概率论大数定律与中心极限定理

概率论大数定律与中心极限定理
概率论大数定律与中心极限定理

‘、第五章 大数定律与中心极限定理

第一节 大数定律

在第一章中我们已经指出,人们经过长期实践认识到,虽然个别随机事件在某次试验中可能发生也可能不发生,但是在大量重复试验中却呈现明显的规律性,即随着试验次数的增大,一个随机事件发生的频率在某一固定值附近摆动.这就是所谓的频率具有稳定性.同时,人们通过实践发现大量测量值的算术平均值也具有稳定性.而这些稳定性如何从理论上给以证明就是本节介绍的大数定律所要回答的问题.

在引入大数定律之前,我们先证一个重要的不等式——契比雪夫(Chebyshev )不等式. 设随机变量X 存在有限方差D (X ),则有对任意ε>0,

P {|X -E (X )|≥ε}≤2)

(εX D .(5.1)

证 如果X 是连续型随机变量,设X 的概率密度为f (x ),则有

P {|X -E (X )|≥ε}=

??≥-≥--≤

εεε)(22)()()()(X E x X E x x x f X E x x x f d d ≤[].)()()(1

222?+∞∞-=-ε

εX D x x f X E x d 请读者自己证明X 是离散型随机变量的情况.

契比雪夫不等式也可表示成

P {|X -E (X )|<ε}≥1-2)

(εX D . 5.2)

这个不等式给出了在随机变量X 的分布未知的情况下事件{|X -E (X )|<ε}的概率的下限估计,例如,在契比雪夫不等式中,令ε=3)(X D ,4)(X D 分别可得到

P {|X -E (X )|<3)(X D }≥0.8889,

P {|X -E (X )|<4)(X D }≥0.9375.

例5.1 设X 是掷一颗骰子所出现的点数,若给定ε=1,2,实际计算P {|X -E (X )|≥ε},并验证契比雪夫不等式成立.

解 因为X 的概率函数是P {X =k }=1/6(k =1,2,…,6),所以

E (X )=7/2, D (X )=35/12,

P {|X -7/2|≥1=P {X =1}+P {X =2}+P {X =5}+P {X =6}=2/3;

P {|X -7/2|}≥2}=P {X =1}+P {X =6}=1/3.

ε=1:

2)(εX D =35/12>2/3, ε=2:2)

(εX D =1/4×35/12=35/48>1/3.

可见契比雪夫不等式成立.

例5.2 设电站供电网有10000盏电灯,夜晚每一盏灯开灯的概率都是0.7,而假定开、关时间彼此独立,估计夜晚同时开着的灯数在6800与7200之间的概率.

解 设X 表示在夜晚同时开着的灯的数目,它服从参数为n =10000,p =0.7的二项分布.若要准确计算,应该用贝努里公式:

P {6800

∑=-??7199

680110000100003.07.0k k k k C .

如果用契比雪夫不等式估计: E (X )=np =10000×0.7=7000,

D (X )=npq =10000×0.7×0.3=2100,

P {6800

2100≈0.95. 可见,虽然有10000盏灯,但是只要有供应7200盏灯的电力就能够以相当大的概率保证够用.事实上,契比雪夫不等式的估计只说明概率大于0.95,后面将具体求出这个概率约为0.99999.契比雪夫不等式在理论上具有重大意义,但估计的精确度不高.

契比雪夫不等式作为一个理论工具,在大数定律证明中,可使证明非常简洁.

定义5.1 设Y 1,Y 2,…,Y n ,…是一个随机变量序列,a 是一个常数,若对于任意正数ε有

{}1lim =<-∞→εa Y

P n n ,

则称序列Y 1,Y 2,…,Y n ,…依概率收敛于a ,记为Y n P a .

定理5.1(契比雪夫(Chebyshev )大数定律) 设X 1,X 2,…是相互独立的随机变量序列,各有数学期望E (X1),E (X2),…及方差D (X 1),D (X 2),…,并且对于所有i =1,2,…都有D (X i )0,有

1)(1111lim =?

?????<-∑∑==∞→εn i n

i i i n X E n X n P . (5.3) 证因X 1,X 2,…相互独立,所以

n l nl n X D n X n D n i i n i i =?<=??? ??∑∑==21

211)(11. 又因

,)(111

1∑∑===??? ??n

i i n i i X E n X n E 由(5.2)式,对于任意ε>0,有

2111)(11εεn l X E n X n P n i i n i i -≥?

?????<-∑∑==, 但是任何事件的概率都不超过1,即

1)(111112≤??????<-≤-∑∑==εεn

i i n i i X E n X n P n l

,

因此

1)(1111lim =?

?????<-∑∑==∞→εn i n

i i i n X E n X n P . 契比雪夫大数定律说明:在定理的条件下,当n 充分大时,n 个独立随机变量的平均数

这个随机变量的离散程度是很小的.这意味,经过算术平均以后得到的随机变量n X

n i i

∑=1将比较密的聚集在它的数学期望n X E n

i i ∑=1

)(的附近,它与数学期望之差依概率收敛到0.

定理5.2(契比雪夫大数定律的特殊情况) 设随机变量X 1,X 2,…,X n ,…相互独立,且具有相同的数学期望和方差:E (X k )=μ,D (X k )=σ2(k =1,2,…).作前n 个随机变量的算术平均∑==n

k k n X n Y 1

1则对于任意正数ε有 {}1lim =<-∞→εμn n Y P . (5.4)

定理5.3(贝努里(Bernoulli )大数定律) 设n A 是n 次独立重复试验中事件A 发生的次数.p 是事件A 在每次试验中发生的概率,则对于任意正数ε>0,有

1lim =?

?????<-∞→εp n n P A n , (5.5) 或 0lim =??????≥-∞

→εp n n P A n . 证 引入随机变量

X k =???=,,2,1,1,0 k ,

A k ,A k 发生次试验中若在第不发生次试验中若在第, 显然 n A =∑=n k k X

1.

因为X k 只依赖于第k 次试验,而各次试验是独立的.于是X 1,X 2,…,是相互独立的;又因为X k 服从(0-1)分布,故有

E (X k )=p , D (X k )=p (1-p ), k =1,2,….

由定理5.2有

111lim n i n k P X p n ε→∞=??-<=????

∑, 即 1lim =?

?????<-∞→εp n n P A n .

贝努里大数定律告诉我们,事件A 发生的频率n

n A 依概率收敛于事件A 发生的概率p ,因此,本定律从理论上证明了大量重复独立试验中,事件A 发生的频率具有稳定性,正因为这种稳定性,概率的概念才有实际意义.贝努里大数定律还提供了通过试验来确定事件的概率的方法,即既然频率n

n A 与概率p 有较大偏差的可能性很小,于是我们就可以通过做试验确定某事件发生的频率,并把它作为相应概率的估计.因此,在实际应用中,如果试验的次数很大时,就可以用事件发生的频率代替事件发生的概率.

定理5.2中要求随机变量X k (k =1,2,…,n )的方差存在.但在随机变量服从同一分布的场合,并不需要这一要求,我们有以下定理.

定理5.4(辛钦(Khinchin )大数定律)设随机变量X 1,X 2,…,X n ,…相互独立,服从同一分布,且具有数学期望E (X k )=μ (k =1,2,…),则对于任意正数ε,有

111lim n i n k P X n με→∞=??-<=????

∑. (5.6) 显然,贝努里大数定律是辛钦大数定律的特殊情况,辛钦大数定律在实际中应用很广泛. 这一定律使算术平均值的法则有了理论根据.如要测定某一物理量a ,在不变的条件下重

复测量n 次,得观测值X 1,X 2,…,X n ,求得实测值的算术平均值∑=n

i i X n 1

1,根据此定理,当n 足够大时,取∑=n

i i X n 1

1作为a 的近似值,可以认为所发生的误差是很小的,所以实用上往往用某物体的某一指标值的一系列实测值的算术平均值来作为该指标值的近似值.

第二节 中心极限定理

在客观实际中有许多随机变量,它们是由大量相互独立的偶然因素的综合影响所形成的,而每一个因素在总的影响中所起的作用是很小的,但总起来,却对总和有显著影响,这种随机变量往往近似地服从正态分布,这种现象就是中心极限定理的客观背景.概率论中有关论证独立随机变量的和的极限分布是正态分布的一系列定理称为中心极限定理(Central limit theorem),现介绍几个常用的中心极限定理.

定理5.5(独立同分布的中心极限定理) 设随机变量X 1,X 2,…,X n ,…相互独立,服从同一分布,且具有数学期望和方差E (X k )=μ,D (X k )=σ2≠0(k =1,2,…).则随机变量

σ

μn n X X D X E X Y n k k n k k n k k n k k n -=??? ??-=∑∑∑∑====1111

)

( 的分布函数F n (x )对于任意x 满足

?∑∞--=∞→∞→=???

???????????≤-=x t n k k n n n t x n n X P x F .21lim )(lim 212d e πσμ (5.7) 从定理5.5的结论可知,当n 充分大时,近似地有

Y n =

21σμn n X n

k k -∑=~N (0,1).

或者说,当n 充分大时,近似地有 ()

.,~21σμn n N X

n k k ∑=(5.8) 如果用X 1,X 2,…,X n 表示相互独立的各随机因素.假定它们都服从相同的分布(不论服从什么分布),且都有有限的期望与方差(每个因素的影响有一定限度).则(5.8)式说明,作为总和∑=n k k X

1这个随机变量,当n 充分大时,便近似地服从正态分布.

例5.3 一个螺丝钉重量是一个随机变量,期望值是1两,标准差是0.1两.求一盒(100个)同型号螺丝钉的重量超过10.2斤的概率.

解 设一盒重量为X ,盒中第i 个螺丝钉的重量为X i (i =1,2,…,100).X 1,X 2,…,X 100相互独立,E (X i )=1,)(i X D =0.1,则有

X =∑=1001i i X

,且E (X )=100·E (X i )=100(两),)(i X D =1(两).

根据定理5.5,有

P {X >102}=}2100{111001021100≤--=?

?????->-X P X P ≈1-Φ(2)=1-0.977250=0.022750.

例5.4 对敌人的防御地进行100次轰炸,每次轰炸命中目标的炸弹数目是一个随机变量,其期望值是2,方差是1.69.求在100次轰炸中有180颗到220颗炸弹命中目标的概率. 解令第i 次轰炸命中目标的炸弹数为X i ,100次轰炸中命中目标炸弹数X =∑=1001i i X

,应用定理

5.5,X 渐近服从正态分布,期望值为200,方差为169,标准差为13.所以

P {180≤X ≤220}=P {|X -200|≤20}=????

??≤-132013200X P ≈2Φ(1.54)-1=0.87644.

定理5.6(李雅普诺夫(Liapunov )定理) 设随机变量X 1,X 2,…相互独立,它们具有数学期望和方差:

E (X k )=μk , D (X k )=σ

k 2≠0 (k =1,2,…). 记∑==n k k n B 122σ

,若存在正数δ,使得当n →∞时,

{}∑=++→-n k k k n X E B 12201

δδμ,

则随机变量 Z n =n n

k k n

k k n k k n k n k k k B X X D X E X

∑∑∑∑∑=====-=-11111

)

()(μ

的分布函数F n (x )对于任意x ,满足

?∑∑∞--==∞←∞→=???

???????????≤-=x t n n k k n k k n n n t x B X P x F d e π211221lim )(lim μ. (5.9) 这个定理说明,随机变量

Z n =n n k k

n k k

B X ∑∑==-11μ

当n 很大时,近似地服从正态分布N (0,1).因此,当n 很大时,

∑∑==+=n

k k n n n k k Z B X

11μ 近似地服从正态分布??

? ??∑=21,n n k k B N μ.这表明无论随机变量X k (k =1,2,…)具有怎样的分

布,只要满足定理条件,则它们的和∑=n k k X

1当n 很大时,就近似地服从正态分布.而在许多

实际问题中,所考虑的随机变量往往可以表示为多个独立的随机变量之和,因而它们常常近似服从正态分布.这就是为什么正态随机变量在概率论与数理统计中占有重要地位的主要原因.

在数理统计中我们将看到,中心极限定理是大样本统计推断的理论基础.

下面介绍另一个中心极限定理.

定理5.7 设随机变量X 服从参数为n ,p (0<p <1)的二项分布,则

(1) (拉普拉斯(Laplace)定理) 局部极限定理:当n →∞时

P {X =k }≈???

? ??-=--npq np k npq npq npq np k ?1212)(2e π, (5.10)

其中p +q =1,k =0,1,2,…,n ,2221)(x x -=e π

?. (2) (德莫佛-拉普拉斯(De Moivre

Laplace)定理) 积分极限定理:对于任意的x ,

恒有 ?∞--∞→=??

????????≤--x t n t x p np np X P d e π2221)1(lim . (5.11) 这个定理表明,二项分布以正态分布为极限.当n 充分大时,我们可以利用上两式来计算二项分布的概率.

例5.5 10部机器独立工作,每部停机的概率为0.2,求3部机器同时停机的概率. 解 10部机器中同时停机的数目X 服从二项分布,n =10,p =0.2,np =2,npq ≈1.265.

(1) 直接计算:P {X =3}=310C ×0.23×0.87≈0.2013;

(2) 若用局部极限定理近似计算:

P {X =3}=)79.0(265.11265.123265.111???=??

? ??-=???? ??-npq np k npq =0.2308. (2)的计算结果与(1)相差较大,这是因为n 不够大.

例5.6 应用定理5.7计算§5.1中例5.2的概率.

解np =7000,npq ≈45.83.

P {6800

?????<-ΦX P =0.99999.

例5.7 产品为废品的概率为p =0.005,求10000件产品中废品数不大于70的概率. 解 10000件产品中的废品数X 服从二项分布,n =10000,p =0.005,np =50,npq ≈7.053.

P {X ≤70}=)84.2(053.75070ΦΦ=??

? ??- =0.9977. 正态分布和泊松分布虽然都是二项分布的极限分布,但后者以n →∞,同时p →0,np →λ为条件,而前者则只要求n →∞这一条件.一般说来,对于n 很大,p (或q )很小的二项分布(n p ≤5)用正态分布来近似计算不如用泊松分布计算精确.

例5.8 每颗炮弹命中飞机的概率为0.01,求500发炮弹中命中5发的概率.

解 500发炮弹中命中飞机的炮弹数目X 服从二项分布,n =500,p =0.01,np =5,npq ≈2.2.下面用三种方法计算并加以比较:

(1) 用二项分布公式计算:

P {X =5}=5

500C ×0.015×0.99495=0.17635.

(2) 用泊松公式计算,直接查表可得:

np =λ=5,k =5,P 5(5)≈0.175467.

(3) 用拉普拉斯局部极限定理计算:

P {X =5}=???

? ??-npq np npq 51?≈0.1793. 可见后者不如前者精确.

小 结

本章介绍了契比雪夫不等式、四个大数定律和三个中心极限定理.

契比雪夫不等式给出了随机变量X 的分布未知,只知道E (X )和D (X )的情况下,对事件{|X -E (X )|≤ε}概率的下限估计.

人们在长期实践中认识到频率具有稳定性,即当试验次数增大时,频率稳定在一个数的附近.这一事实显示了可以用一个数来表征事件发生的可能性的大小.这使人们认识到概率是客观存在的,进而由频率的三条性质的启发和抽象给出了概率的定义,因而频率的稳定性是概率定义的客观基础.贝努里大数定律则以严密的数学形式论证了频率的稳定性.

中心极限定理表明,在相当一般的条件下,当独立随机变量的个数增加时,其和的分布趋于正态分布.这一事实阐明了正态分布的重要性.中心极限定理也揭示了为什么在实际应用中会经常遇到正态分布,也就是揭示了产生正态分布变量的源泉.另一方面,它提供了独立同分布随机变量之和∑=n k k X

1(其中X k 的方差存在)的近似分布,只要和式中加项的个数充

分大,就可以不必考虑和式中的随机变量服从什么分布,都可以用正态分布来近似,这在应用上是有效和重要的.

中心极限定理的内容包含极限,因而称它为极限定理是很自然的.又因为它在统计中的重要性,称它为中心极限定理,这是Polya 在1920年取的名字.

本章要求读者理解大数定律和中心极限定理的概率意义,并要求会使用中心极限定理估算有关事件的概率.

重要术语及主题

契比雪夫不等式 依概率收敛

契比雪夫大数定律及特殊情况 贝努里大数定律

辛钦大数定律 独立同分布中心极限定律

李雅普诺夫中心极限定理 德莫佛拉普拉斯中心极限定理.

习 题 五

1. 一颗骰子连续掷4次,点数总和记为X .估计P {10

2. 假设一条生产线生产的产品合格率是0.8.要使一批产品的合格率达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件?

3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产.

4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布.记V =∑=201k k V

,求P {V >105}的近似值.

5. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?

6. 某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言.

(1) 若实际上此药品对这种疾病的治愈率是0.8,问接受这一断言的概率是多少?

(2) 若实际上此药品对这种疾病的治愈率是0.7,问接受这一断言的概率是多少?

7. 用Laplace 中心极限定理近似计算从一批废品率为0.05的产品中,任取1000件,其中有20件废品的概率.

8. 设有30个电子器件.它们的使用寿命T 1,…,T 30服从参数λ=0.1[单位:(小时)-1]的指数分布,其使用情况是第一个损坏第二个立即使用,以此类推.令T 为30个器件使用的总计时间,求T 超过350小时的概率.

9. 上题中的电子器件若每件为a 元,那么在年计划中一年至少需多少元才能以95%的概率保证够用(假定一年有306个工作日,每个工作日为8小时).

10. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1名家长、2名家长来参加会议的概率分别为0.05,0.8,0.15.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布.

(1) 求参加会议的家长数X 超过450的概率?

(2) 求有1名家长来参加会议的学生数不多于340的概率.

11. 设男孩出生率为0.515,求在10000个新生婴儿中女孩不少于男孩的概率?

12. 设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为0.9.以95%概率估计,在一次行动中:

(1)至少有多少个人能够进入?

(2)至多有多少人能够进入?

13. 在一定保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡者其家属可向保险公司领得1000元赔偿费.求:

(1) 保险公司没有利润的概率为多大;

(2) 保险公司一年的利润不少于60000元的概率为多大?

14. 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5试根据契比雪夫不等式给出P {|X -Y |≥6}的估计. (2001研考)

15. 某保险公司多年统计资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中,因被盗向保险公司索赔的户数.

(1) 写出X 的概率分布;

(2) 利用中心极限定理,求被盗索赔户不少于14户且不多于30户的概率近似值.

(1988研考)

16. 一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977. (2001研考)

概率论大数定律及其应用

概率论基础结课论文题目:独立随机序列的大数事件的定理与应用 作者 摘要:历史上第一个定理属于,后人称之为“”。概率论中讨论的向的定律。概率论与数理的基本定律之一,又称弱大数理论。 大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。 关键词:弱大数定理伯努利大数定理随机变量数学期望概率 引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。偶然之中包含着必然。 从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么?在什么条件下具有稳定性?这就是我们大数要研究的问题。 概率与统计是研究随机现象的统计规律的学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。然而,在大量重复试验或观察中,我们会发现,一个事件发生的频率具有稳定性,它的稳定性会随着试验次数的增多表现得越来越明显。这种稳定性与它在在实验进行中的个别特征无关,且不再是随机的。大数定律给出了稳定性的确切含义,并且给出了什么条件下才具有稳定性。那么,这对于我们解决理论与实际问题有哪些实际意义呢?这就是我们在下面将要了解到的,大数定律的某些应用。即,大数定律及其在理论与实际生活中的一些应用。 一方面,在理论上,大数定律可以看作是求解极限、重积分以及级数的一种新思路,另一方面,在实际生活中,保险动机的产生、保险公司财政稳定和保费的确定,我们都将看到大数定律的重要作用。

中心极限定理

中心极限定理 中心极限定理(Central Limit Theorems) 什么是中心极限定理 大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。 中心极限定理是概率论中最著名的结果之一。它提出,大量的独立随机变量之和具有近似于正态的分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。 中心极限定理的表现形式 中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理: (一)辛钦中心极限定理 设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则 随机变量,在n无限增大时,服从参数为a和的正态分布即n→∞时, 将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。 (二)德莫佛——拉普拉斯中心极限定理 设μ n是n次独立试验中事件A发生的次数,事件A在每次试验中发生的概率为P,则当n 无限大时,频率设μ n / n趋于服从参数为的正态分布。即:

该定理是辛钦中心极限定理的特例。在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。 (三)李亚普洛夫中心极限定理 设是一个相互独立的随机变量序列,它们具有有限的数学期望和方 差:。 记,如果能选择这一个正数δ>0,使当n→∞时, ,则对任意的x有: 该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。 (四)林德贝尔格定理 设是一个相对独立的随机变量序列,它们具有有限的数学期望和方差满足林德贝尔格条件,则当n→∞时,对任意的x,有 。 中心极限定理案例分析 案例一:中心极限定理在商业管理中的应用 水房拥挤问题:假设西安邮电学院新校区有学生5000人,只有一个开水房,由于每天傍晚打开水的人较多,经常出现同学排长队的现象,为此校学生会特向后勤集团提议增设水龙头。假

概率论复习题及答案

复习提纲 (一)随机事件和概率 (1)理解随机事件、基本事件和样本空间的概念,掌握事件之间的关系与运算。 (2)了解概率的定义,掌握概率的基本性质和应用这些性质进行概率计算。 (3)理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、Bayes 公式, 以及应用这些公式进行概率计算。 (4)理解事件的独立性概念,掌握应用事件独立性进行概率计算。 (5)掌握Bernoulli 概型及其计算。 (二)随机变量及其概率分布 (1)理解随机变量的概念。 (2)理解随机变量分布函数)}{)((x X P x F ≤=的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。 (3)掌握二项分布、Poisson 分布、正态分布、均匀分布和指数分布。 (4)会求简单随机变量函数的概率分布。 (三)二维随机变量及其概率分布 (1)了解二维随机变量的概念。 (2)了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律 及其性质,并会用它们计算有关事件的概率。 (3)了解二维随机变量分边缘分布和条件分布,并会计算边缘分布。 (4)理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。 (5)会求两个随机变量之和的分布,计算多个独立随机变量最大值、最小值的分布。 (6)理解二维均匀分布和二维正态分布。 (四)随机变量的数字特征 (1)理解数学期望和方差的概念,掌握它们的性质与计算。 (2)掌握6种常用分布的数学期望和方差。 (3)会计算随机变量函数的数学期望。 (4)了解矩、协方差和相关系数的概念和性质,并会计算。 (五)大数定律和中心极限定理 (1)了解Chebyshev 不等式。 (2)了解Chebyshev 大数定律和Benoulli 大数定律。 (3)了解独立同分布场合的中心极限定理和De Moivre-Laplace 中心极限定理的应用条件 和结论,并会用相关定理近似计算有关随机事件的概率。

概率论与数理统计第五章 大数定律及中心极限定理

概率论与数理统计作业 班级 姓名 学号 任课教师 第五章 大数定律及中心极限定理 教学要求: 一、了解大数定律的直观意义; 二、掌握Chebyshev 不等式; 三、了解Chebyshev 大数定理和贝努里大数定理; 四、会用中心极限定理估算有关事件的概率. 重点:中心极限定理. 难点:切比雪夫不等式、大数定律、中心极限定理. 综合练习题 一、选择题 1.设12,,,n X X X 是独立同分布的随机变量序列,且 1,2,,i n = .令∑==n i i n X Y 1 ,1,2,,i n = ,()x Φ为标准正态分布函数,则 ()=?? ????????≤--∞ →11lim p np np Y P n n (B ). (A )0 ; (B )()1Φ; (C )()11Φ-; (D )1.6 . 2.设()x Φ为标准正态分布函数,0,1,i A X A ?=? ?事件不发生, 事件发生, ()100,,2,1 =i ,且 ()8.0=A P ,10021,,,X X X 相互独立.令∑==100 1 i i X Y ,则由中心极限定理知Y 的分布函 数()y F 近似于(B ). (A )()y Φ; (B )?? ? ??-Φ480y ; (C )()8016+Φy ; (D )()804+Φy . 3.设随机变量 ,,,,21n X X X 相互独立,且i X () ,,,2,1n i =都服从参数为 2 1

的指数分布,则当n 充分大时,随机变量∑==n i i n X n Z 1 1的概率分布近似服从(B ). (A )()4,2N ; (B )??? ??n N 4,2; (C )?? ? ??n N 41,21; (D )()n n N 4,2. 二、填空题 1.设随机变量 ,,,,21n X X X 相互独立且同分布,它们的期望为μ,方差为2 σ, 令∑==n i i n X n Z 1 1,则对任意正数ε,有{}=≤-∞→εμn n Z P lim 1 . 2.设 ,,,,21n X X X 是独立同分布的随机变量序列,且具有相同数学期望和方差 ()μ=i X E ,()02>=σi X D ,() ,2,1=i , 则对任意实数x , =??? ? ??? ???????≤-∑=∞ →x n n X P n i i n σμ1lim ()x Φ. 3.设()1-=X E ,()4=X D ,则由切比雪夫不等式估计概率{}42P X -<<≥ 9 5 . 4.设随机变量[]1,0~U X ,由切比雪夫不等式可得≤??????≥- 3121X P 4 1. 5.设随机变量() 2.0,100~B X ,应用中心极限定理可得{}≈≥30X P 0062.0.(其中 ()()9938.05.2=Φ) 三、应用题 1. 100台车床彼此独立地工作着,每台车床的实际工作时间占全部工作时间的80%, 求任一时刻有70至86台车床在工作的概率. 解:设?? ?=台车床没有工作 第台车床正在工作 第i i X i .0.1(100,,2,1 =i ),且()8.0,1~B X i , 则100台车床中在任一时刻正在工作的机床台数为10021X X X X +++= ,且()80=X E ,()16=X D ,(其中10021,,,X X X 独立同分布),于是由德莫弗-拉普拉斯中心极限定理近似可得 ()???? ??-≤-≤-=≤≤168086168016 80708670X P X P

概率论与数理统计概率历史介绍

概率论与数理统计概率历史介绍

一、概率定义的发展与分析 1.古典定义的历史脉络 古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比. 2.古典定义的简单分析 古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提. 如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要求,就是将总数为P(n,r)的各种排列(或总数为C(n,r)的各种组合)看成是等可能的,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,而且还有数学上的问题. “应用性的狭窄性”促使雅各布?伯努利(1654—1705)“寻找另一条途径找到所期待的结果”,这就是他在研究古典概率时的另一重要成果:伯努利大数定律.这条定律告诉我们“频率具有稳定性”,所以可以“用频率估计概率”,而这也为以后概率的统计定义奠定了思想基础.“古典定义数学上的问题”在贝特朗(1822—1900)悖论中表现得淋漓尽致,它揭示出定义存在的矛盾与含糊之处,这导致了拉普拉斯的古典定义受到猛烈批评. 3.统计定义的历史脉络 概率的古典定义虽然简单直观,但是适用范围有限.正如雅各布?伯努利所说:“……这种方法仅适用于极罕见的现象.”因此,他通过观察来确定结果数目的比例,并且认为“即使是没受过教育和训练的人,凭天生的直觉,也会清楚地知道,可利用的有关观测的次数越多,发生错误的风险就越小”.虽然原理简单,但是其科学证明并不简单,在古典概型下,伯努利证实了这一点,即“当试验次数愈来愈大时,频率接近概率”. 事实上,这不仅对于古典概型适用,人们确信“从现实中观察的频率稳定性”的事实是一个普遍规律.1919年,德国数学家冯?米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数的增加,某个事件出现的频率总是在一个固定数值的附近摆动,显示出一定的稳定性,把这个固定的数值定义为这一事件的概率.

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解 (一)单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则() A.P(B|A)=0 B.P(A|B)>0 C.P(A|B)=P(A) D.P(AB)=P(A)P(B) 『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。 解析:A:,因为A与B互不相容,,P(AB)=0,正确; 显然,B,C不正确;D:A与B相互独立。 故选择A。 提示:① 注意区别两个概念:事件互不相容与事件相互独立; ② 条件概率的计算公式:P(A)>0时,。 2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=() A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3) 『正确答案』分析:本题考察正态分布的标准化。 解析:, 故选择C。 提示:正态分布的标准化是非常重要的方法,必须熟练掌握。 3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=() 『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。第33页 解析:, 故选择A。 提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=() A.-3 B.-1 C.- D.1 『正确答案』分析:本题考察概率密度的性质。 解析:1=,所以c=-1, 故选择B。 提示:概率密度的性质: 1.f(x)≥0; 4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。课本第38页 5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是() A.f(x)=-e-x B. f(x)=e-x C. f(x)= D.f(x)= 『正确答案』分析:本题考察概率密度的判定方法。 解析:① 非负性:A不正确;② 验证:B:发散; C:,正确;D:显然不正确。 故选择C。 提示:判定方法:若f(x)≥0,且满足,则f(x)是某个随机变量的概率密度。 6.设二维随机变量(X,Y)~N(μ1,μ2,),则Y ~() 『正确答案』分析:本题考察二维正态分布的表示方法。 解析:显然,选择D。

中国对概率论思想发展史研究初露端倪_读王幼军_拉普拉斯概率理论的历史研究_

第38卷第5期 2009年9月内蒙古师范大学学报(自然科学汉文版)Journal of Inner Mongolia Normal University (Natural Science Edition )Vol.38No.5Sept.2009 收稿日期:2009207210 基金项目:国家自然科学基金资助项目(10771169);山东省十一五教育规划课题(115GG73) 作者简介:徐传胜(1962-),男,山东聊城人,临沂师范学院教授,主要从事概率论思想史研究,E 2mail :lysyxcs @https://www.360docs.net/doc/729304800.html,. 中国对概率论思想发展史研究初露端倪 ———读王幼军《拉普拉斯概率理论的历史研究》 徐传胜 (临沂师范学院数学系,山东临沂276005) 摘 要:目前我国学者对概率论史的研究鲜有涉及,以致有关资料相当匮乏.王幼军的《拉普拉斯概率理论 的历史研究》是中国第一部概率论史研究专著.该书特色为:(1)揭示了拉普拉斯概率理论形成的主要因素; (2)论述了拉普拉斯概率理论的本质和特点;(3)考证了《决疑数学》的底本.但此书也有一些不足和可议之处, 如有些语言西化,令人费解. 关键词:拉普拉斯;概率论;王幼军 中图分类号:N 092 文献标识码:A 文章编号:1001228735(2009)052205782204 概率论现已成为中国高等教育的重要课程之一.现代概率论的内容往往使学生认为它需要与现实模型结合起来,这使学生难以进入数学抽象的境地.在方法上,概率论更注重概念的理解,而这正是习惯于算法学习的学生所欠缺的;另一方面,学生都是在因果观的环境中成长起来的,因此在首次学习处理不确定性的概率论时,感到难以理解也就不足为怪了. 概率论既是一门核心数学学科,更是观测世界的一种基本方法.作为科学探索的特色方法,其显著功效已引起概率理论在科学研究中的爆炸性增长.概率思想是统计学的理论基础,是物理学、遗传学和信息论的重要工具,是金融学、地球科学、神经学、人工智能和通讯网络等学科的常用方法.然而概率论的思想又很微妙,即使今天仍未被很好地理解.因此,对概率思想的研究已成为数学家和数学史家关注的热点之一. 2007年1月,王幼军在其博士论文的基础上,做了进一步的充实和改进,出版了《拉普拉斯概率理论的历史研究》,该书是中国第一部概率论史研究专著,由此拉开了我国对概率论思想发展史研究的帷幕. 《拉普拉斯概率理论的历史研究》全书分成6章,内容为2个独立专题:前5章是对拉普拉斯概率论理论的历史研究,以拉普拉斯的《分析概率论》为中心,探讨了拉普拉斯概率理论的来龙去脉和科学影响;最后一章通过详细考证,确认中文的第一部概率论译著———《决疑数学》的底本应是Thomas Galloway 在《大英百科全书》第8版(1859)中所作“概率论”一文,并从拉普拉斯概率论发展的历史背景出发,全面地论述了《决疑数学》的背景、风格、观点、内容安排,以及《决疑数学》对中国概率论发展的影响[1]. 李文林称王幼军的《拉普拉斯概率理论的历史研究》“对原始文献的掌握与使用”和“运用现代数学理论 与方法,分析考察拉普拉斯的概率论底本”(原书序一)值得称道,该书“无论对于科学史探讨或现实的概率论 研究和教学来说都体现出数学史研究的价值”.江晓原称其曾“受到国内数学界权威人士的很高评价”,是“令 人欣喜的新成果” (原书序二),诚哉斯言.1 近现代数学史研究的困窘 正如科学史研究领域所面对的问题一样,在数学史的研究领域中,诸如为什么要研究数学史、谁需要数学史、数学史究竟是干什么的、数学史该往何处去,这些问题也是每个数学史研究者难以回避的问题. 20世纪中国数学史的研究经历了两次高潮,分别是在李俨和钱宝琮、吴文俊等学者的倡导下,先后发起的以“发现”和“复原”为主题的两次运动.第一次运动中,“发现”意味着破解历史上都做出了什么样的数学,数学史家们必须从原始文献中找寻;在吴文俊发起的以“复原”为主题的第二次运动中,数学史家所关注的问

概率论中的大数定律及中心极限定理

概率论中的大数定律及中心极限定理 唐南南 摘要 概率论是从数量上研究随机现象的规律的学科,概率论的特点是先提出数学模型,然后去研究它的性质,特点和规律。它在自然科学,技术科学和社会科学等科学中有广泛的应用。而大数定律和中心极限定理的内容是概率论中极限理论极为重要的一部分内容。在这篇文章中,我们从贝努力试验中的频率出发,讨论了独立随机变量和分布的极限问题。在一定条件下,这些分布弱收敛于退化分布,这就是大数定律。在另一些条件下,这些分布弱收敛于N(0,1)分布,这一类收敛于N(0,1)分布的定理统称为中心极限定理.大数定律说明了随机现象都具有稳定性而中心极限定理是研究相互独立随机变量序列{}i x 的部分和∑== n i i n x S 1 的分布,在适当条件下向正态分布收放的问题。在这篇文章 里,我们只介绍了一些定理的提出,内容以证明以及在其他学科上的应用,而大数定律和中心极限定理还有许多更深入,更广泛的内容,限于篇幅这里就不再介绍了。掌握定理的结论是重要的,这些结论一方面使频率稳定于概率,n 次观察的算术平均值稳定于数学期望都有了明确的含义和理论依据;另一方面,又将给数理统计中大样本的统计推断等提供理论依据。 关键词 大数定律 中心极限定理 随机现象 随机变量 引言 大数定律和中心极限定理是概率论中重要的一部分内容,但对读者来说,多数人对于这部分内容感到很难掌握,这篇文章就是对这部分内容进行浅入的分析,但对其内容进行详细的说明,而且进行了归纳性的总结,指出了各定律之间的联系及其差别,希望通过本篇文章内容的介绍,能使读者对于这部分知识有一个清晰的印象,能整体地把握这部分内容。 一 、大数定律 (一)、问题的提法(大数定律的提法) 重复实验中事件的频率的稳定性,是大量随机现象的统计规律性的典型表现。人们在实践中认识到频率具有稳定性,进而由频率的稳定性预见概率的存在;由频率的性质推断概率的性质,并在实际应用中(当n

概率论与数理统计:中心极限定理

中心极限定理 无论随机变量12,,,, n X X X 服从什么分布,当n 充分大时,其和的极限分布是正 态分布,这就是我们今天要讲的中心极限定理。 定理 5.5(独立同分布中心极限定理)设随机变量12,,,,n X X X 相互独立,服从同一 分布,且具有数学期望和方差2 (),()0,i i E X D X μσ==>1,2,i =,则随机变量之和1 n i i X =∑的标 准化变量 n i n X n Y μ -= ∑ 的分布函数()n F x 对于任意X 满足 2/2lim ()lim d ()n i x t n n n X n F x P x t x μΦ-→∞→∞ ?? -??? =≤==????? ∑? 定理 5.5表明,对于均值为,μ方差为2 0σ>的独立同分布的随机变量的和1 n i i X =∑的标准 化随机变量,不论12,,,, n X X X 服从什么分布,当n 充分大时,都有 ~(0,1)n i n X n Y N μ-= ∑近似 , 从而,当n 充分大时 21 ~(,)n i i X N n n μσ=∑近似. 定理5.5′ 设随机变量列12,,,,n X X X 相互独立,服从同一分布,且具有数学期望和方差2(),()0,i i E X D X μσ==>1,2, i =,令1 1n n i i X X n == ∑,则当n 充分大时 ~(0,1)N 近似 ,即2~(,/)n X N n μσ近似. 例5.3 一盒同型号螺丝钉共有100个,已知该型号的螺丝钉的重量是一个随机变量,期望值是100 g,标准差是10 g,求一盒螺丝钉的重量超过10.2 kg 的概率. 解 设i X 为第i 个螺丝钉的重量,,100,,2,1 =i Y 为一盒螺丝钉的重量,则

概率论与数理统计 习题(5)答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

整理得0.95,10n ??Φ≥ ? ??? 查表 1.64,10n ≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响, 开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,), ()140,()42,E X D X == 1400.95{0}().42m P X m P X m -?? =≤≤=≤=Φ ??? 查表知 140 1.64,42 m -= ,m =151. 所以供电能151×15=2265(单位). 4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量, 且都在区间(0,10)上服从均匀分布.记V = ∑=20 1 k k V ,求P {V >105}的近似值. 【解】易知:E (V k )=5,D (V k )= 100 12 ,k =1,2,…,20 由中心极限定理知,随机变量 20 1 205 ~(0,1).100100 20201212 k k V Z N =-?= =??∑近似的 于是105205{105}1010020201212P V P ????-?? >=>???? ????? 1000.3871(0.387)0.348,102012V P ????-?? =>≈-Φ=? ???????? 即有 P {V >105}≈ 5. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100 根,问其中至少有30根短于3m 的概率是多少

哈工大概率论课程论文

哈尔滨工业大学 课程论文概率论与数理统计的发展与应用 课程名称概率论与数理统计姓名 学院英才学院 专业电气工程及其自动化班级 学号 指导教师王勇 日期2014年12月11日

[摘要]:通过本学期概率论与数理统计这门课的学习,我基本掌握了基本的概率知识,这对于自己以后的发展和创新有着很大的帮助。本文将根据自己的学习心得,概率论的历史、发展和主要内容,应用方向,课程感悟等四个方面来阐述我对本门课的总结。 [关键词]:概率论数理统计生产发展主要内容应用方向

概率论与数理统计是研究随机现象规律性的一门科学。前者是从数学观点研究随机现象的基本性质,后者从搜集到的随机数据,估计或推断随机现象的基本特性。 一:概率论与数理统计的起源与发展 1、概率论 概率论起源于对赌博问题的研究。早在16世纪,意大利学者卡丹与塔塔里亚等人就已从数学角度研究过赌博问题。他们的研究除了赌博外还与当时的人口、保险业等有关,但由于卡丹等人的思想未引起重视,概率概念的要旨也不明确,于是很快被人淡忘了。 概率论的早期研究大约在十六世纪到十一七世纪之间。(若考虑到概率与统计在早期难于区分的辜实,它的历史可远溯到许多世纪之前。根据科学史记载,在1390年就有人讨论过掷般子的问题,若把文明古国的抽签活动也加以考虑,还可有更早的史料。)这段期间,欧洲进入文艺复兴时期,工业革命已开始蔓延。伴随工业发展提出的误差问题,伴随航海事业发展产生的天气预报问题,伴随商业发展而产生的贸易、股票、彩票和银行、保险公司等,加之人们越来越需要了解的患病率、死亡率、灾害规律等问题,急需创立一门分析研究随机现学学科。概享论应社会实践的需要出现了。 在这个时期,意大利著名物理学家伽俐略就曾对物理实验中出现的误差进行了科学的研究,把误差作为一种随机现象,并估计了他们产生的概率。十八世纪,概率论发展很快,几乎初等概率的全部内容都在这个期间形成。在这个期间,概率论工作者已经不是孤立地、静止地研究事件发生的概率,而是把随机现象视为一种特殊的变量——随机变量。随机变量的引入,数学家如鱼得水,他们利用各种数学工具,研究随机变量的分布,从而使概率论的研究得到了一次飞跃。在整个十八世纪和十九世纪初叶,概率论风行一时。但是,由于一些学者过分夸大了它的作用,许多人企图把它应用到诸如诉讼之类的“精神”或“道德”的科学上去,遭到了失败。这以后,欧洲的一些数学家认为概率论只是一种数学游戏,不可能有重大的具有科学根据的应用。甚至概率论在气体动力论、误差论、射击论等方面的卓有成效的应用也因此而受到忽视。这些错误后来被形容为“数学诞语”,导致概率论的发展在西欧较长的一段时间(十九世纪下半叶)出现停滞。虽然概率论在这段时期走了一段弯路,但它的发展仍是主流。在这个时期,概率论工作者较好地应用数学工具,使概率论的理论更加严密,基本上完成了概率论作为数学的一个分支应具备的条件。二十世纪以来,由于公理化体系的建立,使得概率论的理论更加完备。另外,极限理论的研究取得了一系列的结果。随机过程,数理统计从概率论中独立出来,成为两门生命力极强的新学科。概率的应用性越来越显示出来,产生了应用概率的研究分支,并由此滋生出许多分支。概率论与其它学科相结合,又出现了不少边缘学科。

概率论大数定律及其应用

概率论大数定律及其应 用 Revised as of 23 November 2020

概率论基础结课论文 题目:独立随机序列的大数事件的定理与应用 作者 摘要:历史上第一个定理属于,后人称之为“”。概率论中讨论的向的定律。概率论与数理的基本定律之一,又称弱大数理论。 大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。 关键词:弱大数定理伯努利大数定理随机变量数学期望概率 引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。偶然之中包含着必然。 从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么在什么条件下具有稳定性这就是我们大数要研究的问题。

概率论(复旦三版)习题五答案

概率论与数理统计(复旦第三版) 习题五 答案 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

10.760.840.9.n i i X P n =??????≤ ≤≥???????? ∑ 根据独立同分布的中心极限定理得 0.8n i X n P ??-??≤≤???? ∑ 0.9,=Φ-Φ≥ 整理得 0.95,10?Φ≥ ?? 查表 1.64,≥ n ≥268.96, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各 机床开动与否互不影响,开动时每部机床消耗电能15个单位. 问至少供应多少单位电能才可以95%的概率保证不致因供电不 足而影响生产. 【解】设需要供应车间至少15m ?个单位的电能,这么多电能最多能 同时供给m 部车床工作,我们的问题是求m 。 把观察一部机床是否在工作看成一次试验,在200次试验中, 用X 表示正在工作的机床数目,则~(200,0.7)X B , ()2000.7140, ()(1)2000.70.342,E X np D X np p ==?==-=??= 根据题意,结合棣莫弗—拉普拉斯定理可得 0.95{}P X m P =≤=≤=Φ

概率论论文-浅谈中心极限定理

浅谈中心极限定理 摘要:中心极限定理的产生具有一定的客观背景,最常见的是林德伯格-莱维中心极限定理和棣莫弗-拉普拉斯中心极限定理。它们表明了当n 充分大时,方差存在的n 个独立同分布的随机变量和近似服从正态分布,在实际中的应用相当广泛。本文讨论了中心极限定理的内涵及其在生活实践中的应用。 关键词:中心极限定理;正态分布;生活中的应用。 引言:在实际问题中,常常需要考虑许多随机因素所产生的总的影响,如测量误差、炮弹 射击的落点与目标的偏差等。同时许多观察表明,若一个随机变量是由大量相关独立的随机因素的综合影响所构成的,而其中每一个随机因素的单独作用是微小的,则这样的随机变量通常是服从或近似服从正态分布。这种现象就是中心极限定理产生的客观背景。 在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。王勇老师讲到中心极限定理时,曾非常激动地说这个定理一被提出便震惊了全世界,而且重复了数遍。由此足以见得中心极限定理的重要性。 目前我们研究的是独立同分布条件下的中心极限定理: 林德伯格-莱维中心极限定理:设 {}n X 是独立同分布的随机变量序列,且 )(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ -= ∑=1 则对任意实数y ,有 {}? ∞ --∞ →=Φ=≤y t n n t y y Y P .d e π21)(lim 2 2 这个中心极限定理是由林德伯格和莱维分别独立的在1920年获得的,定理告诉我们, 对于独立同分布的随机变量序列,其共同分布可以是离散分布,也可以是连续分布,可以是正态分布,也可以是非正态分布,只要其共同分布的方差存在,且不为零,就可以使用该定理的结论。只有当n 充分大时, n Y 才近似服从标准正态分布)1,0(N ,而当n 较小时,此种 近似不能保证。也就是说,在n 充分大时,可用)1,0(N 近似计算与n Y 有关事件的概率,而 n 较小时,此种计算的近似程度是得不到保障的。当 ) 1,0(~N Y n 时,则有 ) , (~),,(~2 2 1 n N X n n N X n i i σμσμ∑=。 现如今旅游、汽车等行业越来越受欢迎。在这些行业中就会用得到中心极限定理。 例如,某汽车销售点每天出售的汽车服从参数为λ=2的泊松分布,若一年365天都经

概率论与数理统计重点总结及例题解析

概率论与数理统计重点总结及例题解析 一:全概率公式和贝叶斯公式 例:某厂由甲、乙、丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%, 12% 。现从该厂产品中任意抽取一件,求:(1)取到不合格产品的概率;(2)若取到的是不合格品,求它是由甲车间生产的概率。(同步45页三、1) 解:设A1,A2,A3分别表示产品由甲、乙、丙车间生产,B表示产品不合格,则A1,A2,A3为一个完备事件组。P(A1)=1/2, P(A2)=1/3, P(A3)=1/6, P(B| A1)=0.08,P(B| A2)=0.09,P(B| A3)=0.12。 由全概率公式P(B) = P(A1)P(B|A1)+ P(A2)P(B| A2)+ P(A3)P(B| A3) = 0.09 由贝叶斯公式:P(A1| B)=P(A1B)/P(B) = 4/9 练习:市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的2倍,第二、三两厂家相等,而且第一、二、三厂家的次品率依次为2%,2%,4%。若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率是多少?(同步49页三、1)【0.4 】

练习:设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回地任取2个零件,求:(同步29页三、5) (1)取出的零件是一等品的概率; (2)在先取的是一等品的条件下,后取的仍是一等品的条件概率。 解:设事件i A ={从第i 箱取的零件},i B ={第i 次取的零件是一 等品} (1)P(1 B )=P(1 A )P(1 B |1 A )+P(2 A )P(1 B |2 A )=5 230 182150 10 21= + (2)P(1 B 2 B )= 194 .02121230 2 182 50 2 10=+ C C C C ,则P(2 B |1 B )= ) ()(121B P B B P = 0.485 二、连续型随机变量的综合题 例:设随机变量X 的概率密度函数为 ?? ?<<=others x x x f 02 0)(λ 求:(1)常数λ;(2)EX ;(3)P{1

最新概率论的起源和发展简史

概率论地起源和发展简史 1引言 现实世界中形形色色地自然现象、社会现象大致可分为两类:一类是事先能确定其结果地现象,即确定性现象,如今天太阳必然会落下去,同性电荷互相排斥等。另一类是事先不能确定其结果地现象为随机现象,这类现象地可能结果不会是一种,如同品种种子播种到肥力均匀地田地里,每粒种子是否发芽、掷一枚骰子,可能结果有6种等,这种随机现象是否有规律,便成为数学研究中地一个问题。概率论就是运用数学方法研究随机现象统计规律性地一门数学学科。概率, 简单地说,就是随机现象出现地可能性大小地一种度量。 2 概率论地起源和发展简史 概率论同其他数学分支一样,是在一定地社会条件下,通过人类地社会实践和生产活动发展起来地一种智力积累.它发源于17世纪中叶,并且是与惠根斯、巴斯加尔、及雅谷、贝努里诸人地名字分不开地。对概率论地兴趣,本来是由于保险事业地发展而产生地,但刺激数学家思考概率论地一些特殊问题却是来自赌博者地请求。《论赌博中地计算》一书,这是概率论最早地论著。概率论虽然起于17世纪,但为此准备基础却是较早地事。例如卡当在其《论赌博》一书中已计算了掷两颗或三颗骰子时在一切可能方法中有多少方法得到某一总点数。17、18世纪之交,有不少数学家从事概率地研究,伯努里地巨著《猜度术》是一项重大地成就,其中包含概率论中地“伯努里定理”,这是“大数定律”地最早形式。 德莫瓦佛地《机会地学说》包含“德莫佛—拉普拉斯定理”。在概率论地系统理论产生之前,许多数学家已认识到了很多实际问题中地随机变量都是由大量相互独立因素综合影响形成地。而其中每一个个别地因素在总地影响中地作用都是很

微小地,这样形成地随机变量往往近似服从正态分布,从理论上来证明这个事实是一个中心问题,概率论就是围绕这个中心发展起来地。 2.1概率论地起源 概率论起源于对赌博问题地研究。早在16世纪,意大利学者卡丹与塔塔里亚等人就已从数学角度研究过赌博问题。他们地研究除了赌博外还与当时地人口、保险业等有关,但由于卡丹等人地思想未引起重视,概率概念地要旨也不明确,于是很快被人淡忘了。 点数问题地圆满解决标志着概率论地创立.所谓点数问题是:A,B赌博,其技巧相当,约定谁先胜s局则获全部赌金.若当A胜s1局而B胜s2局时(s1s2则A除取回自己赌金还要取B赌金地(s1-s2)/s.假设二人地赌金相等,则分配比例为[s+(s1-s2)]/[s-(s1-s2)]。1603年,弗雷斯坦尼给出分配规则:首先A和B各按s1/(2s-1)和s2/(2s-1)地比例来分配赌金,然后再把余下地赌金平均分配,其分配比就是把塔塔利亚结果中地s代换成2s-1. 在这些求解中,只有卡尔达诺意识到分配原则不应依赖于(s,s1,s2)而应和赌徒离全胜所 差地局数a=s-s1和b=s-s2有关[2]. 为解决点数问题,帕斯卡与费马在1654年7月-10月通信七封.在7月29日帕斯卡写给费马地信中,圆满解决了点数问题.故概率论史家视其为概率论诞生地日子[3].

相关文档
最新文档