电力系统自动化技术

电力系统自动化技术
电力系统自动化技术

电力系统自动化技术探讨

摘要:电力系统自动化是自动化技术在电力工程领域的应用,自动化相关技术应用到电力工程领域有效地提升了电力工程行业

的工作效率和服务质量,有效地推动了电力行业的现代化。

关键词:电力系统自动化技术探讨

1电力系统自动化的主要内容

针对电力企业的特点,实现电力系统的自动化应符合如下要求:快速、准确的收集、检测和处理电力系统各系

统、部件的运行技术参数。根据电力系统的实际运行状态和系统各部件的技术要求,为运行人员提供调控的指令,或能够自动对各部件进行调控。实现全系统分层次、分部分的综合调控,探索电力系统优质电力系统管理的最佳方式。电力系统实现自动化不仅能节省大量人力、物力、财力,而且还能降低电力系统事故的发生率,增加电力设备的使用寿命,综合提高和改善电力系统运行性能。

2几种电力系统自动化技术探讨

(1)主动的对象数据库技术及其在电力系统自动监视与控制中的运用面向对象技术在软件的重用性、继承性、封装性、开放性及软件工程等方面带来革命性的影响,已经深刻影响软件系统开发与设计的各方面,如面向对象的分析、面向对象的设计、面向对象的编程等。新一代的电网调度自动化系统应该全面地采用面向对象技术,支持面向对象的标准。

主动的对象数据库与一般的关系数据库相比,主要的优势在于

电力系统自动化技术专业介绍

电力系统自动化技术专业介绍 电力系统自动化是电力系统一直以来力求的发展方向,它包括:发电控制的自动化(AGC已经实现,尚需发展),电力调度的自动化(具有在线潮流监视,故障模拟的综合程序以及SCADA系统实现了配电网的自动化,现今最热门的变电站综合自动化即建设综自站,实现更好的无人值班,DTS即调度员培训仿真系统为调度员学习提供了方便),配电自动化(DAS已经实现,尚待发展)。 电力系统自动化automation of power systems 对电能生产、传输和管理实现自动控制、自动调度和自动化管理。电力系统是一个地域分布辽阔,由发电厂、变电站、输配电网络和用户组成的统一调度和运行的复杂大系统。电力系统自动化的领域包括生产过程的自动检测、调节和控制,系统和元件的自动安全保护,网络信息的自动传输,系统生产的自动调度,以及企业的自动化经济管理等。电力系统自动化的主要目标是保证供电的电能质量(频率和电压),保证系统运行的安全可靠,提高经济效益和管理效能。 发展过程20世纪50年代以前,电力系统容量在几百万千瓦左右,单机容量不超过10万千瓦,电力系统自动化多限于单项自动装置,且以安全保护和过程自动调节为主。例如:电网和发电机的各种继电保护、汽轮机的危急保安器、锅炉的安全阀、汽轮机转速和发电机电压的自动调节、并网的自动同期装置等。50~60年代,电力系统规模发展到上千万千瓦,单机容量超过20万千瓦,并形成区域联网,在系统稳定、经济调度和综合自动化方面提出了新的要求。厂内自动化方面开始采用机、炉、电单元式集中控制。系统开始装设模拟式调频装置和以离线计算为基础的经济功率分配装置,并广泛采用远动通信技术。各种新型自动装置如晶体管保护装置、可控硅励磁调节器、电气液压式调速器等得到推广使用。70~80年代,以计算机为主体配有功能齐全的整套软硬件的电网实时监控系统(SCADA)开始出现。20万千瓦以上大型火力发电机组开始采用实时安全监控和闭环自动起停全过程控制。水力发电站的水库调度、大坝监测和电厂综合自动化的计算机监控开始得到推广。各种自动调节装置和继电保护装置中广泛采用微型计算机。

电力系统自动化的计算机技术应用及设计 李杰

电力系统自动化的计算机技术应用及设计李杰 发表时间:2019-03-12T14:31:03.533Z 来源:《电力设备》2018年第27期作者:李杰 [导读] 摘要:随着社会经济的快速发展,如何提高效率,如何更加便捷人性化已经是人们在各行各领域所追求的目标。 (国网南昌供电公司信息通信分公司江西南昌 330000) 摘要:随着社会经济的快速发展,如何提高效率,如何更加便捷人性化已经是人们在各行各领域所追求的目标。计算机技术在这一过程中的体现尤为重要。作为一种技术载体承载着各行各业的发展。电力资源作为社会发展所必需的一种资源,社会生产对其的要求也是越来越高,如何把计算机技术融入电力系统之中,使其形成电力自动化系统,提高利用效率和生产速率,已经成为发展电力自动化系统的一个重点。 关键词:电力系统;自动化;计算机技术 1计算机技术在电力系统中的作用 电力系统自动化的发展,离不开计算机技术的支撑,二者的有效结合,使得电力系统自动化在运行体制上更加完善,但是因为诸多的因素限制,无法更好的进行信息整理,需要进一步实现用电对象对电力资源的合理使用,因此,我们可以从以下几个重点分析: 1.1电网自动化 在整个电网系统的运行过程中,电网自动化是电力系统自动化的重要组成部分,在电力系统自动化的过程中,主要强调的是电网的自动化。电网自动化主要是由电网调度控制中心的计算机网络系统、服务器、显示器等组成,通过电网调度控制中心、终端设备、调度范围对其实现电网自动化。其功能就在于能够实时的对电力生产过程中的数据进行搜集,并对电网运行过程中的安全性进行分析、评估与整理,预测电力负荷,并适应电力市场的需求。在这个过程中,对电网进行数据搜集,通过计算机技术对网络的运行情况进行监测与控制,并对数据进行计算,根据计算的结果实现数据的传输,对电网的调度进行强有力的控制。 1.2电网升级自动化 电力系统的升级改造是计算机技术升级的重要途径,在计算机技术下实现良好的配电智能化,对于电力系统与自动化的发展过程中有很好的推动作用,实现理想的作用价值,这种技术对于计算机的要求是相对比较高的,在这个过程中,能够促进计算机技术的升级,使资源信息实现共享,借助计算机技术这个平台进行处理,促使配电系统的升级优化。 1.3光电互感器的应用 光电互感器,是电力自动化系统中的重要设备,将大电流降低到仪表可测量的范围,便于仪表对电流进行直接的测量,等级越高,绝缘性越差,输出信号小。通过计算机技术的引入,将信号输送到保护装置中,并转换为数字信号由光纤输出。 1.4变电系统自动化 在没有结合计算机技术之前,变电系统都是通过输电线路和变电站进行信息输送的,通过人工的方式进行数据传输,浪费人力与大量的时间,影响工作效率。电力系统自动化引进计算机技术,工作效率得到了显著的提升,在运行过程中更加的稳定。 2计算机与电力系统自动化技术有机结合要点 2.1科学应用PLC程序 为了保证计算机与电力系统自动化技术得到更好的结合,科学应用PLC程序非常重要。对于电力企业中的工作人员来讲,要结合PLC程序的运行特点,对电力系统中原有的编程进行优化,并将PLC程序应用到电力系统当中,不断提升电力系统自动化管理水平。例如,某地区电力系统运行结构比较简单,通过将PLC程序应用到电力系统当中,能够帮助电力系统维修人员及时找到故障点,有效降低电力系统故障维修成本。此外,通过科学应用PLC程序,能够更好的调整变电站的整体运行模式,保证电力系统整体管理效率得到更好的提升。通常情况下,电力系统中的变电站主要分为三个单元,分别是高压单元、低压单元与变压器单元,为了保证电力系统变电站运行更加稳定,电力企业中的相关工作人员要结合变电站中各个单元的运行特点,利用PLC程序,选择合理的运行参数。 2.2电力运维智能化监测技术应用要点 在电力系统运行过程当中,通过应用电力运维智能化监测技术,能够更好的提升电力系统自动化管理水平。为了保证电力运维智能化监测技术得到更好的应用,电力企业中的相关工作人员在应用过程中要注意以下问题:①运用先进的计算机技术,将计算机网络自动化技术与电力系统自动化技术进行有效结合,准确判断电力系统运维故障点。②应用计算机技术,对电力系统中的小型故障进行合理的修复,保证电力企业中的各项供电设备更加安全的运行。通过合理运用电力运维智能化监测技术,能够对电力企业中的各项供电设备起到良好的保护作用,防止电力系统出现二次回路故障,有效提升了电力企业的运行效率。由于电力系统内部结构具有一定的复杂性,电力设备数量较大,使得电力系统运维管理难度不断加大,企业中的相关管理人员要结合电力系统运行特点,妥善应用电力运维智能化监测技术,从而保证计算机技术与电力系统自动化技术得到有效结合。 2.3电力供应自动化检测技术应用要点 电力系统自动化技术与计算机技术的结合,并非计算机程序与电力供应系统操作程序的结合,而且多种计算机技术与电力自动化技术的完美结合。例如,电力供应自动化检测技术的应用,能够将计算机与电力系统自动化技术有机结合。所谓电力供应自动化检测技术,主要指的是利用先进的计算机技术,对电力企业中的各项设备进行有效检测,保证电力供应信息更加准确,帮助相关工作人员更好的确定电力传输范围,保证电力信息资源得到有效利用。在应用电力供应自动化检测技术时,相关工作人员要重点注意以下几点:①构建合理的电力网络数据存储空间,并将电力供应系统中的各项管理信息进行有效的统计,帮助电力管理人员更好的掌握电力系统运行情况。②结合用户的实际用电需求,不断调整电力输配电线路,保证电力系统内部结构更加安全,促进用户与供电厂之间的联系。通过应用电力供应自动化检测技术,能够有效扩大电力供应范围,提升电力企业的整体管理水平。 3计算机在在电力系统自动化中的发展趋势 随着计算机技术和和红外成像技术在电力系统自动化中的运用得到广泛的应用,使得图像信息在电力系统自动化中所起到的运用也变得重要了起来。并且人们对于图像信息的分析以及理解要求也是逐渐提升。从而在一些需要应用到的地方就必须要利用计算机视觉技术用计算机来替换监控人员在进行图像的理解,电力系统是一个信息能量的变化也是非常之快的,在筛选的过程中一般一瞬间的功夫就能完成。如果发生故障性的问题时,就尽量在最短的时间内进行消除,不然很轻易的就会导致事故的扩大化。如果能在确保电力系统安全的情

电力系统自动化发展趋势及新技术的应用

[摘要]现代社会对电能供应的“安全、可靠、经济、优质”等各项指标的要求越来越高,相应地,电力系统也不断地向自动化提出更高的要求。电力系统自动化技术不断地由低到高、由局部到整体发展,本文对此进行了详细的阐述。 [关键词]电力系统自动化发展应用 一、电力系统自动化总的发展趋势 1.当今电力系统的自动控制技术正趋向于: (1)在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。 (2)在设计分析上日益要求面对多机系统模型来处理问题。 (3)在理论工具上越来越多地借助于现代控制理论。 (4)在控制手段上日益增多了微机、电力电子器件和远程通信的应用。 (5)在研究人员的构成上益需要多“兵种”的联合作战。 2.整个电力系统自动化的发展则趋向于: (1)由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。 (2)由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。 (3)由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。 (4)由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。 (5)装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。 (6)追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。 (7)由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(Power System Equiqments and Power Electronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。 二、具有变革性重要影响的三项新技术 1.电力系统的智能控制 电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有: (1)电力系统是一个具有强非线性的、变参数(包含多种随机和不确定因素的、多种运行方式和故障方式并存)的动态大系统。 (2)具有多目标寻优和在多种运行方式及故障方式下的鲁棒性要求。 (3)不仅需要本地不同控制器间协调,也需要异地不同控制器间协调控制。 智能控制是当今控制理论发展的新的阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制问题;特别适于那些具有模型不确定性、具有强非线性、要求高度适应性的复杂系统。 智能控制在电力系统工程应用方面具有非常广阔的前景,其具体应用有快关汽门的人工神经网络适应控制,基于人工神经网络的励磁、电掣动、快关综合控制系统结构,多机系统中的ASVG(新型静止无功发生器)的自学习功能等。 2.FACTS和DFACTS (1)FACTS概念的提出

电气工程及其自动化毕设之文献综述电子教案

文献综述 学院名称电气工程学院指导教师 职称教授 班级 学号 学生姓名

2016年1月12日

电网规划设计文献综述 摘要:电能是现代社会中最重要、也是最方便的能源。电力系统是由电能的生产、输送、分配和消费的歌环节组成的整体,它与其他工业系统相比,具有很多的特点。电力系统运行要求保证安全可靠地供电、保证良好的电能质量和保证电力系统运行的经济性。科学合理的电力规划设计是电力系统安全、可靠、经济运行的前提,对获取最大的经济效益和社会效益均具有十分重要的意义。在电网规划设计中有涉及到电网电压等级的选择、线路导线的选择、变压器容量和型号的选择、电力系统运行接线方式的选择、电力系统潮流计算等方面。 关键词:电力系统;接线方式;电网规划

在高速发展的现代社会中,电力工业是国民经济的基础,在国民经济中的作用已为人所共知:它不仅全面地影响国民经济其它部门的发展,同时也极大地影响人民的物质和文化生活水平的提高,影响整个社会的进步。改革开放以来,电力工业取得了突飞猛进、举世瞩目的辉煌成就,从1996年起,我国发电机装机容量和年发电均居世界第二位,超过了俄罗斯和日本,仅次于美国,进入世界电力生产和消耗大国行列。发电厂规模和单机容量的大幅度提高,标志着我国的电力工业已经进入一个飞速发展的新时期。 电能是现代社会中最重要、也是最方便的能源。电力系统是由电能的生产、输送、分配和消费的歌环节组成的整体,它与其他工业系统相比,具有很多的特点: 1.电能的生产和消费具有同时性 由于电能的生产和消费是一种能力形态的转换,要求生产与消费同时完成,因此电能难于储存。从这个特点出发,在电力系统运行时就要求发电厂在任何时刻发出的功率,必须等于该时刻用电设备所需的功率、输送和分配环节中的功率损耗之和。 2.电能与国名经济各部门和人民日常生活关系密切 由于电能可以方便地转化为其他形式的能,且易于远距离传送和自动控制,因此得到广泛的应用。供电的突然中断会产生严重的后果。 3.电力系统的过度过程非常短暂

浅谈电力系统自动化

浅谈电力系统自动化 “安全、可靠、经济、优质”的电能供应是现代社会对电力事业的要求,自动化的电力系统成为现代社会的发展趋势,而且电力系统自动化技术也不断地从低级到高级,从局部到整体。本文试对电力系统自动化发展趋势及新技术的应用作简要阐述。 标签:电力系统自动化探讨 1 电力系统自动化总的发展趋势 1.1 当今电力系统的自动控制技术正趋向于: ①在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。②在设计分析上日益要求面对多机系统模型来处理问题。③在理论工具上越来越多地借助于现代控制理论。④在控制手段上日益增多了微机、电力电子器件和远程通信的应用。⑤在研究人员的构成上益需要多“兵种”的联合作战。 1.2 整个电力系统自动化的发展则趋向于: ①由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。②由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。③由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。④由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。⑤装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。⑥追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。⑦由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(Power System Equiqments and Power Electronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。 2 具有变革性重要影响的三项新技术 2.1 电力系统的智能控制电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有:

电力系统综合自动化系统培训课件

变电站综合自动化的基本概念: 变电站综合自动化是将变电站的二次设备(包括测量仪表、信号系统、继电保护、自动装置和远动装置等)经过功能的组合和优化设计,利用先进的计算机技术、现代电子技术、通信技术和信号处理技术,实现对全变电站的主要设备和输、配电线路的自动监视、测量、自动控制和微机保护,以及与调度通信等综合性的自动化功能。 变电站综合自动化系统,即利用多台微型计算机和大规模集成电路组成的自动化系统,代替常规的测量和监视仪表,代替常规控制屏、中央信号系统和远动屏,用微机保护代替常规的继电保护屏,改变常规的继电保护装置不能与外界通信的缺陷。 因此,变电站综合自动化系统是自动化技术、计算机技术和通信技术等高科技在变电站领域的综合应用。 常规变电站的二次设备由以下几部分组成:继电保护、自动装置、测量仪表、操作控制屏和中央信号屏以及远动装置(较多变电站没有远动装置)。 在微机化以前,这几大部分不仅功能不同,实现的原理和技术也各不相同,因而长期以来形成了不同的专业和管理部门。 变电站综合自动化的内容应包括电气量的采集和电气设备(如断路器等)的状态监视、控制和调节。 实现变电站正常运行的监视和操作,保证变电站的正常运行和安全。发生事故时,由继电保护和故障录波等完成瞬态电气量的采集、

监视和控制,并迅速切除故障和完成事故后的恢复正常操作。 从长远的观点看,综合自动化系统的内容还应包括高压电器设备本身的监视信息(如断路器、变压器和避雷器等的绝缘和状态监视等)。 除了需要将变电站所采集的信息传送给调度中心外,还要送给运行方式科和检修中心,以便为电气设备的监视和制定检修计划提供原始数据。 变电站自动化需完成的功能分为以下几种功能组: 1、控制、监视功能。 2、自动控制功能。 3、测量表计功能。 4、继电保护功能。 5、与继电保护有关功能。 6、接口功能。 7、系统功能。 变电站的数据包括:模拟量、开关量和电能量。 变电站需采集的模拟量有:各段母线电压、线路电压、电流、有功功率、无功功率;主变压器电流、有功功率和无功功率;电容器的电流、无功功率;馈出线的电流、电压、功率以及频率、相位、功率因数等。还有主变压器油温、直流电源电压、站用变压器电压等。

电力系统自动化课程设计

摘要:电机并网要求满足准同期条件,并网要求准确、快速。准确可以保障安全和减少对发电机并网引起的冲击,而快速则能够减小发电机的空转损耗。随着计算机工业的发展和数字技术的迅猛进步,研制使用能够自动实现发电机并网的智能仪器已成为发电厂技术革新和自动化改造的重要课题。 本文探讨了发电机安全并入电网所需的条件,借助工程计算软件Matlab强大的绘图功能对不同条件下的并网过程进行了仿真分析,从而得出了一些重要的结论。这些结论为自动准同期装置的研制提供了理论根据。 关键词: 发电机并网;Matlab仿真;准同期条件

前言 随着负荷的变动,电力系统中发电机运行的台数也经常改变。因此。同步发电机的并列操作是电厂的一项重要操作。另外,当系统发生某些事故时.也常要求将备用发电机组迅速投入电网运行.由于某种原因,解列运行的电网需要联合运行,这就需要电网间实行并列操作。可见,在电力系统运行中并列操作足较为频繁的。 本次工程训练的题目是《发电机并网模型的建立与并网过程的仿真分析》。具体内容是发电机并网模型的建立、并网过程的仿真。 本次课程设计涉及面较广,需查阅大量资料,由于上学期刚了解此专业课,故对一些知识点理解的不是很深刻,因此,错误与疏漏之处再所难免,望老师批评指正。

第一章绪论 三相同步发电机是常用的交流发电机,但是单一的1台三相同步发电机对电网供电有明显的缺点: (1)不能保证供电质量(电压和频率的稳定性)和可靠性(发生故障就得停电); (2)无法实现供电的灵活性和经济性; 这些缺点可以通过多台三相同步发电机并联来改善。通过并联可将几台同步发电机或几个发电站并成一个电网。现代发电厂中都是把几台同步发电机并联起来接在共同的汇流排上,一个地区总是有好几个发电厂并联起来组成一个强大的电力系统。 电网供电比单机供电有许多优点: (1)提高了供电的可靠性.1台电机发生故障或定期检修不会引起停电事故 (2)提高了供电的经济性和灵活性,例如水电厂与火电厂并联时.在枯水期和旺水期.两种电厂可以调配发电,使得水资源得到合理使用。在用电高峰期和低谷期.可以灵活地决定投入电网的发电机数量,提高了发电效率和供电灵活性。(3)提高了供电质量,电网的容量巨大,单台发电机的投入与停机。个别负载的变化,对电网的影响甚微,衡量供电质量的电压和频率可视为恒定不变的常数。 发电机并网是电力系统的一项经常、重要操作,不恰当的并列可能造成电气设备的损坏并对系统的稳定产生影响。过去对发电机并列的工程培训和研究,一般需要动模机组和多种传感器、录波器等昂贵设备。成本高且数据读取和计算复杂、繁琐,输出结果不理想。而利用数字仿真只需要有计算机和相应的软件即可实现,不但成本低,还可以很方便地得到各种所需数据、波形等结果,对数据的处理也更方便。

浅谈电力系统自动化技术的现状及发展趋势

浅谈电力系统自动化技术的现状及发展趋势 【摘要】随着科学技术和经济的迅速发展,电力系统自动化技术发挥的作用越来越重要。电力系统自动化技术作为一种新技术实现了电力技术和电子信息技术的融合,对国民经济的发展发挥了巨大的促进作用,为输变电系统的发展产生了深远的影响。目前电力系统自动化技术已经深入到电力系统的各个方面,并取得了显著的效果。本文对电力系统自动化技术的发展现状进行了介绍,并对其发展趋势进行了展望。 【关键词】电力系统自动化技术现状发展趋势 一、概述 电力系统的智能化控制是我国电力系统发展的重要方向,电力系统智能控制的实现是电力系统完整控制的重要标志。电力系统的发展壮大离不开自动化技术的支持,电力系统自动化技术在电力系统运行控制中发挥着不可替代的作用。 二、电力系统自动化技术发展的现状 我国的电力系统自动化技术在建国之初就有了初步的发展,并保持了快速的发展趋势,互联网技术和计算机计技术的迅猛发展为电力系统自动化技术的发展提供了巨大的

技术支持。 2.1自动化技术在电网调度中的应用 电网调度的现代化自动控制系统以计算机技术为核心,计算机技术对电力系统的实时运行信息进行监测、收集和分析,并完成系统操作的高效进行。电网的调度自动化操作,通过自动控制技术的应用,实现电网运行状态的实时监测,确保了电网运行的质量和可靠性,实现了电能的充分供应,使人们的需求得到满足。[1]自动化技术应用的同时,将能源损耗达到最低,确保了供电的经济性和环保性,实现了电能的节约。 2.2自动化技术在配电网络中的应用 计算机技术在配电网络的自动化控制中发挥着重要作用,随着电网技术的不断发展,配电系统的现代化和网络化程度越来越高,实现了配电网主站、子站和光线终端组成的三层结构,配电系统网络化的发展,使通信传输的速度得到保障,自动化系统的性能得到提高。系统的继电保护控制得到加强,大面积停电现象减少,电力供应得到保障,电力系统的可靠性和安全性得到提高,电网事故快速排除机制得到优化,科学的事故紧急应对机制得以建立,故障停电时间明显缩短;电力企业对电力系统的掌控能力加强,对电力系统运行状态的了解更加便利;常规的值班方式被打破,无人职守电站得以出现,工作人员的效率大大提高。[2]

配电自动化综述

暨南大学 本科生课程论文 论文题目:国内外配电网及自动化系统存在的问 题及发展趋势 学院:电气信息学院 学系:电气工程及其自动化 专业: 课程名称:配电网综合自动化技术 学生姓名:蒋博彦 学号:2011053128 指导教师:李伟华 2014年10月25日

国内外配电网及自动化系统存在的问题及发展趋势 蒋博彦 (1.暨南大学、电气信息学院、电气工程及其自动化、珠海,) 摘要:配电自动化是利用电子、计算机、通信、网络等技术的重要配电手段。本文介绍了国内外配电自动化系统的现状、存在问题及发展方向。 关键词:配电自动化;现状;问题;展望 1.配电自动化系统的组成 配电自动化是指利用现代电子计算机、通信及网络技术,将配电网在线数据和离线数据、配电网数据和用户数据、电网结构和地理图形进行信息集成,构成完整的自动化系统,实现配电网及其设备正常运行及事故状态下的监测、保护、控制、用电和配电管理的现代化。配电自动化系统包含以下三个方面: (1)变电站自动化系统:指应用自动控制技术和信息处理与传输技术,通过计算机硬软件系统或自动装置代替人工对变电站进行监控、测量和运行操作的一种自动化系统。 (2)配电管理系统:是指用现代计算机、信息处理及通信等技术,并在GIS平台支持下对配电网的运行进行监视、管理和控制。主要功能有:数据采集和监控(SCADA)、配电网运行管理、用户管理和控制、自动绘图设备管理地理信息系统(AM/FM/GIS)。(3)用户自动化系统:用户自动化即需求侧管理,主要包括负荷管理、用电管理、需方发电管理等。 2.国内外配电自动化现状分析2.1 国内配电自动化发展和现状 我国配电网自动化起步较晚,到现在不过十多年。1998年之后,随着城乡电网建设与改造的大范围开展,在多个省份和直辖市掀起了第一轮配电网自动化技术试点和应用的热潮。此后我国配电网经过多年的建设和改造,供电能力有了明显的提高,目前已基本能够满足我国社会经济发展的需求。然而,长期以来配电网的建设未得到应有的重视, 建设资金短缺, 设备技术性能落后, 事故频繁发生, 严重影响了人民生活和经济建设的发展,由于当时对配电网自动化的认识不足,相关系统和设备的技术不成熟,配电网架基础比较薄弱、一次配电设备存在缺陷、通信手段不完备、缺乏维护资源等原因,配电网的薄弱环节显得越来越突出。一些早期建设的配电自动化试点没有实现预期效益,部分自动化系统遭到闲置或废弃,成为配电网自动化建设的反面教材。[1] 随着电力的发展和电力市场的建立, 配电网实现自动化是一项综合性工程, 最基本条件是应具有较为完善的多路电源配电网点, 具有较好的城市规划及电源路径分布, 有较为可靠的一次、二次设备,这对城市建设规模和经济发展对配电网提出了较高要求。有不少地区的配电网自动化项目通

电力系统自动化

计算题。(1题2分 2-8每题3分,9-10每题6分,共35分) 1.某地区2007年被调度部门确认的事故遥信年动作总次数为120次,拒动1次,误动1次,求地区2007年事故遥信年动作正确率为多少?(答案小数点后保留两位) 解:2007年事故遥信年动作正确次数:120-(1+1)=118 Ayx=118/120=98.33% 2.一条10KV配电线路的二次电压为100V,二次电流为3A,功率因数为0.8,三相电压对称,三相负荷平衡,其中电压变比为10000/100,电流变比为300/5,试计算测得的二次功率,并计算其折算到一次侧的功率。 解:二次功率P2= 1.732UICOSφ=1.732×100×3×0.8≈415.68(W) 一次功率P1=415.68×(10000÷100)×(300÷5)=2494080(W)≈ 2.49(MW) 3.一台UPS主机为10kVA,问要达到10kVA4h的配置要求,约需要配置多少节12V100Ah的蓄电池? 解:1)UPS主机要求配置的总VAh数为:10kV A×4h=40kV Ah=40000V Ah;2)每节电池的V Ah数为:12V×100Ah=1200V Ah; 3)需要的电池节数:40000÷1200=33.33节,约需34节。 4.某一线路的TA变比为300/5,当功率源中的电流源输入变送器的电流为4A时,调度端监控系统显示数值为多少这一路遥测才为合格(综合误差<1.5%) 由综合误差<1.5%知300A×1.5%=4.5A 所以,在标准值为±4.5A之内均为合格。又因输入4A,工程量标准值为 300/5 ×4=240(A) 240+4.5=244.5(A) 240-4.5=235.5(A)监控系统显示电流值大于235.5A,小于244.5A均为合格。 5.某调度自动化系统包括10个厂站,9月12日发生3站远动通道故障各3小时,9月20日发生1站RTU故障4小时,现求出该系统本月远动系统月运行率、远动装置月可用率和调度日报月合格率。(小数后保留2位) 远动系统月运行率:(10×30×24-3×3-4)/10×30×24×100%=99.82%;远动装置月可用率:(10×30×24-4)/10×30×24×100%=99.94%;调度日报月合格率(10×30-4)/10

电力系统自动化完整版

1. 同步发电机组并列时遵循的原则:(1)并列断路器合闸时,冲击电流应尽可能的小,其瞬时最大值一般不宜超过 1~2 倍的额定电流( 2)发电机组并入电网后,应能迅速进入同步运行状态,其暂态过程要短,以减少对电力系统的扰动。 9. 同步发电机的并列方法:准同期并列,自同期并列。设待并发电机组 G 已经加上了 励磁电流,其端电压为 UG,调节待并发电机组 UG的状态参数使之符合并列条件并将发电机并入系统的操作,成为准同期并列。 10. 发电机并列的理想条件:并列断路器两侧电源电压的三个状态量全部相等。 11. 自同期并列:未加励磁电流的发电机组 12. 脉动电压含有同期合闸所需要的所有信息,即电压幅值差、频率差和合闸相角差。但 是,在实际装置中却不能利用它检测并列条件,原因是它的幅值与发电机电压及系统电压有关。 13. 励磁自动控制系统是由励磁调节器,励磁功率单元和发电机构成的一个反馈控制系统。 14. 同步发电机励磁控制系统的任务:(1)电压控制(2)控制无功功率的分配(3)提 高同步发电机并联运行的稳定性。 15. 为了便于研究,电力系统的稳定分为静态稳定和暂态稳定两类。静态稳定是指电力 系统在正常运行状态下,经受微小扰动后恢复到原来运行状态的能力。暂态稳定是指电力系统在某一正常运行方式下突然遭受大扰动后,能否过渡到一个新的稳定运行状态或者恢复到原来运行状态的能力。 16. 对励磁系统的基本要求:(一)对励磁调节器的要求:O 1具有较小的时间常数,能 迅速响应输入信息的变化;② 系统正常运行时,励磁调节器应能反应 发电机电压高低,以维持发电机电压在给定水平;O 3励磁调节器应能合理分 配机组的无功功率;④ 对远距离输电的发电机组,为了能在人工稳定区域运 行,要求励磁调节器没有失灵区;◎励磁调节器应能迅速反应系统故障,具备强行励磁控制功能,以提高暂态稳定和改善系统运行条件。(二)对励磁功率单元要求: ①要求励磁功率单元有足够的可靠性并具有一定的调节容量;② 具有足够的励磁顶值 电压和电压上升速度。 17. 同步发电机励磁系统分类:直流励磁机励磁系统:①自励②他励;交流励磁机励磁 系统①他励交流励磁机励磁系统②无刷励磁系统;静止励磁系统 18. 励磁调节器的主要功能有二:①保持发电机的端电压不变;②保持并联机组间无功电 流的合理分配。 19. 励磁调节器的型式很多,但自动控制系统核心部分相似。基本控制由测量比较、综 合放大、移相触发单元组成。测量比较单元的作用是测量发电机电压并变换为直流电压,与给定的基准电压相比较,得出电压的偏差信号。综合放大单元是沟通测量比较单元及调差单元与移相触发单元的一个中间单元,来自测量比较单元及调差单元的电压信号在综合放大单元与励磁限制、稳定控制及反馈补偿等其他辅助调节信号加以综合放大,用来得到满足移相触发单元相位控制所需的控制电压。移相触发单元是励磁调节器的输出单元,根 据综合放大单元送来的综合控制信号U SM的变化,产生触发脉冲,用以触发

基于PLC的电力系统自动化设计 徐鹏

基于PLC的电力系统自动化设计徐鹏 发表时间:2018-08-09T09:27:16.123Z 来源:《电力设备》2018年第12期作者:徐鹏 [导读] 摘要:随着经济和电力行业的快速发展,电力系统信息量大、自动化要求高、运行环境复杂,而电力系统自动化设计过程中涉及到大量的开关逻辑、顺序控制、闭环控制等。 (华电新疆发电有限公司红雁池发电厂新疆乌鲁木齐 830047) 摘要:随着经济和电力行业的快速发展,电力系统信息量大、自动化要求高、运行环境复杂,而电力系统自动化设计过程中涉及到大量的开关逻辑、顺序控制、闭环控制等。但是传统的电磁继电元件接线复杂、可靠性差、功能单一,无法满足电子系统自动化设计要求。 PLC技术具有良好的稳定性、可靠性、操作简单、便于维护等优点,因此在电力系统广泛应用。但是,PLC技术在电力系统实际应用过程中,还存在一些问题,所以必须加强PLC技术在电力系统自动化的设计水平,确保电力系统的稳定性和安全性。 引言 随着我国电网的发展,各种先进的电子设备和技术广泛应用在电力系统中,极大促进我国电网的发展。电力系统作为电网的一部分,目前正朝着自动化、智能化方向发展。将PLC技术应用在电力系统自动设计中,能够提高电网的运行效率,降低电力企业施工成本。本文主要概述了PLC技术特点以及PLC技术在电力系统自动化设计中的具体应用。 1 PLC技术的定义和特点 PLC全称为ProgrammableLogicController,即可编程逻辑控制器,该技术可通过对工业数据的模拟和编程达到提升工业环境安全的目的。PLC系统在自身的存储器内部可以执行诸如逻辑运算、顺序等特定的操作,还可通过对一些常见的模拟量和数字量进行inlet和outlet来控制电机或器械。电气自动化中所使用的传统控制器系统内部接线较复杂,不仅可靠性较低,能源消耗也较高,同时也不具备较良好的灵活性。以计算机技术以及接触器控制技术为基础的PLC应用辅助继电器代替了传统的机械触电继电器,应用逻辑关系代替了原来的连接导线,而这类继电器的节点变位时间可以无限趋近于零,也无需像传统继电器一样考虑返回系数问题。PLC控制系统具有非常强大的抗干扰能力,因此在复杂的工业操作环境中也可正常应用。PLC控制系统采用简单的指令形式,操作起来简单便利。正是这些优势,PLC技术在近些年逐渐取代了传统系统运用于电力系统及其自动化控制中。 2 PLC技术在电力自动化系统数据处理方面的应用 PLC技术与电力自动化系统运行过程中,通过PLC技术对电力系统的数据信息进行识别、分析,这对电力系统自动化设计具有重要意义。基于PLC技术的电力自动化系统在设计过程中,还需要相关的软件对系统进行全面设定,常见的有pNetpow-erTM,将软件与电力自动化系统进行有效的连接,这样就能提高电力系统数据处理能力。如果在电力系统中安装一些先进的数据分析设备,还可以加强电力系统数据信息处理能力,系统在运行过程中能够有效地识别错误的信息,并将错误上传到电力系统控制中心,控制中心对错误信息进行有效的分析,从而判断出系统故障,并立即对故障进行处理,同时电力系统还会自动将发生故障的数据信息保存,给后期电力工人的维护修理工作提供有效的参考。通过这样的方式,最大限度确保了电力自动系统的稳定性。 2.1 PLC技术在开关量功能方面的应用 在电气自动控制中PLC技术实际的应用功能是:可编程的存储器可以用做虚幻模拟电气运行中。在这样的情况下,进行继电器通断电的过程会比较长,因此,在通断电的过程中,很难采用有效的保护措施。长期以来,使用PLC技术的时候中间会存在很多的问题,需要专业人士不断的探索解决这种技术存在的问题,采用有效的解决措施后,再使用自动切换系统中采用PLC技术之前反应比较慢的现象,这样就会得到很大的改变,生产的运作系统在效率上就会得到进一步的提升,以上就是在控制开关量方面使用PLC技术发挥的功能。 2.2 PLC技术在电力系统闭环控制的应用 闭环控制指电力自动化系统在运行过程中,对电力设备的温度、电流量、压力等方面进行控制。所以将PLC技术与电力自动化系统结合起来,通过对电力信号进行分压、整流等处理以后,形成比较标准的电力系统,并经过A/D的转变和分析,将信号上传。闭环控制系统主要通过电流互感器采集电力设备信号,并对信号进行隔离降压处理,达到电力信号的标准化要求。然后通过PLC模拟量对电力设备单元元件内部数据进行识别,并通过组态软件完成数据的转化、处理和分析,这样最大限度保证了电力自动化系统的安全性、可靠性,而且系统的运行成本也比较低。同时,如果上位系统有效控制PLC单位上的数据信息以后,与继电器和接触器之间能够进行有效的配合,从而确保整个闭环控制系统的有效运行。 2.3 PLC编程器部分 在PLC编程器的设计过程中,一般都是采用Fx-10P-E,Fx-10P-E就是手持式编程器与PLC相连接以此满足程序的写入以及监控。Fx-10P-E的主要功能是,读出控制程序、编程或修改程序、插入增加程序、删除程序、监测PLC的状态、改变监视器件的数值以及其他简单的程序。Fx-10P-E的组成部分是由液晶显示器以及橡胶键盘等,该键盘与其他键盘不同,其中有功能键、符号、数字以及指令键,当Fx- 10P-E与FX0PLC相连接时,采用FX-20P-CAB0电缆,与其他PLC连接过程中则需要采用FX-20P-CAB类型的电缆。Fx-10P-E手持编程器一般都是由35个按键组成。 2.4 PLC技术在电力系统控制层中的应用 电力系统自动化设计比较复杂,电力系统运行过程中会产生电磁波和谐波,电力系统自动化设计过程中就要考虑到这些因素,提高控制层的抗干扰能力,从而确保电力系统的稳定性和可靠性。将PLC技术应用在电力控制层,通过智能仪表采集电力系统数据信息,并对电力系统进行控制,PLC技术对所有的电气设备进行控制,这是PLC在电力系统自动化设计的最大特点,它有效的保障了电力自动化系统的安全运行,而且这种操作系统相对比较灵活、简单。 3 PLC技术在电力系统及其自动化控制中的运用策略 3.1深入展开PLC技术在电力系统自动化控制 为了给PLC技术的运用提供思路,我们需从电力系统自动化控制的实际需求出发,既要鼓励全球权威的专家学者通过大量实践案例进行PLC技术在电力系统自动化控制中的理论研究,还要对PLC技术进行深度开发。 3.2积极开展专业技术培训工作 PLC控制系统设计人员的综合素养较低是影响其在电力系统自动化控制中运用的主要因素,因此我们需更加重视设计人员的专业技术

电力系统自动化技术

学习中心/函授站_ 姓名学号 西安电子科技大学网络与继续教育学院 2017学年下学期 《电力系统自动化技术》期末考试试题 (综合大作业) 考试说明: 1、大作业于2017年10月19日下发,2017年11月4日交回; 2、考试必须独立完成,如发现抄袭、雷同均按零分计; 3、答案须手写完成,要求字迹工整、卷面干净。 一、选择题(每小题2分,共20分) 1.当导前时间脉冲后于导前相角脉冲到来时,可判定()。 A.频差过大B.频差满足条件 C.发电机频率高于系统频率D.发电机频率低于系统频率 2.线性整步电压的周期与发电机和系统之间的频率差()。 A.无关 B.有时无关 C.成正比关系 D.成反比关系 3.机端直接并列运行的发电机的外特性一定不是()。 A.负调差特性 B.正调差特性 C.无差特性 D.正调差特性和无差特性 4.可控硅励磁装置,当控制电压越大时,可控硅的控制角 ( ),输出励磁电流()。 A.越大越大 B.越大越小 C.越小越大 D.越小越小 5. 构成调差单元不需要的元器件是()。 A.测量变压器B.电流互感器 C.电阻器D.电容器 6.通常要求调差单元能灵敏反应()。 A.发电机电压B.励磁电流 C.有功电流D.无功电流 7.电力系统有功负荷的静态频率特性曲线是()。

A.单调上升的B.单调下降的 C.没有单调性的D.水平直线 8.自动低频减负荷装置的动作延时一般为()。 A.0.1~0.2秒B.0.2~0.3秒 C.0.5~1.0秒D.1.0~1.5秒 9.并联运行的机组,欲保持稳定运行状态,各机组的频率需要()。 A.相同B.各不相同 C.一部分相同,一部分不同D.稳定 10.造成系统频率下降的原因是()。 A.无功功率过剩B.无功功率不足 C.有功功率过剩D.有功功率不足 二、名词解释(每小题5分,共25分) 1.远方终端 2.低频减负荷装置 3.整步电压 4.准同期 5.AGC 三、填空题(每空1分,共15分) 1.低频减负荷装置的___________应由系统所允许的最低频率下限确定。 2. 在励磁调节器中,设置____________进行发电机外特性的调差系数的调整,实际中发电机一般采用____________。 3.滑差周期的大小反映发电机与系统之间的大小,滑差周期大表示。 4.线性整步电压与时间具有关系,自动准同步装置中采用的线性整步电压通常为。 5.微机应用于发电机自动准同步并列,可以通过直接比较鉴别频差方向。 6.与同步发电机励磁回路电压建立、及必要时是其电压的有关设备和电路总称为励磁系统。 7.直流励磁机共电的励磁方式可分为和两种励磁方式。 8.可能造成AFL误动作的原因有“系统短路故障时造成频率下降,突然切成机组或、供电电源中断时。 9.积差法实现电力系统有功功率调节时,由于,造成调频过程缓慢。 四、简答题(每小题5分,共15分) 1.断路器合闸脉冲的导前时间应怎么考虑?为什么是恒定导前时间? 2.电压时间型分段器有哪两种功能? 3. 自动按频率减负荷装置为什么要分级动作? 五、综合分析题(每小题10分,共10分) 用向量图分析发电机并列不满足理想准同步条件时冲击电流的性质和产生的后果?六、计算题(共15分) 某电厂有两台发电机在公共母线上并联运行,1#机组的额定功率为30MW,2#机组的额定功率为60MW。两台机组的额定功率因数都是0.8,调差系数均为0.04。若系统无功负荷波动,使得电厂的无功增量是总无功容量的20%,试问母线上的电压波动是多少?各机组承担的无功负荷增量是多少?

综述电力系统自动化技术分析研究

综述电力系统自动化技术分析研究 发表时间:2016-11-04T16:49:01.773Z 来源:《电力设备》2016年第15期作者:朱亦张小华[导读] 随着自动化技术的深入和发展,电力系统自动化技术面临着更严峻的挑战。 (湖北工业大学湖北省武汉市 430000) 摘要:随着自动化技术的深入和发展,电力系统自动化技术面临着更严峻的挑战。要真正意义上保证电力的安全可靠运行,不断的满足人们的需要,单一的电力系统自动化设备已不能满足新时期电力发展的需求。本文论述了电力系统自动化的概念和特点,对电力系统自动化技术发展前景及方向进行了分析和阐述,可供大家参考。 关键词:自动化;电力系统;技术分析; 当前,电力系统承担着经济发展和人民群众生活提供稳定可靠电能的职责。由于电网规模总量逐年扩张,电网结构复杂和电网建设运行环境多变,电网故障发生的频率和严重程度也越来越高,严重的会直接导致整个电力系统不能正常运行。随着自动化技术的高度发展,建立自动化监控系统已逐步成为现实。通过对系统进行实时监测,能够及时发现问题,自动分析原因,并采取应急措施,从而保障整个电网平稳安全运行,具有十分积极的意义。 1. 电力系统自动化的概念 电力系统自动化是通过应用多种能够实施自动检测、决策和控制的装置,通过信号系统和数据信息传输系统对电力系统的各个部分和整体进行远程监测和控制,来保证整个电力系统的安全、稳定、高效运行,提供优质的供电服务。电力系统自动化控制技术的应用主要是保障电力系统各个生产、供电环节的安全、稳定、高效,实现整个系统经济效能的增加以及生产成本的降低。现代科学技术发展最为显著的特征就是自动化技术在各个领域的应用,电力系统关乎着我国人民群众的生产和生活,更应当通过先进的科学技术提高自身的发展水平。 2. 电力系统自动化技术的特点 2.1 强大的电网规模 电力系统自动化技术的发展,不仅提高了现代供电系统的能力,而且还保证了经济建设的健康、可持续发展,为社会经济的发展做出了重大贡献,也为其打下了坚实的经济基础。电力系统自动化技术主要构成有信息技术、网络技术、电子技术以及控制技术等,这也是电力系统的重要组成成分,其复杂性和综合性也使得整体系统得到很好的运行。由于电网规模的扩大化使得电力系统得到很好的管理,消除了现代化信息和自动化技术之间的问题。 2.2 分布区域大远距离供电 目前,由于我国电力系统的不断发展,其分布领域不断扩大,包括一些环境比较差的地区,这些地区都是高山峻岭,很难进行供电电线的施工,因为不仅成本高,还受到环境条件的限制。合理的解决措施是建立合理数量的供电线路,通过柔性供电技术提高供电电量。自动化技术的这一远距离供电特点解决了很多问题,特别是供电和输电方面。不过,带来的困难也导致了需要不断地提高自动化技术。 3. 电力系统自动化技术应用分析 3.1 智能化控制技术 智能化控制技术的发展一样也经历了多个阶段,从简单的函数单输出单输入控制到线性非线性控制及多级协调控制再到智能化控制,从电力系统的工作模式我们能够发现其属于一种动态的系统,而针对这种动态的系统进行智能化控制对于电力系统工程具有非常重要意义,智能化控制技术能够将电力系统的变化参数加以智能化分析进而得出相应的控制策略,有效的对电力系统进行科学操作,而这一系列过程对于电力系统的工作效率起到了积极的作用。 3.2 电力互感器的应用 电力互感器是针对输电线路检测和维护不可缺少的设备之一,主要功能就是通过以一定比例关系使高电压与大电流数值降低到可以用仪表检测的装置,但是由于电压升高的程度越大绝缘就越难,信号动态范围也就小,设备体积和质量都需要相应增大等一系列问题随之而来造成的不便利和不安全后果,而光电式电力互感器频率响应范围宽、测量精度高、抗电磁干扰、低压侧避免高压危险等特点的具备对于传统的电力互感器是一个很好的在电力线路维护和检查工作中的技术更新,进而得到了电力系统自动化的引进和应用,不过从长远技术要求层面还需要在传感光学材料与传感头结构以及电源供电等方面做出进一步的改进和优化,从而能够更好的促进电力系统的高性能,高效益的产出电能,服务于社会的建设环境当中。 3.3 微机实时保护系统 电力系统微机实时保护系统是由高可靠性、高实时性且高拓展性的装置组成的系统,在技术上精密、通信能力强大且具备嵌入式实时操作系统,所以在硬件设施上要求较高,同时对于嵌入式软件的要求也不断的提高,在对电力系统进行保护的过程中能够实现多任务高效优先级管理并且具有良好的可移植性和拓展性,这也是近年来被越来越多的应用到电力系统自动化中的原因,而这也有效的防止了事故发生时瞬间对电力系统造成的破坏,一旦稳定控制措施发生延迟能够通过嵌入式技术及时的在有限时间内做出反应,确保电力系统免遭损失。 4. 电力系统自动化技术共享能力 在电力系统自动化技术的发展过程中,系统模型大部分集中在对地理空间属性的描述,以几何特征为主的模拟地理系统的思想几乎成为一种标准,但在实际应用中,它的控制对象具有复杂的电力物理结构。建立电力系统特有的空间语义分析模型是非常必要的。这种针对语义层次的数据共享,最基本的要求是供求双方必须对同一数据具有相同的认识,只有基于同一种对电力系统知识的抽象认知才能保证这一点,因此在数据共享过程中要有一种电力系统的基本模型,作为不同部门之间数据共享的基础。它包括两个方面:地理实体几何属性的标准定义和表达,包含电力系统服务所覆盖的空间区域几何属性;物理属性数据的标准定义和表达,对于电力系统,它包含物理结构,各组成部件及整体的物理性能、运行方范的信息共享、综合,以及多维、动态的应用分析。

相关文档
最新文档