荧光分光光度法测定维生素B2的含量

荧光分光光度法测定维生素B2的含量
荧光分光光度法测定维生素B2的含量

荧光分光光度法测定维生素B2的含量

实验报告

——应用化学(环境检测与分析)

一、实验目的

1、掌握标准曲线法定量分析维生素B2的基本原理。

2、了解荧光分光光度计的基本原理、结构及性能,掌握其基本操作。

二、实验原理

1什么是荧光?

荧光是光致发光。当物质的分子接受光子能量被激发后,从激发单重态的最低振动能级返回基态时发射的光。

2

3 荧光与环境因素的关系

取代基的性质、溶剂的极性、体系的pH和温度。

维生素B2(Vitamin B2),别名:核黄素(Riboflavin,RF),是橘黄色无臭的针状结晶,分子式:C 17H20N4O6,相对分子量为:376.37。因其色黄且含有核糖醇,故称为核黄素。结构式为:

由于分子中有三个芳香环,具有平面刚性结构,因此它能够发射荧光。维生素B2易溶于水而不溶于乙醚等有机溶剂,在中性或酸性溶液中稳定,光照易分解,对热稳定。

维生素B2溶液在430—440nm蓝光的照射下,发出绿色荧光,荧光峰在535nm附近。维生素B2在pH=6—7的溶液中荧光强度最大,而且其荧光强度与维生素B2溶液浓度呈线性关系,因此可以用荧光光谱法测维生素B2的含量。维生素B2在碱性溶液中经光线照射会发生分解而转化为另一物质——光黄素,光黄素也是一个能发荧光的物质,其荧光比维生素B2的荧光强得多,故测维生素B2的荧光时溶液要控制在酸性范围内,且在避光条件下进行。

在稀溶液中,荧光强度F与物质的浓度c有以下关系:

F=2.303ФI0εbc

当实验条件一定时,荧光强度与荧光物质的浓度呈线性关系:

F=Kc

这是荧光光语法定量分析的依据。

三、仪器与试剂

1、主要仪器:荧光分光光度计(日立F—7000);比色皿:1cm;容量瓶:50mL;移液管:5mL。

2、试剂:核黄素;维生素B2药片

四、实验步骤

1. 溶液的配制

标准溶液的配制:精确称取2 mg核黄素(VB2),用超纯水于50ml棕色容量瓶中定容

待测液的配制:将维生素B2药片研磨成粉末状,精确称取2mg,用超纯水于50ml棕色容量瓶中定容;

2. 扫描激发光谱和荧光光谱

3. 标准曲线的绘制

在室温条件下,分别吸取1.0、2.0、3.0、4.0、5.0标准溶液于50ml棕色容量瓶中定容。用超纯水作空白试样,测定溶液荧光强度值。用所测结果绘制荧光强度(F)对浓度(c)的曲线。

4. 待测液VB2含量的测定及数据处理

五、实验结果及数据处理

λex=442nm

λem=524nm

VB2标准曲线及药片中VB2含量的测定(大浓度)

VB2标准曲线及药片中VB2含量的测定(稀释到中间浓度)

六、总结、讨论

1、实验注意事项:

(1)配制标准溶液时,为了减少仪器偏差,取不同体积的同种溶液应用同一移液管。

(2)因荧光是从石英池下部通过,所以拿取石英池时,应用手指捏住池体的上部,不能接触下部。清洗样品池后,应先用吸水纸吸干四个面的液滴,再用擦镜纸往同一方向进行轻轻擦拭。

(3)在使用荧光分光光度计时,须按照既定程序进行。在测定系列标准溶液的浓度和荧光强度时,必须按顺序放入测定。

(4)在测试样品时,应注意样品的浓度不能太高,否则由于存在荧光猝灭效应,样品浓度与荧光强度不呈线性关系,造成定量工作出现误差。

2、此次实验,影响标准曲线的线性的主要因素是配制溶液时,操作是否规范、标准。

七、思考题

1、试解释荧光光度法较吸收光度法灵敏度高的原因?

答:由于现代电子技术具有检测十分微弱光信号的能力,并且荧光强度与激发光强度成正比,提高激发光强度也可以增大荧光强度,使测定的灵敏度提高;而吸收光度法测定的是吸光度,不管是增大入射光强度,还是提高检测器的灵敏度,都会使透射光信号与入射光信号以同样的比例增大,吸光度值不会改变,因此灵敏度不能提高。

2、维生素B2在pH=6~7时荧光最强,本实验为何在酸性溶液中测定?

答:因为维生素B2在碱性溶液中经光线照射,会发生分解而转化为光黄素,后者的荧光比维生素B2的荧光强的多。因此,测量时溶液要控制在酸性范围内进行。

LS55操作说明书荧光-磷光-发光分光光度计中文培训手册

LS-45/55荧光/磷光/发光 分光光度计 使用说明书 美国Perkin Elmer公司 2003 年4月

一、理论基础 荧光、磷光、化学发光及生物发光均属于分子发光。现将其原理简介如下: 室温下,大多数分子处于基态的最低振动能层。处于基态的分子吸收能量后被激发为激发态。激发态不稳定,将很快衰变到基态。若返回到基态时伴随着光子的辐射,这种现象被称为“发光”。 每个分子具有一系列严格分立的能级,称为电子能级,而每个电子能级中又包含了一系列的振动能层和转动能层。图中基态用S0表示,第一电子激发单重态和第二电子激发单重态分别用S1、S2表示,0、1、2、3…表示基态和激发态的振动能层(见图1),第一、二电子的激发三重态分别用T1和T2表示(见图2)。 图1荧光的能级图 1、荧光的产生 当分子处于单重激发态的最低振动能级时,去活化过程的一种形式是以10-9~10-6秒左右的短时间内发射一个光子返回基态,这一过程称为荧光发射(见图1)。2、磷光的产生 从单重态回到三重态的分子系间跨越越迁发生后,接着发生快速的振动驰豫而到达三重态的最低振动能层上,当没有其他过程同它竞争时,在10-4~102秒左右的时间内跃迁回基态而发生磷光(见图2)。 由此可见,荧光与磷光的的根本区别是:荧光是由激发单重态最低振动能层至基态各振动能层的跃迁产生的,而磷光是由激发三重态的最低振动能层至基态各振动能层间跃迁产生的。

图2磷光的能级图 3、化学发光及生物发光的产生 某些物质在进行化学反应时,由于吸收了反应时产生的化学能,而使反应产物分子激发至激发态,受激分子由激发态回到基态时,便发出了一定波长的光,这种吸收化学能使分子发光的过程称为化学发光。化学发光也发生于生命体系,这种发光被称为生物发光。 二、仪器简介 1、仪器原理 图3LS45/55荧光/磷光/发光分光光度计的原理图

邻二氮菲分光光度法测定微量铁

邻二氮菲分光光度法测定微量铁 一、实验原理 邻二氮菲(1,10—二氮杂菲),也称邻菲罗啉是测定微量铁的一个很好的显色剂。在pH2—9范围内(一般控制在5—6间)Fe2+与试剂生成稳定的橙红色配合物Fe(Phen)32+lgK=,在510nm下,其摩尔吸光系数为, )Fe3+与邻二氮菲作用生成兰色配合物,稳定性较差,因此在实际应用中常加入还原剂盐酸羟胺使Fe2+还原为Fe3+: 2 Fe3++2NH2OHHCl=2 Fe2++N2+4H++2H2O+2Cl- 二、试剂与仪器 仪器: 1.721型分光光度计 2.50mL容量瓶8个,100mL1个,500mL1个 3.移液管:2 mL1支,10 mL1支 4.刻度吸管:10mL、5mL、1mL各1支 试剂: 1.铁标准储备溶液100ug/mL:1000 mL(准确称取铁盐NH4Fe(SO4)212H2O置于烧杯中,加入3moL/LHCI20mL和30ml水,然后加水稀释至刻度,摇匀。) 2.铁标准使用液10ug/mL:用移液管移取上述铁标准储备液 mL,置于100 mL容量瓶中,加入3moL/和少量水,然后加水稀释至刻度,摇匀。 3.HCI3moL/L:100mL 4.盐酸羟胺100g/L(新鲜配制):100mL 5.邻二氮菲溶液L(新鲜配制):200mL 6.HAc—NaAc缓冲溶液(pH=5)500 mL:称取136gNaAc,加水使之溶解,再加入120 mL 冰醋酸,加水稀释至500 mL 7.水样配制(mL):取2mL100ug/mL铁标准储备溶液加水稀释至500mL 三、实验步骤 1.配置mL的铁标准溶液。 1.绘制吸收曲线:用吸量管吸取铁标准溶液(10ug/mL)、、、、、分别放入50 mL容量瓶中,加入1 mL10%盐酸羟胺溶液、 L邻二氮菲溶液和5 mL HAc—NaAc缓冲溶液,加水稀释至刻度,充分摇匀,放置5分钟,用3cm比色皿,以试剂溶液为参比液,于721型分光光度计中,在440—560nm波长范围内分别测定其吸光度A值。当临近最大吸收波长附近时应间隔波长5—10nm测A值,其他各处可间隔波长20—40nm测定。然后以波长为横坐标,所测A值为纵坐标,绘制吸收曲线,并找出最大吸收峰的波长。 2.标准曲线的绘制:用吸量管分别移取铁标准溶液(10ug/mL)、、、、、、 mL依次放入7只50mL 容量瓶中,分别加入10%盐酸羟胺溶液1 mL,稍摇动,再加入%邻二氮菲溶液 mL及5 mL HAc —NaAc缓冲溶液,加水稀释至刻度,充分摇匀,放置5分钟,用3cm比色皿,以不加铁标准溶液的试液为参比液,选择最大测定波长为测定波长,依次测A值。以铁的质量浓度为横坐标,A值为纵坐标,绘制标准曲线。 3.水样分析:分别加入(或,铁含量以在标准曲线范围内为宜)未知试样溶液,按实验步骤2的方法显色后,在最大测定波长处,用3cm比色皿,以不加铁标准溶液的试液为参比液,平行测A值。求其平均值,在标准曲线上查出铁的质量,计算水样中铁的质量浓度。 四、数据记录与结果计算

邻二氮菲分光光度法测定微量铁实验报告

实验一邻二氮菲分光光度法测定微量铁 实验目的和要求 1.掌握紫外可见分光光度计的基本操作; 2.掌握邻二氮菲分光光度法测定微量铁的原理和方法; 3.掌握吸收曲线绘制及最大吸收波长选择; 4.掌握标准曲线绘制及应用。 实验原理 邻二氮菲(1,10—邻二氮杂菲)是一种有机配位剂,可与Fe2+形成红色配位离子: Fe2++3 N N N N 3 Fe 2+ 在pH=3~9范围内,该反应能够迅速完成,生成的红色配位离子在510nm波长附近有一吸收峰,摩尔吸收系数为1.1×10-4,反应十分灵敏,Fe2+ 浓度与吸光度符合光吸收定律,适合于微量铁的测定。 实验中,老师我们又见面了采用pH=4.5~5的缓冲溶液保持标准系列溶液及样品溶液的酸度;采用盐酸羟胺还原标准储备液及样品溶液中的Fe3+并防止测定过程中Fe2+被空气氧化。 实验仪器与试剂 1.752S型分光光度计 2.标准铁储备溶液(1.00×10-3mol/L) 3.邻二氮菲溶液(0.15%,新鲜配制) 4.盐酸羟胺溶液(10%,新鲜配制) 5.NaAC缓冲溶液 6.50ml容量瓶7个 7.1cm玻璃比色皿2个 8.铁样品溶液 实验步骤 1.标准系列溶液及样品溶液配制,按照下表配制铁标准系列溶液及样品溶液。

2.吸收曲线绘制用1cm比色皿,以1号溶液作为参比溶液,测定4号溶液在各个波长处的吸光度,绘制吸收曲线,并找出最大吸收波长。 3.标准曲线制作

在选定最大吸收波长处,用1cm 比色皿,以1号溶液作为参比溶液,分别测定2至7号溶液的吸光度,平行测定3次,计算吸光度平均值,绘制标准曲线。 实验数据处理 1、 样品中铁的计算 2.50 50.00 C C X ? =读取值 Cx=4.65×10-5 ×50.00/2.50=9.30×10-4 mol/L 2、 摩尔吸光系数计算 在标准曲线的直线部分选择量两点,读取对应的坐标值,计算邻二氮菲配位物在最大吸收波长出的摩尔吸光系数: 1 21 2c -c A A ε-= ε=(0.460-0.233)/(0.00006-0.00004)=2.00×10-5 7 样品溶液 4.65×10-5 mol/ml

荧光分光光度计

荧光分光光度计 荧光分光光度计是用于扫描液相荧光标记物所发出的荧光光谱的一种仪器。其能提供包括激发光谱、发射光谱以及荧光强度、量子产率、荧光寿命、荧光偏振等许多物理参数,从各个角度反映了分子的成键和结构情况。通过对这些参数的测定, 不但可以做一般的定量分析, 而且还可以推断分子在各种环境下的构象变化, 从而阐明分子结构与功能之间的关系。荧光分光光度计的激发波长扫描范围一般是190~650nm,发射波长扫描范围是200~800nm。可用于液体、固体样品(如凝胶条)的光谱扫描。 荧光光谱法具有灵敏度高、选择性强、用样量少、方法简便、工作曲线线形范围宽等优点,可以广泛应用于生命科学、医学、药学和药理学、有机和无机化学等领域。 基本结构与原理 由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。 基本结构和原理如图所示,光源与检测器成直角方式安排。 荧光分光光度计的工作原理: 物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态, 这些处于激发态的分子是不稳定的,在返回基态的过程中将一部分的能量又以光 的形式放出,从而产生荧光. 不同物质由于分子结构的不同,其激发态能级的分布具有各自不同的特征,这种特征反映在荧光上表现为各种物质都有其特征荧光激发和发射光谱;,因此可以用荧光激发和发射光谱的不同来定性地进行物质的鉴定。 在溶液中,当荧光物质的浓度较低时,其荧光强度与该物质的浓度通常有良好的正比关系,即IF=KC,利用这种关系可以进行荧光物质的定量分析,与紫外-可见分光光度法类似,荧光分析通常也采用标准曲线法进行。 荧光分光光度计基本结构和原理图 1. 光源: 为高压汞蒸气灯或氙弧灯,后者能发射出强度较大的连续光谱,且在300nm~400nm 范围内强度几乎相等,故较常用。 2.激发单色器: 置于光源和样品室之间的为激发单色器或第一单色器,筛选出特定的激发光谱。

实验四邻菲罗啉分光光度法测定铁的含量(精)

实验四邻菲罗啉分光光度法测定水样中的铁 一、实验目的: 1、掌握邻菲罗啉分光光度法测定微量铁的原理和方法; 2、学会标准曲线的绘制方法及其使用。 二、原理: 亚铁离子(Fe2+)在pH=3~9时与邻菲罗啉生成稳定的橙红色络合物,应用此反应可用比色法测定铁。橙红色络合物的吸光度与浓度的关系符合朗伯-比耳定律。若用还原剂(如盐酸羟胺)把高铁离子还原为亚铁离子,则此法还可测定水中的高价铁和总铁的含量。 三、仪器: 721型分光光度计、1cm比色皿、具赛比色管(50ml)、移液管、吸量管、容量瓶等。 四、试剂: 1、铁贮备液(100μg/mL):准确称取0.7020克分析纯硫酸亚铁铵 [(NH4)2Fe(SO4)2·6H2O]于100毫升烧怀中(或0.8640g分析纯的 NH4Fe(SO42·12H2O,其摩尔质量为482.18g/mol),加50毫升1+1 H2SO4,完全溶解后,移入1000ml的容量瓶中,并用水稀释到刻度,摇匀,此溶液中Fe的质量浓度为 100.0μg/mL。(实验室准备好) 2、铁标准使用液(20μg/mL):准确移取铁贮备液20.00ml于100ml 容量瓶中,用水稀释至刻度,摇匀。此溶液中Fe2+的质量浓度为20.0μg/mL。(学生配制)

3、0.5%邻菲罗啉水溶液:配制时加数滴盐酸能助溶液或先用少许酒精溶解,再用水稀释至所需体积。(临用时配制) 4、10%盐酸羟胺水溶液: 5、醋酸-醋酸钠缓冲溶液(pH=4.6):称取40克纯醋酸铵加到50毫升冰醋酸中,加水溶解后稀释至100毫升。 五、测定步骤: 1、标准曲线的绘制: (1)分别吸取铁的标准溶液0.00、1.00、2.00、4.00、6.00、8.00、10.00ml于7支50ml比色管中,加水至刻度; (2)依次分别加入10%盐酸羟胺溶液1ml,混匀,加入5ml醋酸-醋酸铵缓冲溶液,摇匀,加入0.5%邻菲罗啉溶液2ml,摇匀,(3)放置15分钟后,在510nm波长处,用1cm比色皿,以空白作为参比,测定各溶液的吸光度。 (4)以吸光度为纵坐标,铁含量(μg,50ml)为横坐标,绘制出标准曲线。 2、试样中铁含量的测定 吸取待测水样溶液10.00ml于50ml比色管中,按绘制标准曲线的操作,测得水样的吸光度A,由标准曲线查得相应的铁含量,计算出试样的铁的质量浓度。做平行样。 实验四邻菲罗啉分光光度法测定水样中的铁原始记录表

分光光度法测定水中铁离子含量.

专业项目课程课例 项目十二分光光度法测定水中铁离子含量 一、项目名称:分光光度法测定水中铁离子含量 二、项目背景分析 课程目标:本课程是培养分析化学操作技能和操作方法的一门专业实践课,以定量分析的基本理论为基础,以实验强化理论,以期提高化工工作者的分析操作能力。 功能定位:在定量分析中我们常常用到分光光度分析法,它具有操作简便、快速、准确等优点,在工农业生产和科学研究中具有很大的实用价值。是仪器分析的基础实验,也是一种重要的定量分析方法。分光光度法测定水中铁离子含量的测定项目综合训练了学生分光光度计使用、系列标准溶液配制、标准曲线绘制等多个技能。 学生能力:学生通过相关基础学科的学习已经具备了相应的化学知识和定量分析知识,也具备一定的独立操作和思维能力。 项目实施条件:该项目是仪器分析的基础实验,一般中职学校具备相关的实训实习条件,学生有条件完成相应的实习任务。 三、教学目标 1、了解721可见分光光度计的构造 2、了解分光光度法测定原理 3、掌握721可见分光光度计的操作方法 4、掌握分光光度法测定分析原始记录的设计 5、掌握分光光度法测定分析报告的设计 6、掌握分光光度法测定水中铁离子含量的测定方法 7、掌握分光光度法测定水中铁离子含量的分析原始记录和分析报告的填写 四、工作任务 1

2 五、参考方案 参考方案一 1、邻二氮杂菲-Fe 2+ 吸收曲线的绘制 用吸量管吸取铁标准溶液(20μg/mL )0.00、2.00、4.00mL ,分别放入三个50mL 容量瓶中,加入1mL 10%盐酸羟胺溶液,2mL 0.1%邻二氮杂菲溶液和5mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用3cm 比色皿,以试剂空白(即在0.0mL 铁标准溶液中加入相同试剂)为参比溶液,在440~560nm 波长范围内,每隔20~40nm 测一次吸光度,在最大吸收波长附近,每隔5~10nm 测一次吸光度。在坐标纸上,以波长λ为横坐标,吸光度A 为纵坐标,绘制A 和λ关系的吸收曲线。从吸收曲线上选择测定Fe 的适宜波长,一般选用最大吸收波长λmax 。 2、标准曲线的制作 用吸量管分别移取铁标准溶液(20μg/mL )0.00、2.00、4.00、6.00、8.00、10.00mL ,分别放入6个50mL 容量瓶中,分别依次加入1.00mL 10%盐酸羟胺溶液,稍摇动;加入2.00mL 0.1%邻二氮杂菲溶液及5.00mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用1cm 比色皿,以试剂空白(即在0.00mL 铁标准溶液中加入相同试剂)为参比溶液,选择λmax 为测定波长,测量各溶液的吸光度。在坐标纸上,以含铁量为横坐标,吸光度A 为纵坐标,绘制标准曲线。 3、水样中铁含量的测定 取三个50mL 容量瓶,分别加入5.00mL (或10.00mL 铁含量以在标准曲线范围内为合适)未知试样溶液,按实验步骤2的方法显色后,在λmax 波长处,用1cm 比色皿,以试剂空白为参比溶液,平行

高等仪器分析实验荧光分光光度计的使用

高等仪器分析实验(荧光分光光度计的使用) 实验目的 1. 2.掌握荧光分光光度计的基本使用方法:扫描激发光谱,发射光谱,荧光强度,同步荧光光谱 3. 4.掌握荧光定量分析方法 实验原理 荧光分光光度计是常用的光学仪器,在定量分析,样品的光谱性质表征时经常用到。 荧光分光光度计的基本功能是完成激发光谱,发射光谱的扫描,进行相对荧光强度的测量。从激发光谱可以获得样品激发态能级的分布情况,用来选择定量分析的最佳激发波长。从发射光谱可以知道样品基态能级的分布情况,用来选择定量分析的最佳发射波长。荧光定量分析法的方法与紫外可见吸收光谱法类似,但需要注意荧光强度值是相对值,同一样品,同一仪器在不同仪器参数时获得的荧光强度是不同的。只有当测量时仪器参数完全相同时,不同样品荧光强度的相互比较才有意义。 与紫外可见吸收光谱类似,分子荧光光谱也是分子光谱,其谱峰较宽,特征性不是很强,谱峰重叠现象比较普遍。为了减小谱峰宽度,避免谱峰重叠,提高分析的选择性,在定量分析时常采用同步荧光的方法进行。同步荧光是同时扫描荧光分光光度计的激发和发射单色仪得到的谱图,通过选择合适的扫描参数,可以使样品谱峰变窄,并避免不同组份的谱峰重叠,得到比较好的分析效果。 同步荧光扫描有固定波长同步荧光法,固定能量同步荧光法,可变角同步荧光法,导数同步荧光法等,其中以固定波长同步荧光法最为常用。 扫描已知样品荧光激发和发射光谱时,可先根据参考波长来进行。扫描未知样品的荧光光谱,可以将发射波长先每隔一定波长(例如50nm)扫描一个激发光谱。对比不同位置的激发光谱,从最强的激发光谱中选择最大激发波长,设定该波长为激发波长,扫描发射光谱。再从新得到的发射光谱中找到最大发射波长,在最大发射波长处重新扫描激发光谱。 扫描样品激发光谱和发射光谱时,需要注意:扫描激发光谱时,激发单色器扫描范围的长波端一般应小于发射波长;扫描发射光谱时,发射单色器扫描范围的短波端应大于激发波长。否则在发射光谱(激发光谱)中与激发波长(发射波长)波长相同的位置会出现很强的散射谱峰,这不是样品的荧光引起的,应注意区分。 如果样品不是真正的溶液,或包含有不溶颗粒物,或是固体样品,如果扫描范围较宽时,通常在发射光谱(激发光谱)中激发波长(发射波长)整数倍波长的位置也会出现弱的散射谱峰,称为倍频峰,在分析光谱情况时也应注意区分。对散射倍频峰或样品荧光峰,可通过适当改变激发波长来进行区分,散射倍频峰的位置会随着激发峰位置的变化而变化,而荧光峰位置通常是不变的。如果倍频峰对样品的测量有干扰,可使用合适的滤光片消除倍频峰。合适的消倍频峰滤光片应可以使发射光透过,而阻挡激发光不能透过。 如果样品荧光较弱,使用高灵敏度档测定时,通常会观察到溶剂的拉曼峰,也应注意与样品荧光进行区分。拉曼峰的位置也与激发波长有关,同时会随着激发波长的变化而变化。其位置估算方

F-27000荧光分光光度计使用操作步骤

F-2700荧光分光光度计操作规程 1、开机: (1)开启计算机 (2)开启仪器主机电源按下仪器主机左侧面板下方的黑色按钮(POWER)同时,观察主机正面面板右侧的Xe LAMP 和RUN指示灯依次亮起来,都显示绿色为正常。 (3)双击桌面图标(FL Solutions 4.1 for F-7000),主机自行初始化,扫描界面自动进入 (4)初始化结束后,须预热15-20分钟,出现操作主界面(界面右下角出现Ready) 2、点击扫描界面右侧“Method” 在“General”选项中的“Measurement”选择“wavelength scan”测量模式 在“Instrument”选项中设置仪器参数和扫描参数 选择扫描模式“Scan Mode”:Emission/Excitation(发射光谱/激发光谱) 选择数据模式“Data Mode”:Fluorescence (荧光测量) 设定波长扫描范围 扫描荧光激发光谱(Excitation):需设定激发光的起始/终止波长(EX Start/End WL)和荧光发射波长(EM WL) 扫描荧光发射光谱(Emission):需设定发射光的起始/终止波长(EM Start/End WL)和荧光激发波长(EX WL) 其他选项可选择默认值(也可根据具体实验要求自行设定) 参数设置好后,点击“确定” 3、设置文件存储路径(此步也可不进行参数设置,可以在按5中方法进行保存) (1)点击扫描界面右侧“Sample” (2)样品名可自行命名 (3)选中“Auto File”,可以自动保存原始文件和TXT格式文本文档数据(4)参数设置好后,点击“OK” 4、扫描测试 (1)打开盖子,放入待测样品后,盖上盖子(请勿用力) (2)点击扫描界面右侧“Measure”,窗口在线出现扫描谱图 5、数据处理与保存 (1)选中自动弹出的数据窗口 (2)右键--“Trace”,进行读数并寻峰等操作 (3)“File”--“Save as”对数据进行保存 6、关机顺序: (1)关闭运行软件FL Solution 2.1 for F-7000 (2)选中“Close the lamp,then close the monitor windows?”点击“Yes”窗口自动关闭同时,观察主机正面面板右侧的Xe LAMP指示灯暗下来,而RUN指示灯仍显示绿色 (4)约十分钟后,关闭仪器主机电源,即按下仪器主机左侧面板下方的黑色按钮(POWER)(目的是仅让风扇工作,使Xe灯室散热) (5)从样品池中取出所有比色皿,清洗干净以便下一次使用 (6)关闭计算机

实验分光光度法测定铁

实验分光光度法测定铁 The following text is amended on 12 November 2020.

实验十四邻二氮菲分光光度法测定铁的含量 一、实验目的 1.学习吸光光度法测量波长的选择方法; 2.掌握邻二氮菲分光光度法测定铁的原理及方法; 3. 掌握分光光度计的使用方法。 二、实验原理 分光光度法是根据物质对光选择性吸收而进行分析的方法,分光光度法用于定量分析的理论基础是朗伯比尔定律,其数学表达式为:A=εb C 邻二氮菲(又称邻菲罗啉)是测定微量铁的较好试剂,在pH=2~9的条件下,二价铁离子与试剂生成极稳定的橙红色配合物。摩尔吸光系数ε=11000 L·mol-1·cm-1。在显色前,用盐酸羟胺把Fe3+还原为Fe2+。 2Fe3++2NH 2OHHCl→2Fe2++N 2 +4H++2H 2 O+2Cl- Fe2+ + Phen = Fe2+ - Phen (橘红色) 用邻二氮菲测定时,有很多元素干扰测定,须预先进行掩蔽或分离,如钴、镍、铜、铅与试剂形成有色配合物;钨、铂、镉、汞与试剂生成沉淀,还有些金属离子如锡、铅、铋则在邻二氮菲铁配合物形成的pH范围内发生水解;因此当这些离子共存时,应注意消除它们的干扰作用。 三、仪器与试剂 1.醋酸钠:l mol·L-1; 2.盐酸:6 mol·L-1; 3.盐酸羟胺:10%(用时配制); 4.邻二氮菲(%):邻二氮菲溶解在100mL1:1乙醇溶液中; 5.铁标准溶液。 (1)100μg·mL-1铁标准溶液:准确称取(NH 4) 2 Fe(SO 4 ) 2 ·12H 2 0于烧杯中, 加入20 mL 6 mol·L-1盐酸及少量水,移至1L容量瓶中,以水稀释至刻度,摇匀. 6.仪器:7200型分光光度计及l cm比色皿。 四、实验步骤 1.系列标准溶液配制 (1)用移液管吸取10mL100μg·mL-1铁标准溶液于100mL容量瓶中,加入2mL 6 mol·L-1盐酸溶液, 以水稀释至刻度,摇匀. 此溶液Fe3+浓度为10μg·mL-1. (2) 标准曲线的绘制: 取50 mL比色管6个,用吸量管分别加入0 mL,2 mL,4 mL, 6 mL, 8 mL和10 mL10μg·mL-l铁标准溶液,各加l mL盐酸羟胺,摇匀; 经再加2mL邻二氮菲溶液, 5 mL醋酸钠溶液,摇匀, 以水稀释至刻度,摇匀后放置 10min。 2.吸收曲线的绘制 取上述标准溶液中的一个, 在分光光度计上,用l cm比色皿,以水为参比溶液,用不同的波长,从440~560 nm,每隔10 nm测定一次吸光度,在最大吸收波长

荧光分光光度计- 原理

分子荧光分析法 发光光谱:物质分子或原子吸收辐射被激发后,电子以无辐射跃迁至第一电子激发态的最低振动能级,再以辐射的方式释放这一部分能量而产生的光谱称为荧光、磷光。 根据物质接受的辐射能量的大小及与辐射作用的质点不同,荧光分析法可分为以下几种: 1. X射线荧光分析法 用X射线作光源,待测物质的原子受激发后在很短时间内(10-8 s)发射波长在X 射线范围内的荧光。 2. 原子荧光分析法: 待测元素的原子蒸气吸收辐射激发后,在很短的时间内(10-8 s),部分将发生辐射跃迁至基态,这种二次辐射即为荧光,根据其波长可进行定性,根据谱线强度进行定量。 荧光的波长如与激发光相同,称为共振荧光。 荧光的波长比激发光波长长,称为stokes荧光;若短,称为反stokes荧光。 3. 分子荧光分析法: 有些物质的多原子分子,在用紫外、可见光(或红外光)照射时,也能发射波长在紫外、可见(红外)区荧光,根据其波长及强度可进行定性和定量分析,这就是通常的(分子)荧光分析法。

基本原理 一. 分子荧光的发生过程 (一)分子的激发态——单线激发态和三线激发态 大多数分子含有偶数电子,在基态时,这些电子成对地存在于各个原子或分子轨道中,成对自旋,方向相反,电子净自旋等于零:S=?+(-?)=0,其多重性M=2S+1=1 (M 为磁量子数),因此,分子是抗(反)磁性的,其能级不受外界磁场影响而分裂, 称“单线态”; 图1 单线基态(A)、单线激发态(B)和三线激发态(C) 当基态分子的一个成对电子吸收光辐射后,被激发跃迁到能量较高的轨道上,通常它的自旋方向不改变,即?S=0,则激发态仍是单线态,即“单线(重)激发态”; 如果电子在跃迁过程中,还伴随着自旋方向的改变,这时便具有两个自旋不配对的电子,电子净自旋不等于零,而等于1:S=1/2+1/2=1 其多重性:M=2S+1=3 即分子在磁场中受到影响而产生能级分裂,这种受激态称为“三线(重)激发态”; “三线激发态” 比“单线激发态” 能量稍低。但由于电子自旋方向的改变在光谱学上一般是禁阻的,即跃迁几率非常小,只相当于单线态→单线态过程的10-6~10-7。(二)分子去活化过程及荧光的发生: (一个分子的外层电子能级包括S0(基态)和各激发态S1,S2,…..,T1…..,每个电子能级又包括一系列能量非常接近的振动能级) 处于激发态的分子不稳定,在较短的时间内可通过不同途径释放多余的能量(辐射或非辐射跃迁)回到激态,这个过程称为“去活化过程”,这些途径为: 1. 振动弛豫:在溶液中,处于激发态的溶质分子与溶剂分子间发生碰撞,把一部分能

实验5 分光光度法测定微量铁的条件试验

实验5 分光光度法测定微量铁的条件试验 一、目的要求 1. 通过本实验学习确定实验条件的方法; 2. 学习Vis-723G型分光光度计的使用方法。 二、基本原理在可见光分光光度测定中,通常是将被测物质与显色剂反应,使之生成有色物质,然后测量其吸光度,进而求得被测物质的含量。因此,显色反应的完全程度和吸光度的物理测量条件都影响到测定结果的准确性。显色反应的完全程度取决于介质的酸度,显色剂的用量、反应的温度和时间等因素。在建立分析方法时,需要通过实验确定最佳反应条件。为此,可改变其中一个因素(例如介质的pH值),暂时固定其它因素,显色后测量相应溶液的吸光度,通过吸光度-pH曲线确定显色反应的适宜酸度范围。其它几个影响因素的适宜值,也可按这一方式分别确定。本实验以邻二氮菲为显色剂,找出测定微量铁的适宜显色条件。 三、仪器及试剂 1. 仪器 Vis-723G型分光光度计(上海分析仪器厂);容量瓶50mL,250mL;吸量管5mL,10mL; 吸量管25mL,10 mL,5 mL,2 mL;pH计;玻璃复合电极。 2.试剂 ①铁盐标准溶液 准确称取若干克(自行计算)优级纯的铁铵矾NH4Fe(SO4)2·12H2O于小烧杯中,加水溶解,加入6mo1·L -1 HCl溶液5mL,酸化后的溶液转移到250mL容量瓶中,用蒸馏水稀释至刻度,摇匀,所得溶液每毫升含铁0.100mg。然后吸取上述溶液25.00mL置于250mL容量瓶中,加入6mo1·L-1 HCl 溶液5mL, 用蒸馏水稀释至刻度,描匀,所得溶液含铁0.0100mg·mL—1。 ②0.1%邻二氮菲(又称邻菲咯啉)水溶液③1%盐酸羟胺水溶液 ④HAc-NaAc缓冲溶液(pH=4.6) 称取136g优级纯醋酸钠,加120mL冰醋酸,加水溶解后,稀释至500mL。⑤0.1mo1.L-1NaOH溶液⑥0.1mo1.L-1HCl溶液⑦广泛pH试纸和不同范围的精密pH 试纸注上述试剂中,有特殊说明的除外,其余均为分析纯试剂或由分析纯试剂所配制。 四、实验步骤 1.吸收曲线的绘制 用吸量管吸取0.0,5.0 mL的0.0100mg·mL—1的铁标准溶液分别注入三个50mL的容量瓶中,各加入1mL盐酸羟胺溶液、2mL邻二氮菲、5mL NaAc,用水稀释至刻度,摇匀。放置10分钟后,用1cm比色皿、以试剂空白(即0.0mL铁标液)为参比溶液,在440~560nm之间,每隔5nm测定一次吸光度。 2.酸度影响 于9只50mL容量瓶中,用吸量管各加入5.0mL 0.0100mg/mL的铁标准溶液,2.5mL盐酸羟胺溶液和5.0mL邻二氮菲溶液,然后按下表1分别加入HCl或NaOH溶液。 表1 HCl、NaOH溶液加入量

邻二氮菲分光光度法测定水中微量铁

邻二氮菲分光光度法测定微量铁 一、实验目的 1、学会吸收曲线及标准曲线的绘制,了解分光光度法的基本原理。 2、掌握用邻二氮菲分光光度法测定微量铁的方法原理。 3、学会721型分光光度计的正确使用,了解其工作原理。 4、学会数据处理的基本方法。 5、掌握比色皿的正确使用。 二、实验原理 根据朗伯-比耳定律:A=εbc,当入射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。只要绘出以吸光度A 为纵坐标,浓度c为横坐标的标准曲线,测出试液的吸光度,就可以由标准曲线查得对应的浓度值,即未知样的含量。同时,还可应用相关的回归分析软件,将数据输入计算机,得到相应的分析结果。 用分光光度法测定试样中的微量铁,可选用显色剂邻二氮菲(又称邻菲罗啉),邻二氮菲分光光度法是化工产品中测定微量铁的通用方法,在pH值为2-9的溶液中,邻二氮菲和二价铁离子结合生成红色配合物: =21.3,摩尔吸光系数ε510 = 1.1×104L·mol-1·cm-1,而Fe3+此配合物的lgK 稳 =14.1。所以在加入显色剂之前,能与邻二氮菲生成3∶1配合物,呈淡蓝色,lgK 稳 应用盐酸羟胺(NH2OH·HCl)将Fe3+还原为Fe2+,其反应式如下: 2Fe3+ + 2NH2OH·HCl → 2Fe2+ + N2 + H2O + 4H+ + 2Cl- 测定时酸度高,反应进行较慢;酸度太低,则离子易水解。本实验采用HAc-NaAc缓冲溶液控制溶液pH≈5.0,使显色反应进行完全。 为判断待测溶液中铁元素含量,需首先绘制标准曲线,根据标准曲线中不同浓度铁离子引起的吸光度的变化,对应实测样品引起的吸光度,计算样品中铁离

邻二氮菲分光光度法测铁实验报告

分析化学实验报告 实验名称: 邻二氮菲分光光度法测铁 一、实验目的(略) 二、实验原理(略) 三、仪器和药品(略) 四、实验步骤 1.光谱扫描并选择测量波长 相关思考:可见光波长范围,吸收曲线,最大吸收波长(λmax);为什么用λmax作为测量波长。 2.考查亚铁邻二氮菲配合物的稳定性 相关思考:为何考查,如何考查,设想吸光度随时间的变化趋势。 3.确定显色剂的用量 相关思考:如何确定显色剂的用量,设想吸光度随显色剂的用量变化趋势及如何根据曲线确定显色剂的用量。 4.绘制标准工作曲线 相关思考:定量测量的理论依据;选择参比液的原则;空白试剂;可信的标准曲线应满足什么要求。 5.测定未知样的含铁量 相关思考:如果未知样的吸光度值不在标准曲线内,如何解决? 五、数据处理 1.打印吸收曲线,确定λmax。

由吸收曲线,得到亚铁邻二氮菲配合物的最大吸收波长λmax=510.00nm,此时Abs=0.775. 2.打印吸光度-时间曲线,并根据曲线讨论亚铁邻二氮菲配合物的稳定性,确定溶液的显色时间并说明依据。(略) 3.打印吸光度-显色剂用量曲线,并根据曲线确定显色剂用量并说明依据。 在吸光度-显色剂用量曲线中,吸光度随显色剂用量的增加先变大、后保持稳定。由曲线可知,当显色剂用量在3mL附近时,吸光度较大且几乎恒定。因此,显色剂用量应为3mL。 4.打印标准工作曲线,计算未知样铁的含量(mol?L-1)。

六、问题与讨论(略) 七、思考题 1.如果用配制已久的盐酸羟胺溶液,对分析结果有何影响? 配制已久的盐酸羟胺溶液还原性降低,会使二价铁浓度降低,从而使测定的含铁量降低。 2.标准溶液是用分析纯的二价铁盐配制的溶液,为什么显色时还须加盐酸羟胺溶液? 二价铁溶液在空气中容易被氧化,加入盐酸羟胺溶液作为还原剂,可防止二价铁被氧化。 3.醋酸钠溶液的作用是什么? 调节溶液的pH,使pH在2~9范围内,满足生成亚铁邻二氮菲配合物的条件。 4.如何选取不同的量具进行所需溶液的量取? (1)铁标准溶液: ①5.00mL:用5mL移液管或5mL吸量管; ②1.00mL、2.00mL、3.00mL、4.00mL:用5mL吸量管; (2)盐酸羟胺2mL:用可调定量加液器; (3)邻二氮菲溶液0.60mL、1.00mL、2.00mL、3.00mL、4.00mL:用5mL吸量管;(4)NaAc溶液5mL:用可调定量加液器; (5)试样溶液10.00mL:用10mL移液管。

北京理工大学邻二氮菲分光光度法测定微量铁实验报告

邻二氮菲分光光度法测定铁 刘红阳 63 一、实验目的 1、学习测定微量铁的通用方法; 2、掌握分光光度法分析的基本操作及数据处理方法; 3、初步了解分光光度法分析实验条件研究的一般做法。 二、实验原理 一般选择络合物的最大吸收波长为工作波长。控制溶液酸度是显色反应的重要因素。因为多数显色剂是有机弱酸或弱碱,溶液的酸度会直接影响显色剂的理解程度,从而影响显色反应的完全程度及络合物的组成。另一方面,酸度大小也影响着金属离子的存在状态,因此也影响了显色反应的程度。应当确定显色剂加入量的合适范围。不同显色反应的络合物达到稳定所需要的时间不同,且达到稳定后能维持多久也大不相同。大多数显色反应在室温下就能很快完成,但有些反应必须加热才能较快进行。此外,加入试剂的顺序、离子的氧化态、干扰物质的影响等,均需一一加以研究,以便拟定合适的分析方案,使测定既准确,又迅速。本实验通过对铁(Ⅱ)-邻二氮菲显色反应的条件实验,初步了解如何拟定一个分光光度法分析实验的测定条件。 邻二氮菲是测定铁的高灵敏性、高选择性试剂之一,邻二氮菲分光光度法是化工产品中微量铁测定的通用方法。在pH2~9的溶液中,Fe2+和邻二氮菲生成1:3 橘红色络合物,lgβ 3=(20℃),ε 508 =×104L·mol-1·cm-1,其吸收曲线如图一所 示;Fe3+亦可以与邻二氮菲生成蓝色络合物,因此,在显色前需用盐酸羟胺溶液将全部的Fe3+还原为Fe2+。反应式如下(和图二): 2Fe3++2NH 2OH===2Fe2++N 2 ↑+2H 2 O+2H+

Fe2++3 N N Fe 2+ 图一图二 用分光光度法测定物质的含量,一般采用校准曲线法(又称工作曲线法),即配制一系列浓度有小到大的标准溶液,在选定条件下依次测量各标准溶液的吸光度A,在被测物质的一定浓度范围内,溶液的吸光度与其浓度呈线性关系(邻二氮菲测Fe2+,浓度在0~μg·mL-1范围内呈线性关系)。以溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制出校准曲线。测绘校准曲线一般要配制3~5 个浓度递增的标准溶液,测出的吸光度至少要有三个点在一条直线上。作图时,坐标选择要合适,使测量数据的有效数字位数与坐标的读数精度相符合。 测定未知样时,操作条件应与测绘校准曲线时相同。根据测得的吸光度从校准曲线上查出相应的浓度,就可计算出试样中被测物质的含量。通常应以试剂空白溶液为参比溶液,调节仪器的吸光度零点。 三、实验试剂与仪器 试剂:·L-1乙酸钠溶液,·L-1柠檬酸(H 3C 6 H 5 O 7 ·H 2 O)溶液,%盐酸羟胺(NH 2 OH·HCl) 溶液,%邻二氮菲溶液,μg·mL-1标准铁溶液。

水质 铁的测定 邻菲啰啉分光光度法

水质铁的测定邻菲啰啉分光光度法 (量程:0.12~5mg/L) 1 适用范围 本标准适用于地表水、地下水及废水中铁的测定。方法最低检出浓度为0.03mg/L,测定下限为0.12mg/L,测定上限为 5.00mg/L。对铁离子大于 5.00mg/L 的水样,可适当稀释后再按本方法进行测定。 2 原理 亚铁离子在pH3~9 之间的溶液中与邻菲啰啉生成稳定的橙红色络合物,其反应式为: 此络合物在避光时可稳定保存半年。测量波长为510nm,其摩尔吸光系数为 1.1×10 4 L·mol-1·cm-1。若用还原剂(如盐酸羟胺)将高铁离子还原,则本法可测高铁离子及总铁含量。 3 试剂 本标准所用试剂除另有注明外,均为符合国家标准的分析纯化学试剂;实验用水为新制备的去离子水。 3.1 盐酸(HCl):ρ20=1.18g/mL,优级纯。 3.2 (1+3)盐酸。 3.3 10%(m/V)盐酸羟胺溶液。 3.4 缓冲溶液:40g 乙酸铵加50mL 冰乙酸用水稀释至100mL。 3.5 0.5%(m/V)邻菲啰啉(1,10-phenanthroline)水溶液,加数滴盐酸帮助溶解。 3.6 铁标准贮备液: 准确称取0.7020g 硫酸亚铁铵((NH 4 ) 2 Fe(SO 4 ) 2 ·6H 2 O),溶于(1+1)硫酸50mL 中,转移至1000mL容量瓶(A 级)中,加水至标线,摇匀。此溶液每毫升含100μg 铁。 3.7 铁标准使用液: 准确移取铁标准贮备液(3.6)25.00mL 置100mL 容量瓶(A 级)中,加水至标线,摇匀。此溶液每毫升含25.0μg 铁。

4 仪器 分光光度计,10mm 比色皿。2 5 干扰的消除 强氧化剂、氰化物、亚硝酸盐、焦磷酸盐、偏聚磷酸盐及某些重金属离子会干扰测定。经过加酸煮沸可将氰化物及亚硝酸盐除去,并使焦磷酸、偏聚磷酸盐转化为正磷酸盐以减轻干扰。加入盐酸羟胺则可消除强氧化剂的影响。 邻菲啰啉能与某些金属离子形成有色络合物而干扰测定。但在乙酸-乙酸铵的缓冲溶液中,不大于铁浓度10 倍的铜、锌、钴、铬及小于2mg/L 的镍,不干扰测定,当浓度再高时,可加入过量显色剂予以消除。汞、镉、银等能与邻菲啰啉形成沉淀,若浓度低时,可加过量邻菲啰啉来消除;浓度高时,可将沉淀过滤除去。水样有底色,可用不加邻菲啰啉的试液作参比,对水样的底色进行校正。 6 步骤 6.1 校准曲线的绘制 依次移取铁标准使用液(3.7)0、2.00、4.00、6.00、8.00、10.0mL 置150mL 锥形瓶中,加入蒸馏水至50.0mL,再加(1+3)盐酸(3.2)1mL,10%盐酸羟胺1mL,玻璃珠1~2 粒。加热煮沸至溶液剩15mL 左右,冷却至室温,定量转移至50mL 具塞比色管中。加一小片刚果红试纸,滴加饱和乙酸钠溶液至试纸刚刚变红,加入5mL 缓冲溶液(3.4)、0.5%邻菲啰啉溶液(3.5)2mL,加水至标线,摇匀。显色15min 后,用10mm 比色皿(若水样含铁量较高,可适当稀释;浓度低时可换用30mm 或50mm 的比色皿),以水为参比,在510nm 处测量吸光度,由经过空白校正的吸光度对铁的微克数作图。各批试剂的铁含量如不同,每新配一次试液,都需重新绘制校准曲线。 6.2 总铁的测定 采样后立即将样品用盐酸(3.1)酸化至pH<1(含CN -或S 2 -离子的水样酸化时,必须小心进行,因为会产生有毒气体),分析时取50.0mL 混匀水样于150mL 锥形瓶中,加(1+3)盐酸(3.2)1mL,盐酸羟胺溶液(3.3)1mL,加热煮沸至体积减少到15mL 左右,以保证全部铁的溶解和还原。若仍有沉淀应过滤除去。以下按绘制校准曲线同样操作,测量吸光度并作空白校正。 6.3 亚铁的测定 采样时将2mL 盐酸(3.1)放在一个100mL 具塞的水样瓶内,直接将水样注满样品瓶,塞好瓶塞以防氧化,一直保存到进行显色和测量(最好现场测定或现场显色)。分析时只需取适量水样,直接加入缓冲溶液(3.4)与邻菲啰啉溶液(3.5),显色5~10min,在510nm 处以水为参比测量吸光度,并作空白校正。 6.4 可过滤铁的测定 在采样现场,用0.45μm 滤膜过滤水样,并立即用盐酸酸化过滤水至pH<1,准确吸取样品50mL置于150mL 锥形瓶中,以下操作与步骤6.1 相同。 7 结果的计算 铁的含量按下式计算:

高等仪器分析实验-荧光分光光度计的使用

高等仪器分析实验(荧光分光光度计的使用) 实验目的 1.掌握荧光分光光度计的基本使用方法:扫描激发光谱,发射光谱,荧光强度,同步 荧光光谱 2.掌握荧光定量分析方法 实验原理 荧光分光光度计是常用的光学仪器,在定量分析,样品的光谱性质表征时经常用到。 荧光分光光度计的基本功能是完成激发光谱,发射光谱的扫描,进行相对荧光强度的 测量。从激发光谱可以获得样品激发态能级的分布情况,用来选择定量分析的最佳激发波长。从发射光谱可以知道样品基态能级的分布情况,用来选择定量分析的最佳发射波长。 荧光定量分析法的方法与紫外可见吸收光谱法类似,但需要注意荧光强度值是相对值,同一样品,同一仪器在不同仪器参数时获得的荧光强度是不同的。只有当测量时仪器参数完全相同时,不同样品荧光强度的相互比较才有意义。 与紫外可见吸收光谱类似,分子荧光光谱也是分子光谱,其谱峰较宽,特征性不是很 强,谱峰重叠现象比较普遍。为了减小谱峰宽度,避免谱峰重叠,提高分析的选择性,在定量分析时常采用同步荧光的方法进行。同步荧光是同时扫描荧光分光光度计的激发和发射单色仪得到的谱图,通过选择合适的扫描参数,可以使样品谱峰变窄,并避免不同组份的谱峰重叠,得到比较好的分析效果。 同步荧光扫描有固定波长同步荧光法,固定能量同步荧光法,可变角同步荧光法,导 数同步荧光法等,其中以固定波长同步荧光法最为常用。 扫描已知样品荧光激发和发射光谱时,可先根据参考波长来进行。扫描未知样品的荧 光光谱,可以将发射波长先每隔一定波长(例如50nm)扫描一个激发光谱。对比不同位

置的激发光谱,从最强的激发光谱中选择最大激发波长,设定该波长为激发波长,扫描发射光谱。再从新得到的发射光谱中找到最大发射波长,在最大发射波长处重新扫描激发光谱。 扫描样品激发光谱和发射光谱时,需要注意:扫描激发光谱时,激发单色器扫描范围的长波端一般应小于发射波长;扫描发射光谱时,发射单色器扫描范围的短波端应大于激发波长。否则在发射光谱(激发光谱)中与激发波长(发射波长)波长相同的位置会出现很强的散射谱峰,这不是样品的荧光引起的,应注意区分。 如果样品不是真正的溶液,或包含有不溶颗粒物,或是固体样品,如果扫描范围较宽时,通常在发射光谱(激发光谱)中激发波长(发射波长)整数倍波长的位置也会出现弱的散射谱峰,称为倍频峰,在分析光谱情况时也应注意区分。对散射倍频峰或样品荧光峰,可通过适当改变激发波长来进行区分,散射倍频峰的位置会随着激发峰位置的变化而变化,而荧光峰位置通常是不变的。如果倍频峰对样品的测量有干扰,可使用合适的滤光片消除倍频峰。合适的消倍频峰滤光片应可以使发射光透过,而阻挡激发光不能透过。 如果样品荧光较弱,使用高灵敏度档测定时,通常会观察到溶剂的拉曼峰,也应注意与样品荧光进行区分。拉曼峰的位置也与激发波长有关,同时会随着激发波长的变化而变化。其位置估算方 法:?laman=1/(1/? ex-?H2O /10 7),其中波长单位为nm,?H2O 为溶剂的红外吸收波长,单位为波数,溶剂为水时,主要的红外吸收是O-H 伸缩振动,波长在3300波数。 狭缝的选择:激发和发射狭缝通常并不要求严格一致,为获得较好的灵敏度和准确反 应谱峰形状,测定激发光谱时,选用较大的发射狭缝和较小的激发狭缝是比较好的。而测 定发射光谱时则恰好相反。 灵敏度档的选择:灵敏度档与仪器中光电倍增管的放大倍数有关,对荧光比较弱的样 品,应选择灵敏度较高的档位,反之亦反。但注意不同档位之间的荧光强度值没有确定的 换算关系,不能相互比较。进行定量分析时,所有样品必须在同样的狭缝和灵敏度档位测 量。 仪器及试剂 970MC荧光分光光度计 缓冲溶液:10-2mol/L Na 2HPO4-NaOH 缓冲溶液,pH=11-12

相关文档
最新文档