戴维南定理的解析与练习

戴维南定理的解析与练习
戴维南定理的解析与练习

戴维宁定理

一、知识点:

1、二端(一端口) 网络的概念:

二端网络:具有向外引出一对端子的电路或网络。

无源二端网络:二端网络中没有独立电源。

有源二端网络:二端网络中含有独立电源。

2、戴维宁(戴维南)定理

任何一个线性有源二端网络都可以用一个电压为U OC的理想电压源和一个电阻R0串联的等效电路来代替。如图所示:

等效电路的电压U OC是有源二端网络的开路电压,即将负载R L断开后a 、b两端之间的电压。

等效电路的电阻R0是有源二端网络中所有独立电源均置零(理想电压源用短路代替,理想电流源用开路代替)后, 所得到的无源二端网络a 、b两端之间的等效电阻。

二、例题:应用戴维南定理解题: 戴维南定理的解题步骤:

1.把电路划分为待求支路和有源二端网络两部分,如图1中的虚线。

2.断开待求支路,形成有源二端网络(要画图),求有源二端网络的开路电压UOC 。

3.将有源二端网络的电源置零,保留其阻(要画图),求网络的入端等效电阻Rab 。

4.画出有源二端网络的等效电压源,其电压源电压US=UOC (此时要注意电源的极性),阻R0=Rab 。

5.将待求支路接到等效电压源上,利用欧姆定律求电流。

例1:电路如图,已知U 1=40V ,U 2=20V ,R 1=R 2=4Ω,R 3=13 Ω,试用戴维宁定理求电流I 3。

解:(1) 断开待求支路求开路电压U OC

U OC = U 2 + I R 2 = 20 +2.5 ? 4 = 30V

或: U OC = U 1 – I R 1 = 40 –2.5 ? 4 = 30V U OC 也可用叠加原理等其它方法求。

(2) 求等效电阻R 0

将所有独立电源置零(理想电压源用短路代替,理想电流源用开路代替)

(3) 画出等效电路求电流I 3 A

5.24420402121=+-=+-=R R U U I Ω=+?=22

1210R R R

R R A

213

230

3

0OC 3=+=

+=

R R U I

例2:试求电流I1

解:(1) 断开待求支路求开路电压U OC U OC = 10 – 3 ? 1 = 7V

(2) 求等效电阻R0

R0 =3 Ω

(3) 画出等效电路求电流I3

解得:I1 = 1. 4 A 【例3】用戴维南定理计算图中的支路电流I3。

+ _

a

b

I1

7V

解:①等效电源的电动势E可由图1-58(b)求得

于是

②等效电源的阻R O可由图1-58(c)求得

因此

③对a和b两端讲,R1和R2是并联的,由图1-58(a)可等效于图1-58(d)。

所以

【例4】电路如图所示,R=2.5KΩ,试用戴维南定理求电阻R中的电流I。

解:图1-59(a)的电路可等效为图1-59(b)的电路。

将a、b间开路,求等效电源的电动势E,即开路电压U ab0。应用结点电压法求a、b间开路时a和b两点的电位,即

将a、b间开路,求等效电源的阻R0

R0=3KΩ//6KΩ+2KΩ//1KΩ//2KΩ=2.5KΩ

求电阻R中的电流I

三、应用戴维宁定理应注意的问题:

应用戴维南定理必须注意:

①戴维南定理只对外电路等效,对电路不等效。也就是说,不可应用该定理求出等效电源电动势和阻之后,又返回来求原电路(即有源二端网络部电路)的电流和功率。

②应用戴维南定理进行分析和计算时,如果待求支路后的有源二端网络仍为复杂电路,可再次运用戴维南定理,直至成为简单电路。

③使用戴维南定理的条件是二端网络必须是线性的,待求支路可以是线性或非线性的。线性电路指的是含有电阻、电容、电感这些基本元件的电路;非线性电路指的是含有二极管、三极管、稳压管、逻辑电路元件等这些的电路。当满足上述条件时,无论是直流电路还是交流电路,只要是求解复杂电路中某一支路电流、电压或功率的问题,就可以使用戴维南定理。

四、练习题:

1、用戴维南定理求图中5Ω电阻中的电流I,并画出戴维南等效电路

2、试用戴维南定理计算图示电路中3欧电阻中的电流I.(-35/31(A))

3、试用戴维南定理计算图示电路中6欧电阻中的电流I。(0.75A)

4、如图中已知US1=140V US2=90V R1=20欧姆 R2=5欧姆 R3=6欧姆,用戴维宁定律计算电流 I 3 值 (10A )

5、计算图示电路中的电流I 。(用戴维南定理求解)(2A )

- 10V +

5A 2A

- 20V +

题3图

6、计算图示电路中的电流I。(用戴维南定理求解)(-1A)

7、计算图示电路中的电流I。(用戴维南定理求解)

(1.6A)

7、用戴维南定理计算图中的支路电流I3。(10A)

8、电路如图所示,R=2.5KΩ,试用戴维南定理求电阻R中的电流I。(0.35 mA)

9、用戴维南定理求下图所示电路中的电流I(2A)

戴维南定理实验报告

实验一戴维南定理 班级:17信息姓名:张晨瑞学号:20 一、实验目的 1.深刻理解和掌握戴维南定理。 2.掌握测量等效电路参数的方法。 3.初步掌握用Multisim软件绘制电路原理图的方法。 4.初步掌握Multisim软件中的Multimeter、Voltmeter、Ammeter等仪表的使用方法以及DC Operating Point、Parameter Sweep等SPICE仿真分析方法。 5.掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使用方法。 6.初步掌握Origin绘图软件的应用方法。 二、实验原理 一个含独立源、线性电阻的受控源的一端口网络,对外电路来说,可以用一个电压源和电子的床帘组合来等效置换,去等效电压源的电压等于该一端口网络的开路电压,其等效电阻等于该一端口网络中所有独立源都置为零后的输入电阻。这一定理成为戴维南定理。 三、实验方法 1.比较测量法 戴维南定理是一个等效定理,因此应想办法验证等效前后对其他电路的影响是否一致,即等效前后的外特性是否一致。 实验中首先测量原电路的外特性,在测量等效电路的外特性,最后比较两者是否一致,等效电路中的等效参数的获取,可通过测量得到,并同根据电路结构所推到计算出的结果相比较。 实验中期间的参数应使用实际测量值。实际值和期间的标称值是有差别的,所有的理论计算应基于器件的实际值。 2.等效参数的获取

等效电压Uoc:直接测量被测电路的开路电压,该电压就是等效电压。 等效电阻Ro:将电路中所有电压源短路,所有电流源开路,使用万用表阻挡测量。 3.测量点个数以及间距的选取 测试过程中测量的点个数以及间距的选取与测量特性和形状有关。对于直线特性,应使测量间距尽量平均,对于非线性特性应在变化陡峭处多测些点。测量的目的是为了用有限的点描述曲线的整体形状和细节特征。因此应注意测试过程中测量的点个数以及间距的选取。 为了比较完整地反映特性和形状,一般选取10个以上的测量点。 本实验中由于特性曲线是直线形状,因此测量点应均匀选取。为了办政策亮点分布合理,迎新测量特性的最大值和最小值,再根据点数合理选择测量间距。 4.电路的外特性测量方法 在输出端口上接可变负载(如电位器),改变负载(调节电位器)测量端口的电压和电流。 四、实验仪器与器件 1.计算机一台 2.通用电路板一块 3.万用表两只 4.直流稳压电源一台 5.电阻若干 五、实验内容 1.测量电阻的实际值,填表,并计算等效电源电压和等效电阻 2.Multisim仿真 (1)创建电路; (2)用万用表测量端口开路电压和短路电流,并计算等效电阻; (3)用万用表的Ω挡测量等效电阻,与(2)比较,将测量结果 填入表1中;

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已 知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如图 2. 由题意可知△AC D中,∠ACD=90°,在Rt △ACD 中,只知道CD =1.5,这是典型的利用勾股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=A D2 设水深AC= x 米,那么AD =A B=AC+CB =x +0.5 x2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

戴维南定理实验报告

戴维南定理实验报告

戴维南定理 班级:14电信学号:1428403003 姓名:王舒成绩:一实验原理及思路 一个含独立源,线性电阻和受控源的二端网络,其对外作用可以用一个电压源串联电阻的. 等效电源代替,其等效电压源的电压等于该二端网络的开路电压,其等效内阻是将该二端网络中所有的独立源都置为零后从从外端口看进去的等效电阻。这一定理称为戴维南定理。 本实验采用如下所示的实验电路图a: 等效后的电路图如下b: 测它们等效前后的外特性,然后验证等效前后对电路的影响。 二实验内容及结果

⒈计算等效电压和电阻 计算等效电压:电桥平衡。∴=,33 1131R R R R Θ Uoc=3 11 R R R +=2.609V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ??++3311111221 3111121 R R R R R R =250.355 ⒉用Multisim 软件测量等效电压和等效电阻 测量等效电阻是将V1短路,开关断开如下图所示: -+ Ro=250.335O Ω 测量等效电压是将滑动变阻器短路如下图 V120 V R11.8kΩ R2220Ω R112.2kΩ R22270Ω R33330ΩR3270Ω 50% 2 4 J1Key = A XMM1 6 a 1 7 Uo=2.609V ⒊用Multisim 仿真验证戴维南定理 仿真数据

等效电压Uoc=2.609V 等效电阻Ro=250.355Ω 电压/V 2.6 09 2.4 08 2.3 87 2.3 62 2.3 31 2.2 9 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 84 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 4 电压/V 2.6 09 2.4 08 2.3 87 2.3 63 2.3 3 2.2 91 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 85 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 5

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB CD EF、GH四条线段, 其中能构成一个直角三角形三边的线段是() A.CD、EF、 GH C. AB、CD GH B.AB、EF、GH D. AB、CD EF 愿路分乐屮 1)題意分析’本题考查幻股定理及勾股定理的逆定理.亠 2)解題思器;可利用勾脸定理直接求出各边长,再试行判断?』 解答过整屮 在取DEAF中,Af=l, AE=2,根据勾股定理,得昇 EF = Q抡於十£尸° = Q +F二艮 同理HE = 2百* QH. = 1 CD = 2^5 计算发现W十◎血尸=(鸥31即血+曲=GH2,根据勾股定理的逆宦理得到UAAE、EF\ GH为辺的三角形是直毎三角形.故选B. * 縮題后KJ思专:* 1.勾股定理只适用于直角三角形,而不适用于说角三角形和钝角三角形? 因此」辭题时一宦妾认真分析题目所蛤■条件■,看是否可用勾股定理来解口* 2.在运用勾股左理时,要正确分析题目所给的条件,不要习惯性地认为就是斜 迫而“固执”地运用公式川二/十就其实,同样是S6

"不一罡就等于餌,疋不一罡就昱斜辺,KABC不一定就是直角三祐

3.直角三第形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从 卅形s—个三角形是直角三角形)到懺 y =沖十沪)的过程,而直角三角形的判定是一 ①从嗦(一个三角形的三辺满足X二护+酹的条件)到偲个三角形是直角三角形)的过 程.a 4?在应用勾股定理解题叭聲全面地琴虑间题.注意m题中存在的多种可能性,遊免漏辭.初 例玉如圏,有一块直角三角形?椀屈U,两直角迫4CM5沁丸m?现将直角边AC沿直绘AD折蠡便它落在斜边AB上.且点C落到点E处, 则切等于(、* C/) "禎 B. 3cm G-Icni n題童分析,本题着查勾股定理的应用刎 :)解龜思路;車题若直接在△MQ中运用勾股定理是无法求得仞的长的,因为貝知遒一条边卫0的长,由题意可知,AACD和心迓门关于直线KQ对称.因而^ACD^hAED ?进一歩则有应RUm CZAED ED 丄AB,设UD=E2>黄泱,则在Rt A ABO中,由勾股定 理可得^=^(^+^=^83=100,得AB=10cm,在松迟DE 中,W ClO-fl)2= d驚解得尸 九4 解龜后的思琴尸 勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占 明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗?” 占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角

戴维南定理实验报告

戴维南定理 学号:1128403019 姓名:魏海龙班级:传感网技术 一、实验目的: 1、深刻理解和掌握戴维南定理。 2、掌握测量等效电路参数的方法。 3、初步掌握用multisim软件绘制电路原理图。 4、初步掌握multisim软件中的multimeter、voltmeter、ammeter 等仪表的使用以及DC operating point、paramrter sweep等 SPICE仿真分析方法。 5、掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使 用。 6、初步掌握Origin绘图软件的应用。 二、实验器材: 计算机一台、通用电路板一块、万用表两只、直流稳压电源一台、电阻若干。 三、实验原理:一个含独立源、线性电阻和受控源的一端口网络,对 外电路来说,可以用一个电压源和电阻的串联组合来等效置 换,其等效电压源的电压等于该一端口网络的开路电压,其等 效电阻等于该一端口网络中所有独立源都置为零后的数日电 阻。 四、实验内容: 1、电路图:

2、元器件列表: 2、实验步骤: (1)理论分析: 计 算等效电压: 电桥平衡。∴=,331131R R R R Uoc=3 11 R R R +=2.6087V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ? ?++3311111221 3111121 R R R R R R =250.355

(2)测量如下表中所列各电阻的实际值,并填入表格: 然后根据理论分析结果和表中世纪测量阻值计算出等效电源电压和等效电阻,如下所示: Uc=2.6087V R=250.355Ω (3)multisim仿真: a、按照下图所示在multisim软件中创建电路 b、用万用表测量端口的开路电压和短路电流,并计算等 效电阻,结果如下:Us= 2.609V I= 10.42mA R=250.38Ω

戴维南定理典型例子_戴维南定理解题方法

戴维南定理典型例子_戴维南定理解题方法 什么是戴维南定理戴维南定理(又译为戴维宁定理)又称等效电压源定律,是由法国科学家L·C·戴维南于1883年提出的一个电学定理。由于早在1853年,亥姆霍兹也提出过本定理,所以又称亥姆霍兹-戴维南定理。其内容是:一个含有独立电压源、独立电流源及电阻的线性网络的两端,就其外部型态而言,在电性上可以用一个独立电压源V和一个松弛二端网络的串联电阻组合来等效。在单频交流系统中,此定理不仅只适用于电阻,也适用于广义的阻抗。戴维南定理在多电源多回路的复杂直流电路分析中有重要应用。 戴维南定理(Thevenin‘stheorem):含独立电源的线性电阻单口网络N,就端口特性而言,可以等效为一个电压源和电阻串联的单口网络。电压源的电压等于单口网络在负载开路时的电压uoc;电阻R0是单口网络内全部独立电源为零值时所得单口网络N0的等效电阻。戴维南定理典型例子戴维南定理指出,等效二端网络的电动势E等于二端网络开路时的电压,它的串联内阻抗等于网络内部各独立源和电容电压、电感电流都为零时,从这二端看向网络的阻抗Zi。设二端网络N中含有独立电源和线性时不变二端元件(电阻器、电感器、电容器),这些元件之间可以有耦合,即可以有受控源及互感耦合;网络N的两端ɑ、b接有负载阻抗Z(s),但负载与网络N内部诸元件之间没有耦合,U(s)=I(s)/Z(s)。当网络N中所有独立电源都不工作(例如将独立电压源用短路代替,独立电流源用开路代替),所有电容电压和电感电流的初始值都为零的时候,可把这二端网络记作N0。这样,负载阻抗Z(s)中的电流I(s)一般就可以按下式1计算(图2)式中E(s)是图1二端网络N的开路电压,亦即Z(s)是无穷大时的电压U(s);Zi(s)是二端网络N0呈现的阻抗;s是由单边拉普拉斯变换引进的复变量。 和戴维南定理类似,有诺顿定理或亥姆霍兹-诺顿定理。按照这一定理,任何含源线性时不变二端网络均可等效为二端电流源,它的电流J等于在网络二端短路线中流过的电流,并联内阻抗同样等于看向网络的阻抗。这样,图1中的电流I(s)一般可按下式2计算(图

戴维南定理实验报告

实验四戴维南定理 一、实验目的 1、验证戴维南定理 2、测定线性有源一端口网络的外特性和戴维南等效电路的外特性。 二、实验原理 戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,总可以用一个理想电压源和电阻的串联形式来代替,理想电压源的电玉等于原一端口的开路电压Uoc,其电阻(又称等效内阻)等于网络中所有独立源置零时的入端等效电阻Req,见图4-1。 图4- 1 图4- 2 1、开路电压的测量方法 方法一:直接测量法。当有源二端网络的等效内阻Req与电压表的内阻Rv 略不计时,可以直接用电压表测量开路电压。 方法二:补偿法。其测量电路如图4-2所示,E为高精度的标准电压源,R为标准分压电阻箱,G为高灵敏度的检流计。调节电阻箱的分压比,c、d两端的电压随之改变,当Ucd=Uab 时,流过检流计G的电流为零,因此

Uab=Ucd =[R2/(R1+ R2)]E=KE 式中 K= R2/(R1+ R2)为电阻箱的分压比。根据标准电压E 和分压比Κ就可求得开路电压Uab,因为电路平衡时I G= 0,不消耗电能,所以此法测量精度较高。 2、等效电阻Req的测量方法 对于已知的线性有源一端口网络,其入端等效电Req可以从原网络计算得出,也可以通过实验测出,下面介绍几种测量方法: 方法一:将有源二端网络中的独立源都去掉,在ab端外加一已知电压U, 测量一端口的总电流I总则等效电阻 Req= U/I总 实际的电压源和电流源具有一定的内阻,它并不能与电源本身分开,因此在去掉电源的同时,也把电源的内阻去掉了,无法将电源内阻保留下来,这将影响测量精度,因而这种方法只适用于电压源内阻较小和电流源内阻较大的情况。 方法二:测量ab端的开路电压Uoc及短路电流Isc则等效电阻 Req= Uoc/Isc 这种方法适用于ab端等效电阻Req较大,而短路电流不超过额定值的情形,否则有损坏电源的危险。 图4 – 3 图 4-4 方法三:两次电压测量法 测量电路如图4-3所示,第一次测量ab端的开路Uoc,第二次在ab端接一已知电阻RL (负载电阻),测量此时a、b端的负载电压U,则a、b端的等效电阻Req为:

戴维南定理的解析与练习

戴维宁定理 一、知识点: 1、二端(一端口)网络的概念:二端网络:具有向外引出一对端子的电路或网络。无源二端网 络:二端网络中没有独立电源。有源二端网络:二端网络中含有独立电源。 2、戴维宁(戴维南)定理任何一个线性有源二端网络都可以用一个电压为联的等效电路来代替。 如图所示:U OC 的理想电压源和一个电阻R0 串

L 等裁巴路J 等效电路的电压U OC是有源二端网络的开路电压,即将负载R-断开后a、b两端之间 的电压。 等效电路的电阻R o是有源二端网络中所有独立电源均置零(理想电压源用短路代替, 理想电流源用开路代替)后,所得到的无源二端网络a、b两端之间的等效电阻。

二、 例题:应用戴维南定理解题: 戴维南定理的解题步骤: 1?把电路划分为待求支路和有源二端网络两部分,如图 1中的虚线。 2?断开待求支路,形成有源二端网络(要画图) ,求有源二端网络的开路电压 UOG 3?将有源二端网络内的电源置零,保留其内阻(要画图) ,求网络的入端等效电阻 Rab 。 4?画出有源二端网络的等效电压源,其电压源电压 US=UOC (此时要注意电源的极性), 内阻 R0=Rab= 5?将待求支路接到等效电压源上,利用欧姆定律求电流。 例1:电路如图,已知 5= 40V , U2=20V ,R1=R2=4,R3=13,试用戴维宁定理求电流 b 。 解:(1)断开待求支路求开路电压 UOC U 1 U 2 40 20 4 4 2.5A UOC =U2 + IR2 = 20 + 4 = 30V 或:UOC = U1 -I R1 = 40 - 4 30V UOC 也可用叠加原理等其它方法求。 (2) 求等效电阻R0 将所有独立电源置零(理想电压源 用短路代替,理想电流源用开路代替) R R ^~R L 2 R R 2 ]:师 画出等效电路求电流I 3 U OC R 。 R 3 2 13

勾股定理练习题及问题详解(共6套)

勾股定理课时练(1) 1. 在直角三角形ABC中,斜边AB=1,则AB2 2 2AC BC+ +的值是() A.2 B.4 C.6 D.8 2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值). 3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m? 5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米. 6. 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米? 7. 如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8. 一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。求CD的长. 9. 如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长. 10. 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北 7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少? 11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱? 12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?

戴维南定理实验报告

戴维南定理实验报告 一、实验目的 1.深刻理解和掌握戴维南定理。 2.掌握和测量等效电路参数的方法。 3.初步掌握用Multisim软件绘制电路原理图。 4.初步掌握Multisim软件中的Multmeter,Voltmeter,Ammeter等仪表的使用以及DC Operating Point,Parameter等SPICE仿真分析方法。 5.掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使用。 6.初步掌握Origin绘图软件的使用。 二、实验原理 三、一个含独立源,线性电阻和受控源的 一端口网络,对外电路来说,可以用一个 电压源和电阻的串联组合等效置换、其等 效电压源的电压等于该一端口网络的开路 电压,其等效电阻等于将该一端口网络中 所有独立源都置为零后的的输入电阻,这 一定理称为戴维南定理。如图实验方法 1.比较测量法 2.戴维南定理是一个等效定理,因此想办法验证等效前后对其他电路的影响是否一致,即等效前后的外特性是否一致。 3.整个实验过程首先测量原电路的外特性,再测量等效电路的外特性。最后进行比较两者是否一致。等效电路中等效参数的获取,可通过测量得到,并同根据 电路结构所推导计算出的结果想比较。 实验中期间的参数应使用实际测量值,实际值和器件的标称值是有差别的。 所有的理论计算应基于器件的实际值。 4.等效参数的获取 5.等效电压Uoc:直接测量被测电路的 开路电压,该电压就是等效电压。 6.等效电阻Ro:将电路中所有电压源 短路,所有电流源开路,使用万用 表电阻档测量。本实验采用下图的 实验电路。 7.电路的外特性测量方法8.在输出端口上接可变负载(如电位器),改变负载(调节电位器)测量端口的电压和电流。 9.测量点个数以及间距的选取 10.测试过程中测量点个数以及间距的选取,与测量特性和形状有关。对于直线特性,应使测量点间隔尽量平均,对于非线性特性应在变化陡峭处多测些点。测量的目 的是为了用有限的点描述曲线的整体形状和细节特征。因此应注意测试过程中测 量点个数及间距的选取。 四、实验注意事项 1.电流表的使用。由于电流表内阻很小,放置电流过大毁坏电流表,先使用大量程(A) 粗侧,再使用常规量程(mA)。

实验八--戴维南定理和诺顿定理

实验八戴维南定理和诺顿定理 一、实验目的 1.验证戴维南定理和诺顿定理的正确性,加深对两个定理的理解。 2.掌握含源二端网络等效参数的一般测量方法。 3.验证最大功率传递定理。 二、原理说明 戴维南定理与诺顿定理在电路分析中是一对“对偶”定理,用于复杂电路的化简,特别是当“外电路”是一个变化的负载的情况。 在电子技术中,常需在负载上获得电源传递的最大功率。选择合适的负载,可以获得最大的功率输出。 1.戴维南定理 任何一个线性有源网络,总可以用一个含有内阻的等效电压源来代替,此电压源的电动势Es等于该网络的开路电压Uoc,其等效内阻Ro等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 2.诺顿定理 任何一个线性含源单口网络,总可以用一个含有内阻的等效电流源来代替,此电流源的电流Is等于该网络的短路电流Isc,其等效内阻Ro等于该网络中所有独立源均置零时的等效电阻。 Uoc、Isc和Ro称为有源二端网络的等效参数。 3.最大功率传递定理 在线性含源单口网络中,当把负载RL以外的电路用等效电路(Es+Ro或Is∥Ro)取代时,若使R L=Ro,则可变负载R L上恰巧可以获得最大功率: P MAX=I sc2.R L/4=Uoc2/4RL (1) 4.有源二端网络等效参数的测量方法 ⑴开路电压Uoc的测量方法 ①直接测量法 直接测量法是在含源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc,如图8-1(a)所示。它适用于等效内阻Ro较小,且电压表的内阻Rv>>Ro的情况下。 ②零示法 在测量具有高内阻(Ro>>Rv)含源二端网络的开路电压时,用电压表进行直接测量会造成较大的误差,为了消除电压表内阻的影响,往往采用零示测量法,如图8-1(b)所示。 零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压Es与有源二端网络的开路电压Uoc相等时,电压表的读数将为“0”,然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。 ⑵短路电流Isc的测量方法 ①直接测量法:是将有源二端网络的输出端短路,用电流表直接测其短路电流Isc。此方法适用于内阻值 Ro较大的情况。若 二端网络的内阻值 很低时,会使Isc 很大,则不宜直接测 其短路电流。

(完整版)勾股定理经典例题(教师版)

勾股定理全章知识点和典型例习题 一、基础知识点: 1?勾股定理 内容:____________________________________________________________ 表示方法:如果直角三角形的两直角边分别为 a , b,斜边为c,那么__________________ 2 ?勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 3 ?勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC中,C 90 , 则 __________________________________________ ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定 理解决一些实际问题 4. 勾股定理的逆定理 如果三角形三边长a , b , c满足a2 b2c,那么这个三角形是直角三角形,其中c为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过数转化为形”来确定三角形的可能 形状,在运用这一定理时,可用两小边的平方和a2 b2与较长边的平方c2作比较,若它们相等时,以 a , b , c为三边 的三角形是直角三角形;若 _________ ,时,以a , b , c为三边的三角形是钝角三角形;若__________________ ,时,以a , b , c为三边的三角形是锐角三角形; ②定理中a , b , c及a2 b2 c2只是一种表现形式,不可认为是唯一的,如若三角形三边长 a , b , c满足a2 c2 b2, 那么以a , b , c为三边的三角形是直角三角形,但是b为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 5. 勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2 b2 c2中,a , b , c为正整数时,称a , b , c为 一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5 ; 6,8,10 ; 5,12,13; 7,24,25等 ③用含字母的代数式表示n组勾股数: 2 2 n 1,2n,n 1 (n 2, n 为正整数); 2n 1,2n2 2n,2n2 2n 1 (n为正整数)m2 n2,2mn,m2 n2(m n, m , n为正整数)7 .勾股定理的应用

最新勾股定理逆定理讲义(经典例题+详解+习题)

XX教育一对一个性化教案 授课日期:2014 年月日学生姓名许XX 教师姓名授课时段2h 年级8 学科数学课型VIP 教学内容勾股定理及逆定理 教学重、难点重点:运用勾股定理判定一个三角形是否为直角三角形。难点:运用用勾股定理和勾股定理逆定理解决实际问题。 教学步骤及突出教学方法一、知识归纳 1、勾股定理的逆定理 如果三角形三边长a,b,c满足222 a b c +=,那么这个三角形是直角三角形,其中c为斜边。 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22 a b +与较长边的平方2c作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若222 a b c +<,时,以a,b,c为三边的三角形是钝角三角形;若222 a b c +>,时,以a,b,c为三边的三角形是锐角三角形; ②定理中a,b,c及222 a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足222 a c b +=,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边。 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形。 2、勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222 a b c +=中,a,b,c为正整数时,称a,b,c为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n组勾股数: 22 1,2,1 n n n -+(2, n≥n为正整数); 22 21,22,221 n n n n n ++++(n为正整数) 2222 ,2, m n mn m n -+(, m n >m,n为正整数)

初二数学经典讲义 勾股定理(基础)知识讲解

勾股定理(基础) 【学习目标】 1. 掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条 边长求出第三条边长. 2. 掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题. 3. 熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题. 【要点梳理】 【高清课堂 勾股定理 知识要点】 要点一、勾股定理 直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为 a b ,,斜边长为c ,那么222a b c +=. 要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系. (2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线 段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解 决问题的目的. (3)理解勾股定理的一些变式: 222a c b =-,222b c a =-, ()2 22c a b ab =+-. 要点二、勾股定理的证明 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形. 图(1)中,所以. 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中,所以. 方法三:如图(3)所示,将两个直角三角形拼成直角梯形.

,所以. 要点三、勾股定理的作用 1. 已知直角三角形的任意两条边长,求第三边; 2. 用于解决带有平方关系的证明问题; 3. 利用勾股定理,作出长为 的线段. 【典型例题】 类型一、勾股定理的直接应用 1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . (1)若a =5,b =12,求c ; (2)若c =26,b =24,求a . 【思路点拨】利用勾股定理222a b c +=来求未知边长. 【答案与解析】 解:(1)因为△ABC 中,∠C =90°,222a b c +=,a =5,b =12, 所以2222251225144169c a b =+=+=+=.所以c =13. (2)因为△ABC 中,∠C =90°,222a b c +=,c =26,b =24, 所以222222624676576100a c b =-=-=-=.所以a =10. 【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式. 举一反三: 【变式】在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . (1)已知b =2,c =3,求a ; (2)已知:3:5a c =,b =32,求a 、c . 【答案】 解:(1)∵ ∠C =90°,b =2,c =3, ∴ 2222325a c b =-=-; (2)设3a k =,5c k =. ∵ ∠C =90°,b =32, ∴ 222a b c +=. 即222(3)32(5)k k +=. 解得k =8. ∴ 33824a k ==?=,55840c k ==?=. 类型二、勾股定理的证明

戴维南定理实验报告

戴维南定理及其应用实验报告书 戴维南定理及其应用 一、实验目的 1、掌握戴维南定理及其应用方法。 2、验证戴维南定理。 二、实验器材 直流电压源 1个 电压表 1个 电流表 1个 电阻 4个 三、实验原理 在电路理论中等效电路定理具有非常重要的意义,它包括戴维南定理和诺顿定理。戴维南定理可描述为:任何一个线性单端口电路N (如图2-5-1(a )所示),它对外电路的作用,都可以用一个电压源和电阻的串联组合来等效,这个等效电路称为戴维南等效电路(也称为等效电压源),见图2-5-1(b )所示。其中,该等效电压源的电压值等于单端口电路N 在端口处的开路电压U OC ;电阻R O 等于单端口电路N 内所有独立源为零的条件下,从端口处看进去的等效电阻。电阻R O 也称为戴维南等效电阻。 (a) (b) 图2-5-1 戴维南等效电路原理

(a)(b) (c)(d)R U OC 图2-5-2 戴维南等效电路 图2-5-2(a)给出了一个线性单端口电路,其中,R L为负载。首先求该电路的戴维南等效电阻R O。将该电路的电压源短路,见图2-5-2(b),可求得 R O=R1//R2+R3=25Ω+50Ω=75Ω 其次,求端口ao处的开路电压U OC=6V(见图2-5-2(c))。所以该电路的等效电路见图2-5-2(d)所示。 四、实验步骤 1. 单端口电路测试 按图2-5-3连线,电源电压设置为12V。按表2-5-1中给出的数据改变R L之值,测量负载电阻R L的电压U L和流过电阻R L的电流I L,并填写表2-5-1。 图2-5-3 单端口电路 表2-5-1单端口电路的测量数据 2. 等效电路测试 按图2-5-4连线,电源电压设置为6V。按表2-5-2中给出的数据改变R L之值,测量负载电阻R L的电压U L和流过电阻R L的电流I L,并填写表2-5-2。

戴维宁定理七种例题

戴维宁定理例题 例1 运用戴维宁定理求下图所示电路中的电压U0 图1 剖析:断开待求电压地址的支路(即3Ω电阻地址支路),将剩下一端口网络化为戴维宁等效电路,需恳求开路电压U oc和等效电阻R eq。 (1)求开路电压U oc,电路如下图所示 由电路联接联络得到,U oc=6I+3I,求解得到,I=9/9=1A,所以U oc=9V (2)求等效电阻R eq。上图电路中含受控源,需求用第二(外加电源法(加电压求电流或加电流求电压))或第三种(开路电压,短路电流法)办法求解,此刻独立源应置零。 法一:加压求流,电路如下图所示, 依据电路联接联络,得到U=6I+3I=9I(KVL),I=I0′6/(6+3)=(2/3)I0(并联分流),所以U=9′(2/3)I0=6I0,R eq=U/I0=6Ω 法二:开路电压、短路电流。开路电压前面已求出,U oc=9V,下面需恳求短路电流I sc。在求解短路电流的进程中,独立源要保存。电路如下图所示。

依据电路联接联络,得到6I1+3I=9(KVL),6I+3I=0(KVL),故I=0,得到I sc=I1=9/6=1.5A(KCL),所以R eq=U oc/I sc=6Ω 终究,等效电路如下图所示 依据电路联接,得到 留心: 核算含受控源电路的等效电阻是用外加电源法仍是开路、短路法,要详细疑问详细剖析,以核算简练为好。戴维南定理典型例子 戴维南定理指出,等效二端网络的电动势E等于二端网络开路时的电压,它的串联内阻抗等于网络内部各独立源和电容电压、电感电流都为零时,从这二端看向网络的阻抗Zi。设二端网络N中含有独立电源和线性时不变二端元件(电阻器、电感器、电容器),这些元件之间可以有耦合,即可以有受控源及互感耦合;网络N的两端ɑ、b接有负载阻抗Z(s),但负载与网络N内部诸元件之间没有耦合,U(s)=I(s)/Z(s)。当网络N中所有独立电源都不工作(例如将独立电压源用短路代替,独立电流源用开路代替),所有电容电压和电感电流的初始值都为零的时候,可把这二端网络记作N0。这样,负载阻抗Z(s)中的电流I(s)一般就可以按下式1计算(图2)式中E(s)是图1二端网络N的开路电压,亦即Z(s)是无穷大时的电压U(s);Zi(s)是二端网络N0呈现的阻抗;s是由单边拉普拉斯变换引进的复变量。

勾股定理经典例题详解

勾股定理经典例题详解 Last revised by LE LE in 2021

勾股定理经典例题详解 知识点一:勾股定理 如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方. 要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。 (2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。 (3)理解勾股定理的一些变式: c2=a2+b2, a2=c2-b2, b2=c2-a2,c2=(a+b)2-2ab 知识点二:用面积证明勾股定理 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。 图(1)中,所以。 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。 图(2)中,所以。 方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。 在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积), 在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积), 所以,甲的面积=乙和丙的面积和,即:. 方法四:如图(4)所示,将两个直角三角形拼成直角梯形。

,所以。 知识点三:勾股定理的作用 1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系; 3.用于证明平方关系的问题; 4.利用勾股定理,作出长为的线段。 2. 在理解的基础上熟悉下列勾股数 满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。 熟悉下列勾股数,对解题是会有帮助的: ①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。 经典例题透析类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6, c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 总结升华:有一些题目的图形较复杂,但中心思想还是化为直角三角形来解决。如:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差或和。 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长.

电工电子教案(含戴维南定理)分析

教案

第2章 电路的分析方法 本章课程导入 1、为什么要学会电路的分析方法?因为这是设计与运用电路的 必然性所决定的。 2、下面我们看一个例题,求图示电路中的电流I=? 运用中学所学知识,这电流求不出。这是因为我们对电路结构的约束关系不了解,不知道求解复杂电路的方法,所以不会求。本章的学习任务主是学会电路的基本分析方法。 §2.0 串联电路与并联电路(补充内容) 一、电阻的串联 等效电路与等效变换:具有相同电压电流关系(即伏安关系,简写为V AR )的不同电路称为等效电路,将某一电路用与其等效的电路替换的过程称为等效变换。将电路进行适当的等效变换,可以使电路的分析计算得到简化。 1、电阻串联:多个电阻首尾相连,通过同一个电流。 2、等效电阻:n 个电阻串联可等效为一个电阻: 3、分压公式:k k k R U R I U R == 两个电阻串联时:1112R U U R R =+ 2 212 R U U R R =+ 注意:上式是在图示U 、U 1、U 2的方向前提下才成立,若改变U 1或U 2的方向上式需相应加一个“-”号。 4、串联电路的实际应用主要有: (1)常用电阻的串联来增大阻值,以达到限流的目的; (2)常用电阻串联构成分压器,以达到同一电源能供给不同电压的需要; (3)在电工测量中,应用串联电阻来扩大电压表的量程。 二、电阻的并联 1、电阻并联:多个电阻连接在两个公共的节点之间,现端承受同一电压。 2、等效电阻:n 个电阻并联可等效为一个电阻: 121111 n R R R R =+++ L 或 G=G 1+G 2+---+G n 3、分流公式:k k k U R I I R R == 或 K K K G I G U I G == 两个电阻并联时:2112R i i R R =+ 1212 R i i R R =+ 注意:上式是在图示I 、I 1、I 2的方向前提下才成立,若改变I 1或I 2的方向上式需相应加一 12n R R R R =+++ I n R n R I 2 R 2 + U 1 - + U 2 - R +u 1-+u 2- +u n -

勾股定理经典例题详解

勾股定理经典例题详解 知识点一:勾股定理 如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方. 要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。 (2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。 (3)理解勾股定理的一些变式: c2=a2+b2, a2=c2-b2,b2=c2-a2,c2=(a+b)2-2ab 知识点二:用面积证明勾股定理 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。 图(1)中,所以。 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。 图(2)中,所以。 方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。

在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积), 在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积), 所以,甲的面积=乙和丙的面积和,即:. 方法四:如图(4)所示,将两个直角三角形拼成直角梯形。 ,所以。 知识点三:勾股定理的作用 1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系; 3.用于证明平方关系的问题;4.利用勾股定理,作出长为的线段。 2. 在理解的基础上熟悉下列勾股数 满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。 熟悉下列勾股数,对解题是会有帮助的: ①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41. 如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。 经典例题透析类型一:勾股定理的直接用法

相关文档
最新文档