 4 液位变送器电压水位拟合曲线

经MATLAB计算得到水位H(cm)与电压U(V)的关系

H?

=

25

(U

-

1)

这样经过两个运算关系之后就把电压转变成了水位值,这个水位值可以经过

显示控件直接显示,其值也作为后续步骤的输入值。

3.2.2 工作状态显示部分

本程序系统有多个工作状态,电机的工作状态我们也要实时了解,如果水位偏离了水塔工作的正常范围,还必须作出报警,这里根据硬件设置低于10cm时下限报警,高于90cm时上限报警。当选择了相应的工作状态之后,相应的工作指示灯高亮。给出电机信号的同时,把电机工作状态告诉操作者。这些功能的实现都是靠布尔显示控件来实现的。可以在前面板中右键设置不同工作状态的颜色等属性。

3.2.3 程序逻辑部分

控制部分是程序的灵魂部分,它的逻辑关系这里详细讲解。程序框图如图5LabVIEW控制程序框图所示。

图5LabVIEW控制程序框图

首先在控制方式选择里设置一个下拉列表,供用户选择控制方式,我们这里

给不同的方式赋值,便于程序的编写。如图 6 控制方式选择所示。

图 6 控制方式选择

接下来程序就要判断用户选择了那种控制方式,如果判断出用户选择了一种控制方式,输入控件就得到了相应的赋值,程序就以这个值执行下去。

下面逐个分析每种控制方式的控制原理:

精确水位控制:用户输入想要精确控制的水位,与传感器得到的水位的信号做比较,如果输入的值大于目前水位,输出一个布尔信号TRUE来控制后面的电压输出部分,进而控制注水电机的转动;否则给出FALSE,注水电机不动。如果输入的值小于目前的水位,则给出另一个布尔信号TRUE控制排水电机的工作,否则给出FALSE不执行操作。如果恰好是这个水位,也不做响应。如图7 精确水位控制所示

图7 精确水位控制

区间水位控制:用户输入允许的最高水位和最低水位,系统检验设定值与实际水位的关系,如果实际水位超出设定最高水位,则给出给出一个布尔信号TRUE来控制后面的电压输出部分,进而控制排水电机的转动,否则给出FALSE。如果实际水位小于给出的最低水位,则给出另一个布尔信号TRUE控制注水电机的工作,否则给出FALSE不执行操作。如果水位在用户输入的允许范围内,则不做响应。如图8 区间水位控制所示

图8 区间水位控制

手动水位控制:这个功能允许用户通过程序控制一个开关来控制电机的注水和排水。此功能最为简单,控制原理与上述两种控制方式相同,通过判断开关的状态给出响应的布尔量。如图9 手动水位控制所示

图9 手动水位控制

上述三种控制方式都是通过布尔量来控制如何给出信号的,三种工作方式,只要有任何一部分给出信号即可给出信号,因此可将上述三种方式的布尔结果进行一个或运算然后给出一个总布尔量,即只要有一种工作方式让电机工作,电机

就会工作,这就是程序的核心部分了。

3.2.4 信号输出部分

程序核心部分给出布尔量之后,通过判断布尔量的状态来控制给出高电平信号还是低电平信号。采用条件结构,如图10 信号输出所示,如果为真就给出高电平5v,如果为假就给出低电平0。这里的信号都是通过仿真的直流信号给出的,这样输出就直接为一模拟量了。

图10 信号输出

注水排水两个电压信号分别通过DAQ助手输出到数据采集器的两个端口,控制注水和排水电机及相应的电磁阀。这两个信号就是在控制电路图中所示的注水、排水信号。两个信号输出有三个接口,其中一个为公用的地线。

四、硬件系统的选择及搭建

4.1 硬件的选择

4.1.1 传感器的选择

由测试工程的课程可知,液位变送器是最适合这个系统的,根据水塔的液位

范围我们选择STK633型传感器,如图11液位变送器所示。

图11液位变送器

其相关参数如下:

型号:STK633

工作电压:12——36V

工作压力:0——10kPa

最大压力:30 kPa

输出信号电压:1——5V

其分为敏感部分和辅助工作部分,敏感部分放入水中,由于是电容原理的传感器,不可用手或者其他硬物接触传感器表面,以防传感器损坏。

STK633型传感器是能量控制型传感器,需要外部提供工作电压。其敏感部分放入水中感知压强水位,信号工作部分内部结构如图12 液位变送器接线图所示,共三个接线端,P+表示电源,S+表示输出信号,-表示接地。使用时,把P+和-两端接到稳压24V的直流电源上即可,信号两端S+和-接到采集卡端口,这样既可完成信号的采集。

图12 液位变送器接线图

4.1.2 电机的选择

根据水塔整体的尺寸相应地选择一定功率和速度的电机,保证系统正常工作,如图13 注水、排水电机所示。其参数如下:

型号:15SG0.5-6

功率:80W

最高扬程:10M

规定扬程:6M

频率:50Hz

电压:220V

最大流量: 1 h

m/3

规定流量:0.5 h

m/3

转速: 2860r/min

电流:0.38A

绝缘:E级

图13 注水、排水电机

4.1.3 电磁阀的选择

电磁阀在此起到一个开关的作用,是配套电机使用的,选用和本系统直径相

当的即可,在此选择直流24V的。如图14 电磁阀所示

图14 电磁阀

4.1.4 继电器的选择

继电器选择,因为程序给出的信号比较,设定为5V,选择时选择线圈电压为6V的即可实现放大电路的功能,而其控制的电路要能承受220V的电压。继电器原理图及实物如图15 继电器实物图、原理图所示

图15 继电器实物图、原理图

其中7、8脚接到三极管和6V处,1、5脚接电机两端,2、6脚接电磁阀两端,当7、8接通之后,继电器工作,相应的电机和电磁阀也就接通,可以控制注水和排水。

4.1.5 信号采集卡的选择

信号采集卡有多种多样,我们没有必要专门找一个,只要能采集简单的电压数据并输出模拟电压即可,这里就利用实验室的National Instruments的USB6251即可。如图16 USB 6251采集卡所示。其相应参数可参见说明书。

图16 USB 6251采集卡

4.1.6 外部放大电路的制作

前面已经将外部放大电路设计完毕,选择两个TIP31C型NPN三极管完成,为了连接器件方便,将其焊接在一电路板上,如图17 外部电路板所示。与其对应的电路原理图如图 2 注水、排水控制电路所示。

图17 外部电路板

在制作电路板的时候,直接选择大功率的TIP31C型NPN三极管,刚开始时为防止电压过大加了一个电阻,后来发现电阻使电路无法相应,电路无法工作,此时分析得知电压过低,去掉电阻之后电路既可正常工作。焊接的电路板比较粗糙,两个电路使用颜色不同的电线,这样在电路连接的时候就会很方便,不用找三极管的各个极了。

4.2 硬件的连接

硬件选择好之后,便可以按照程序的逻辑把它们按照一定的关系连接起来。先将传感器的信号接到采集卡上,再将6251给出的信号连接到三极管放大电路,把电机和继电器的线正确连接到继电器上,然后将放大电路的各线连接到响应的电源上即可。水塔硬件如图18 水塔模型所示。

图18 水塔模型

水塔模型的硬件系统包括主水塔和副水塔,副水塔的水位我们不做要求,只为主水塔供水及存水。电机有两个,分别控制向主水塔排水和注水,在相应的电机回路中,串联一个电磁阀,防止在控制系统停止后电机由于惯性导致系统继续使液位发生变化,这里同一组电机和电磁阀利用同一个继电器控制,电机开则电磁阀也开,否则都关。

电机、电磁阀和继电器的工作分别需要220V交流、24V直流和6V 直流电压,由于没有购买相应的电源,只能利用实验室已有的平台,如图19 供电实验台

所示

图19 供电实验台

由于水塔的电机和电磁阀距离供电试验台较远,我们采用一个相当于接线端子的中间过渡,将电机、电磁阀、试验台、继电器、采集卡连接起来,这样接线就可简便一些。中间接线架如图20 接线架说明图所示

图20 接线架说明图

经过连线将采集卡、水塔电机、继电器、放大电路、电源等连接好之后,得到可以正常工作的系统,如图18 水塔模型所示。

五、系统测试完善

5.1 系统测试

系统连接完成之后,需进行测试,检验各个功能的正确性。

5.1.1手动水位控制调试

首先检验手动调节功能,先在下拉列表里选择手动水位控制,然后点击运行,此时工作指示灯高亮,在手动水位控制区域把注水开关打开,此时注水指示灯高亮,在左侧液面高度中,液面上升,正常工作,如图21 手动控制正常工作所示。

图21 手动控制正常工作

继续注水,一直让水位达到100cm,此时水位已经超过90cm,系统自带的水位极限检测发出警告,上限指示灯高亮变红,提醒用户采取有效措施。可以选择手动排水或者其它方式控制水位。如图22 液位报警所示,采用手动排水。

(完整版)液位检测与控制试验系统设计..

液位检测与控制试验系统设计 1.发展现状: 液位检测在许多控制领域已较为普遍,各种类型的液位检测装置也不少,按原理分有浮力式、压力式、超声波式、差压式、电容式等,这各种方法都根据其需要设计完成,其结构、量程和精度各有特色, 适用于各自的场合, 但都是基于固定液箱液位检测而设计。市面上也有现成的液位计,有投入式、浮球式、弹簧式等,绝大多数价格惊人。 “水是生命之源”,不仅人们生活以及工业生产经常涉及到各种液位和流量的控制问题,例如饮料、食品加工,居民生活用水的供应,溶液过滤,污水处理,化工生产等多种行业的生产加工过程,通常要使用蓄液池。蓄液池中的液位需要维持合适的高度,太满容易溢出造成浪费,过少则无法满足需求。因此,需要设计合适的控制器自动调整蓄液池的进出流量,使得蓄液池内液位保持正常水平,以保证产品的质量和生产效益。这些不同背景的实际问题都可以简化为某种水箱的液位控制问题。因此液位是工业控制过程中一个重要的参数。特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的生产效果。高老师也进行了多次的实验得出了一些相关的数据,水箱液位控制系统的设计应用非常长广泛,可以把一个复杂的液位控制系统简化成一个水箱液位控制系统来实现。所以就选择了该题目的设计。由于液位检测应用领域的不同,性能指标和技术要求也有差异,但适用有效的测量成为共同的发展趋势,随着电子技术及计算机技术的发展,液位检测的自动控制成为其今后的发展趋势,控制过程的自动化处理以及监控软件良好的人机界面,操作人员在监控计算机上能根据控制效果及时修运行参数,这样能有效地减少工人的疲劳和失误,提高生产过程的实时性、安全性。随着计算机控制技术应用的普及、可靠性的提高及价格的下降,液位检测的微机控制必将得到更加广泛的应用。 所以,我们在此设计了这个简易的监测系统,一方面,节省了大量的经济开支;另一方面,让我们对监测系统有了更加深刻、透彻的了解,不仅增加了我们的感性认识,还促进了我们对于系统各个部分的深刻剖析,从传感器选型到整个

水塔水位控制系统课程设计报告

北京理工大学珠海学院 课程设计 课程设计(C) 学院:信息学院 专业班级: 学号: 学生姓名: 指导教师: 201 年月日 北京理工大学珠海学院

北京理工大学珠海学院 课程设计任务书 2011 ~2012 学年第 1 学期 学生姓名:专业班级:自动化 指导教师:工作部门:信息学院 一、课程设计题目水塔水位控制系统 二、课程设计内容: 1、硬件设计 (1)用80C51设计一个单片机最小控制系统。其中P1.0接水位下限传感器,P1.1接水位上限传感器,P1.2输出经反相器后接光电耦合器,通过继电器控制水泵工作,P1.3输出经反相器后接LED,当出现故障时LED闪烁;P1.4输出经反相器后接蜂鸣器,当出现故障时报警。 (2)用塑料尺、导线等设计一个水塔水位传感器。其中A电级置于水位10CM处,接5V电源的正极,B级置于水位15CM处,经4.7K下拉电阻接单片机的P1.0口,C 电级置于水位的20CM处,经4.7K下拉电阻接单片机的P1.1口。 (3)设计一个单片机至水泵的控制电路。要求单片机与水泵之间用反相器、光电耦合器和继电器控制,计算出LED限流电阻,接好继电器的续流二极管。 2、软件设计 (1)根据功能要求画出控制程序流程图。 (2)根据控制程序流程图编写80C51汇编语言或C51程序。 三、功能要求: 1、水塔水位下降至下限水位时,启动水泵,水塔水位上升至上限水位则关闭水泵。 2、水塔水位在上、下限水位之间时,水泵保持原状态。 3、供水系统出现故障时,自动报警。 四、调试 1、在Kerl-uvision上单步调试,观察累加器寄存器存储器的运行之间是否正常。 2、将程序下载到仿真仪上,进行模拟仿真,检查程序工作是否正常。 3、将模拟水塔、传感器、控制电路和水泵联成一个完整的系统,进行整机调试,观察系统工作是否正常。 撰搞人教研室主任院长 签名 日期2010.10.6

基于三菱PLC的水塔水位自动控制设计

电气工程学院 设计题目:水塔水位PLC自动控制系统 系别: 年级专业: 学号: 学生姓名: 指导教师:

电气工程学院《课程设计》任务书课程名称:电气控制与PLC课程设计 基层教学单位:电气工程及自动化系指导教师:

摘要 目前,大量的高位生活用水和工作用水逐渐增多。因此,不少单位自建水塔储水来解决高层楼房的用水问题。最初,大多用人工进行控制,由于人工无法每时每刻对水位进行准确的定位监测,很难准确控制水泵的起停。要么水泵关停过早,造成水塔缺水;要么关停过晚,造成水塔溢出,浪费水资源,给用户造成不便。利用人工控制水位会造成供水时有时无的不稳定供水情况。后来,使用水位控制装置使供水状况有了改变,但常使用浮标或机械水位控制装置,由于机械装置的故障多,可靠性差,给维修带来很大的麻烦。因此为更好的保证供水的稳定性和可靠性,传统的供水控制方法已难以满足现在的要求。 本文采用的是三菱FXZN型PLC可编程控制器作为水塔水位自动控制系统核心,对水塔水位自动控制系统的功能性进行了需求分析。主要实现方法是通过传感器检测水塔的实际水位,将水位具体信息传至PLC 构成的控制模块,来控制水泵电机的动作,同时显示水位具体信息,若水位低于或高于某个设定值时,就会发出危险报警的信号,最终实现对水塔水位的自动。 关键词:水位自动控制、三菱FX2N、水泵、传感器

目录 摘要 ............................................................................................................................................................................ I 目录 ........................................................................................................................................................................... I I 第一章绪论 (1) 1.1本课题的选题背景与意义 (1) 1.2可编程逻辑控制器简述 (1) 第二章水塔水位控制系统硬件设计 (2) 2.1基于PLC的水塔水位控制系统基本原理 (2) 2.2水塔水位控制系统要求 (3) 2.3水塔水位控制系统主电路设计 (4) 2.4 系统硬件元器件选择 (5) 2.5 I/O口的分配及PLC外围接线 (6) 第三章水塔水位系统的PLC软件设计 (10) 3.1 水位控制系统的流程图 (11) 3.2 PLC 控制梯形图 (12) 3.3 水位控制系统的具体工作过程 (20) 第四章总结 (21) 参考文献 (22)

基于 PLC 和变频器控制的恒压供水系统设计

基于 PLC 和变频器控制的恒压供水系统设计 赵华军钟波 (广州铁路职业技术学院) 摘要:文章介绍一种基于三菱PLC 和变频器控制恒压供水系统,详细地介绍了硬件的构成和控制流程。系 统较好地解决高层建筑、工业等恒压供水需求。系统具有节能、工作可靠、自动控制程度高、经济易配置等优点。 关键词:变频器;PID;PLC;恒压供水 1 引言 目前,在城市供水系统中,还有很多高楼、生活 小区、边郊企业等采用高位水塔供水方式。这样,由 于用水量具有很大随机性,常常出现在用水高峰时供 水量很小甚至没有水用的问题;且采用高位水塔,很 容易造成自来水的二次污染问题。针对这一情况,本 文设计了一套基于变频器内置PID 功能的恒压供水 系统,采用了PLC 控制及交流变频调速技术对传统 水塔供水系统的技术改造。该系统根据用水量的变 化,经过压力传感器将水压变化情况反馈给系统,使 得系统能自动调节变频器输出频率,从而控制水泵转 速,调节输出数量,使得水量变化时可保持水压恒定; 可取代高位水塔或直接水泵加压供水方式,为城市供 水系统的建设提出了一条极具推广、应用的新途径[1]。 2 工作原理 本文采用的变频器是三菱FR-A540,该变频器内 置PID 控制功能;供水系统方案如图1 所示。 将通往用户供水管中的压力变化经传感器采集 到变频器,与变频器中的设定值进行比 较,根据变频器内置的PID 功能,进行数 据处理,将数据处理的结果以运行频率的 形式进行输出[2]。 当供水的压力低于设定压力,变频器 就会将运行频率升高,反之则降低,且可 根据压力变化的快慢进行差分调节。由于 本系统采取了负反馈,当压力在上升到接 近设定值时,反馈值接近设定值,偏差减小,PID 运算会自动减小执行量,从而降低变频器输 出频率的波动,进而稳定压力。 在水网中的用水量增大时,会出现“变频泵” 效率不够的情况,这时就需要增加水泵参与供水,通 过PLC 控制的交流接触器组负责水泵的切换工作; PLC 是通过检测变频器频率输出的上下限信号,来判 断变频器的工作频率,从而控制接触器组是否应该增 加或减小水泵的工作数量。

液位自动控制系统

控制类系统设计 ——液位自动控制系统 摘要 随着电子技术、计算机技术和信息技术的发展,工业生产中传统的检测和控制技术发生了根本性的变化。液位作为化工等许多工业生产中的一个重要参数,其测量和控制效果直接影响到产品的质量,因此液位控制成为过程控制领域中的一个重要的研究方向。 液位控制是工业中常见的过程控制,它对生产的影响不容忽视。该系统利用了常见的芯片,设计并实现了液位控制系统的智能性及显示功能。电路组成简单,调试方便,性价比高,抗干扰性好等优点,能较好的实现水位监测与控制的功能。能够广泛的应用于工业场所。 液位控制有很多方法,如,非接触传感。只需要将传感器紧贴在非金属容器的外壁,就可以侦测到容器里面液位高度变化,从而及时准确地发出报警信号,有效防止液体外溢或防止机器干烧。由于不需要与液体接触且安装简便,避免了水垢的腐蚀,可取代传统的浮球传感和金属探针传感,延长寿命。而本设计是基于纯电路的设计,低成本且抗干扰性好。在本设计中较好的实现了水位监测与控制的功能。 液位控制系统是以液位为被控参数的系统,液位控制一般是指对某控制对象的液位进行控制调节,以达到所要求的液位进行调节,以达到所要求的控制精度。

1 概述 液位控制系统是以液位为被控参数的系统,是现代工业生产中的一类常见的、重要的控制过程。而传统的液位控制多采用单回路控制,并采用传统的指针式仪表来显示液位值,使液位控制的精度和显示的直观性受到限制,而随着生产线的更新及生产过程控制要求的提高,要求液位系统有高的控制性能。基于此,本系统就设计了一种电路简单,调试方便且性价比高的系统,来完成液位的自动调控。本系统主要由四部分组成:显示模块、振荡模块、传感器模块和声光报警模块,系统简单易行。 系统框图如下: 2 硬结构与功能 2.1 该设计的总体结构 该设计是一块集多种电子芯片于一体的多功能实验板,实现了液位系统的控制及显示。主要功能器件包括:电源部分的7808,定时部分的555定时器,数字分段的LM3914等。 电路原理图如下图所示:

水塔水位自动控制

实训三、水塔水位自动控制 一、实训目的 1、了解水塔水位自动控制工作原理。 2、掌握梯形图的编程方法和指令程序的编法。 3、掌握编程器的基本操作以及编程器的输入、检查、修改和运行操作。 二、实训器材 1、亚龙PLC主机单元一台。 2、亚龙PLC水塔水位自动控制单元一台。 3、计算机或编程器一台。 4、安全连线若干条。 5、PLC串口通讯线一条。 三、工作原理 水塔水位的工作方式: 当水池液面低于下限水位(S4为ON表示),电磁阀Y打开注水,S4为OFF,表示水位高于下限水位。当水池液面高于上限水位(S3为ON表示),电磁阀Y关闭。 当水塔水位低于下限水位(S2为ON表示),水泵M工作,向水塔供水,S2为OFF,表示水位高于下限水位。当水塔液面高于上限水位(S1为ON表示),水泵M停。 当水塔水位低于下限水位,同时水池水位也低于下限水位时,水泵M不启动。 四、I/O分配表 表3-1水塔水位自动控制的I/O分配表

水塔上限位S1 水塔下限位S2 水池上限位S3 水池下限位S4 电磁阀Y 水泵M I0.1 24V 12V FU I0.2 I0.3 I0.4 1M 2M Q0.1 Q0.2 1L CPU 226 CN 五、I/O接线 图3-1 水塔水位自动控制的I/O 接线 六、实训步骤 1、先将PLC 主机上的电源开关拨到关状态,严格按图3-2 所示接线,注意12V 和24V 电 源的正负不要短接,电路不要短路,否则会损坏PLC 触点。 2、将电源线插进PLC 主机表面的电源孔中,再将另一端插到220V 电源插板。 3、将PLC 主机上的电源开关拨到开状态,并且必须将PLC 串口置于STOP 状态,然后通 过计算机或编程器将程序下载到PLC 中,下载完后,再将PLC 串口置于RUN 状态。 4、接通2. 5、2. 6、2.7(2.4 不接通),否则无法正确运行演示程序。 5、按下列步骤进行实训操作: (1)拨下限开关S4,电磁阀Y 亮,下限开关S4 复位。 (2)拨上限开关S3,电磁阀Y 灭,上限开关S3 复位。 (3)拨下限开关S2,水泵M 亮,下限开关S2 复位。 (4)拨上限开关S1,水泵M 灭,上限开关S1 复位。 各种限位开关初始状态都是朝下。 七、实物接线图 图3-2 所示水塔水位自动控制接线图。 八、思考题 当水池水位低于下限水位(S4 为 ON),电磁阀 Y 应打开注水,若 3 秒内开关 S4 仍未由闭合转为分断,表明电磁阀 Y 未打开,出现故障,则指示灯 Y 闪烁报警。

水塔水位PLC自动控制系统

电气工程学院课程设计说明书 设计题目:水塔水位PLC自动控制系统系别:电气工程及其自动化 年级专业: 13级应电2班 组员:贾猛、孟令军、修圣虎、李晶指导教师:郭忠南

随着现代社会生产的发展和技术进步,现代工业自动化生产水平的日益提高,微电子技术的飞速发展,在继电器控制系统的基础上产生了一种新型的工 业控制装置——可编程控制器(PLC)。随着科技的发展和现实暴露的一些问题,以便能更快捷更方便的完成一些任务,在工农业生产过程中,经常需要对水位 进行测量和控制。水位控制在日常生活中应用也相当广泛,比如水塔、地下水、水电站等情况下的水位控制。而水位检测可以有多种实现方法,如机械控制、 逻辑电路控制、机电控制等。 本文采用PLC进行主控制,在水箱上安装一个自动测水位装置。利用水的 导电性连续地全天候地测量水位的变化,把测量到的水位变化转换成相应的电 信号,主控台对接收到的信号进行数据处理,完成相应的水位显示、故障报警 信息显示、实时曲线和历史曲线的显示,使水位保持在适当的位置。 关键词:PLC(Programmable Logic Controller) 自动化水塔水位三菱PLC

第一章研究背景 (1) 1.1可编程控制器的产生及发展 (1) 1.2PLC的基本结构 (2) 1.3PLC的特点 (5) 1.4PLC的工作原理 (6) 1.5梯形图程序设计及工作过程分析 (8) 第二章水塔水位自动控制系统方案设计 (10) 第三章水塔水位自动控制系统硬件设计 (12) 3.1水塔水位控制系统设计要求 (12) 3.2水塔水位控制系统主电路 (12) 3.3水泵电机的选择 (13) 3.4水位传感器的选择 (13) 3.5可编程序控制器的选择 (14) 3.6PLC I/O口分配 (14) 3.7PLC控制电路原理图 (15) 第四章水塔水位自动控制系统软件设计 (17) 4.1程序流程图 (17) 4.2梯形图 (18) 第五章设计总结 (23)

基于力控的液位测量控制系统的设计

武汉理工大学 毕业设计(论文) 基于力控的液位测量控制系统的设计 学院(系): 专业班级: 学生姓名: 指导教师:

摘要 油罐在石油化工工业生产及贮油方面具有不可忽视的作用,既然这样,油罐的液位测量就显得非常重要。本论文在对比国内外相关课题后,提出了一套完整的油罐液位系统测量方案。该系统采用可编程控制器(PLC)的电源模块,CPU模块及模拟、数字的输入、输出模块作为硬件,并将其相互连接达到液位和温度的测量及显示作用,同时利用Pro-32程序作为该系统的软件对其进行温度信号的采集和液位信号的测量。最后,再应用力控软件对该系统进行仿真。 该系统包括三套液位测量装置,在本次设计中应用小型以太网联接在一起,达到分散设备,集中控制的目的。 关键词:液位测量 PLC 以太网

Abstract Oilcan has the function that have to can't neglect in petroleum chemical engineering industry production and the oil of storing, since like this, the measures liquid of the oilcan and then seem to be very important.My thesis put forward a set of complete oilcans liquid system diagraph project after contrasting domestic and international and related lesson.The system supply power model,CPU model and analog,digital input,output model as its hardware,combining its mutually connection to attain the liquid a diagraph with manifestation function of temperature, combining exploitation procedure Pro-32 conduct and actions that system of the programmable controller( PLC) in adoption in the system proceed the temperature signal collects with the diagraph of the liquid a signal.Finally, then the applied dint really control the software to proceed to imitate to the system. The system includes three sets of equipment for measuring liquid device, in this design They are connected together by applied small scaled ether net, and get dispersion equipments, concentrating control. Key phrase: The liquid measures The PLC Ether net

西门子S7-200系列PLC控制水塔水位(含程序)

一、水塔水位 1、系统描述及控制要求 1.1 国内外发展现状调查 1.1.1 PLC及西门子S7-200系列PLC介绍 20世纪70年代初出现了微处理器。人们很快将其引入可编程逻辑控制器,使可编程逻辑控制器增加了运算、数据传送及处理等功能,完成了真正具有计算机特征的工业控制装置。此时的可编程逻辑控制器为微机技术和继电器常规控制概念相结合的产物。个人计算机发展起来后,为了方便和反映可编程控制器的功能特点,可编程逻辑控制器定名为Programmable Logic Controller(PLC)。 20世纪70年代中末期,可编程逻辑控制器进入实用化发展阶段,计算机技术已全面引入可编程控制器中,使其功能发生了飞跃。更高的运算速度、超小型体积、更可靠的工业抗干扰设计、模拟量运算、PID功能及极高的性价比奠定了它在现代工业中的地位。 20世纪80年代初,可编程逻辑控制器在先进工业国家中已获得广泛应用。世界上生产可编程控制器的国家日益增多,产量日益上升。这标志着可编程控制器已步入成熟阶段。 20世纪80年代至90年代中期,是可编程逻辑控制器发展最快的时期,年增长率一直保持为30~40%。在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,可编程逻辑控制器逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。 20世纪末期,可编程逻辑控制器的发展特点是更加适应于现代工业的需要。这个时期发展了大型机和超小型机、诞生了各种各样的特殊功能单元、生产了各种人机界面单元、通信单元,使应用可编程逻辑控制器的工业控制设备的配套更加容易。 西门子S7-200 是一种小型的可编程序控制器,适用于各行各业,各种场合中的检测、监测及控制的自动化。S7-200系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。因此S7-200系列具有极高的性能/价格比。 西门子S7-200系列在集散自动化系统中充分发挥其强大功能。使用范围可覆盖从替代继电器的简单控制到更复杂的自动化控制。应用领域极为广泛,覆盖所有与自动检测,自动化控制有关的工业及民用领域,包括各种机床、机械、电力设施、民用设施、环境保护设备等等。如:冲压机床,磨床,印刷机械,橡胶化工机械,中央空调,电梯控制,运动系统。

恒压供水系统自动控制设计要点

变频调速恒压供水系统,该系统能够根据运行负荷的变化自动调节供水系统水泵的数量和转速,使整个系统始终保持高效节能的最佳状态。 本文主要针对当前供水系统中存在的自动化程度不高、能耗严重、可靠性低的缺点加以研究,开发出一种新型的并在这三个方面都有所提高的变频式恒压供水自动控制系统。全文共分为四章。第一章阐明了供水系统的应用背景、选题意义及主要研究内容。第二章阐明了供水系统的变频调速节能原理。第三章详细介绍了系统硬件的工作原理以及硬件的选择。第四章详细阐述了系统软件开发并对程序进行解释。 关键词:变频器;恒压供水系统; PLC

Frequency conversion constant pressure water supply system, the system is capable of automatically adjusting water supply system based on load changes of quantity and speed of the pump, always maintain the high efficiency and energy saving the best state of the This article primarily for current there is a high degree of automation in the water supply system, serious disadvantages, reliability, low energy consumption study developed a new and increased in these three areas of automatic control system of frequency conversion constant pressure water supply. The text is divided into four chapters. Chapter I sets out the water supply system of main research topics on background, meaning and content. Chapter II sets out the principle of variable frequency speed adjusting energy saving of water supply systems. Chapter III details the working principle of system hardware and hardware choices. The fourth chapter elaborates system software development and to explain the procedures Key words:Cam、high deputy、automation

液位控制系统

基于智能仪表的串联双容水箱液位控制系统 (青海大学化工学院 2009年10月22日魏国强邮编:810016 关键字:智能仪表液位控制串联双容水箱) 中文摘要:本文提出了一种利用智能仪表AI808对串联双容水箱液位 进行串级控制,以MCGS组态软件实现上位机对现场进行实时组态、 监控的方法。 1.本题目设计的目的与意义 1.1本题目设计的目的 串联双容水箱在工业过程控制中应用非常广泛。在串联双容水 箱水位的控制中,进水首先进入第一个水箱,然后通过第二个水箱流出,与一个水箱相比,由于增加了一个水箱,使得被控量的响应在时 间上更落后一步,即存在容积延迟,从而导致该过程的难以控制。本 系统就是为解决这种缺陷而设计。 1.2本题目设计的意义 串级控制是改善调节过程动态性能的有效方法,由于其超前的控 制作用,可以大大克服系统的容积延迟。采用两步整定法,通过MCGS 组态软件对整定过程及曲线进行实时监控,直至达到主、副回路的最 佳整定参数。 2.液位控制系统在我国的发展现状和未来 2.1液位控制系统在我国的发展现状 随着生产水平和科学技术的不断发展,现代控制系统的规模日 趋大型化、复杂化,对设备和被控系统安全性、可靠性和有效性的要 求也越来越高。为了确保工业生产过程高效、安全的进行,保证并提

高产品的质量,对生产过程进行在线监测,及时准确地把握生产运行状况,已成为目前过程控制领域的一个研究热点。近几十年来,液位控制系统已被广泛使用,在其研究和发展上也已趋于完备。在轻工行业中,液位控制的应用非常普遍,从简单的浮球液位开关、非接触式的超声波液位检测一直到高精度的同位素液位检测系统到处都可以见到他们的身影。而控制的概念更是应用在许多生活周遭的事物上。而且液位控制系统已是一般工业界所不可缺少的元件。凡举蓄水池,污水处理场等都需要液位元的控制.如果能通过一定的系统来自动维持液位的高度那么操作人员便可轻易地在操作时获知真个设备的储水状况,如此不但工作人员工作的危险性,同时更提升了工作的效率及简便性.基于智能仪表的串联双容水箱液位控制系统正是具有这种功能。 2.2液位控制系统的未来 在构建液位控制系统的过程中,我们得知实际操作的变异性存在其中,因此如何分析、调整及改良便是我们日后所要着重的要点。而在完成传统的PID操作控制系统后,未来我们更将利用Genetic Algorithms 找出最好的参数并建构在液位控制系统。且比较加入智能型控制后的系统与传统 PID是否会有性能上的差异。近年来液位控制系统取得了很大进步,出现了许多新型的液位控制仪,如超声波液位仪、雷达液位仪、光电液位开关等,这些控制器利用无线电波的折射及反射原理。光线在两种介质的分接口将产生反射或折射现象。当被测液体处于高位时则被测液体与光电开关形成一种分界面,当被测液体处于低位时,则空气与光电开关形成另一种分界面。这两种分

水塔水位智能控制系统

摘要 水塔水位控制系统,根据水位传感器得知水塔内水位情况,水位传感器分为上限位传感器和下限位传感器,还有一个直接接上5V的传感器。当水塔上限位和下限位传感器电位为0时,电机运转,期间电机状态不变,直到下限位传感器和上限位传感器的电位不为0时,电机停转。当发生下限位传感器电位为0而上限位传感器电位不为0时,电机停转并报警。水塔水位控制电路设有光耦合器,通过光耦合器的通断控制电机运转与停转。同时设有LED 灯和蜂鸣器,报警时LED灯闪烁和蜂鸣器响。水塔水位控制器系统有四种状态,分别为电机运转状态、电机停转状态、保持状态和报警状态。各种状态皆由水位传感器传来的信号来判定并由单片机输出信号来执行,由此使得水位控制在上限位和下限位之间。 水塔水位控制系统的原理 1、功能要求 1)水塔水位下降至下线水位时,启动水泵上水。 2)水塔水位上升至上线水位时,关闭水泵。 3)水塔水位在上、下限水位之间时,水泵保持原状态。 4)供水系统出现故障时,自动报警。 2、基本原理 图1 水塔水位检测原理图 水塔水位控制原理图见图(1),图中两条虚线表示正常工作情况下水位升降的上下限,在正常供水时,水位应控制在两条虚线代表的水位之间。B测量水位下限,C测量水位上限,A接+5V,B、C接地。 在水塔无水或水位低于下限水位时,B、C为断开,B、C两点电位为零(低电平“0” ),需要水泵供水,单片机输出低电平,控制电机工作供水。水位上升到B点,B接通,B点电位变为高电平“1”,C开关仍断开,C点仍为低电平,维持现状水泵继续供水。当水位上升到C点时,C接通。这时B、C均接通,B、C两点都为高电平,表示水塔水位已满,需水泵停止供水,单片机输出高电平,电机断电停止供水。水塔水位开始下降,水位在降到B点之前,B点电位为高、C点电位为低,单片机输出控制电平维持不变,仍为高。当水位降到B 点以下,B、C两点电平都为低时,单片机输出控制电平又变低.水泵供水。 B和p1.0、C和P1.1之间接4.7k 的电阻(下拉电阻),目的是为了保护单片机。单片机9

PLC控制恒压供水系统.docx

PLC 控制恒压供水系统 国家职业资格全省统一鉴定 维修电工技师 (国家职业资格二级) 所在省市:江苏省常州市 摘要:本设计是针对居民生活用水 /消防用水而设计的。由变 频器、 PLC 控制系统,调节水泵的输出流量。电动机泵组由三 台水泵并联而成,由变频器或工频电网供电,根据供水 系统出口水压和流量来控制变频器电动机泵组之间的切换 及速度,使系统运行在最合理的状态,保证按需供水。采用 PLC 控制的变频调速供水系统,由PLC 进行逻辑控制,由 变频器进行压力调节。通过PLC控制变频与工频切换,实现闭环自动调节恒压供水。运行结果表明,该系统具有压力稳 定,结构简单,工作可靠操作方便等优点。

关 第一章概 述??????????????????????(1)1-1常的供水方式及恒 的??????????(1) 二、水的一般性原 ????????????????(1) 1-2PLC 、器控制的恒供水系方 案?????????(3) 二、方案特 点??????????????????????(3)四、型及目 的???????????????????(4) 硬件 ??????????????????????(6)二、器介 ?????????????????????(7)二、方 式??????????????????????(7)机速方案的比 ????????????????(9) 二、模供水系的

定?????????????????(10 ) 一、路介 ??????????????????????(11 )三、入出元件与 PLC 地址照 表????????????( 15) 程序????????????????????(17)???????????????????????? ?( 20) 致 ???????????????????????? ?( 21) 参考文 献???????????????????????( 22 )第一章概述 供水的一种典型方式是恒供水。恒供水使用器的速 功能通供水的水的速,以持供水始端力,使之保持相 的恒定,故又称恒供水。在供水以逐步渗透到各种行,品 种也从一的恒供水向多功能和高的、供水及能化控 制的方向展。 基于触摸屏和PLC 作控制器作速的恒供

PLC水塔水位控制实验报告

中国矿业大学机电学院 机电综合实验中心实验报告 课程名称机电综合实验 实验名称水塔水位控制模拟系统 实验日期2016、11、20 实验成绩 指导教师 第一章绪论 1、1实验目得 学会使用组态软件(推荐选用组态王软件)与PLC(推荐选用SIMEINS S7-2 00)控制系统连接,采用下位机执行,上位机监视控制得方法,构建完成水塔水位 自动控制系统。 1、2实验要求 (1)阅读本实验参考资料及有关图样,了解一般控制装置得设计原则、方法与步 骤。 (2)调研当今电气控制领域得新技术、新产品、新动向,用于指导设计过程,使设 计成果具有先进与创造性。 (3)认真阅读实验要求,分析并进行流程分析,画出流程图。 (4)应用PLC设计控制装置得控制程序。 (5)设计电气控制装置得照明、指示及报警等辅助电路。 (6)绘制正式图样,要求用计算机绘图软件绘制电气控制电路图,用STEP

7-Micro/Win32编程软件编写梯形图。 1、3 实验内容 (1)当水池水位低于水池低水位界(S4为ON表示),阀Y打开进水(Y为ON)定时器开始定时; (2)阀Y打开4秒后,如果S4还不为OFF,那么阀Y指示灯闪烁,表示阀Y没有进水,出现故障; (3)S3为ON后,阀Y关闭(Y为OFF)。当S4为OFF时,且水塔水位低于水塔低水位界时S2为ON,电机M运转抽水。当水塔水位高于水塔高水位界时电机M停止。 1、4课程设计器材: (1)TKPLC-1型实验装置一台 (2)安装了STEP7-Micro/WIN32编程软件与组态软件得计算机一台。 (3)PC/PPI编程电缆一根。 (4)连接导线若干。 1、5 PLC得介绍 可编程逻辑控制器(ProgrammableLogic Controller,PLC),它采用一类可编程得存储器,用于其内部存储程序,执行逻辑运算、顺序控制、定时、计数与算术操作等面向用户得指令,并通过数字或模拟式输入/输出控制各种类型得机械或生产过程。 1、5、1基本结构 PLC实质就是一种专用于工业控制得计算机,其硬件结构基本上与微型计算机相同,如图所示: 1、5、2 PLC得特点

基于三菱PLC控制的恒压供水系统设计(互联网+)

摘要 本设计是专门对日常用水而设计的恒压供水控制系统。根据国内外的研究现状以及系统的控制要求,制定出了一套适合此系统的控制方案。控制方案中,硬件设计主要对可编程控制器(PLC)机型、变频器机型以及电机泵组的机型做出了选择,同时还对系统的输入输出点进行了规划和分配。在软件设计部分,针对控制要求画出了系统的流程图,并且还对每一部分的流程图进行了功能的解释,使读者能更加轻松的了解整个系统的软件设计情况。在此课题中,还采用了MCGS组态软件,对控制系统进行监视与模拟运行,很直观的再现了现场的实际情况。最后,还对整个系统进行了运行调试,运行结果表明该系统具有水压稳定、硬件组成简单、运行可靠和操作方便等优点。 关键词:恒压供水;可编程控制器;变频器;组态软件

Abstract This design is specially designed for water constant pressure water supply control system. According to the requirements of the current research at home and abroad and the system control, develop a set of control scheme suitable for the system. In the control scheme, the hardware design is mainly to the programmable logic controller (PLC) model , frequency converter and motor pump set model made a choice, but also on the system input and output points of planning and allocation. In software design part, according to draw the flow chart of the system, and the required control and flow chart of every part of the function of explanation, so that readers can more easily understand the software design of the whole system. In this topic, also adopted the MCGS configuration software, to monitor and control system’s simulate, intuitive reproduce the actual situation of the scene. Finally, the debugging of the whole system running, the results on the surface of the system has stable pressure, simple structure, reliable operation and convenient operation. Key words: Constant pressure water supply;Programmable logic Controller;Inverter;Configuration software

液位自动控制系统分析

二.系统分析 2.1系统工作原理 浮球杠杆式液位自动控制系统原理示意图 工作原理:当电位器电刷位于中点位置时,电动机不动,控制阀门有一定的开度,使水箱中流入水量与流出水量相等,从而液面保持在希望高度上。一旦流入水量或流出水量发生变化,水箱液面高度便相应变化。例如,当液面升高时,浮子位置亦相应升高,通过杠杆作用使电位器电刷从中点位置下移,从而给电动机提供一定的控制电压,驱动电动机通过减速器减小阀门开度,使进入水箱的流量减少。此时,水箱液面下降,浮子位置相应下降,知道电位器电刷回到中点位置,系统重新处于平衡状态,液面恢复给定高度,反之,若水箱液面下降,则系统会自动增大阀门开度,加大流入的水量,使液面升到给定的高度。

2.2系统分解 水位自动控制系统由浮子,杠杆,直流电动机,阀门及水箱控制部分构成。根据不同的需要可以对各部分进行不同的设计。该系统结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。 液位控制系统原理方框图如下所示: 图2 2.3.数学模型 2.3.1浮子、杠杆、电位计(比例环节) 浮球杠杆测量液位高度的原理式 U o=U 总 b??al 式中Uo为电位计的输出电压,U 总 为电位计两端的总电势,b a为杠杆的长度比,??为高度的变化,l为电位计电阻丝的中点位置到电阻丝边缘的长度。 则:

G1s=K1 2.3.2微分调理电路(微分环节) 由于水面震荡,导致浮子不稳定,在电位计的输出电压与电动机的输入端之间接一个微分调理电路,对输入的电压进行调理传递函数为 G2s=K2s 2.3.3电动机(惯性环节) 查资料知电动机的传递函数: G3s= K3 Ts+1 2.3.4减速器(比例环节) 这是一个比例环节,增益为减速器的减速比。 故,传递函数为 G4s=K4 2.3.5控制阀(积分环节) 这是一个积分环节, 故,传递函数为 G5s=K5 s 2.3.6水箱(积分环节) 这是一个积分环节,实际液位Y是流入量Q in与流出量Q out的差值?Q对时间t的积分。

恒压供水PLC控制系统设计

1.1恒压供水PLC控制系统 一、实验目的 1.学习西门子PLC的使用; 2.掌握闭环调速原理; 3.掌握变频器的使用方法; 4.了解PLC控制变频恒压供水原理。 二、实验容 1.变频器参数设置 端子号参数的设定值缺省的操作V/F曲线选择/ C003=‘1’ 最高电压设定/ C004=‘380’ 基准频率设定/ C005=‘50’ 最大频率设定/ C010=‘50’ 运行控制选择/ C012=‘1’ 2.控制要求 1)单泵控制恒压供水,当需水量不是很大,用一个泵通过PID控制进行恒压供水; 2)双泵控制恒压供水,当需水量大时,当一个泵满足不了用水需求时,进行双泵切 换恒压供水; 3)PLC模拟量控制变频开环控制; 4)分时控制,定时轮换,可以有效地防止水泵长期不用而发生的锈死现象,提高了 设备的综合利用率,降低了维护费用。 三、实验步骤 1.单泵控制恒压供水 1)按照接线图接好线路,确保接线无误,以免损坏变频器和PLC的各个模块。 2)接好总电源,打开漏电保护器,此时电压表显示电压。按下启动按钮,电压指示灯亮起。 3)把模式选择开关打到手动位置,此时手动状态指示灯亮起。检查各水泵的运行情况,确定水泵能能正常运行。 4)把模式选择开关打到自动位置。 5)打开S7-200软件把程序写到PLC中,关闭软件。 6)把PLC的开关达到RUN位置。 7)打开组态王软件,运行变频恒压供水监控程序。在主画面中选择“闭环控制”打开闭环控制画面。

8)在闭环控制模式下单击单泵运行,并单击PID设定,设定给定压力SP,进行PID参数整定。

9)单击实时曲线可观察各参数的变化。 2.双泵控制恒压供水 1)打开组态王软件,运行变频恒压供水监控程序。在主画面中选择闭环控制打开闭环控制画面。

液位自动控制系统方案

等级: 课程设计 课程名称电气控制与PLC课程设计 课题名称液位自动控制系统设计与调试 专业 班级 学号 姓名 指导老师

电气信息学院 课程设计任务书 课题名称液位自动控制系统设计与调试 姓名专业班级学号 指导老师 课程设计时间 教研室意见审核人: 一.课程设计的性质与目的 本课程设计是自动化专业教学计划中不可缺少的一个综合性教学环节,是实现理论与实践相结合的重要手段。它的主要目的是培养学生综合运用本课程所学知识和技能去分析和解决本课程围的一般工程技术问题,建立正确的设计思想,掌握工程设计的一般程序和方法。通过课程设计使学生得到工程知识和工程技能的综合训练,获得应用本课程的知识和技术去解决工程实际问题的能力。 二. 课程设计的容 1.根据控制对象的用途、基本结构、运动形式、工艺过程、工作环境和控制要求,确定控制方案。 2.绘制水箱液位系统的PLC I/O接线图和梯形图,写出指令程序清单。 3.选择电器元件,列出电器元件明细表。 4.上机调试程序。 5.编写设计说明书。 三. 课程设计的要求 1.所选控制方案应合理,所设计的控制系统应能够满足控制对象的工艺要求,并且技术先进,安全可靠,操作方便。 2.所绘制的设计图纸符合国家标准局颁布的GB4728-84《电气图用图形符号》、GB6988-87《电气制图》和GB7159-87《电气技术中的文字符号制定通则》的有关规定。 3.所编写的设计说明书应语句通顺,用词准确,层次清楚,条理分明,重点突出,篇幅不少于7000字。

四.进度安排 1.第一周星期一:布置课程设计任务,讲解设计思路和要求,查阅设计资料。 2.第一周星期二~星期四:详细了解搬运机械手的基本组成结构、工艺过程和控制要求。确定控制方案。配置电器元件,选择PLC型号。绘制传送带A、B的拖动电机的控制线路原理图和搬运机械手控制系统的PLC I/O接线图。设计PLC梯形图程序,列出指令程序清单。 3.第一周星期五:上机调试程序。 4.第二周星期一:指导编写设计说明书。 5.第二周星期二~星期四:编写设计说明书。 6.第二周星期五:答辩。 附录:课题简介及控制要求 (1)课题简介 某化工厂水箱的排水量根据工业生产的需要而不断地变化,为了保持水箱压力恒定,就要保持水位恒定,因此就必须自动调整进水量。 本系统要求有手动和自动两种工作方式。手动控制方式用于水泵的调试,即当按下按钮时水泵运转,松开按钮时水泵停止,目的是为了调试水泵是否能正常工作;当系统切换为自动控制方式并启动后,控制系统自动调整水泵的进水量达到给定水位恒定。水位设定高限和低限,当水位超过设定的限位时要进行超限报警。 (2)控制要求 控制系统技术参数表

相关文档
最新文档