典型光谱矿物识别

典型光谱矿物识别
典型光谱矿物识别

【ENVI入门系列】16.基本光谱分析

(2014-09-30 17:38:25)

转载▼

分类:ENVI

标签:

杂谈

版权声明:本教程涉及到的数据仅供练习使用,禁止用于商业用途。

目录

基本光谱分析

1.概述

2.详细操作步骤

2.1标准波谱库与浏览

2.2波谱库创建

2.3高光谱地物识别

2.3.1从标准波谱库选择端元进行地物识别

2.3.2自定义端元进行地物识别

1. 概述

光学遥感技术的发展经历了:全色(黑白)—>彩色摄影—>多光谱扫描成像—>高光谱遥感四个历程。

高光谱分辨率遥感(HyperspectralRemote Sensing)用很窄(小于10nm)而连续的光谱通道对地物持续遥感成像的技术。在可见光到短波红外波段其光谱分辨率高达纳米

(nm)数量级,通常具有波段多的特点,光谱通道数多达数十甚至数百个以上,而且各光谱通道间往往是连续的,因此高光谱遥感又通常被称为成像光谱(Imaging Spectrometry)遥感。相比多光谱传感器,如Landsat8 OLI包括9个波段,光谱分辨率为106nm。

如下图为从多光谱和高光谱数据上获取的波谱曲线,更高波谱分辨率的图像可以用于识别物质,而相比多光谱图像,如TM只能用于区分物质。

图:从多光谱和高光谱数据上获取的波谱曲线对比

本课程学习ENVI的高光谱基本分析功能,包括波谱库的浏览与创建、基本的高光谱物质识别流程。

2. 详细操作步骤

2.1 标准波谱库与浏览

ENVI自带多种标准波谱库,包括建立在JPL波谱库基础上的,从0.4~2.5μm三种不同粒径160种"纯"矿物的波谱。美国USGS从0.4~2.5μm包括近500种典型的矿物和一些植被波谱。来自Johns Hopkins University(JHU)的波谱包含0.4~14μm。IGCP246波谱库有5部分组成,通过对26个优质样品用5个不同的波谱仪测量获得。植被波谱库由Chris Elvidge 提供,范围是0.4~2.5μm。ENVI 5.1波谱库中新增了2443种Aster的波谱文件,同时对应的波谱工具也有了很大的该进,用户可直观地看到每一种波谱库中的文件个数,以及更为方便的查看每一种波谱文件的波谱曲线。

ENVI的波谱库文件存放在HOME\ Program Files\Exelis\ENVI51\classic\spec_lib。

启动ENVI 5.1,主菜单> Display > Spectral Library View,在对话框中显示的就是ENVI自带的波谱库文件;

图:ENVI自带波谱库文件

(1)选择打开Veg_lib(99)中的几个植被波谱文件;

在vegetation波谱库中选择6种不同植被的波谱曲线,在下图可以看到起对应的波谱曲线,以及波谱文件的属性信息,包括常规信息和曲线信息。

图:不同植被波谱曲线

(2)波谱曲线显示窗口中的功能;

在波谱曲线窗口中可以看到4个部分的内容:

?

导入文件(Import)

?

图:导入数据方式

此功能可以导入两种格式的文件,包括ASCII及波谱库形式存在的文件。

?

导出文件(Export)

?

图:导出数据方式

导出波谱文件的格式可以分类4大类:

?

常见数据格式——ASCII与波谱库文件;

?

?

Image、PDF及Postscript输出格式;

?

?

复制波谱曲线;

?

?

直接打印曲线或在PowerPoint中展示;

?

?

选项工具(Options)

?

图:选项功能

选项工具中有三个功能:

?

打开新的Plot窗口——自由拖拽收集的地物波谱;

?

?

波谱曲线上显示十字丝——一直保持十字丝可见,显示波谱显现十字丝节点

含义;

?

?

添加波谱图例——不同颜色的波谱曲线代表什么样的地物,更直观方便;

?

?

波谱曲线X、Y轴代表含义

?

X轴代表:

?

Wavelength:(默认显示)影像波长;

?

?

Index:波段i,i代表影像具有i个波段;

?

?

Wavenumber: 波数,即1/wavelength ,波数与波长成反比关系,波长越

小,波数就越大。

?

Y轴代表:

?

Data Value:(默认显示)影像原始值;

?

?

包络线去除Continuum Removed:绘制数据与连续删除。连续的是,套在

光谱的顶部的凸包。它分为原始数据值,以产生连续取出的值。在连续使用中

的绘制曲线中所显示的第一和最后一个数据点计算的,所以只对已缩放的图

形,在连续的基础上所显示的数据来计算范围。

?

?

Binary Encoding:二进制编码,重新生成0与1的波频曲线。

?

图:导出PNG格式的波谱曲线(3)波谱曲线属性显示窗口

?

:同一窗口中显示多个地类的波谱曲线不予重叠显示;

?

?

:恢复原始数值范围曲线显示;

?

?

:点击此功能显示或者隐藏Plot Key与曲线属性;

?

?

:移除选中的一个曲线数据;

?

?

:移除全部的曲线数据;

?

?

:如果曲线节点有异常可以通过此工具进行编辑修订;

?

2.2 波谱库创建

ENVI可以从波谱源中构建波谱库,波谱来源包括:ASCII文件,由ASD波谱仪获取的波谱文件,标准波谱库,感兴趣区/矢量区域平均波谱曲线,波谱剖面和曲线等。

下面介绍波谱库建立的操作步骤:

第一步:输入波长范围

(1)在ENVI中,选择Toolbox/Spectral/Spectral Libraries/Spectral Library Builder。打开Spectral Library Builder对话框。

(2)为波谱库选择波长范围和FWHM值,有三个选项:

?

"Data File" (ENVI图像文件) :波长和FWHM值(若存在)从选择文件的头文件

中读取

?

?

"ASCII File":波长值与FWHM值的列的文本文件

?

?

"First Input Spectrum":以第一次输入波谱曲线的波长信息为准

?

选择"First Input Spectrum",单击ok,打开Spectral Library Builder面板。

图:Spectral Library Builder对话框

第二步:波谱收集

在Spectral Library Builder面板中,可以从各种数据源中收集波谱,见下表。所有收集的波谱被自动重采样到选择的波长空间。

表2.1波谱收集方法说明

下面介绍从高光谱图像数据中收集波谱。启动ENVI,打开高光谱数据CupriteReflectance.dat。

?

收集图像上某个像元的波谱:

?

(1)选择Display>Profile>Spectral,在Spectral Profile对话框中,显示当前鼠标点的剖面曲线。找到要收集的像元,鼠标选中,该像元的波谱曲线显示

(2)回到Spectral Library Builder面板中,选择Options>From Plot Windows,将所收集的波谱选中导入。

(3)导入的波谱显示在列表中,在波谱名称(Spectrum Name)字段对应的记录双击鼠标以修改波谱名称。同样的方法可以修改颜色(Color)字段的信息。

图:Import from Plot Windows面板

这种方法是从图像上获取单个点的波谱曲线,也可以获取某个区域的平均波谱曲线,如ROI文件或者矢量文件。

?

收集ROI或矢量文件范围的平均波谱

?

(1)在ENVI主菜单中,选择File>Open,打开"ROI\CupriteMineralROIs.xml"感兴趣样本文件。

(2)回到Spectral Library Builder面板中,选择Options>from ROI/EVF from input file,选择高光谱文件CupriteReflectance.dat作为波谱来源。

图:Spectral Library Builder面板

(3)选中某一类感兴趣区,如方解石Calcite,点击Plot,绘制该感兴趣区的平均光谱曲线。

图:方解石Calcite的平均光谱曲线

第三步:保存波谱库

(1)Spectral Library Builder面板中,点击Select All,将样本全部选中;

(2)Spectral Library Builder面板中,选择File>Save Spectra As>Spectral Library,打开Output Spectral Library面板;

(3)在Output Spectral Library面板中,可以输入以下参数:

?

Z剖面范围(Z Plot Range):空白(Y轴的范围,根据波谱值自动调节)

?

?

X轴标题(X Axis Title):波长

?

?

Y轴标题(Y Axis Title):反射率

?

?

反射率缩放系数(Reflectance Scale Factor):空白

?

?

波长单位(Wavelength Units):Nanometers

?

?

X值缩放系数(X Scale Factor):1

?

?

Y值缩放系数(Y Scale Factor):1

?

(4)选择输入路径及文件名,单击OK保存波谱库文件。

图:保存波谱库参数设置面板

2.3 高光谱地物识别

高光谱图像分类方法与传统的多光谱分类有本质的区别,从高光谱图像的每个像元均可以获取一条连续的波谱曲线,就可以考虑用已知的波谱曲线和图上每个像元获取的波谱曲

线进行对比,理想情况下两条波谱曲线一样,就能说明这个像元是哪种物质。我们把高光谱图像分类、物质识别、探测等称为波谱识别。

ENVI提供许多波谱分析方法,包括:二进制编码、波谱角分类、线性波段预测(LS-Fit)、线性波谱分离、光谱信息散度、匹配滤波、混合调谐匹配滤波(MTMF)、包络线去除、光谱特征拟合、多范围光谱特征拟合等。

下面以一高光谱数据为例,学习用波谱角分析方法从高光谱图像中识别物质的操作过程。

2.3.1 从标准波谱库选择端元进行地物识别

第一步:端元波谱收集

ENVI的端元波谱收集途径非常多,包括ASCII文件、ASD测量文件、波谱库、ROI/矢量文件、统计文件、剖面波谱图、N维可视化分析器、二维散点图、SMACC工具等。这里我们选择从波谱库中收集端元波谱的方式。

(1)启动ENVI,打开高光谱数据CupriteReflectance.dat

(2)单击主菜单Display-> Spectral Library Viewer,打开usgs(1994)->minerals_asd_2151.sli,点击Alunite、Calcite、Prehnite、Protlanndite,收集这些矿物的端元波谱并自动绘制在右侧的窗口中,将这四条光谱曲线绘制在新的波谱显示窗口,修改每条曲线为中文名;

图:从波谱库中收集端元波谱

第二步:物质识别

(1)在Toolbox中,打开/Classification/Endmember Collection工具,在文件对话框中选择高光谱数据CupriteReflectance.dat;

(2)在Endmember Collection面板中,选择Import >from Plot Windows。将4个端元波谱全部选中,点击OK;

(3)选择Algrithm >Spectral Angle Mapper 波谱角识别方法。

(4)单击Select All,选中所有的端元波谱。

图:选择端元波谱和制图方法

(5)单击Apply,运行波谱角法制图。

第三步:结果输出

在Spectral Angle Mapper面板上,设置波谱角阈值:0.15,选择结果输出路径和名称。

图:Spectral Angle Mapper制图输出面板

图:矿物识别结果

2.3.2 自定义端元进行地物识别

这里我们选择从图像上收集端元波谱的方式,包括收集单个像元波谱和区域的平均波谱。

第一步:构建端元波谱库

(1)启动ENVI,打开高光谱数据CupriteReflectance.dat;

(2)单击主菜单Display> Profiles>Spectral,在图像上定位到像素坐标为:(467,412)的像元,即在工具栏Go To输入467,412回车,将该像元的光谱曲线显示在窗口中

图:(467,412)像元的波谱曲线

(3)在Toolbox中,打开/Classification/Endmember Collection工具,在文件对话框中选择高光谱数据CupriteReflectance.dat;

(4)在Endmember Collection面板中,选择Import –>from Plot Windows。将显示的端元波谱选中,点击OK;

单个像素的波谱曲线收集好了,下面是收集一个区域的平均波谱。

(5)在图层管理器中CupriteReflectance.dat上点击右键New Region Of Interest,找到一片需要识别的区域,绘制一个多边形区域;

注:可直接打开ROI\端元ROI.xml

(6)回到Endmember Collection面板,选择Import –>from ROI from input file,将绘制的ROI都选中,点击OK;

(7)在Endmember Collection面板,选择Select All,单击Plot将几条波谱曲线显示出来。

注:以防万一,点击File->Save Spectra as->Spectral Library File,将获取的端元波谱保存为端元波谱文件。

图:保存端元波谱

第二步:确定端元波谱类型

(1)在Toolbox中,选择/Spectral/Spectral Analyst,选择在对话框的右下角选择Open>Spectral Library,选择...\Program Files\Exelis\ENVI51\classic\spec_lib\usgs_min \usgs_min.sli作为对比波谱库,在识别方法权重上按照默认,点击OK;

(2)在Spectral Analyst面板上,选择Options->Edit(x,y) Scale Factors,设置X Data Multipliter为0.001,设置Y Data Multipliter为0.0001,点击OK;

注:标准波谱库的波长是微米,y轴的值为0-1反射率。

图:设置待识别波谱与标准波谱库的单位比例关系

(3)在Spectral Analyst面板上,单击Apply按钮,选择之前步骤中得到的第一个波谱进行分析,点击OK,记下分值最高对应的地物;

图:选择一个波谱进行分析

图:波谱曲线分析结果

(4)回到Endmember Collection面板,将波谱分析得到的地物名在Name中输入;(5)重复(3)--(4)两步,识别剩下的波谱,最后结果如下图所示:

图:波谱识别结果

第三步:物质识别

完整版实验常见矿物手标本的鉴定

实验一常见矿物手标本的鉴定 一、实验类型 验证性实验 二、实验目的 (一)熟悉与掌握用肉眼鉴定矿物的方法。 (二)熟练掌握常见矿物的形态特征及物理性质特征,并据此鉴别矿物。(三)为鉴定岩石打下基础。 三、实验仪器、设备 矿物标本,小刀,放大镜,盐酸,瓷板,马蹄形磁铁 四、实验原理 (一)矿物的形态 1.矿物单体的形态:一向延长——柱状或针状 二向延长——板状或片状 三向延长——立方体或八面体等。 2.矿物集合体的形态:矿物单体如为一向伸长——集合体常为纤维状或毛发状;矿物单体如为二向伸长——集合体常为鳞片状; 矿物单体如为三向伸长——集合体常为粒状或块状 (二)矿物的光学性质 1、透明度:矿物透过可见光的能力矿物薄片能透过光线者,称为透明矿物;基本上不能透过光线者,称为不透明矿物。 2、光泽:矿物对可见光的反射能力。根据反射能力的强弱可分为: 3、颜色与条痕:颜色是鉴定矿物的重要依据。某些矿物常常由于外来原因呈现出不很固定的颜色,如纯净的石英为无色,由于混有杂质等原因也可呈现各种颜色,许多透明矿物均具有这一特点。 条痕是矿物粉末的颜色。它对于某些金属矿物具有重要的鉴定意义,如赤铁矿可呈赤红、铁黑或钢灰等色,而它的条痕恒为樱红色 透明矿物的条痕都是白色或近于白色,无鉴定意义。 (三)矿物的力学性质 1、硬度:在肉眼鉴定中,主要指矿物抵抗外力刻划的能力。通常用摩氏硬度计作为标准进行测量。 2、解理:晶体受到打击时能够沿着一定结晶方向分裂成为平面(即解理面)的能力。 3、断口:断口是矿物受外力打击后不沿固定的结晶方向断开时所形成的断裂面。(四)常见矿物特征 滑石Mg[SiO](OH) 83104单晶体为片状,通常为鳞片状、放射状、纤维状、块状等集合体。无色或白色。解理面上为珍珠光泽。硬度1。平行片状方向有极解理。有滑感。薄片具挠性相对密度2.58—2.55。 石膏Ca[SO]·2HO 24单晶体常为板状。集合体为块状、粒状及纤维状等为无

基于光谱特征参数组合的高光谱数据矿物填图方法

第40卷第8期 地球科学 中国地质大学学报V o l .40 N o.8 2015年8月 E a r t hS c i e n c e J o u r n a l o fC h i n aU n i v e r s i t y o fG e o s c i e n c e s A u g . 2015d o i :10.3799/d q k x .2015.130基金项目:国家科技支撑计划课题项目(N o .2012B A H 27B 04). 作者简介:韦晶(1991-),男,硕士,主要从事定量遥感方面研究.E -m a i l :w e i j i n g _r s @163.c o m *通讯作者:明艳芳,E -m a i l :m y f 414@163.c o m 引用格式:韦晶,明艳芳,刘福江,2015.基于光谱特征参数组合的高光谱数据矿物填图方法.地球科学 中国地质大学学报,40(8):1432-1440. 基于光谱特征参数组合的高光谱数据矿物填图方法 韦 晶1,明艳芳1*,刘福江2 1.山东科技大学测绘科学与工程学院,山东青岛266590 2.中国地质大学信息工程学院,湖北武汉430074 摘要:受大气环境等因素的影响,高光谱遥感矿物识别难以达到较高的精度.为解决该问题,根据光谱吸收特征参数在大气变化中能保持相对稳定的特点,提出一种基于光谱特征参数组合的高光谱矿物类型识别方法.文中计算了多种光谱特征参数,通过最佳指数因子(o p t i m u mi n d e x f a c t o r ,O I F )优选特征参数组合,选定最佳特征参数组合,利用模式识别方法实现矿物识别.利用机载可见/红外成像光谱仪(a i r b o r n e v i s i b l e i n f r a r e d i m a g i n g s p e c t r o m e t e r ,A V I R I S )高光谱数据,在美国内华达州C u p r i t e 矿区进行了该方法的应用试验研究,并与前人矿物填图结果做了对比.结果表明:吸收波谷位置-吸收面积-吸收右肩位置(P -A -S 2) 光谱特征参数组合的矿物识别效果最优,整体精度达到74.68%.关键词:光谱吸收特征参数;遥感;矿物填图;机载可见/红外成像光谱仪数据;最佳指数因子;C u p r i t e 矿区.中图分类号:P 575.4;P 237 文章编号:1000-2383(2015)08-1432-09 收稿日期:2015-04-02 H y p e r s p e c t r a lM i n e r a lM a p p i n g M e t h o dB a s e do n S p e c t r a l C h a r a c t e r i s t i cP a r a m e t e rC o m b i n a t i o n W e i J i n g 1,M i n g Y a n f a n g 1*,L i uF u j i a n g 2 1.C o l l e g e o f G e o m a t i c s ,S h a n d o n g U n i v e r s i t y o f S c i e n c e a n dT e c h n o l o g y ,Q i n g d a o 266590,C h i n a 2.F a c u l t y o f I n f o r m a t i o nE n g i n e e r i n g ,C h i n aU n i v e r s i t y o f G e o s c i e n c e s ,W u h a n 430074,C h i n a A b s t r a c t :I n f l u e n c e db y t h ea t m o s p h e r i ce n v i r o n m e n ta n do t h e rf a c t o r s ,t h e m i n e r a l r e c o g n i t i o n w i t h h y p e r s p e c t r a lr e m o t e s e n s i n g i s d i f f i c u l t t o a c h i e v e a h i g h a c c u r a c y .T o i m p r o v e t h e a c c u r a c y o f t h em i n e r a l i d e n t i f i c a t i o nw i t h s u c h t e c h n o l o g y ,a h y -p e r s p e c t r a lm i n e r a l r e c o g n i t i o nm e t h o db a s e do ns p e c t r a l c h a r a c t e r i s t i c p a r a m e t e r c o m b i n a t i o n ,w h i c hc a n m a i n t a i nr e l a t i v e l y s t a b l e c h a r a c t e r i s t i c sw i t ht h ea t m o s p h e r i cc h a n g e s ,i s p r o p o s e d i nt h i s p a p e r .V a r i o u ss p e c t r a l c h a r a c t e r i s t i c p a r a m e t e r sa r e c a l c u l a t e d ,a n dt h eo p t i m a l c o m b i n a t i o no f t h e p a r a m e t e r s i ss e l e c t e dt h r o u g ht h eo p t i m u mi n d e xf a c t o r (O I F ),b a s e do n w h i c h ,m i n e r a l i d e n t i f i c a t i o n i s r e a l i z e dw i t h p a t t e r n r e c o g n i t i o nm e t h o d .B a s e do n t h e a b o v em e t h o d ,m i n e r a l t y p e i d e n t i f i c a -t i o n t e s t i s c a r r i e do u t i nC u p r i t em i n e o fN e v a d a ,w i t h a i r b o r n e v i s i b l e i n f r a r e d i m a g i n g s p e c t r o m e t e r (A V I R I S )h y p e r s p e c t r a l d a t a .T h e r e s u l t s a r e c o m p a r e dw i t h t h ew o r ko f p r e v i o u sm i n e r a lm a p p i n g ,i t s h o w s t h a t t h e c o m b i n a t i o n o f t h e s p e c t r a l c h a r -a c t e r i s t i c p a r a m e t e r s ,P -A -S 2(P i s a b s o r p t i o nw a v e t r o u g h p o s i t i o n ,Ai s a b s o r p t i o n a r e a ,S 2i s a b s o r p t i o n r i g h t s h o u l d e r p o s i -t i o n )c a n g e t t h eh i g h e s t i d e n t i f i c a t i o n p r e c i s i o n ,t h e o v e r a l l a c c u r a c y c a n r e a c h74.68%.K e y w o r d s :s p e c t r a l c h a r a c t e r i s t i c p a r a m e t e r ;r e m o t e s e n s i n g ;m i n e r a lm a p p i n g ;a i r b o r n e v i s i b l e i n f r a r e d i m a g i n g s p e c t r o m e t e r d a t a ;o p t i m u mi n d e x f a c t o r (O I F );C u p r i t em i n i n g a r e a . 利用遥感手段可以从广域空间尺度二 多时相尺度下实现矿物信息的快速识别,缩短矿物填图时间,提高效率.高光谱遥感由于具有波段连续二波谱分辨 率高的特点可以在矿物类型识别中发挥重要作用,且已经在局部区域矿物填图等工作中得到广泛的应用(甘甫平和王润生,2007;王润生等,2010). 然而由

光谱分析系统定标操作指南解析

光谱分析系统定标操作指南 1.打开WY直流电源和光谱仪电源,预热15分钟,启动 PMS-50/80PLUS软件。 2.在PMS-50/80软件主界面“测试”菜单“系统设置”中的“通讯 选项”对话框里设置相应通讯端口,选择任意一种“测试模式”。 3.把负载线连接在积分球上的“1”“2”接线柱和WY电源输出端之 间(WY305电压电流调至最小位置即逆时针方向调节电压和电流旋钮发出响声) 4.安装标准灯,调节灯杆位置使灯泡处于挡光班的中心高度,以确 保标准灯发出的光线不直射光度探测器和光纤。 5.关闭积分球,在“测试”菜单中或工具栏中选择“光通量定标”, 点击“关灯校零”进行光度校零。 6.校零成功后,手动调节WY电源(也可以在软件中的WY系列功 能中输入标准灯的标定电流和参考电压(输入的电压数值比标识的参考电压高1-2伏以把线路上的压降考虑进去),使其输出电流至标准灯标定电流值并处于稳流状态,等待5分钟以上待发光稳定,进行光通量定标,并“存盘推出”。 7.在“测试”菜单中或工具栏中点击“光谱定标”,进行色温定标, 完毕后“存盘退出”。 8.在PMS-50/80软件主页界面“测试”菜单“系统设置”中的“通 讯选项”对话框里选择另一种“测试模式”。 9.在“测试”菜单中或工具栏中点击“光谱定标”进行色温定标,

完毕后“存盘退出”。 10.把标准灯当做被测光源,在“测试”菜单中或工具栏中点击”电光 源测试“开始测试,测试结束验证测试色温和光通量是否正确:(要求色温偏差在±15K以内,光通量偏差在±1%以内)符合进行11步,如不符合关灯后重新5-10步的操作。 11.把WY电源的输出调至最小,以熄灭标准灯,等标准灯冷却后, 取下放入灯盒。 12.关闭WY电源,取下负载线接至机柜后的负载接线柱,至此完成 定标,即可以正常的测试操作了。 注:早期的PMS-50(即测试时间为2-3分钟的机型不需要8、9两步的操作)!

分形理论在光谱识别中的应用

第26卷,第4期 光谱学与光谱分析Vol 126,No 14,pp7722774 2006年4月 Spectroscopy and Spectral Analysis April ,2006  分形理论在光谱识别中的应用 熊宇虹,温志渝,张流强,温中泉,梁玉前 重庆大学光电工程学院,重庆 400044 摘 要 分形理论是研究一类不规则、混乱复杂,但其局部和整体具有相似性体系的科学。分形维数是分形 理论中用于描述对象的不规则度和自相似性的基本度量。文章以符合朗伯2比尔定律的光谱信号为研究对象,在概述分形几何基本原理的基础上,提出了以分形维数作为光谱识别特征的方法,运用相空间重构得出了光谱信号的分形维数,通过对光谱信号的分形维数进行比较,达到识别不同光谱的目的,最后举例对该方法进行了说明。 主题词 分形;分形维数;光谱分析;光谱识别中图分类号:TP39 文献标识码:A 文章编号:100020593(2006)0420772203  收稿日期:2005201228,修订日期:2005206228  基金项目:国家自然科学基金重点项目(69476023)和国家“863”项目(2004AA4040,2004AA404023),国家自然科学基金(60308007)和重庆 市“十五”攻关项目(7341;8149)资助  作者简介:熊宇虹,1971年生,重庆大学光电工程学院博士研究生 引 言 分形理论是数学家曼德布罗特创立的,主要研究一类不 规则、混乱复杂,但其局部和整体具有相似性体系的科学[1]。由于其在描述复杂现象方面的独特作用,从而在自然科学和社会科学的众多领域得到了广泛应用,为人们研究复杂问题提供了新方法,开辟了新视野[2]。 光谱识别技术是光谱定性分析的基础。随着光谱学和计算机技术的发展,光谱识别已成为光谱分析技术的重要组成部分。本文以符合朗伯2比尔定律的光谱信号为研究对象,探讨了分形理论在光谱识别中的应用。在概述分形几何基本原理的基础上,提出了以分形维数作为光谱识别特征的方法,运用相空间重构得出了光谱信号的分形维数,通过对光谱信号的分形维数进行比较,达到识别不同光谱的目的,最后以常见的中药材党参及其伪品夜关门为例对该方法进行了说明。 1 分形和分形维数[325] 分形理论经过了许多年的发展,在不同的时期人们对分形下过不同的定义,但迄今为止还没有一个确切、简明、令人满意的定义,一般而言,把分形看作具有如下典型性质的集合F , (1)F 具有精细结构,即有任意小比例的细节;(2)F 是如此不规则,以致它的局部和整体都不能用传 统的几何语言来描述; (3)F 通常有某种自相似的形式,可以是近似的或是统计的; (4)一般地,F 的“分形维数”大于它的“拓扑维数”; (5)在大多数情况下,F 可以用非常简单的方法定义,可以由迭代产生。 一般而言,如果所研究的对象满足上述性质中的全部或大部,即使有某个性质例外,也并不影响把其称为分形。 分形维数是分形理论中用于描述对象的不规则度和自相似性的基本度量,在一定区间内具有标度不变性。数学家以Hausdorrf 维数为基础,定义了多种维数,如盒维数、信息维数、关联维数、广义维数和自相似维数等。这些维数从不同的方面刻画了分形集的分形特征。其中关联维数计算简单,可以由一维时间序列利用相空间重构的方法直接计算得出,因而应用较普遍,其基本计算过程如下, 假设{x k }为观测得到的时间序列,其中k =1,2,…,h 。对该时间序列采用时间差法进行相空间重构,重构结果记为y n (m ,p )=(x n ,x n+p ,…,x n+(m-1)p ),其中n =1,2,…,h -m +1,p =a Δt 为时间延迟,Δt 为数据采样的时间间隔,a 为任意整数,m 为嵌入维数。 在y n 中,凡是距离小于给定正数r 的矢量称为关联矢量,计算一下有多少对关联矢量,它在一切可能的配对中所占的比例称为关联积分,

光谱分析仪

光谱分析仪 一、概述 光谱分析仪是在平时的光通信波分复用产品中较常使用到的仪表,当WDM系统刚出现时,多用它测试信号波长和光信噪比。其主要特点是动态范围大,一般可达70dB;灵敏度好,可达-90dBm;分辨率带宽小,一般小于0.1nm;比较适合于测试光信噪比。另外测量波长范围大,一般在600~1700nm.,但是测试波长精度时却不如多波长计准确。 在光谱的测量、各参考点通路信号光功率、各参考点光信噪比、光放大器各个波长的增益系数和增益平坦度的测试都可以使用光谱分析仪。光谱分析仪现在也集成了WDM的分析软件,可以很方便地把WDM的各个波长的中心频率、功率、光信噪比等参数用菜单的方式显示出来。 二、常用参数的测试 光谱分析仪的屏幕显示测量条件、标记值、其它数据以及测量波形。屏幕各部分的名称显示如下:

图1:屏幕各部分的名称 1、光谱谱宽的测量 谱宽即光谱的带宽,使用光谱分析仪可以测量LD、发光二极管的谱宽。在光谱的谱宽测量时,要特别注意光谱分析仪系统分辨率的选择,即原理上光谱分析仪的分辨率应当小于被测信号谱宽的1/10.,一般推荐设置为至少小于被测信号谱宽的1/5。 在实际的测量中,为了能够准确测量数据,一般选择分辨率带宽为0.1nm以下。分辨率带宽RES位于SETUP菜单中的第一项,直接输入所要设定的分辨率带宽的大小即可。如下图2、3、4所示(图中只为区别光谱形状的不同),当选择的分辨率带宽不同时,从光谱分析仪观察到的光谱形状有很大的不同,并且所测量得到的谱宽大小的不同。

图2:分辨率带宽RES=0.5nm时的光谱形状 图3:分辨率带宽RES=0.1nm时的光谱形状

高光谱遥感在找矿中的应用

高光谱遥感在找矿中的应用 1001113309 林良平 摘要:高光谱遥感技术矿物光谱识别机理,较详细地介绍了高光谱数据处理和分析技术及发展程度,并系统地阐述了国内外高光谱遥感技术在矿产资源调查应用方面的发展概况,最后指出了高光谱在矿产资源调查领域中的应用及其发展方向。 关键词:高光谱遥感;数据处理技术;矿产资源调查 Application of Hyperspectral Remote Sensing on Mineral Exploration 1001113309 Liangping Lin Abstract:Hyperspectral remote sensing technology mineral spectrum recognition mechanism, the paper introduces in detail the high spectral data processing and analysis technology and development degree, and systematically elaborated the hyperspectral remote sensing technology at home and abroad in mineral resource survey the general situation of the development of application, and finally points out the high spectrum in the mineral resources in the field of investigation application and development direction. Key words:Hyperspectral remote sensing; Data processing technology; Mineral resource survey 0 引言 所谓高光谱遥感,是在紫外到中红外波段范围内,划分成许多非常窄却光谱连续的图像数据来进行探测的影像数据技术,这项技术起源于20世纪80年代,由于高光谱数据是一个光谱图像的立方体,其空间图像维描述地表二维空间特征,其光谱维揭示图像每一像元的光谱曲线特征,由此实现了遥感数据图像维与光谱维信息的有机融合。能够提供更为丰富的地面信息,因此受到国内外学者的广泛关注[1][2]。 矿物识别是高光谱最能发挥优势的领域之一,高光谱数据立方体蕴含着丰富的矿物学信息。一般而言,在岩体侵位以及地质构造等地质作用下,热液侵入、物质置换等使源于矿体的矿物质发生扩散作用,使在“未蚀变”围岩中产生用岩石学方法难以直接识别的细微成分的变化,而这些成分的变化却在矿物光谱中有着或强或弱的表现,如富铝云母与贫铝云母在2000~2500nm光谱区间的最大吸收位置发生漂移。因此,利用高光谱遥感技术不仅可以实现矿物种类的识别,也可以通过对这些细微的变化的探测,实现对地质作用演化信息的探测。

常见矿物鉴定特征6页

常见矿物鉴定特征(描述)【淮之子整理】2010-01-03 标签: 解理 晶系 晶体结构 物理性质 晶形 杂谈 分类:地学知识 二、常见矿物鉴定特征 1.萤石(Fluorite)又称氟石CaF 2 【晶体结构】等轴晶系; 【形态】晶体常呈立方体,其次为八面体,少数有菱形十二面体。集合体呈晶粒状、块状、球粒状,偶尔见土状块体。 【物理性质】颜色多样,有无色、白色、黄色、绿色、蓝色、紫色、紫黑色及黑色,加热时,可退色;玻璃光泽。解理完全。硬度4。 2.石榴石(Garnet) 【晶体结构】等轴晶系。

【形态】常呈完好晶形,菱形十二面体晶面上常有平行四边形长对角线的聚形纹。集合体常为致密粒状或致密块状。 【物理性质】颜色多样;玻璃光泽,断口油脂光泽,无解理,硬度6.5~7.5(小刀刻不动)。 3.石英(Quartz)SiO 2 【晶体结构】三方晶系, : 【形态】常见完好晶形,呈六方柱和菱面体等单形所成之聚形。柱面上常具横纹。有时还出现三方双锥和三方偏方面体。 【物理性质】颜色多种多样,常为无色、乳白色、灰色。因含各种杂质,颜色各异,无解理,贝壳状断口,硬度为7。 4.方解石(Calcite) Ca[CO ] 3 【晶体结构】三方晶系; 【形态】方解石的集合体形态也是多种多样的。由片状(板状)或纤维状的方解石,呈平行或近似平行的连生体,分别称为层解石和纤维方解石。还有致密块状(石灰岩),粒状(大理岩),土状(白垩),多孔状(石灰华),钟乳状(石钟乳)和鲕状、豆状、结核状、葡萄状、被膜状及晶簇状等。方解石的晶体形态与形成条件有关。随着形成时温度的降低,其晶形有从板状、钝角菱面体为主的晶形向复三方偏三角面体、六方柱为主及锐角菱面体晶形演化的趋势

高光谱遥感在矿物填图中的应用

高光谱遥感在矿物填图中的应用高光谱遥感在矿物填图中的应用 摘要 近20年来,高光谱遥感技术(Hyperspectral Remote Sensing)发展迅速,已成为遥感技术的前沿,而矿物识别和矿物填图是高光谱遥感应用中最成功的领域。高光谱遥感有许多不同于宽波段遥感的性质,各种矿物和岩石在电磁波谱上显示的诊断性光谱特征可以帮助人们识别不同矿物成分,高光谱数据能反映出这类诊断性光谱特征从而进行岩石矿物的分类和填图,并为矿产资源评价与矿山环境监测提供靶区,指导进一步找矿勘探和环境监测工作的开展。

本文首先介绍了高光谱遥感技术的特点、优势、存在的问题和发展趋势,并概述了高光谱遥感技术在矿物填图方面国内外的研究现状,之后详细阐述了高光谱技术在矿物识别和矿物填图方面的应用。 关键词:高光谱遥感技术矿物识别矿物填图 目录 高光谱遥感在矿物填图中的应用 (1) 一、引言 (3) 二.高光谱遥感技术 (4)

2.1高光谱遥感技术的特点 (4) 2.2高光谱遥感技术的优势 (4) 2.3高光谱影像应用中面临的难题 (5) 2.4高光谱遥感技术发展趋势 (5) 二.国内外研究现状 (5) 3.1 国外对高光谱在矿物识别和矿物填图中的应用研究 (5) 3.2国内对高光谱在矿物识别和矿物填图中的应用研究 (5) 三.高光谱在矿物识别中的应用 (6) 4.1基于单个诊断性吸收的特征参数 (6) 4.2基于完全波形特征 (6) 4.3基于光谱知识模型 (6) 四.高光谱在矿物填图中的应用 (7) 5.1光谱波段降维 (7) 5.2光谱匹配技术 (7) 5.3 端元选择 (8) 5.3.1基于先验知识的端元选择 (8) 5.3.2基于图像纯净像元的端元选择 (8) 5.4 矿物填图 (9) 五.结语 (9) 六.参考文献 (9) 一.引言 高光谱遥感技术起源于20世纪80年代,由于高光谱图像具有很高的光谱分辨率,能够提供更为丰富的地面信息(可直接识别地物或地物组分),因此受到国内外学者的广泛关注。随着成像光谱仪的光谱分辨率和空间分辨率的不断提高,高光谱遥感广泛地应用于地质调查、植被研究、海洋遥感、农业遥感、大气及环境遥感等领域中,并发挥越来越重要的作用。其中区域地质制图和矿产勘探是高光谱技术主要的应用领域之一,也是高光谱遥感应用中最成

常见矿物岩石鉴定特征

重要矿物简述 目前已发现的矿物大约有3000种,随着现代研究手段的改进,逐年不断有新矿物发现,近年平均每年发现约四五十种。1949年以来我国发现并得到确认的新矿物约40种。 矿物分类的方法很多,当前常用的是根据矿物的化学成分类型分为5大类:自然元素矿物、硫化物及其类似化合物矿物、卤化物、氧化物及氢氧化物矿物、含氧盐矿物。根据阴离子或络阴离子还可把大类再分为若干类,如含氧盐大类可以分为硅酸盐矿物、碳酸盐矿物、硫酸盐矿物、钨酸盐矿物、磷酸盐矿物以及钼酸盐矿物、砷酸盐矿物、硼酸盐矿物等类。 在众多矿物名称中,有一部分是以人名和地名来命名的,如高岭石是因江西省高岭而命名,全世界都叫这个名字;有一部分是根据化学成分、形态、物理性质命名的,如方解石是因沿解理极易碎成菱形方块而命名;赤铁矿、黄铁矿是根据其颜色和主要成分而命名;重晶石是根据其比重较大而命名,等等。在中文矿物名称中,有一部分是源于我国传统名称,如石英、石膏、辰砂等,但大部分是由外文翻译成中国名称。具有金属光泽或可提炼金属的矿物多称为某某矿,如方铅矿、黄铜矿、磁铁矿等;具非金属光泽的矿物多称为某某石,如方解石、长石、萤石等。 下面简单介绍重要的有用矿物、造岩矿物(即组成岩石的重要矿物)以及我国某些特别丰富的矿物,共约40种。 一、自然元素矿物 这类矿物较少,其中包括人们所熟知的矿物,如金、铂、自然铜、硫黄、金刚石等。这里只介绍石墨和金刚石。 1.石墨C 通常为鳞片状、片状或块状集合体。铁黑色或钢灰色,条痕黑灰色,晶体良好者具强金属光泽,块状体光泽暗淡,不透明。有一组极完全解理,硬度1—2,薄片具挠性。比重 2.09—2.23。具滑腻感,高度导电性,耐高温(熔点高)。化学性稳定,不溶于酸。 鉴定特征:钢灰色,染手染纸,滑腻感。 石墨多在高温低压条件下的还原作用中形成,见于变质岩中;一部分由煤炭变质而成;石墨也常见于陨石中。石墨可制坩埚、电极、铅笔、防锈涂料、熔铸模型以及在原子能工业中用作减速剂。我国主要的石墨产地有山东、黑龙江、内蒙古、吉林、湖南等省(区)。 2.金刚石C 晶体类似球形的八面体或六八面体。无色透明,含杂质者黑色(黑金刚),强金刚光泽,硬度10。解理完全,性脆。比重 3.47—3.56。紫外线下发萤光。具高度的抗酸碱性和抗辐射性。 鉴定特征:最大硬度和强金刚光泽。 金刚石多产于一种叫金伯利岩的超基性岩中。含金刚石岩石风化后可形成砂矿。 透明金刚石琢磨后称钻石。不纯金刚石用于钻探研磨等方面。目前,金刚石还用于红外、微波、激光、三极管、高灵敏度温度计等各种尖端技术方面。

常见造岩矿物的镜下鉴定

常见造岩矿物的薄片鉴定 造岩矿物按其色率可以分为暗色矿物和浅色矿物,本章学习和鉴定的矿物主要有七大类。暗色矿物包括橄榄石类、辉石类、角闪石类和云母类;浅色矿物包括石英类、长石类、和碳酸盐类。学习重点是了解并掌握七大类矿物的一般特征和常见变种的鉴定特征。难点是相似矿物的区别。 一、橄榄石类 橄榄石化学通式:R2[SiO4],R=Mg,Fe,Ca,Mn等。 橄榄石分类:可分为三个系列。(1)镁橄榄石-铁橄榄石系列。(2)锰橄榄石-铁橄榄石系列。(3)钙铁橄榄石-钙镁橄榄石系列。 橄榄石(贵橄榄石)主要光学特征:多为粒状、无色、正高突起、解理不发育、裂开发育,最高干涉色二级末到三级初,平行消光、二轴晶、(±)2V角近90°。 二、辉石类 辉石化学通式:R2[Si2O6],R=Mg、Fe、Al、Ca、Na等。 辉石分类:按其结晶特点可以分为两类。(1)斜方辉石亚族(紫苏辉石、顽火辉石等)(2)单斜辉石亚族(普通辉石、透辉石、霓辉石等)。 共同光学特征:多为短柱状、横截面多为四边形和八边形,可见两组近正交完全解理,纵切面长方形,多见一组完全解理,正高突起,横截面多对称消光,2V角中等。 辉石主要变种的光学特征: 紫苏辉石:具有弱多色性,平行消光,最高干涉色一级顶部,负光性。 单斜辉石:一般无色,斜消光(C∧Ng大于30°),最高干涉色二级初,一般正光性。 紫苏辉石和单斜辉石的主要区别:颜色、消光类型、干涉色级序、光性符号。 橄榄石和普通辉石的主要区别:形态、颜色、解理、消光类型、干涉色级序、2V。

三、角闪石类 角闪石分类:按其结晶特点可以分为两类。 斜方闪石类:直闪石、铝直闪石等。 单斜闪石类:普通角闪石、透闪石等。 角闪石共同特征:绝大多数角闪石属单斜晶系,形态多为沿c轴呈长柱状,针状或纤维状。横断面呈菱形或六边形,具有两组完全的斜交解理(54.5°- 56°),一般为正中突起。 普通角闪石:薄片中常具有较深的绿色、褐色或棕色等,碱性种属常带有蓝色调。正吸收性,斜消光(C∧Ng小于30°),二轴晶,一般为负光性,2V角比较大。 透闪石:与普通角闪石的区别主要在于其无色及消光角C∧Ng较小。 四、云母类 云母类型:黑云母、白云母、金云母。 共同特征:片状,一组极完全解理,平行消光,干涉色较高且鲜艳。 黑云母:棕褐色,红褐色,多色性明显,2V角特别小(假一轴晶)。 白云母:无色,闪突起明显,2V角30°- 50°左右。 金云母:浅褐-浅黄白色,弱多色性,闪突起比较明显,2V角0°-20°。注意产状。 五、长石类 长石类型:碱性长石(正长石、微斜长石、条纹长石、透长石)和斜长石。 共同特征:板状,无色,两组解理完全(夹角近90度),突起低(±),干涉色一级灰,二轴晶(+)。

光谱分析仪应用及功能特点

光谱分析仪应用及功能特点 由于近红外光在常规中有良好的传输特性,且其仪器较简单、分析速度快、非破坏性和样品制备量小、几乎适合各类样品(液体、粘稠体、涂层、粉末和固体)分析、多组分多通道同时测定等特点,成为在线分析仪表中的一枝奇葩。近几年,随着化学计量学、光纤和计算机技术的发展,在线近红外光谱分析技术正以惊人的速度应用于包括农牧、食品、化工、石化、制药、烟草等在内的许多领域,为科研、教学以及生产过程控制提供了一个十分广阔的使用空间。光谱分析仪应用于钢铁冶金、有色金属、石油化工、机械制造、能源电力、铁路运输、航空航天、食品卫生、环境保护以及教学科研等各个领域。 直读光谱仪一般属于原子发射光谱,应用于冶金,铸造,有色,黑色金属鉴别,石化,机械制造等行业。国际上比较有名的有美国热电(收购瑞士ARL),德国斯派克,德国布鲁克,日本岛津等比较有名。 手持式光谱仪属于X射线荧光光谱仪,同样属于原子发射光谱仪,但和直读光谱的激发方式不一样,直读光谱靠高压放电激发,X射线是通过X光管来激发,接收原件也不同,检测元素范围和精度低于直读光谱,但应用于合金材料牌号鉴别以及混料筛选,废料回收,野外材料牌号鉴别有特殊用途,因可以做的小巧,一般做成手持式,方便携带。 性能特点 防返油真空技术,采用两级阀门控制。一级通过真空规管控制并与真空泵联动,为世界光谱仪领域最新技术,避免仪器抽真空带来的噪声、故障,防返油真空技术,避免油蒸汽对光学系统造成的污染,大大提高了仪器的使用寿命。 1.仪器采用的独立出射狭缝为国内首创,世界先进。金属整缝的特点是仪器调试方便、快捷,便于出射狭缝增加通道(用户可仅考虑目前应用的元素,以后需要的通道可随时增加)节约成本。 2.自动高压系统为世界先进水平。该系统可通过计算机控制每个通道提供8档高压,使同一通道可以在不同分析程序中得到应用,提高了通道的利用率和谱线最佳线性范围在分析不同材料中的采用,减少了通道的采用数量,降低了成本。 3.自动描迹为世界领先水平,同类仪器国内空白。自动描迹可大大缩短校准仪器所用的时间,使仪器校准变得简单、方便,非专业人员既可进行描迹操作。仪器设有内部恒温系统。大大减小了环境温度变化对光学系统造成的漂移。 4.WINDOWS系统下的中文操作软件,方便国内使用。不同层次的操作员可随时调用相关帮助菜单来指导对仪器的操作;分析速度快捷,20秒内测完所有通道的化学成分;针对不同的分析材料,通过制作预燃曲线来确定分析时间,使仪器用最短的时间达到最优的分析效果;预制好合理的工作曲线,用户可免购大量标样,节约使用成本,安装后即可投入使用。 5.多功能光源国内空白。多功能光源的采用可扩大元素的分析范围,满足超高含量以及痕量元素的分析;各系统独立供电,单元化设计,维修方便快捷。单元化的设计可达到非专业人员的快速维修,为互联网摇诊仪器故障做好了充分准备。

地质矿物识别实验报告

地质学基础实验报告 课 程 名 称 地质学基础实验名称矿物和岩石的识别并对岩石准确命名实 验教室土壤实 验室 实验日 期 2010.10-2011.1 班级一班 学 生姓名阳金秀 实验成 绩 任课教师 (签名) 实 验目的及内容(1)通过在室内对手上的标本的观察,认识常见的矿物和岩石,掌握其各种物理特征; (2)区分相似矿物; (3)根据各种特征对岩石准确命名; (4)对矿物和岩石进行分类;

实 验 样 品 各种矿物和岩石标本 实验过程(1)观察各种矿物的集合体形态(粒状、片状、致密块状等集合体)和物理性质(颜色、光泽、解理等), (2)还可以利用条痕板观察矿物的条痕,用指甲或小刀来估计硬度; (3)对矿物进行分类; (4)观察岩石的颜色,矿物成分; (5)按三大类岩石进行分类; (6)观察火成岩的结构、构造,对火成岩进行分类; (7)观察沉积岩的颜色、成分、结构、构造,对沉积岩分类; (8)观察变质岩的矿物、结构、构造等 实验结果分析矿物分类: 类型碳矿物硫化物氧化物及 氢氧化物 含氧盐类 矿物 其他盐类 矿物 主要矿物 石墨 辉铜矿、方 铅矿、辉锑 矿、辰砂、 黄铁矿、黄 铜矿 赤铁矿、褐 铁矿铝土 矿、石英碧 玉、玉髓 正长石、斜 长石、橄榄 石、普通辉 石、普通角 闪石、云 母、绿帘 石、蛇纹 石、滑石石 榴子石、方 解石、重晶 石 磷灰石、萤 石、

三大岩类: 火成岩沉积岩变质岩 矿物成分均为原生矿物,成分 复杂,常见的有石 英、长石、角闪石、 辉石、橄榄石、黑云 母等矿物成分 除石英、长石、白云母等原 生矿物外,次生矿物占相当 数量,如方解石、白云石、 高岭石、海绿石等 除具有原岩的矿物成 分判尚有典型的变质 矿物,如绢云母、石 榴子石等 结构以粒状结晶、斑状结 构为其特征 以碎屑、泥质及生物碎屑、 化学结构为其特征 以变晶、变余、压碎 结构为其特征 构造具流纹、气孔、杏仁、 块状构造 多具层理构造、有些含生物 化石 具片理、片麻理、块 状等构造 产状多以侵入体出现,少 数为喷发岩,呈不规 则状 有规律的层状随原岩产状而定 分布花岗岩、玄武岩分布 最广 粘土岩分布最广,其次是砂 岩、石灰岩 区域变质岩分布最广 如片麻岩、大理岩, 次为接触变质岩如矽 卡岩、红柱石和动力 变质岩 区分相识岩石: 相同点不同点普通辉石颜色均为绿黑至黑色,辉石晶体为短柱状 条痕为灰绿色,玻璃光泽, 普通角闪石两组解理角闪石晶体为长柱状收 获感想 通过老师讲解和认真地观察,认识了常见的矿物和岩石,能对岩石进行初步的分类和描述,能通过观察岩石的矿物成分和颜色等物理特征,对岩石进行完整、准确的命名。认识矿物和岩石的实验,为以后的野外实习奠定基础。

紫外光谱分析仪基础知识

紫外光谱分析仪基础知识 紫外,可见光谱法及相关仪器 UV-VIS Spectrometry & Instrument 紫外,可见光谱法及相关仪器 一(紫外,可见吸收光谱概述 二(紫外,可见分光光度计2 1(紫外,可见分光光度计的主要部件 2(紫外,可见分光光度计的分类 3(紫外,可见分光光度计的各项指标含义 4(紫外,可见分光光度计的校正 三(紫外,可见分光光度计的应用 四(紫外,可见分光光度计的进展 一(紫外,可见吸收光谱概述 利用紫外,可见吸收光谱来进行定量分析由来已久,可追溯到古代,公元60年古希腊已经知道利用五味子浸液来估计醋中铁的含量,这一古老的方法由于最初是运用人眼来进行检测,所以又称比色法。到了16、17世纪,相关分析理论开始蓬勃发展,1852年,比尔(Beer)参考了布给尔(Bouguer)1729年和朗伯(Lambert)在1760年所发表的文章,提出了分光光度的基本定律,即液层厚度相等时,颜色的强度与呈色溶液的浓度成比例,从而奠定了分光光度法的理论基础,这就是著名的朗伯,比尔定律。 1(紫外,可见吸收光谱的形成 吸光光度法也称做分光光度法,但是分光光度法的概念有些含糊,分光光度是指仪器的功能,即仪器进行分光并用光度法测定,这类仪器包括了分光光度计与原

子吸收光谱仪(AAS)。吸光光度法的本质是光的吸收,因此称吸光光度法比较合理,当然,称分子吸光光度法是最确切的。 紫外,可见吸收光谱是物质中分子吸收200-800nm光谱区内的光而产生的。这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级跃迁(原子或分子中的电子,总是处在某一种运动状态之中。每一种状态都具有一定的能量,属于一定的能级。这些电子由于各种原因(如受光、热、电的激发)而从一个能级转到另一个能级,称为跃迁。)当这些电子吸收了外来辐射的能量就从一个能量较低的能级跃迁到一个能量较高的能级。因此,每一跃迁都对应着吸收一定的能量辐射。具有不同分子结构的各种物质,有对电磁辐射显示选择吸收的特性。吸光光度法就是基于这种物质对电磁辐射的选择性吸收的特性而建立起来的,它属于分子吸收光谱。跃迁所吸收的能量符合波尔条件: hvEE,,2121 二(紫外,可见分光光度计 1854年,杜包斯克(Duboscq)和奈斯勒(Nessler)等人将此理论应用于定量分析化学领域,并且设计了第一台比色计。到1918年,美国国家标准局制成了第一台紫外可见分光光度计。此后,紫外,可见分光光度计经不断改进,又出现自动记录、自动打印、数字显示、微机控制等各种类型的仪器,仪器的灵敏度和准确度也不断提高,其应用范围也不断扩大。 1(紫外,可见分光光度计的主要部件 全世界的紫外,可见分光光度计生产厂家有上百家,产品型号成千上万,但就基本结构来说,都是由五个部分组成,即光源、单色器(单色仪)、吸收池、检测器和信号指示系统。如下图所示: 信号指光源单色器吸收池检测器示系统光源

典型光谱矿物识别

【ENVI入门系列】16.基本光谱分析 (2014-09-30 17:38:25) 转载▼ 分类:ENVI 标签: 杂谈 版权声明:本教程涉及到的数据仅供练习使用,禁止用于商业用途。 目录 基本光谱分析 1.概述 2.详细操作步骤 2.1标准波谱库与浏览 2.2波谱库创建 2.3高光谱地物识别 2.3.1从标准波谱库选择端元进行地物识别 2.3.2自定义端元进行地物识别 1. 概述 光学遥感技术的发展经历了:全色(黑白)—>彩色摄影—>多光谱扫描成像—>高光谱遥感四个历程。 高光谱分辨率遥感(HyperspectralRemote Sensing)用很窄(小于10nm)而连续的光谱通道对地物持续遥感成像的技术。在可见光到短波红外波段其光谱分辨率高达纳米

(nm)数量级,通常具有波段多的特点,光谱通道数多达数十甚至数百个以上,而且各光谱通道间往往是连续的,因此高光谱遥感又通常被称为成像光谱(Imaging Spectrometry)遥感。相比多光谱传感器,如Landsat8 OLI包括9个波段,光谱分辨率为106nm。 如下图为从多光谱和高光谱数据上获取的波谱曲线,更高波谱分辨率的图像可以用于识别物质,而相比多光谱图像,如TM只能用于区分物质。 图:从多光谱和高光谱数据上获取的波谱曲线对比 本课程学习ENVI的高光谱基本分析功能,包括波谱库的浏览与创建、基本的高光谱物质识别流程。 2. 详细操作步骤 2.1 标准波谱库与浏览

ENVI自带多种标准波谱库,包括建立在JPL波谱库基础上的,从0.4~2.5μm三种不同粒径160种"纯"矿物的波谱。美国USGS从0.4~2.5μm包括近500种典型的矿物和一些植被波谱。来自Johns Hopkins University(JHU)的波谱包含0.4~14μm。IGCP246波谱库有5部分组成,通过对26个优质样品用5个不同的波谱仪测量获得。植被波谱库由Chris Elvidge 提供,范围是0.4~2.5μm。ENVI 5.1波谱库中新增了2443种Aster的波谱文件,同时对应的波谱工具也有了很大的该进,用户可直观地看到每一种波谱库中的文件个数,以及更为方便的查看每一种波谱文件的波谱曲线。 ENVI的波谱库文件存放在HOME\ Program Files\Exelis\ENVI51\classic\spec_lib。 启动ENVI 5.1,主菜单> Display > Spectral Library View,在对话框中显示的就是ENVI自带的波谱库文件; 图:ENVI自带波谱库文件 (1)选择打开Veg_lib(99)中的几个植被波谱文件; 在vegetation波谱库中选择6种不同植被的波谱曲线,在下图可以看到起对应的波谱曲线,以及波谱文件的属性信息,包括常规信息和曲线信息。

相关文档
最新文档