红外光谱信噪比

红外光谱信噪比
红外光谱信噪比

红外光谱信噪比

翁老爷子的新书《傅里叶变换红外光谱分析》(第2版)中,有一段对红外仪器信噪比的无奈描述:

“红外仪器的信噪比是衡量一台仪器性能好坏的一项非常重要的技术指标。但是信噪比的测量方法目前没有统一的、公认的标准,因此,各个红外仪器公司所给定的仪器信噪比没有可比性。每个红外仪器公司都有信噪比的测量方法,因此,信噪比指标的验收只能按照仪器公司的验收方法进行验收。”

看来这个“红外信噪比”真个是乱花渐欲迷人眼,让人雾里看花隔一层啊!但是zwyu我充分发挥超人的大打特打、死缠烂打、穷追猛打的精神,欲对“红外信噪比”进行一次非官方、全方位的刨根问底,追踪探秘。各位好奇同学请跟进!

正文

信噪比(signal-to-noise ratio,简记为SNR ),顾名思义,就是信号值与噪声值的比,这一比值当然是越高越好。可是,翻遍《GB/T21 186-2007 傅立叶变换红外光谱仪》,《GB/T 6040-2002 红外光谱分析方法通则》(见红外光谱相关标准与检定规程大合集)以及其他的

一些行业性、地方性的检定规程(国家级的傅里叶变换红外光谱仪检定规程至今还未出台),甚至中国药典,愣是找不到关于信噪比的只言片语的定义。信噪比指标对红外仪器性能的评判很重要,怎么会找不找呢?且慢,注意标准中屡屡提到的“基线噪声”(100%T线噪声)XXXX:1或1:XXXX,还往往标了P-P或RMS,这不就是我们熟悉的信噪比的表示方法吗?哈哈,总算找到你了。

艰难的看过标准上的描述(没办法,中国国标写的水平就是高!?),为了各位同学能够顺利读懂,我将它写为白话现代汉语版:

红外信噪比,是通过基线(100%T线)噪声来表征。也就是,在样品室中不放样品的情况下(空光路),测得一条假定理想的100%T透射光谱。信号,当然就是100%T了,如果没有噪声,那么这条光谱将是一条严格的纵坐标为100%T的直线,但是,实际情况是噪声总是存在的,这就使得这条光谱的各个波数点上的值不见得一定是100%T,可能高一些(比如100.1%T),也可能低一些(比如9 9.9%T)。P-P(峰-峰值)噪声的意思就是说刚才测得的那条光谱在某一段波数区间内(比如2200~2100cm-1)的最大值与最小值之差,比如说是100.1%T-99.9%T=0.2%T。前面说了,信号是假定为100%T,那么,根据信噪比的定义,信号值/噪声值,比如100%T/0.2%T=500(注意此处单位相消,也就是说,信噪比用信号噪声比值表示的话,是一个无量纲的数)。此时,我们可以说,这台红外光谱仪的信噪比是500:1。换句话说,我们知道了P-P(峰-峰值)噪声,我们也就自

然知道了P-P值信噪比;同理,我们知道了P-P值信噪比,比如500: 1,那么我们很自然的也能利用噪声=信号/信噪比,即100%T/500=0. 2%T,得到P-P噪声值的大小为0.2%T。

有人说,为了避免小概率事件的发生(此君是彩票迷,鉴定完毕!),噪声值应该用更具代表性和统计性的RMS(均方根值)噪声来表示。那啥是RMS呢?我不得不祭出万恶的数学公式(霍金一部《时间简史》,只用了一个公式。我这个小小的原创这么早就出公式了。我不如霍金。。。)

设{Y1, Y2, Y3, …YN}为给定波数区间内N个连续波数点对应的纵坐标值(按照前述条件下,为一系列%T透过率值),则这些值的均值为:

均方根(root mean square,简记为RMS)偏差为:

如果不用公式,通俗地讲,均方根值就是一组数的平方的平均值的平

方根;均方根偏差就是一组数与这组数均值之差的平方的平均值的平方根。所以,你瞧,我早早放弃了只用文字叙述,还是看看万恶的公式吧。显然,用上式求得的一条光谱在某波数(横坐标)区间内全部N个数据点纵坐标值的均方根偏差就作为了RMS噪声的度量。

一般对红外光谱来讲,P-P(峰-峰值)噪声会比RMS(均方根值)噪声大5倍左右,换句话说,RMS噪声的绝对数值更小,换算成信噪比时就更大,所以你发现用RMS值表示的信噪比往往看起来都很漂亮也就不奇怪了,因为它比P-P值表示的信噪比大了5倍(而且,显然参与运算的波数点越多,这一倍数还会增加)。

上面的“基线噪声”都是用了100%T基线,对应的是透射光谱的透过率表示形式;国际上越来越多的地方采用透射光谱的吸光度表示形式,此时的“基线”自然变成了0A基线。该“零基线”上的噪声单位,显然也就变成了A(吸光度单位,有时写做AU)。此时,计算P-P 噪声和RMS噪声的方法与前面完全一样。但是,因为这些基线都是在样品室中不放样品的情况下(空光路)测得的,所以此时的信号应该是0A,如果直接计算信噪比的话,0/噪声=0,显然得不到明确的有意义数值。所以有很多同学这个地方就会糊涂了,由吸光度表示的基线噪声值,怎么得到信噪比?在此,zwyu独家奉献推导过程(呵呵,反正市面上所有的资料里都没写,可能觉得太简单了吧。):

前面讲到,因为测量吸光度基线噪声时,假定的信号就是0A(相当于没有信号),导致所有的计算归零。那么,绕开这一“归零窘境”

的关键就是不用0A,而采用等效的100%T,因为前面用100%T基线噪声时计算信噪比已经证明是行得通的。所以,要做的工作就是将0 A基线时的噪声等效为100%T基线时的噪声。由吸光度与透射率之间的转换关系:

设此时信号为1(即100%),考虑到将A坐标下的噪声A-0转换到% T坐标下的噪声1-T(为简化起见,将100%记为1,T则不再乘100),则根据信噪比SNR的定义,

这里的A就是0A基线下给出的基线噪声值(如果你怕将它和吸光度单位A混淆,请自行将公式中的变量A换为任意字母代替)。后面我会结合实例,验证我这一推导公式。显然A值越小,得到的信噪比越大,也就是说基线噪声值越小越好,这也与我们的认知相一致。

同样,已知信噪比的情况下,我们也能够很容易的推出此时用AU表示的基线噪声值,如下式:

好了,看到这儿,应该掌握的理论武器想必大家都基本掌握了。那就让咱们来看看当前主流红外光谱仪器厂家的仪器和厂家给出的信噪比。

Thermo/Nicolet公司2008年推出的iS10

PE公司2005年推出的Spectrum 100

Agilent/Varian公司2008年推出的640-IR

Bruker公司2002年推出的TENSOR 37

Shimadzu公司2007年推出的IRPrestige-21

作为对比,我这里也给出国产红外光谱仪的相关资料(由于天津拓普的FTIR 920我实在找不到技术指标,而且销量很小,本文暂略去不谈)

北京瑞利的WQF-510

天津港东的FTIR-650

看罢这粉墨登场的诸多款红外光谱仪和它们的参数,我不知道诸位同学晕了吗?反正,如本文开头所述,玩了一辈子红外光谱的翁老爷子晕了。。。

老爷子之所以会晕的原因,不是他老人家红外经验少,更不是看的不

认真,而是——各个标准之间,各个红外厂商的宣传资料之间,对红外信噪比实际测量时的诸多具体参数设置,根本不一致(用翁老爷子的原话就是“测定的条件不相同”)。或许,“因编者水平有限,难免会出现一些错误和疏漏”;或许,本来就是有人希望搞出这种不一致来以混淆视听;或许,家家有本难念的经。。。总之,苦了各位同学了。

先抛开这些让人纠结的具体参数,只看最终的结果。我们很容易发现,红外厂商之间最通用的信噪比表示方法一般有两种:5S(秒钟)P-P 值信噪比和1Min(分钟)P-P值信噪比,但也有只给出了5S P-P值信噪比(如Varian)或只给出了1Min P-P值信噪比(如Shimadzu)的例外。为了统一起见,需要知道5S和1Min P-P值信噪比之间的换算关系。

在这里,提前谈一下扫描时间(在实际参数设置时,更直接的说,是扫描次数)这一参数对红外信噪比的影响。因为测量红外光谱时,检测器噪声占了总噪声的主要部分,而检测器噪声又与信号水平不成正比,或者说是噪声是随机的且与信号电平无关。那么,我们很容易想到通过多次测量求均值的办法来提高信噪比。而从数学上可以证明,n次测量平均的结果是信噪比可以提高到1次测量的倍。比如,4次叠加平均信噪比提高2倍,16次叠加平均信噪比提高4倍,32

次叠加平均信噪比提高5.6倍,64次叠加平均信噪比提高8倍,128

次叠加平均信噪比提高11.3倍。。。我们一般在使用红外光谱仪(F TIR)进行测量时,常选的叠加平均次数是16或32,这也是因为此时能达到最经济的效能。次数过少,信噪比提高的有限;次数过多,测量时间会很长,反而得不偿失。而且注意这里说的是FTIR,对于光栅红外来讲,扫一次全谱甚至需要几到几十分钟的时间,现代的实验人员不会疯狂到叠加平均多次从而花掉一天的时间来得到一张光谱。而对FTIR来说,扫一次全谱花掉的时间只有1S左右,完全可以多次扫描叠加平均来有效的提高信噪比。那么,问题来了,1Min 扫描相比5S扫描,多扫了多少次呢?或者说,1Min扫描,红外光谱仪内部叠加扫描了多少次,5S扫描,又是叠加多少次呢?幸运的是,前述各厂家给出信噪比指标的时候,都使用的是分辨率为4cm-1时的数据,也就是说,此时扫描时间和扫描次数基本上成一个简单的正比关系。5S:60S=1:12,可以简单的认为,1Min扫描的次数是5S扫描次数的12倍,套用前面给出的关系,也就是说,预期信噪比可以提高3.5倍。让我们来看一下这两个信噪比数据都给出了的厂家提供的数据:

Thermo/Nicolet公司的iS10:1Min P-P值信噪比:5S P-P值信噪比= 35000:10000=3.5,完全符合我们的推论。

PE公司的Spectrum 100 :1Min P-P值信噪比:5S P-P值信噪比=3 6000:10500=3.4,基本符合。

Bruker公司的TENSOR 37:1Min P-P值信噪比:5S P-P值信噪比=4 5000:8000=5.6,与我们的预期值偏差较大。我们注意到这两个数据B ruker公司将它标为了“可达”,而不是“最少”(标为“最少”的,只有5 S P-P值信噪比=6000:1这一个数据)。换句话说,1Min扫描信噪比能够比5S扫描提高5.6倍,这只是可能发生的最好情况,而不是一定保证的数据。由于我们前面给出的“n次测量平均的结果是信噪比可以提高到1次测量的倍”这一结论已经是理想情况下的数值了,实际情况可能还达不到这一效果,那么,Bruker公司的提高5.6倍,远超理论上限值3.5倍的数据,又是怎么来的呢?这就又不得不提到一个扫描速度的问题。前面说过,现代的FTIR扫一次全谱(40 00~400cm-1)花掉的时间只有1S左右,当然,它有“左”也有“右”了。如果扫描一次正好需要1S时间,那么,5S内,光谱仪共扫了5次,1Min内,共扫了60次,这就是我们前面用到的数据。但是,如果1次扫描需要花费的时间不止1S呢?比如说,是1.5S,那么,光谱仪在5S内的完整扫描次数只有3次(还有1次未完成,不参与叠加平均),而在1Min时间内能够正好完成40次扫描,理论上1Min扫描信噪比能提高3.7倍,比之前的3.5倍高了一些。更极端一点,假定完成1次扫描恰好需要2.51S,则5S内只能完成1次完整扫描(剩下的2.49S白忙乎了),而1Min内能够完成23次完整扫描,理论上信噪比能提高4.8倍,比之前估计的3.5倍又提高了不少。但这与5.6

倍还是有一定距离。到这儿,zwyu也解释不下去了。但好在Bruker

公司的宣传资料也很明显的提示我们了,5.6倍的提高只是“最好情况”,所以我们在这也不必再深究“为什么”了,不过请正在使用TEN SOR 37或27的朋友,告诉我一下在光谱分辨率为4cm-1时,使用D TGS检测器,其它参数全部使用默认设置,扫描4000~400cm-1全谱一次需要多长时间?连续扫描1Min又能扫描完成几次?谢谢!

好了,不考虑Bruker数据的特殊情况,采用3.5倍这一比较正常的换算系数,我们可以很容易的得知:

Agilent/Varian公司的640-IR:5S P-P值信噪比=6000,1Min P-P值信噪比=6000*3.5=21000

Shimadzu公司的IRPrestige-21:5S P-P值信噪比=40000/3.5=11000,1Min P-P值信噪比=40000

顺便看一下国产的FTIR

北京瑞利的WQF-510:5S P-P值信噪比=3000/3.5=850,1Min P-P

值信噪比=3000(我看到的资料中只是给出了32次扫描的RMS值信噪比为15000:1,前面提过,RMS值信噪比一般是P-P值信噪比的5倍,所以32次扫描的P-P值信噪比为3000:1;又因为据我观察,正常扫描情况,WQF-510用4cm-1分辨率扫完4000~400cm-1全谱1次

的时间绝对不止1S,所以我们可以暂时认为其32次扫描时间接近于1Min)

天津港东的FTIR-650:5S P-P值信噪比=15000/3.5=4200,1Min P-P 值信噪比=15000(我看到的资料中只写有P-P值信噪比为15000:1,而没有注明时间;写了时间的那份资料里的信噪比数值又让我崩溃且没标明是P-P值。所以姑且认为这里的扫描时间是1Min,大家存疑也就是了。当然,也十分欢迎国产仪器的厂方专家前来指正)

嗯,可能有的同学还记得zwyu老师说过要验证前面所推导的由0A 基线噪声值求得信噪比的公式,再次把公式写出如下:

在前面的厂家资料里,我们能够看到,

Agilent/Varian公司的640-IR:5S P-P值基线噪声=7.2*10-5A,代入上面的公式,得到5S P-P值信噪比=6032,厂家给出的数据是6000,一致。

Bruker公司的TENSOR 37 (用其“最少”值,或者说是“保证”值):5S P-P值基线噪声=7.2*10-5A,正好与Agilent/Varian公司的640-IR

完全相同,厂家给出的数据也是6000,一致。

为了谨慎起见,我又找到Thermo/Nicolet公司的6700的数据(资料在上面未给出):1Min P-P值基线噪声=8.68*10-6A,代入上面的公式,得到1Min P-P值信噪比=50034,厂家给出的数据是50000,一致。

由此,证明zwyu老师的公式完全适用。前面已说过,这是市面上能见到的公开资料里第一次对该推导公式的披露,所以各位同学赶快记到笔记上啊!那个谁,就是你,刚进来的那个谁,迟到啦!罚你顶贴100遍啊100遍。。。

进行到这里,我们就可以对目前市场上常见的主流FTIR的信噪比情况做一个图表分析,统一采用上面列出的5S P-P值信噪比指标(暂不考虑由于具体测量参数设置不同导致的“非统一尺度”问题)。阳仔,注意,现场直播!

这个图表先放着这儿,按下不表。咱们再回过头来看看影响红外信噪比,或者说是与噪声水平相关的都有哪些因素?为什么能把翁老爷子忽悠晕?

咱们一项一项来看。

首先,扫描时间,这个前面已经提前说过了,基本等效于扫描次数。随着扫描时间(扫描次数)的增加,信噪比有一个倍的提升。但

ad信噪比分析及高分辨率

在雷达、导航等军事领域中,由于信号带宽宽(有时可能高于10MHz),要求ADC的采样率高于30MSPS,分辨率大于10位。目前高速高分辨率ADC器件在采样率高于10MSPS 时,量化位数可达14位,但实际分辨率受器件自身误差和电路噪声的影响很大。在数字通信、数字仪表、软件无线电等领域中应用的高速ADC电路,在输入信号低于1MHz时,实际分辨率可达10位,但随输入信号频率的增加下降很快,不能满足军事领域的使用要求。 针对这一问题,本文主要研究在不采用过采样、数字滤波和增益自动控制等技术条件下,如何提高高速高分辨率ADC电路的实际分辨率,使其最大限度地接近ADC器件自身的实际分辨率,即最大限度地提高ADC电路的信噪比。为此,本文首先从理论上分析了影响ADC信噪比的因素;然后从电路设计和器件选择两方面出发,设计了高速高分辨率ADC电路。经实测表明,当输入信号频率为0.96MHz时,该电路的实际分辨率为11.36位;当输入信号频率为14.71MHz日寸,该电路的实际分辨率为10.88位。 1 影响ADC信噪比因素的理论分析 ADC的实际分辨率是用有效位数ENOB标称的。不考虑过采样,当满量程单频理想正弦波输入时,实际分辨率可用下式表示: ENOB=[SINA0(dB)-1.76]/6.02 (1) 式中,SINAD表示ADC的信噪失真比,指ADC满量程单频理想正弦波输入信号的有效值与ADC输出信号的奈奎斯特带宽内的全部其它频率分量(包括谐波分量,但不包括直流允量)的总有效值之比。 ADC的信噪比SNR,指ADC满量程单频理想正弦波输入信号的有效值与ADC输出信号的奈奎斯特带宽内的全部其它频率分量(不包括直流分量和谐波分量)总有效值之比。

红外光谱分析概述

红外光谱分析概述(上) 1.红外光谱 红外光谱是反映红外辐射强度或其他与之相关性质随波长(波数)变化的谱图。目前,它是一种被广泛应用于研究表征物质的化学组成,在分子层次上的结构及分子间相互作用的有力手段。红外射线发现于1800年,在用普通温度计测量可见光谱的温度效应时,在红光一端的外侧观察到有较强的热效应。后来,实验证实了这是由一种肉眼看不见、波长比红光更长的电磁辐射所造成的,这种电磁辐射被称为红外光。通常将红外辐射的波长范围定为0.8~1000微米,并可粗略地分为三个波段:(1)近红外的波段为0.8~2.5微米,波数为12500~4000厘米-1;(2)中红外的波段为2.5~25微米,波数为4000~400厘米-1;(3)远红外的波段为25~1000微米,波数为400~10厘米,目前,实验上已能测定到2500微米,波数为4厘米-1。相应地有近红外光谱、中红外光谱和远红外光谱。 红外光谱的形式虽然多种多样,从本质上可分为发射光谱和吸收光谱两大类。物体的红外发射光谱是指样品在通过受激或自发辐射的条件下,所发射的红外光的强度随波长(波数)变化的光谱图,红外发射光谱主要决定于物体的温度和化学组成。吸收光谱是指样品对红外辐射的吸收能力随波长(波数)变化的光谱图,在实验上,使红外光与样品发生相互作用,测定红外光与物质相互作用前后光强的变化与波长(波数)之间的关系, 称红外吸收光谱。 2.分子的振动和转动光谱 对于分子体系而言,其振动和转动是量子化的,其能级差所对应的光子的波长落在红外光范围,因此是红外光谱(拉曼光谱)的主要研究对象。研究指出,红外光谱的研究范围不仅仅局限于分子的振动、转动跃迁,某些特殊体系的电子能级跃迁亦可能落在红外光谱波段范围内,例如,超大规模共轭体系的电子跃迁、某些稀土离子的f-f能级跃迁等等。不过目前绝大多数的红外光谱研究工作仍集中于分子的振动能级跃迁上,以最简单的双原子为例,其振动吸收Eν可近似地表示为: 式中h为普朗克常数;ν为振动量子数(取正整数);n0为简谐振动频率。当ν=0时,分子的能量最低,称为基态。处于基态的分子受到频率为n0的红外射线照射时,分子吸收了能量为n0的光量子,跃迁到第一激发态,得到频率为n0的红外吸收带, 它称为分子振动的基频。反之,处于该激发态的分子也可发射频率为n0的红外射线而恢复到基态。n0的数值决定于分子的约化质量μ和力常数κ: κ决定于原子的核间距离、原子的特性和化学键及键级等。 在多原子分子体系中,各原子在平衡位置附近作相对运动。这些振动方式可以被分解为各种简正振动的线性组合,所谓简正振动就是指分子中各原子以同一频率、同一相位在平衡位置附近作简揩振动。含N个原子的非线分子有3N-6个简正振动方式;线性分子有3N-5种简正振动方式。 对于分子的转动而言,往往可以假定分子为刚性转子,则其转动能量Er为: 红外光谱分析概述(中)

GPS的信噪比很高 定位时间却很长 排查之道

1.C/N值衡量的是你Rx Noise Figure能压多低不代表你定位速度就会快 换句话说有可能相关例如改变手握位置天线效率好定位速度就快我猜此时Wireless的C/N值应该有比较好 但也可能不相关就像你C/N有42 但反而定不到位 2. 但有一点肯定就是定位速度跟频偏量有关频偏量大定位速度就慢过大甚至会定不到位所以X’TAL就成了重要关键 3. 所以可以把X’TAL上方的Shielding Cover拔掉看看减少寄生效应 看定位速度会不会比较快因为可能测板端时 Shielding Cover的高度还算足够所以不会有严重的寄生效应 但是测Wireless时整机组起来 Housing往下挤压Shielding Cover的高度被压缩寄生效应变大 以至于Wireless的定位时间变慢 4. X’TAL的校正除了靠高通的XTT之外 跟基地台连接时X’TAL也会做自我校正 所以那些定位速度慢的Sample 可以先插Test Sim去跟CMW 500连接让他们做完自我校正之后看定位速度会不会快一点

5. 早期高通平台有一组NV 可以调负载电容值 NV_XO_TRIM_VALUES_I 可以调看看因为负载电容值会影响频偏量 6. 把Fail sample吹凉再去测因为X’TAL对温度很敏感 所以Shielding Cover拔掉若有改善另一个解释是加强散热 以致于频偏小了那当然定位速度就快 7. X’TAL本身来料有问题 若是这原因理论上应该板端的定位速度就会慢了 不会到Wireless才变慢 而且应该GSM / WCDMA / LTE的Frequency Error也会比较大可先确认是否PCB就无法定位了

近红外光谱分析及其应用简介

近红外光谱分析及其应用简介 1、近红外光谱分析及其在国际、国内分析领域的定位 近红外光谱分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。近红外分析复杂样品时,通常首先需要将样品的近红外光谱与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。 近红外光谱分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把近红外光谱分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON 会议上近红外光谱方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、AACC(American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia美国药典)均收入了近红外光谱方法;我国2005年版的药典也将该方法收入。在应用方面近红外光谱分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。 我国对近红外光谱技术的研究及应用起步较晚,上世纪70年代开始,进行了近红外光谱分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用近红外光谱分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。目前国内能够提供完整近红外光

红外吸收光谱法试题和答案解析

红外吸收光谱法 一、选择题 1. CH 3—CH 3的哪种振动形式是非红外活性的(1) (1)υC-C (2)υC-H (3)δasCH (4)δsCH 2. 化合物中只有一个羰基.却在1773cm -1和1736 cm -1 处出现两个吸收峰.这是因 为(3) (1)诱导效应 (2)共轭效应 (3)费米共振 (4)空间位阻 3. 一种能作为色散型红外光谱仪的色散元件材料为(4) (1)玻璃 (2)石英 (3)红宝石 (4)卤化物晶体 4. 预测H 2S 分子的基频峰数为(2) (1)4 (2)3 (3)2 (4)1 5. 下列官能团在红外光谱中吸收峰频率最高的是(4) (1) (2)—C ≡C — (3) (4)—O —H 二、解答及解析题 1. 把质量相同的球相连接到两个不同的弹簧上。弹簧B 的力常数是弹簧A 的力常数的两倍.每个球从静止位置伸长1cm.哪一个体系有较大的势能。 答:M h hv E k 2π= = ;所以B 体系有较大的势能。 2. 红外吸收光谱分析的基本原理、仪器.同紫外可见分光光度法有哪些相似和不同之处 答: 红外 紫外 基本原理 当物质分子吸收一定波长的光能.能引起分子振动和转动的能及跃迁.产生的吸收光谱一般在中红外区.称为红外光谱 当物质分子吸收一定波长的光能.分子外层电子或分子轨道电子由基态跃迁到激发态.产生的吸收光谱一般在紫外-可见光区。 仪器 傅立叶变换红外光谱仪 紫外可见光分光光度计 相同:红外光谱和紫外光谱都是分子吸收光谱。 不同:紫外光谱是由外层电子跃迁引起的。电子能级间隔一般约为1~20eV; 而红外光谱是分子的振动能级跃迁引起的.同时伴随转动能级跃迁.一般振动能级间隔约为~1eV 。

如何解析红外光谱图解读

如何解析红外光谱图 一、预备知识 (1)根据分子式计算不饱和度公式: 不饱和度Ω=n4+1+(n3-n1)/2其中: :化合价为4价的原子个数(主要是C原子), n 4 :化合价为3价的原子个数(主要是N原子), n 3 n :化合价为1价的原子个数(主要是H,X原子) 1 (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔 2200~2100 cm-1,烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对); (4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。 二、熟记健值 1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1) 一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H 面外弯曲振动(1000~675cm-1)。 3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。 4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H 面外弯曲振动880~680cm-1。 芳烃重要特征:在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。C-H面外弯曲振动吸收880~680cm-1,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常用判别异构体。

误码率和信噪比

摘要:比特误码率(RBE)是衡量一个通信系统优劣的重要指标之一。对如何利用System View仿真软件测试和生成一个通信系统的RBE测试曲线的实例进行了研究,并对此次仿真过程中的关键问题加以论述。 关键词:比特误码率;BCH码;卷积码;仿真 2误码率测试仿真原理及其仿真的关键问题 2.1误码率测试仿真原理 在仿真系统中,信道模拟成一个高斯噪声信道(AWGN),输入信号经过AWGN信道后在输出端进行硬判断,当带有噪声的接收信号大于判决电平时,输出判为1,此时的原参照信号如果为0,则产生误码。 为了便于对各个系统进行比较,通常将信噪比用每比特所携带的能量除以噪声功率谱密度来表示,即Eb/N0,对基带信号,定义信噪比为: 这里的A为信号的幅度(通常取归一化值),R=1/T是信号的数据率。在仿真过程中,为了能得到一个通信系统的RBE曲线,通常需要在信号源或噪声源后边加入一个增益图符来控制信噪比的大小,System View仿真时应用此种方法(在噪声源后面加入增益图符)。受控的增益图符需要在系统菜单中设置全局关联变量,以便每一个测试循环完成后将系统参数改变到下一个信噪比值,全局关联变量的设置方法在下述内容中介绍。 2.2全局关联变量的设置 当一个高斯噪声信道的RBE测试模型设置基本完毕后,并不能绘出完整正确的RBE/RSN 曲线,还必须将噪声增益控制与系统循环次数进行全局变量关联,使信道的信噪比(RSN)由0 dB开始逐步加大,即噪声逐步减小,噪声每次减小的步长与循环次数相关。设置的方法是:单击System View主菜单中的“Tools”选项,选择“Global Parameter Links”,这时出现如图1所示参数设置栏,在“Select System Token”中选择要关联的全局变量,图中选择了Gain 图符,如果设定每次循环后将信噪比递增1 dB,即噪声减小1 dB,则应在算术运算关系定义栏“Define Algebraic Relation F[Gi,Vi]”内将F[Gi,Vi]的值设置为-c1,这里c1为系统变量“Current System Loop”的系统循环次数。 2.3设置系统仿真时间 在进行系统仿真之前首先必须对定时参数进行设置,系统的定时设定直接影响着系统仿真的效果甚至仿真结果的正确性。同时,定时参数的设置也直接影响系统仿真的精度,因此选取定时参数必须十分的注意,这也是初学者应重点掌握的内容,采样速率过高增加仿真的时间,过低则有可能得不到正确的仿真结果。单击设计窗口工具栏上的系统定时按钮则弹出系统定时设定窗口。 在进行定时窗口设置时要注意以下几点:

近红外光谱技术在药物分析中的应用

近红外光谱技术在药物分析中的应用 1·前言 近红外光谱分析技术是分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。 近红外(NIR)谱区是人类认识最早的非可见光谱区,波长范围在0.75—2.5 m之间,用波数表示时则在13330—4000cm-1之间。由于近红外的吸收谱带复杂,谱峰重叠,信号弱,在分析上难以应用,长期以来没有受到人们的重视。近十多年来,随着近红外仪器的改良,新的光谱理论和光度分析方法的建立,特别是计算机技术和化学计量学的广泛应用和迅速发展,使近红外光谱技术成为目前发展最快、最引人注目的分析技术,并以其简单快速、实时在线、无损伤无污染分析等特点,在复杂物质的分析上得到广泛应用。在包括制糖和制药的许多与化学分析和品质管理有关的行业中的应用前景极其广阔。 关于近红外光谱技术在制药行业中应用的文献报道越来越多,显示了近红外光谱技术在制药领域中越来越受到人们的重视。近红外光谱分析具有的快速实时、操作简单、无损伤测定、不受样品状态影响的特点很符合药物分析的要求。因此,在制药业中原料药的分析、药物制剂中水分、有效成分的分析、药物生产品质的过程控制等方面近红外光谱技术得到了十分广泛的应用。 2·光谱介绍 近红外光是介于可见光和中红外光之间的电磁波,根据ASTM(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电

磁波,习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。 近红外光谱属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。近红外光主要是对含氢基团X-H(X=C、N、O)振动的倍频和合频吸收,其中包含了大多数类型有机化合物的组成和分子结构的信息。由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时,由于试样对不同频率近红外光的选择性吸收,通过试样后的近红外光线在某些波长范围内会变弱,透射出来的红外光线就携带有机物组分和结构的信息。通过检测器分析透射或反射光线的光密度,就可以确定该组分的含量。 3·近红外光谱技术在制药业中的应用 3·1 原料和活性组分的测定 药物加工过程中第一步就是原料的鉴定,其质量的好坏直接决定后续加工过程的成败于否,而同一类型的原料中多变因素主要是湿度和颗粒大小,近红外光谱在湿度测定中的灵敏度及其适于固体表面的表征的特性,使他能够很快地得到样品的湿度和颗粒大小的信息,然

什么是信噪比详解

信噪比详解 定义 信噪比,即SNR(Signal to Noise Ratio)又称为讯噪比,狭义来讲是指放大器的输出信号的电压与同时输出的噪声电压的比,常常用分贝数表示。设备的信噪比越高表明它产生的杂音越少。一般来说,信噪比越大,说明混在信号里的噪声越小,声音回放的音质量越高,否则相反。信噪比一般不应该低于70dB,高保真音箱的信噪比应达到110dB以上。 解析 信噪比是音箱回放的正常声音信号与无信号时噪声信号(功率)的比值。用dB表示。例如,某音箱的信噪比为80dB,即输出信号功率是噪音功率的10^8倍,输出信号标准差则是噪音标准差的10^4倍。信噪比数值越高,噪音越小。 “噪声”的简单定义就是:“在处理过程中设备自行产生的信号”,这些信号与输入信号无关。对于M P3播放器来说,信噪比都是一个比较重要的参数,它指音源产生最大不失真声音信号强度与同时发出噪音强度之间的比率称为信号噪声比,简称信噪比(Signal/Noise),通常以S/N表示,单位为分贝(d B)。对于播放器来说,该值当然越大越好。 目前MP3播放器的信噪比有60dB、65dB、85dB、90dB、95dB等等,我们在选择MP3的时候,一般都选择60dB以上的,但即使这一参数达到了要求,也不一定表示机子好,毕竟它只是MP3性能参数中要考虑的参数之一。 指在规定输入电压下的输出信号电压与输入电压切断时,输出所残留之杂音电压之比,也可看成是最大不失真声音信号强度与同时发出的噪音强度之间的比率,通常以S/N表示。一般用分贝(dB)为单位,信噪比越高表示音频产品越好,常见产品都选择60dB以上。 国际电工委员会对信噪比的最低要求是前置放大器大于等于63dB,后级放大器大于等于86dB,合并式放大器大于等于63dB。合并式放大器信噪比的最佳值应大于90dB,CD机的信噪比可达90dB 以上,高档的更可达110dB以上。信噪比低时,小信号输入时噪音严重,整个音域的声音明显感觉是混浊不清,所以信噪比低于80dB的音箱不建议购买,而低音炮70dB的低音炮同样原因不建议购买。用途 另外,信噪比可以是车载功放;光端机;影碟机;数字语音室;家庭影院套装;网络摄像机;音箱……等等,这里所说明的是MP3播放器的信噪比。 以dB计算的信号最大保真输出与不可避免的电子噪音的比率。该值越大越好。低于75dB这个指标,噪音在寂静时有可能被发现。AWE64 Gold声卡的信噪比是80dB,较为合理。SBLIVE更是宣称超过120dB的顶级信噪比。总的说来,由于电脑里的高频干扰太大,所以声卡的信噪比往往不令人满意。

红外吸收光谱分析

第三章红外吸收光谱分析 3.1概述 3.1.1红外吸收光谱的基本原理 红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。 图3-1为正辛烷的红外吸收光谱。红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。图中的各个吸收谱带表示相应基团的振动频率。各种化合物分子结构不同,分子中各个基团的振动频率不同。其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。 图3-1 正辛烷的红外光谱图 几乎所有的有机和无机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。

高频电路信噪比定义及其抑制措施

信噪比指标及测试方法?对于噪声抑制手段 “信噪比”指的是信号电压对于噪声电压的比值,通常用符号S/N来表示。由于在一般情况下,信号电压远高于噪声电压,比值非常大,因此,实际计算摄像机信噪比的大小通常都是对均方信号电压与均方噪声电压的比值取以10为底的对数再乘以系数20,单位用dB表示。一般摄像机给出的信噪比值均是在AGC (自动增益控制)关闭时的值,因为当AGC接通时,会对小信号进行提升,使得噪声电平也相应提高。CCD摄像机信噪比的典型值一般为45dB~55dB。 可在放大电路末端采用高精度噪声计测量,也可采用软件将A/D转换数据通过采样计算实现。 对噪声的抑制应从前向通道原理设计、软件设计、PCB设计、接线设计等方面入手。 原理设计应从电源噪声抑制、多级放大器设计、滤波设计考虑。1)电源噪声抑制:首先主电源应将100Hz以下接近工频干扰的噪声滤除,其次采用多路电源分别供电设计,区分数字电路、驱动电路、模拟电路、前置级小信号放大电路,小信号电路应采用多级滤波滤除各频段的高频噪声信号。2)采用低噪声多级放大电路,可以避免电源噪声和系统噪声的从一次前置放大器的一次放大,提高信噪比,另外尽量采用差分输入输出,降低共模干扰。3)系统噪声主要是高频噪声,传感器端也经常形成各种非信号频段的高低频干扰,应在前向通道电路适当添加各种高Q值信号滤波电路。4)另外一些专项电路常采用专用抗干扰设计,例如:CCD前向通道的相关双取样电路。 软件设计比较容易实现各频段的高Q值滤波,同时有些干扰信号与有效信号频段、幅值近似时,可采用软件算法实现去除干扰杂波并进行有效波形的拟合补偿,以保证整机的性能指标。 PCB设计主要是电磁兼容设计,主要从布局开始,将强弱信号电路,数字模拟电路尽量隔离分开,方便分开布线,电源/地线应分别布线,最后汇集在总电源,弱信号电路应尽量靠近总电源,弱信号线应尽量短、尽量加地线隔离,依据信号频段的不同合理选择信号线和电源线的宽度,并合理选择添加屏蔽罩。 接线设计应尽量合理走线,将强信号线与弱信号线隔离,弱信号线应尽量端并适当加屏蔽,并合理屏蔽接地。 另外在结构设计时应尽量采用常规电磁兼容、防静电设计手段,尽量将接口按强弱信号电路隔离设计,以方便PCB设计和接线设计。

红外光谱分析

红外光谱分析 序言 二十世纪初叶,Coblentz发表了一百多个有机化合物的红外光谱图,给有机化学家提供了鉴别未知化合物的有力手段。到四十年代红外光谱技术得到了广泛的研究和应用。当今红外光谱仪的分辨率越来越高,检测范围扩展到10000-200cm-1,样品量少至微克级。红外光谱提供的某些信息简捷可靠,检测样品中有无羰基及属于哪一类(酸酐、酯、酮或醛)是其他光谱技术难以替代的。因此,对从事有机化合物为研究对象的化学工作者来说,红外光谱学是必需熟悉和掌握的一门重要光谱知识。 一、基本原理 1、基本知识 光是一种电磁波。可根据电磁波的波长范围分成不同类型的光谱,它们各自反映出物质的不同类型的运动形式。表1列出这些电磁波的波长,其所在区域的光谱名称,以及对应的运动形式。 红外光谱研究的内容涉及的是分子运动,因此称之为分子光谱。通常红外光谱系指2-25μ之间的吸收光谱,常用的为中红外区4000-650cm-1或4000-400cm-1。 这段波长范围反映出分子中原子间的振动和变角振动,分子在振

动运动的同时还存在转动运动。在红外光谱区实际所测得的图谱是分子的振动与转动运动的加合表现,即所谓振转光谱。 每一化合物都有其特有的光谱,因此使我们有可能通过红外光谱对化合物作出鉴别。 红外光谱所用的单位波长μ,波数cm-1。光学中的一个基本公式是λυ= C,式中λ为波长,υ为频率,C为光速(3×1010cm/s)。设υ为波数,其含义是单位长度(1cm)中所含的波的个数,并应具有以下关系:波数(cm-1)=104/波长(μ) 波长和波数都被用于表示红外光谱的吸收位置,即红外光谱图的横坐标。目前倾向于普遍采用波数为单位,而在图谱上方标以对应的波长值。红外光谱图的纵坐标反映的是吸收强度,一般以透过率(T%)表示。 2、红外光谱的几种振动形式 主要的基本可以分为两大类:伸缩振动和弯曲振动。 (1)伸缩振动(υ) 沿着键轴方向伸或缩的振动,存在对称与非对称两种类型。它的吸收频率相对在高波数区。 (2)弯曲振动(δ) 包括面内、面外弯曲振动,变角振动,摇摆振动等。它的吸收频率相对在低波数区。 4000cm-1(高)400cm-1(低) 3、红外光谱吸收峰主要的几种类型 (1)基频峰:伸缩振动,弯曲振动产生的吸收峰均为基频峰。 (2)倍频峰:出现在基频峰波数二倍处。如基频为900cm-1,倍频为 1800cm-1。 4、红外光谱吸收峰的强度

红外光谱特征峰解析常识

红外光谱特征峰解析常识 编写李炎平 红外特征光谱峰存在一定特征规律,正确的记录了化学结构和特征,识记特征波谱峰有助于我们解析红外光谱。下面我将一些特征波谱峰简要罗列如下,如有疏漏之处还望批评指出。 , 羟基:特征峰范围(3650~3200)cmˉ1,一般在 3600cmˉ1处有较强峰。 , 羧基:特征峰范围(3500~2500)cmˉ1,一般峰波 数小于羟基。 , 饱和烷烃—C—H :特征峰小于3000cmˉ1,一般在 (2950~2850)cm处,如有峰在(1390~1360)cmˉ1 处,则说明有—CH,如有峰在1450cmˉ1处,则说3 明有——, CH2 , 不抱和烷烃:特征峰大于3000cmˉ1,对于烯烃 _C,C,H在3050 cmˉ1处和(1600~1330)cmˉ1 ,C,C,H处有峰,对于炔烃在(3360~3250)cmˉ1 处有峰,在(700~600)cmˉ1处有枪宽峰。 C,C, 对于:在(1700~1645)cmˉ1处有特征峰,不 过不太明显,只具有指示作用。 ,CHO,,COC,,,COOC,, 对于在(1900~1600)cm处有强峰。 ,C,O,,,C,O,C,,,C,N,,,C,O,C,, 指纹区:等,在 (1330~900)cmˉ1处有中强峰, , 对于:在(900~400)cmˉ1处有中强或弱峰。 (CH)2n

, 对于醛类:特征范围为羰基峰+(2900~2700)cmˉ1。 , 对于:在(1300~900)cmˉ1处有两强峰(可,C,O,C, 能有一个弱峰)。 , 特征区范围(4400~1330)cmˉ1,指纹区范围(1330~400)cmˉ1。 , 通常将中红外光谱区域划分为四个部 分。 1)4000~2500cm-1,为含氢基团的伸 缩振动区,通常称为“氢键区”。 2)2500~2000cm-1叁键和累积双键区。 3)2000~1500cm-1,双键区。 4)小于1500cm-1,单键区。

信噪比 - 概念

信噪比-概念 信噪比 信噪比的概念 信噪比是音箱回放的正常声音信号与无信号时噪声信号(功率)的比值。用dB表示。例如,某音箱的信噪比为80dB,即输出信号功率比噪音功率大80dB。信噪比数值越高,噪音越小。 “噪声”的简单定义就是:“在处理过程中设备自行产生的信号”,这些信号与输入信号无关。对于MP3播放器来说,信噪比都是一个比较重要的参数,它指音源产生最大不失真声音信号强度与同时发出噪音强度之间的比率称为信号噪声比,简称信噪比(Signal/Noise),通常以S/N表示,单位为分贝(dB)。对于播放器来说,该值当然越大越好。 它也指在规定输入电压下的输出信号电压与输入电压切断时,输出所残留之杂音电压之比,也可看成是最大不失真声音信号强度与同时发出的噪音强度之间的比率,通常以S/N表示。一般用分贝(dB)为单位,信噪比越高表示音频产品越好,常见产品都选择60dB以上。 国际电工委员会对信噪比的最低要求是前置放大器大于等于63dB,后级放大器大于等于86dB,合并式放大器大于等于63dB。合并式放大器信噪比的最佳值应大于90dB,CD机的信噪比可达90dB以上,高档的更可达110 dB以上。信噪比低时,小信号输入时噪音严重,整个音域的声音明显感觉是混浊不清,所以信噪比低于80dB 的音箱不建议购买,而低音炮70dB的低音炮同样原因不建议购买。 信噪比-意义

信噪比 信噪比的概念 信噪比是音箱回放的正常声音信号与无信号时噪声信号(功率)的比值。用dB表示。例如,某音箱的信噪比为80dB,即输出信号功率比噪音功率大80dB。信噪比数值越高,噪音越小。 “噪声”的简单定义就是:“在处理过程中设备自行产生的信号”,这些信号与输入信号无关。对于MP3播放器来说,信噪比都是一个比较重要的参数,它指音源产生最大不失真声音信号强度与同时发出噪音强度之间的比率称为信号噪声比,简称信噪比(Signal/Noise),通常以S/N表示,单位为分贝(dB)。对于播放器来说,该值当然越大越好。 它也指在规定输入电压下的输出信号电压与输入电压切断时,输出所残留之杂音电压之比,也可看成是最大不失真声音信号强度与同时发出的噪音强度之间的比率,通常以S/N表示。一般用分贝(dB)为单位,信噪比越高表示音频产品越好,常见产品都选择60dB以上。 国际电工委员会对信噪比的最低要求是前置放大器大于等于63dB,后级放大器大于等于86dB,合并式放大器大于等于63dB。合并式放大器信噪比的最佳值应大于90dB,CD机的信噪比可达90dB以上,高档的更可达110 dB以上。信噪比低时,小信号输入时噪音严重,整个音域的声音明显感觉是混浊不清,所以信噪比低于80dB 的音箱不建议购买,而低音炮70dB的低音炮同样原因不建议购买。

红外吸收光谱分析及其应用

红外吸收光谱分析及其应用 20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。红外光谱测定的优点: 1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。 2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。 3、常规红外光谱仪价格低廉,易于购置。 4、样品用量小。 红外吸收光谱分析也叫红外分光光度法,十一研究物质分子对红外辐射的吸收特性二建立起来的一种定性(包括结构分析)、定量分析法。根据试样的红外吸收光谱进行定性、定量分析和确定分子结构等分析的方法,称为红外吸收光谱法。 原理:当分子中某个基团的振动频率和红外光的振动频率一致时,分子就吸收红外光的能量,从原来的基态振动能级跃迁到能量较高的振动能级。物质对红外光的吸收曲线称为红外吸收光谱(IR)。 分子吸收红外光必须满足如下两个条件: 1.红外光的能量应恰好能满足振动能级跃迁所需要的能量,当红外光的频率与分子中某基团的振动频率相同时,红外光的能量才恩能够被吸收。 2.分子必须有偶极矩的变化。 与UV(紫外光谱)相比,IR的特点:IR频率范围小、吸收峰数目多、吸收曲线复杂、吸收强度弱。IR峰出现的频率位置由振动能级差决定;吸收峰的个数与分组振动自由度的数目有关;吸收峰的强度则主要取决于振动过程中偶极矩变化的大小和能级跃迁的几率。 红外吸收光谱具有高度的特征性,除光学异构外,没有两种化合物的红外光谱是完全相同的。红外光谱中往往具体要几组相关峰可以互相佐证而增强了定性和结构分析的可靠性,因此在官能团定性方面,是紫外、核磁、质谱等结构分析方法所不及的。红外光谱法可测定链、位置、顺反、晶型等异构体,而质谱法对异构体的鉴别则无能为力;红外光谱测定的样品范围广,无机、有机、高分子等

音频信噪比

音频信噪比 音频信噪比是指音响设备播放时,正常声音信号强度与噪声信号强度的比值。当信噪比低,小信号输入时噪音严重,在整个音域的声音明显变得浑浊不清,不知发的是什么音,严重影响音质。信噪比的大小是用有用信号功率(或电压)和噪声功率(或电压)比值的对数来表示的。这样计算出来的单位称为“贝尔”。实用中因为贝尔这个单位太大,所以用它的十分之一做计算单位,称为“分贝”。对于便携式DVD来说,信噪比至少应该在70dB(分贝)以上,才可以考虑。 信噪比,即SNR(Signal to Noise Ratio),又称为讯噪比。狭义来讲是指放大器的输出信号的电压与同时输出的噪声电压的比,常常用分贝数表示,设备的信噪比越高表明它产生的杂音越少。一般来说,信噪比越大,说明混在信号里的噪声越小,声音回放的音质量越高,否则相反。信噪比一般不应该低于70dB,高保真音箱的信噪比应达到110dB以上。 信噪比的测量及计算 通过计算公式我们发现,信噪比不是一个固定的数值,它应该随着输入信号的变化而变化,如果噪声固定的话,显然输入信号的幅度越高信噪比就越高。显然,这种变化着的参数是不能用来作为一个衡量标准的,要想让它成为一种衡量标准,就必须使它成为一个定值。于是,作为器材设备的一个参数,信噪比被定义为了“在设备最大不失真输出功率下信号与噪声的比率”,这样,所有设备的信噪比指标的测量方式就被统一起来,大家可以在同一种测量条件下进行比较了。信噪比通常不是直接进行测量的,而是通过测量噪声信号的幅度换算出来的,通常的方法是:给放大器一个标准信号,通常是0.775Vrms或2Vp-p@1kHz,调整放大器的放大倍数使其达到最大不失真输出功率或幅度(失真的范围由厂家决定,通常是10%,也有1%),记下此时放大器的输出幅Vs,然后撤除输入信号,测量此时出现在输出端的噪声电压,记为Vn,再根据SNR=20LG(Vn/Vs)就可以计算出信噪比了。Ps和Pn分别是信号和噪声的有效功率,根据SNR=10LG(Ps/Pn)也可以计算出信号比。 这样的测量方式完全可以体现设备的性能了。但是,实践中发现,这种测量方式很多时候会出现误差,某些信噪比测量指标高的放大器,实际听起来噪声比指标低的放大器还要大。经过研究发现,这不是测量方法本身的错误,而是这种测量方法没有考虑到人的耳朵对于不同频率的声音敏感性是不同的,同样多的噪声,如果都是集中在几百到几千Hz,和集中在20KHz以上是完全不同的效果,后者我们可能根本就察觉不到。因此就引入了一个“权”的概念。这是一个统计学上的概念,它的核心思想是,在进行统计的时候,应该将有效的、有用的数据进行保留,而无效和无用的数据应该尽量排除,使得统计结果接近最准确,每个统计数据都由一个“权”,“权”越高越有用,“权”越低就越无用,毫无用处的数据的“权”为0。于是,经过一系列测试和研究,科学家们找到了一条“通用等响度曲线”,这个曲线代表的是人耳对于不同频率的声音的灵敏度的差异,将这个曲线引入信噪比计算方法后,先兆比指标就和人耳感受的结果更为接近了。噪声中对人耳影响最大的频段“权”最高,而人耳根本听不到的频段的“权”为0。这种计算方式被称为“A计权”,已经称为音响行业中普遍采用的计算方式。 总谐波失真(THD) 信号的失真情况,通常使用THD也就是总谐波失真来表示,总谐波失真是指用信号源输入时,输出信号比输入信号多出的额外谐波成分。谐波失真是由于系统不是完全线性造成的,它通常用百分数来表示,也可以用dB来表示。在正常工作的情况下,输出信号中总的谐波电压有效值与总输出信号的电压有效值之比。所有附加谐波电平之和称为

红外吸收光谱的解析分解

红外吸收光谱法 第一节概述 一、红外光谱测定的优点 20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。红外光谱测定的优点: 1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。 2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。 3、常规红外光谱仪价格低廉,易于购置。 4、样品用量小。 二、红外波段的划分 σ=104/λ(λnm σcm-1) 红外波段范围又可以进一步分为远红外、中红外、近红外 波段波长nm 波数cm-1 近红外0.75~2.5 13300~4000 中红外 2.5~15.4 4000~650 远红外15.4~830 650~12 三、红外光谱的表示方法 红外光谱图多以波长λ(nm)或波数σ(cm-1)为横坐标,表示吸收峰的位置,多以透光率T%为纵坐标,表示吸收强度,此时图谱中的吸收“峰”,其实是向下的“谷”。一般吸收峰的强弱均以很强(ε大于200)、强(ε在75-200)、中(ε在25-75)、弱(ε在5-25)、很弱(ε小于5),这里的ε为表观摩尔吸收系数 红外光谱中吸收峰的强度可以用吸光度(A)或透过率T%表示。峰的强度遵守朗伯-比耳定律。吸光度与透过率关系为 A=lg( ) T1 所以在红外光谱中“谷”越深(T%小),吸光度越大,吸收强度越强。

第二节 红外吸收光谱的基本原理 一、分子的振动与红外吸收 任何物质的分子都是由原子通过化学键联结起来而组成的。分子中的原 子与化学键都处于不断的运动中。它们的运动,除了原子外层价电子跃迁以 外,还有分子中原子的振动和分子本身的转动。这些运动形式都可能吸收外 界能量而引起能级的跃迁,每一个振动能级常包含有很多转动分能级,因此 在分子发生振动能级跃迁时,不可避免的发生转动能级的跃迁,因此无法测 得纯振动光谱,故通常所测得的光谱实际上是振动-转动光谱,简称振转光谱。 1、双原子分子的振动 分子的振动运动可近似地看成一些用弹簧连接着的小球的运动。以双原子 分子为例,若把两原子间的化学键看成质量可以忽略不计的弹簧,长度为r (键 长),两个原子分子量为m 1、m 2。如果把两个原子看成两个小球,则它们之 间的伸缩振动可以近似的看成沿轴线方向的简谐振动,如图3—2。因此可以 把双原子分子称为谐振子。这个体系的振动频率υ(以波数表示),由经典力 学(虎克定律)可导出: C ——光速(3×108 m/s ) υ= K ——化学键的力常数(N/m ) μ——折合质量(kg ) μ= 如果力常数以N/m 为单位,折合质量μ以原子质量为单位,则上式可简 化为 υ=130.2 双原子分子的振动频率取决于化学键的力常数和原子的质量,化学键越强,相对原子质量越小,振动频率越高。 H-Cl 2892.4 cm -1 C=C 1683 cm -1 C-H 2911.4 cm -1 C-C 1190 cm -1 同类原子组成的化学键(折合质量相同),力常数大的,基本振动频率就 大。由于氢的原子质量最小,故含氢原子单键的基本振动频率都出现在中红 外的高频率区。 2、多原子分子的振动 1πμ2c K m 1m 2m 1m2+ K μ

仪器分析红外吸收光谱法习题和答案解析

红外吸收光谱法 一.填空题 1.一般将多原子分子的振动类型分为伸缩振动和变形振动,前者又可分为对称伸缩振动和反对称伸缩振动,后者可分为面内剪式振动(δ)、面内摇摆振动(ρ) 和面外摇摆振动(ω)、面外扭曲振动(τ) 。2.红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 远红外区,中红外区和近红外区 ,其中中红外区的应用最广。 3.红外光谱法主要研究振动中有偶极矩变化的化合物,因此,除了单原子和同核分子等外,几乎所有的化合物在红外光区均有吸收。 4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为红外活性 ,相反则 称为红外非活性的。一般来说,前者在红外光谱图上出现吸收峰。5.红外分光光度计的光源主要有能斯特灯和硅碳棒。 6.基团一OH、一NH;==CH的一CH的伸缩振动频率范围分别出现在 3750—3000 cm-1, 3300—3000 cm-1, 3000—2700 cm-1。 7.基团一C≡C、一C≡N ;—C==O;一C=N,一C=C—的伸缩振动频率范围分别出现在 2400—2100 cm-1, 1900—1650 cm-1, 1650—1500 cm-1。 8.4000—1300 cm-1 区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为官能团区;1300—600 cm-1 区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的指纹一样,故称为指纹区。 二、选择题 1.二氧化碳分子的平动、转动和振动自由度的数目分别(A) A. 3,2,4 B. 2,3,4 C. 3,4,2 D. 4,2,3 2.乙炔分子的平动、转动和振动自由度的数目分别为(C) A. 2,3,3 B. 3,2,8 C. 3,2,7 D. 2,3,7 4.下列数据中,哪一组数据所涉及的红外光谱区能够包括CH 3CH 2 COH的吸收 带?(D) A. 3000—2700cm-1,1675—1500cm-1,1475—1300cm一1。 B. 3300—3010cm-1,1675—1500cm-1, 1475—1300cm-1。 C. 3300—3010cm-1, 1900—1650cm-l,1000——650cm-1。 D. 3000—2700cm-1, 1900—1650cm-1, 1475——1300cm-1。 1900—1650cm-1为 C==O伸缩振动,3000—2700cm-1为饱和碳氢C—H伸缩振动(不饱和的其频率高于3000 cm-1),1475——1300cm-1为C—H变形振动(如—CH 3 约在1380—1460cm-1)。

相关文档
最新文档