变形监测读书报告

变形监测读书报告
变形监测读书报告

PS InSAR技术

在地表形变监测中的应用探讨

摘要:利用InSAR技术监测地表形变,是目前国际上遥感领域发展较前沿的研究课题,而PS InSAR技术是InSAR技术的改进和提高。分析了制约InSAR技术监测地表形变的因素,介绍了PS InSAR的基本原理和数据处理的关键技术,结合国内外PS InSAR的应用现状展望了发展前景。

关键词:PS InSAR;地表形变;监测

1 引言

利用星载雷达进行差分干涉测量(InSAR)来监测地面地表形变,是目前国际上遥感领域发展较前沿的研究课题。它可以监测地球表面厘米级甚至毫米级的形变[1],如地震形变、地面沉降、火山运动、冰川漂移以及山体滑坡等。但雷达干涉测量技术受到多种条件的制约,例如基线几何去相关导致很多图像不能用于干涉测量、大气折射使得很多干涉图受到影响,有时,这些误差会严重污染形变信息,使得形变监测变得困难和不准确。意大利人Ferretti在研究同一地区的多幅干涉图时发现,在城市和岩石裸露的干燥地区存在大量稳定且亮度很高的反射

点,称为永久散射体(Permanent Scatterers,PS),由于这些反射点(一般而言小于一个像元)保持着良好的相位信息和幅度信息,可以通过监测这些离散点相位的变化来获取形变信息,这种方法很好地克服了时间去相干和大气信号对地表形变提取的影响[2]。本文分析了InSAR技术监测地表形变存在的问题,介绍了PS方法的基本原理和数据处理的关键技术,通过对国内外试验研究分析,证明即使周围地区的相关性不好,甚至生成单个干涉图时没有明显条纹,在PS上也能得到可靠的的数字高程模型,并监测毫米级的地表形变。

2InSAR技术监测地表形变存在的问题

InSAR技术的核心是利用相位观测值获取目标的几何特征及变化信息。干涉纹图中任一像元的相位表示的是雷达与该像元间距离的变化和该目标的散射相位变化之和。若两次观测期间散射相位保持稳定,则干涉相位反映的是两次观测期间目标与雷达间距离的变化,其中包含地形信息,地表形变以及大气活动引起的相位延迟。因此,可以根据各分量对干涉相位“贡献”的大小,分别解算出地形信息、两次观测期间目标沿雷达视线方向的变化量以及大气延迟量等[3]。由于干

涉相位对微小形变极其敏感,毫米级的形变在干涉相位中都会有所反映。因而,利用重复轨道观测获取的干涉相位,通过差分处理去除两次观测相位中的共有量(平地效应、地形相位和大气延迟等),可以得到形变相位,进而反算形变量。这就是差分干涉测量(D-InSAR)监测地表形变的基本原理[4]。制约InSAR技术监测地表形变的因素主要来自两个方面。

2.1失相干

InSAR测量是根据干涉相位进行的,即由相位差求解变化量。对于干涉处理而言,一个重要的前提是存在相干性,即两景影像信号的相似性或相关性。准确获取干涉相位需满足相干条件失相干条件下难以获取真实的干涉相位。失相干可以分为3类[5],即:(1)空间失相干;(2)时间失相干;(3)目标的非相干移动。雷达两次观测同一目标时空间基线过长,则雷达观测视线张角增大,引起雷达回波信号数据谱和目标谱的偏移,当偏移量达到一定程度时,则完全失相干,这时的空间基线称为临界基线。受临界基线的限制,只有部分垂直基线小于临界基线的干涉像对才可以进行干涉处理。与空间失相干相比,时间失相干主要是由于重复观测期间目标散射特性变化,使得两次观测获取同一区域内信号不相干,如同一观测区域内地物类型的变化,植被生长因素影响等。雷达目标的非相干移动是指由于目标变化强度过大而空间范围较小,产生的相位梯度过大,超过了干涉相位的临界梯度。

2.2大气延迟

受两次观测时刻大气波动影响,特别是对流层湿度和温度的变化,产生不同的相位延迟,在相位图上表现出延迟量的非均一性。对于大尺度微小形变监测而言,这种非均一的相位延迟量作为误差引入到形变相位中,影响了InSAR测量的精度。大气的成份随时间和空间的变化而变化,其变化特征在时间域呈高频,在空间域则相对较低。

分析上述两个问题可知:准确获取形变相位需要解决两个主要问题,即:(1)低相干性条件下相位解缠;(2)差分相位中形变相位与大气延迟相位的分离。前者在于利用少量相干目标的干涉相位来恢复真实相位,需要解决的是离散目标的相位解缠,以此反演地表变化,而后者则是研究从干涉相位或者差分相位中抑制或者分离出大气延迟相位,以提高待解算量。

3PS InSAR技术的基本原理

PS技术的核心思想是对永久散射体干涉相位进行时间序列分析,根据各相位分量的时空特征,估算大气波动,数字高程模型(Digital Elevation Mod-el,简称DEM)误差以及噪声等[6],将其从差分干涉相位中逐个分离,最终获取每个PS的线性和非线性形变速率、大气延迟(Atmosphere PhaseScreen)以及DEM误差。经PS方法处理,获取的年度形变率的精度可以达到毫米级[7]。该方法是基于大量的合成孔径雷达(SAR)数据(一般大于20甚至30景),从中筛选出具有稳定散射特性的相干点目标,构成离散点观测网络(较之常规的变形监测网密度更高),通过分析PS点目标相位变化获取地表形变状况。由于将永久散射体作为观测对象,降低了空间基线对相干性的影响,即使在临界基线的条件下,仍然可以通过分析PS差分干涉相位的变化反演形变信息。但该方法往往需要反映地表形变特征的先验模型,如线性形变速率模型。另外,为了提高散射体高程的估算精度,并进行大气校正,需要大量的SAR数据进行统计分析。

PS技术一般采用的线性形变模型提取点目标对应的形变量,如测量长时间下保持稳定移动速率的地表移动的现象。该方法的优点是能一次性地获取中尺度(约2000km2)范围内的地表形变信息。由于非线性形变可以用线性形变模型来模拟,因而一些非线性形变也可以通过线性形变测量得到。若观测对象表现出明显的非线性特征,并且形变量变化大,则在PS点目标覆盖的范围内出现了不连续的区域,产生不连续(空间和时间上的)的原因是由于形变本身超出了所采用的模型的边界条件。这种情况下,若利用基于线性模型估算的形变速率来反演一定时间内的形变量,则必将与实际情况相差较大。可以通过两种方法来弥补线性模型模拟非线性形变的不足,一种是采用非线性形变模型,另外一种是将长时间间隔分解为数个短时间段,利用函数模型模拟各个时间段内的形变量,进而求解非线性量[8]。非线性模拟的处理过程相当复杂,而且非常耗时,限制了其用于大面积的形变测量,但随着处理技术的进步,处理时间将逐步缩小,处理的范围也可以进一步扩大。

4PS InSAR数据处理的关键技术

4.1影像配准

影像配准就是计算参考影像到待配准影像的影像坐标映射关系,再利用这个

关系对待配准影像实行坐标变换、影像插值和重采样,影像配准的精度要求达到子像元级[9],通常分粗配准和精配准两个阶段进行配准。如果在SAR图像中均匀地布设了一些角反射器,那么我们就可以用角反射器的精确位置来进行图像的配准和重采样。

4.2生成干涉图

给定要进行PS处理的N+1幅SAR图像,选择其中一个作为主图像,其余的作为从图像。主图像的选择主要考虑到空间基线、时间间隔、季节以及图象质量等因素;如果分析的结果表明主图像的相位受大气影响很大,则应该选取其他图像作为主图像。选定了一幅主图像和其他N幅从图像,就可以生成N幅干涉图,同时获得相干图以及重采样后的从图像等。在生成干涉图的同时,还应该去掉平地效应引起的相位。

4.3PS点的选取

PS点的选择对于地壳形变计算至关重要,一方面,PS点应该具有很高的稳定性,另一方面,探测PS点的概率应当尽可能的高,以至于大部分PS点可以有效地挑选出来。通常用设定相关阈值来判断PS点,如果某一目标的相关值始终大于某一给定的阈值,我们就认为它是一个P点。但是由于干涉图的基线偏差以及DEM误差,使得有的相关图无法判断PS点。如果DEM引起的相位变化以及目标运动引起的相位变化没有得到消除的话,相关值大小往往会被低估,因此有必要采用200~300m范围内的基线作为PS方法选取干涉影像的标准。

4.4地形相位去除

在生成干涉图的同时,我们已经去除了平地相位。为了分离出形变相位,还要通过外部DEM或者干涉生成的DEM来去除地形相位。

4.5获取形变信息

在去掉平地相位和地形相位之后,剩余的相位成份包括形变相位、大气相位(APS)、由DEM误差引起的地形误差相位、噪声相位等。有N幅干涉图,对每一个PS点也就有N个等式,假定一个相位变化模型(比如,线性模型)和大气模型,对这些等式进行联立运算,得到最优的形变速率、DEM误差和大气相位项APS。对经过APS修正的干涉图再次进行运算,就可以得到大气校正后的形变值。

5PS InSAR技术在地表形变监测中的应用实例

2001年,Ferretti等人首次将PS InSAR技术应用于监测意大利著名的Ancona 大滑坡[9],该地区受到时间去相关的严重影响,用传统的InSAR技术效果甚微。这个城市收集到的所有34幅欧洲遥感卫星(ERS)雷达图像全部被利用,时间跨越超过5年,最大垂直基线超过1600m。结果表明,在PS点被确认的地方, DEM精度大大提高了,达到0.5m,而且,地表形变速度场也与地面真实情况相符[10]。

接着在Pomona沉降的研究中,Ferretti将PS技术与传统InSAR进行比较[11],表明PS技术在监测形变中有明显的优势,而且即使是最好的差分干涉情况(比如,很小的垂直基线),应用PS技术也能极大提高成果质量。之后,Colesanti等人又将PS方法与GPS、几何水准测量方法进行了比较[12],证明PS的结果是可信的,尤其适合大面积低成本的监测,协调使用这三种技术能更好地改善地面形变测量的质量和可靠度。

国内许多应用研究部门对此表现出浓厚兴趣。由中国科技部、欧空局等单位合作的“龙计划”,在三峡库区安装了角反射器,用于监测三峡地区泥石流、滑坡等地质灾害[13];中国地震局地壳应力研究所张景发、英国伦敦大学学院Peter等研究人员在西藏当雄活动断裂带区域安装了角反射器,用于监测地壳运动形变。虽然一时还无法得到最终结果,但该方法已显示出强大的生命力[14]。

6结论与展望

PS InSAR技术是雷达遥感发展的又一个新阶段,它充分发挥InSAR测量的优势,并对其所存在的失相关、大气影响、基线估计等问题进行了很好的解决,利用那些经历长时间间隔仍保持高相干性的单个像元的相位信息,将研究区所有可能得到的SAR影像充分利用起来,避免数据在时间上存在空隙,不仅可以监测毫米级地形形变,而且达到对整个区域面的连续监测,为精确研究地表形变提供了强有力的工具。但PS方法是基于统计学原理,其应用建立在海量SAR数据(大于20)之上,并且对数据的要求较高,这使得该方法的应用面和实时性有所局限。但是随着SAR数据的不断增加和更多的SAR卫星上天,数据资源越来越丰富,空间分辨率和重访周期也不断提高,PS InSAR的应用有望更加实用化。特别是人工角反射器的安装和利用,既可作为影像配准的控制点,又能提供高度可靠的相位信息,将会进一步提高PS InSAR技术的可行性和可靠性。

参考文献

[1]李德仁,周月琴,马洪超.卫星雷达干涉测量原理与应用[J].测绘科学,2000, 25(1):9-12.

[2]陈基伟.GPS-InSAR合成方法进行地面沉降研究与展望[J].遥感信息,2003,(4):48-50.

[3]何敏,何秀凤.合成孔径雷达干涉测量技术及其在形变灾害监测中的应用[J].水电自动化与大坝监测,2005,29(2):45-48.

[4]单新建,马瑾,王长林,等.利用差分干涉雷达测量技术(D-InSAR)提取同震形变场[J].地震学报,2002,24(04):413-420.

[5]龚利霞.InSAR技术及其在地面沉降中的应用[D].北京:中国地震局地壳应力研究所,2005.

[6]单新建,宋晓宇,柳稼航,等.星载InSAR技术在不同地形地貌区域的DEM提取及其应用评价[J].科学通报,2001,46(24):2074-20791.

[7]周建民,何秀凤.SAR差分干涉测量技术及其在地表形变监测中应用现状[J].河海大学学报(自然科学版),2005,33(4):463-465.

[8]游新兆,李澍荪,杨少敏,等.长江三峡工程库首区In-SAR测量的初步研究[J].地壳形变与地震,2001,21(4):58-651.

[9]独知行,阳凡林,刘国林,等.GPS与InSAR数据融合在矿山开采沉陷形变监测中应用探讨[J].测绘科学,2007,32(1):55-57.

[10]范青松,汤翠莲,陈于,等. GPS与InSAR技术在滑坡监测中的应用研究[J].测绘科学,2006,31(5):60-62.

[11]罗海滨,何秀凤. InSAR与GPS集成技术监测地表形变探讨[J].遥感技术与应用,2006,21(6):493-496.

[12]许才军,王华,黄劲松. GPS与InSAR数据融合研究展望[J].武汉大学学报(信息科学版),2003,28(特刊):58-62.

[13]廖明生,林珲.雷达干涉测量原理与信号处理基础[M].北京:测绘出版社2003.08.

[14]路旭,匡绍君,贾有良,等.用INSAR作地面沉降监测的试验研究[J].大地测量与地球动力学,2002,22(4):66-70.

深基坑监测总结报告

第一章工程概况 1.1工程概况 XX路隧道工程是XX路改造工程的一部分,XX路改造工程由XX路地下通道、两侧排水管道、西广场人行地下通道及雨水泵站组成。XX路地下通道由隧道和引道组成,全长约1000m。隧道为闭合框架结构,采用整板基础,跨度22m,长约540m;引道为钢筋混凝土U型槽或毛石混凝土挡土墙结构,拟采用整板基础,跨度22m,长约460m。排水管道沿道路两侧布置,雨水泵站基底尺寸约9m*8m。本监测项目为对XX路隧道工程深基坑开挖及施工过程进行监测。 1.2道路沿线基本情况 XX路现状道路宽约60m,道路中设有双向2车道高架桥(已于隧道施工前拆除),桥宽10m,全长900m,XX路两侧分布有几个较大的公共场站和车站,路西侧主要有航海长途客运站、XX路西侧公交枢纽;东侧分布有武昌火车站、宏基长途客运站。主要单位有武昌区千家街小学、WW市公共客运交通监察办公室第三管理站、九州饭店、中铁快运公司、七一九研究所等。 图1-1XX路隧道 XX路现为进出武昌火车站的唯一道路,其车流量极大,且车行、人行交错,

交通极为繁忙。 1.3管线现状 本工程范围内道路沿线现状地下管线较多,有给水、雨水、污水、电力、电信、燃气、有线电视、路灯及交通信号等管线。除电信、电力、部分给水管布置于现状人行道上外,大部分管线布置在车行道下。隧道开挖主要影响的管线有排水箱涵、煤气、给水。人防埋深约9m~12m,为钢筋混凝土结构,其净空尺寸为3m×2.55m,零散分布,隧道北敞口段东侧分布较多。 1.4场地自然地理概况及地形地貌特征 WW地区属于我国东南季风气候区,具有冬寒夏热,春湿秋旱,四季分明,降水充沛冬季少雪等特点,年平均气温16.3度,极端高温41.3度,极端低温-18.0度。地貌单元属长江冲积三级阶地,地区内地势较平坦,局部地段稍有起伏,地面标高在22.94m~29.05m之间变化。 1.5场地岩土构成及其岩性特征 根据地质报告,本场地主要分布地层有:人工填积(Q ml)和第四系湖(塘) 相沉积(Q l )层、第四系全新统冲积层(Q 4al)、第四系上更新统冲洪积层(Q 3 al+pl)、 志留系强风化泥岩、石英砂岩。各岩土层具体的分布埋藏条件、野外鉴别特征列于下表:

基坑水平位移监测报告

基坑变形 监测报告 工程名称:

建设项目 一期基坑工程基坑变形监测报告现场监测人员: jjjjjj 二OO九年三月十八日 j

目录 一、工程概况 (4) 二、监测依据 (4) 三、监测项目与点位布置 (4) 5 5 5 6 8 9 17 25 26 5、测斜曲线图 (52) 6、侧向变形累计最大位移点位移~时间关系曲线图 (61) 7、地下水水位测试结果汇总表 (62) 8、总部经济区水位随时间变化图 (73)

9、监测点位平面布置图 (74) 一、工程概况 位于开创大道西南侧、揽月路以西一带,地处科学城中心区东部,西面毗邻初具规模的综合研发孵化中心,总建筑面积约34万平方米。该项目基坑安全等级为二级,按设计及规范要求并结合本项目的具体情况,本项目设置如下监测项目: 5、科学城总部经济区工程基坑支护监测点布置图。 三、监测项目与点位布置 1、基坑支护结构水平位移观测: 按设计要求,共布设31个监测点,编号为W1~W31,详见观基坑监测点布置图。

2、支护结构及土体侧向变形监测: 按设计要求,共布设27个监测点,编号为K1~K27,其中K2、K10、K15和K22为土体侧向变形监测点,详见基坑监测点布置图。 3、地下水位监测: 按设计要求,共布设19个监测点,编号为SW1~SW19,详见基坑监测点布置图。 3、地下水位监测采用钢尺水位计测得地下水位与管顶的距离,根据管顶高程即可计算地下水位的高程。将到开挖过程中地下水位与基坑开挖前地下水位高程进行比较,得到开挖过程中基坑周边地下水位的变化情况。 五、允许值及报警值 根据基坑支护设计要求,并结合工程实践经验,对该工程监测项目提出以下警戒

基坑监测总结报告

目录 一、工程概况 二、监测目的 三、监测内容 四、监测依据 五、监测方法 六、监控报警 七、信息反馈八、 九、监测项目数据汇总表及时程变化曲线 十、监测结论及建议 附: 一、基坑监测平面布置图 二、基坑监测项目数据汇总表 三、监测项目时程变化曲线 监测总结报告一、工程概况

1、工程名称:正弘空港花园项目6#地块基坑变形监测项目。 2、工程地点:郑州航空港区郑港四街与郑港三路交叉口。 3、基坑工程周边环境 3.1、四周较为空旷 为保证基坑开挖期间基坑侧壁的安全和基础施工的正常进行,按照相关规范要求需采用基坑变形监测措施,确保基坑在施工期间能够掌握及时的数据变化量,有效的信息化施工,有异常变化前期能够及时预报并立即采取补救措施。 根据甲方提供的《基坑支护、降水设计总说明》做以参考,基坑开挖深度平均为-10.3米《JGJ120-99和GB50202-2002》的规定,基坑的安生等级为二级.结合基坑支护设计,考虑基坑开挖中对周边建筑物会产生一定影响,因此在基坑开挖中必须对基坑的安全实施基坑侧壁的位移和沉降变化等安全检测。 二、监测目的 为动态设计和信息化施工及时提供反馈信息,测定基坑及周边建筑物从当前状态起至变形稳定期间的绝对变化量,对基坑进行健康监测,对意外变形做出及时预报,确保施工和使用中的安仝。 根据中华人民共和国行业标准《建筑变形测量援程》JGJ8-2007及《建筑基坑工程监测技术规范》(GB50497-2009)的相关

规定和要求:测点的布置应以能全面反映建筑物地基变形特征,并结合地质情况及建筑结构特点确定。结合本工程实际,在对工程地基勘察报告及支护降水设计方案分析参考。对建筑结构体系的稳定性、可靠性、安全性进行预测预报,为确保基坑及周围环境的安全。 三、监测内容 1、主楼基坑围护顶部竖向位移及水平位移监测(暂定38点)以现场实际布设为准; 2、基坑巡视;’ 四、监测依据 (1)参考基坑支护设计图纸以及《岩土工程勘察报告》 l、《建筑变形测量规程》(JGJ 8-2007); 2、《建筑基坑支护技术规程》(JGJ 120-99); 3、《建筑基坑工程监测技术规范》( GB50497-2009); 4、《建筑地基基础设计规范》(GB 5007-2002); 5、《建筑地基基础工程施工质量验收规范》( GB 50202-2002) 五、监测方法 沉降监测分为控制网和标示点监测两部分。控制观测内容包括水准基点设置和水准基点间的高程闭合观测;标志点监测包括周期性

变形监测实习总结

变形监测测量实习总结 变形监测就是利用专用的仪器和方法对变形体的变形现象进行持续观测、对变形体变形形态进行分析和变形体变形的发展态势进行预测等的各项工作。其任务是确定在各种荷载和外力作用下,变形体的形状、大小、及位置变化的空间状态和时间特征。在精密工程测量中,最具代表性的变形体有大坝、桥梁、高层建筑物、边坡、隧道和地铁等。 变形监测工作的意义主要表现在两个方面:首先是掌握各种工程建筑物的稳定性,为安全运行诊断提供必要的信息,以便及时发现问题并采取措施;其次是科学上的意义,包括根本的理解变形的机理,提高工程设计的理论,进行反馈设计以及建立有效的变形预报模型。 我们本次变形监测共进行了三项内容:位移观测、倾斜观测和沉降观测。 《变形监测》是工程测量专业重要的课程内容之一,按照培养目标和教学大纲的要求,我们进行了为期一周的课程实习。旨在通过本次课程实习来加深对变形监测的的基础理论、测量原理及方法的理解和掌握程度,切实提高我们的实践技能,初步掌握位移监测、倾斜监测和沉降监测的基本方法,熟练使用作业各工序的仪器设备及作业过程等。

对于本次实习,老师和同学们都非常的重视,在第一天的实习动员会上,李老师就本次实习的意义、实习中的注意事项等方面做了明确的阐述,同时,也就本次实习内容和实习步骤做了详细的说明,并给同学们准备了相关的规范和资料,使同学们能够更好的完成本次实习任务。在其后的实习过程中,同学们实习目的明确、积极主动、不怕吃苦、勇于承担重担,在老师的指导下,顺利的完成了大坝位移监测、土木系实训楼倾斜监测和八号实验楼沉降监测等实习内容。通过本次实习,不仅使我们的理论知识得到巩固、操作能力得到加强,同时也使我们运用所学知识的解决实际问题的能力得到了提高。 对于大坝的位移监测,我们首先在面板堆石坝模型的坝体上选择了三个观测点,然后在其旁边的坚固水泥地上定了两个钢钉作为观测点,通过多次量距后,我们选择了假设坐标作为本次观测的已知数据,对坝体上的三个观测点进行了三天的前方交会法位移监测,并采用全圆观测法每次观测各六个测回,期间严格按照规范的相关要求,力求数据的精确、实用。经观测,大坝的位移量极小,非常稳固,可以安心使用。 对于土木系实训大楼的倾斜监测,我们选择了大楼的东南角,并在其南边和东边各1.5倍楼高的地方选择了坚固地面上的钢钉作为观测点,采用的是垂直投影的观测方

变形监测技术与应用

1.什么是变形? .什么是变形监测?变形监测的目的是什么?变形监测的意义? 变形监测的主要内容有哪些? 答:变形是物体在外来因素作用下产生的形状和尺寸的改变。 变形监测是对被监测的对象或物体进行测量以确定其空间位置及内部形态随时间的变化特征。 目的:1、分析和评价建筑物的安全状态。2、验证设计参数。3、反馈设计施工质量。4、研究正常的变形规律和预报变形的方法。 意义:1、对于机械技术设备:则保证设备安全、可靠、高效地运行:为改善产品质量和新产品的设计提供技术数据。 2、对于滑坡:通过监测其随时间的的变化过程:可进一步研究引起滑坡的成因:预报大的滑坡灾害。 3、通过对矿山由于矿藏开挖引起的实际变形的观测:可以控制开挖量和加固等方法:避免危险性变形的发生:同时可以改进变形预报模型。 4、在地壳构造运动监测方面:主要是大地测量学的任务。但对于近期地壳垂直和水平运动等地球动力学现象、粒子加速器、铁路工程也具有重要的工程意义。 内容:现场巡视、环境量监测、位移监测、渗流监测、应力、应变监测、周边监测。 2.变形监测技术的发展趋势。 答:由于变形监测的特殊要求:一般不允许监测系统中断监测:就要求监测系统能精确、安全、可靠长期而又实时地采集数据:而传统的设备难以满足要求:因此:科研人员在现有自动化监测技术的基础上:有针对性的研发精度高、稳定性好自动化监测仪器和设备。这方面成果有:自动化监测技术、光纤传感检测技术、CT技术的应用、GPS 在变形监测中应用、激光技术的应用、测量机器人技术、渗流热监测技术、安全监控专家系统 3. 变形监测工作有何特点:常用变形监测技术方法有哪些? 答:特点:1、周期性重复观测2、精度要求高3、多种观测技术的综合运用4、监测网着重于研究点位的变化。 测量技术:1、常规大地测量方法。如:三角测量、交会测量、水准测量。2、专门的测量方法。如:视准线、引张线测量方法。3、自动化监测方法。4、摄影测量方法。5、GPS等新技术的应用。 4. GPS用于变形测量有何优点? 答:速度快、全天候观测、测点间无需通视、自动化程度高:能进行同步变形监测:并实现了数据采集、传输、处理、分析、显示、存储等:测量精度可达到亚毫米级。6.变形观测中观测精度是如何确定的? 变形观测中确定观测周期的原则: 答:如果观测的目的是为了使变形值不超过某一允许的数值而确保建筑物的安全:则其观测的中误差应小于允许变形值的十分之一~二十分之一:如果观测的目的是为了研究其变形的过程:则其中误差应比这个数小得多。当存在多个变形监测精度要求时:应根据其最高精度选择相应的精度等级:当要求精度低于规范最低精度要求时:宜采用规范中规定的最低精度。变形监测的周期应以能系统反映所测变形的变化过程且不遗漏其变化时刻为原则:根据单位时间内变形量的大小及外界影响因素确定。 7.为什么要对变形监测资料进行检核?检核的方法有哪些? 答:资料分析工作必须以准确可靠的的监测资料为基础:在计算分析之前:必须对实测资料进行校核检验:对监测系统和原始资料进行考证。这样才能得到正确的分析成果:发挥监测资料应有的作用。 校核方法:任意观测元素:如高差、方向值、偏离值。倾斜值等/:在野外观测中均具有本身的观测校核方法:可参考有关的规范要求。进一步校核是在室内所进行的工作:具体有:1、校核各项原始记录检查各次变形值的计算是否有误。可通过不同方法的验算、不同人员的重复计算来消除监测资料中可能带有的错误。2、原始资料的统计分析。可采用统计方法进行粗差检验。3、原始实测值的逻辑分析。根据监测点的内在物理意义来分析原始实测值的可靠性。 8.如何用一元线性回归分析法对变形资料进行检核? 答:1、利用式求得变量y和x的相关系数:查阅相关系数的临界值表:判断y和x线性相关是否密切。2、利用式na+[x]b-[y]=0[x]a+[xx]b-[xy]=0 (n:观测值的个数、[]:求和计算:求回归方程=a+bx的回归系数a,b,建立回归方程。3、在回归直线两侧根据2s画两条平行线:检查新的变形值是否出现在这两条直线所夹的区间内:当观测值超出这一区间时:应作专门分析。 9.变形观测资料整理的主要内容包括哪些?成果表达的形式有哪些? 答:内容:1、收集资料:如工程或观测对象的资料、考证资料、观测资料及有关文件等。2、审核资料:如检查收集的资料是否齐全:审查数据是否有误或精度是否符合要求:对间接资料进行转换计算:对各种需要修正的资料进行计算修正:审查平时分析的结论性意见是否合理等。3、填表和绘图:将审核过的数据资料分类填入成果统计表:绘制各种过程线、相关线、等值线图等:按一定顺序进行编排。 4、编写整理成果说明:如工程或其他观测对象情况、观测工作情况、观测成果说明等。 成果:文字、表格、图形:也可采用现代科技如多媒体技术、仿真技术、虚拟现实技术进行表达。变形监测、分析、预报的技术报告和总结是最重要的成果。 13.工程建筑物变形的原因是什么?工程建筑物变形监测的内容及意义是什么? 答:原因:建筑的自重、使用中的动载荷、振动或风力因素引起的附加载荷、地下水位的升降、地质勘探不充分、设计错误、施工质量差、施工方法不当等。 内容:1、垂直位移监测2、水平位移监测3、倾斜观测4、裂缝观测5、挠度观测6、摆动和转动观测 意义:1、掌握建筑物的稳定性:为安全运行诊断提供必要的信息:以便及时发现问题并采取措施。2、理解变形的

边坡变形监测方案实施及数据处理分析

边坡变形监测方案实施及数据处理分析 【摘要】边坡工程施工过程中,由于填挖面大,引起周边环境变形的可能性就高,需要对边坡进行有效的变形监测,针对变化及时采取一些方法处理,以保证设施的安全。这种项目就需要正确地采用一个合理的监测方案,对数据处理、分析。本文结合已完成项目的实例,对边坡进行水平位移和沉降监测,采用监测方法为精密二等水准、极坐标法,并对其进行分析。 【关键词】变形监测;基准网;变形点;边角网;极坐标法;闭合水准路线 1 工程概况 某变电站东南侧边坡于2011年发生滑坡,后采用42根抗滑桩进行加固处理。根据施工单位的反映,抗滑桩施工2012年3月施工完毕后至2012年5月初,抗滑桩发生位移,附近水泥地面发现裂缝,呈放大趋势。为了准确了解抗滑桩变形情况,要求对桩顶水平及垂直位移进行变形监测。 2 监测方案的实施 2.1 基准控制点和监测点的布设 2.1.1 基准网的建立 选择通视良好、无扰动、稳固可靠、远离形变护坡高度3倍即45m外比较稳定的地方埋设四个工作基点,其中三个工作基点A1、A2、A3采用有强制归心装置的观测墩,照准标志采用强制对中装置的觇牌。A2、A3为观测墩,地面高度约1.2m,埋深至基岩位置,A4为主要检核点,埋设在加固坎上,地质较为稳定。 A3、D12、SZ1为沉降基准点,D12在是4×4m的高压电塔加固水泥墩上,建成已超过一年,SZ1在另一电塔水泥墩上,墩台3.5×3.5m,建成时间超过三年,非常稳固。 2.1.2 变形点的建立 变形点应布置在边坡变形较大并能严格控制变形的边坡边沿位置。在边坡顶上布置27个变形监测点,编号分别为东侧为1-27。用膨胀螺栓垂直植入护坡混凝土中,螺栓孔深不小于100mm,露出地面30-80mm,用红色油漆在螺栓上做标记,并将螺栓顶部磨半圆。 基准点与各点位埋设完毕等候5天后,水泥凝固稳定后方可开始进行观测。 2.2 监测精度及频率要求

基坑监测总结报告

基坑监测总结报告 工程名称:********项目基坑监测 工程地点:***************** 委托单位:********开发有限公司 报告页数:共16页 检验编号: ******* ********建设工程质量检测有限公司 二零****年三月

基坑监测总结报告 检测人员: 报告编写: 审核: 批准人: 声明: 1. 本报告涂改、错页、换页、漏页无效; 2. 单位名称与报告专用章名称不符者无效; 3. 本报告无测量、审核、技术负责人签字无效; 4. 未经书面同意不得复制或作为他用; 5.如对本报告有异议或需要说明之处,委托方可在报告发出后15 天内向本检测单位书面提出,本单位将于5日内给予答复。 检测单位:********工程质量检测有限公司 地址:*********************) 邮编: 电话: 传真:

目录 一、工程概况.................................. 错误!未定义书签。 二、监测目的.................................. 错误!未定义书签。 三、监测依据.................................. 错误!未定义书签。 四、监测项目及测点布置........................ 错误!未定义书签。 五、报警指标.................................. 错误!未定义书签。 六、监测历程及工作量统计 ...................... 错误!未定义书签。 七、监测方法原理.............................. 错误!未定义书签。 八、监测频率.................................. 错误!未定义书签。 九、仪器设备.................................. 错误!未定义书签。 十、监测成果.................................. 错误!未定义书签。十一、监测成果的分析.......................... 错误!未定义书签。十二、附图.................................... 错误!未定义书签。

基坑工程监测开题报告

山东科技大学 本科毕业设计(论文)开题报告题目基坑工程的综合监测 学院名称测绘科学与工程学院 专业班级 学生 学号 指导教师 填表时间:年 5 月 6 日

填表说明 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。 2.此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期完成,经指导教师签署意见、相关系主任审查后生效。 3.学生应按照学校统一设计的电子文档标准格式,用A4纸打印。 4.参考文献不少于8篇,其中应有适当的外文资料(一般不少于2篇)。 5.开题报告作为毕业设计(论文)资料,与毕业设计(论文)一同存档。

设计(论文) 题目 基坑开挖监测 设计(论文)类型(划“√”)工程实际科研项目实验室建设理论研究其它√ 一、本课题的研究目的和意义 随着城市建设的发展,基坑施工的开挖深度越来越深,从最初的5~7m发展到目前最深已达20m多。由于地下土体性质、荷载条件、施工环境的复杂性,对在施工过程中引发的土体性状、环境、邻近建筑物、地下设施变化的监测已成了工程建设必不可少的重要环节。 对于复杂的大中型工程或环境要求严格的项目,往往难从以往的经验中得到借鉴,也难以从理论上找到定量分析、预测的方法,这就必定要依赖于施工过程中的现场监测。首先,靠现场监测据来了解基坑的设计强度,为今后降低工程成本指标提供设计依据。第二,可及时了解施工环境——地下土层、地下管线、地下设施、地面建筑在施工过程中所受的影响及影响程度。第三,可及时发现和预报险情的发生及险情的发展程度,为及时采取安全补救措施充当耳目。监测在取得大量测试数据同时对工程总结经验、完善基坑的支撑、提高设计水平有着重要意义。 根据我市周边地区的基坑工程事故分析可知,由于部分单位不重视基坑施工过程的监测,从而造成了较严重的工程事故,甚至造成了人员伤亡事故。如基坑围护结构的失稳,周边建筑的裂缝及地下设施的破坏。因此,当前对于我基坑开展监测工作已经变得越来越重要。

沉降观测报告(模板)

沉降观测报告模板 一.工程概况: 简述工程规模,结构形式,地基,高度,建筑面积,抗震烈度,抗震设防等级,设计的沉降观测要求,观测点建立时间,观测周期,观测等级等。 二. 沉降观测采用的规范及标准 1.《建筑变形测量规程》JGJ/T8-97; 2.《国家一、二等水准测量规范》GB/12897-2006; 3《建筑地基基础设计规范》(GB 50007-2002) 4.《建筑工程资料管理规程》 5《工程测量规范》GB/50026-2007 6《建筑变形测量规程》GB/8-2007 7.本工程《技术设计书》; 三. 沉降观测依据及要求 依据工程设计图纸要求及沉降观测施工规范、规程做观测详细说明。 四. 观测目的及要求: 沉降观测的主要目的:是监测建筑物(构筑物)在施工期间以及后续各个阶段的沉降状态和工作情况,并为建设单位、设计单位和施工单位提供准确可靠的建筑物动态沉降数据,以便在发生不正常现象时,使各方能及时分析原因,采取措施,防止事故发生,

确保工程质量安全。 建筑沉降观测能测定建筑及地基的沉降量、沉降差及沉降速率,并根据需要计算基础倾斜、局部倾斜等数据。 五. 基准点和沉降观测点的设置 1基准点是沉降观测起始数据的基本控制点,为保证观测值的高可靠性,在施工区附近(变形区外)埋设沉降观测水准基点,所埋基准点根据《建筑变形测量规范》JGJ/T8-2007中的规定进行建立。基准点的个数,可根据工程规模的大小合理布设。本建筑共埋设4个基准点,高程系统采用假定高程BM1=m,也可采用施工区域内国家高程系统,高程值为甲方提供绝对高程值。基准点的建立必须用高精度水准仪引测,经过闭合、平差计算而来,并定期检验基准点的稳定性。至提交报告时基准点稳定可靠,符合规范要求。 2依据《建筑变形测量规范》JGJ/T 8-2007中的规定,沉降观测点的布置以能全面反映建筑物地基变形特征并结合地质情况及建筑物结构特点进行,变形观测点均设在建筑主要受力位置。点位设置的高度应有利于观测,且不影响施工的原则,并有利于长期保存。变形观测点均设在建筑主要受力点上。每个建筑物或构筑物在施工平面图上,都合理设置沉降观测点

现代变形监测重点内容与思考题答案

第1章变形监测概述 一、什么是工程建筑物的变形?对工程建筑物进行变形监测的意义何在? 工程建筑物的变形:由于各种相关因素的影响,工程建筑物及精密设备都有可能随时间的推移发生沉降、位移、挠曲、倾斜及裂缝等现象,这些现象统称为变形。 变形监测:利用专门的仪器和设备测定建(构)筑物及其地基在建(构)筑物荷载和外力作用下随时间而变形的测量工作。 内部变形监测内容主要有工程建筑物的内部应力、温度变化的测量,动力特性及其加速度的测定等; 外部变形监测又称变形观测,其主要内容有建(构)筑物的沉降观测、位移观测、倾斜观测、裂缝观测、挠度观测等。 意义:通过变形监测,可以检查各种工程建筑物及其地质构造的稳定性,及时发现问题,确保工程质量和使用安全; 更好地了解建(构)筑物变形的机理,验证有关工程设计的理论和地壳运动的假说,建立正确的变形预报理论和方法; 以及对某种工程的新结构、新材料和新工艺的性能作出科学的客观评价。 二、工程建筑物产生变形的主要原因,及变形的分类? 原因:(1) 自然条件及其变化:建筑物地基的工程地质、水文地质、大气温度的变化,以及相邻建筑物的影响等。 (2) 与建筑物本身相联系的原因:如建筑物本身的荷重、建筑物的结构、形式以及动荷载的作用、工艺设备的重量等。 (3) 由于勘测、设计、施工以及运营管理方面的工作缺陷,还会引起建筑物产生额外变形。 分类:(1)按变形性质可以分为周期性变形和瞬时变形(2)按变形状态则可分为静态变形和动态变形 三、变形监测的主要任务和目的? 任务:是周期性地对拟定的观测点进行重复观测,求得其在两个观测周期间的变化量;或采用自动遥测记录仪监测建(构)筑物的瞬时变形。 目的:(1)监测——以保证建(构)筑物的安全为目的,通过变形观测取得的资料,可以监视工程建筑物的变形的空间状态和时间特性;在发生不正常现象时,可以及时分析原因,采取措施,防止事故发生,以保证建(构)筑物的安全。(变形的几何分析) (2)科研——以积累资料、优化设计为目的,通过施工和运营期间对建筑物的观测,分析研究其资料,可以验证设计理论,所采用的各项参数与施工措施是否合理,为以后改进设计与施工方法提供依据。(变形的物理解释) 四、高层建筑的主要变形特点? (1)基础较深,需进行基坑回弹测量(2)沉降量较大,需进行沉降观测(3)楼体高力矩大,需进行倾斜观测(4)风荷载大,需进行风振测量(5)墙体温差大,需进行日照变形观测 五、制约变形监测质量的主要因素有哪些? (1)观测点的布置;(2)观测的精度与频率;(3)观测所进行的时间。 六、确定变形监测精度的目的和原则? 变形监测的精度,取决于建筑物预计的允许变形值的大小和进行观测的目的。如何根据允许变形值来确定观测的精度,因其与观测条件和待测建(构)筑物的类型以及观测的目的相关。 七、确定变形监测的频率主要由哪些因素决定?应遵循什么原则? (一)因素:观测的频率取决于变形值的大小和变形速度,同时与观测目的也有关系。(二)原则: 1.变形监测的频率应以既能系统地反映所测变形的变化过程,又不遗漏其变化的时刻为原则,根据单位时间内变形量的大小及外界因素的影响来确定。

基坑监测总结报告15195

*********商业楼基础开挖基坑监测技 术总结报告 2017年7月

*******商业楼基础开挖基坑监测技术总结报告 编写: 审核: 审定: 2017年7月

目录 1工程概况 (1) 1.1简况 (1) 1.2周边环境 (1) 1.3地质概述 (1) 1.4基坑围护 (1) 2监测依据 (1) 3 工程地质概要 (1) 3.1本基坑地下水埋藏较深,不考虑地下水变化监测。 (1) 4、监测内容: (2) 5、基准点、监测点的布设 (2) 5.1.2 基准点的埋设和观测 (2) 5.1.3监测点的布设 (3) 5.2监测方法 (3) 5.2.1垂直位移监测 (3) 5.2.2水平位移监测 (3) 6监测周期及频率 (4) 7监测仪器设备及检定要求 (5) 7.1监测仪器设备 (5) 7.2仪器检定 (5) 9 结论与建议 (6)

1工程概况 1.1简况 *************大街东段南侧,东侧与京港澳高速公路相望,西侧接近南联路,地势平坦。基坑东西宽约55米,南北长为56.5米,开挖面积约4.68亩。开挖深度在5.0~7.7米。 1.2周边环境 本工程基坑3倍基坑深度范围内地上无建筑物、构筑物,地下无管线等。1.3地质概述 详见本工程《岩土工程勘察报告》。 1.4基坑围护 本基坑根据周边环境、开挖深度及土层情况,选用土钉墙挂网锚喷的支护形式。 2监测依据 1)《国家一、二等水准测量规范》GB/T 12897-2006 2)《建筑变形测量规范》JGJ 8-2007 4)《建筑基坑工程变形技术规范》(GB50497-2009) 5)《精密水准测量规范》(GB/T15314-940) 6)《工程测量规范》(GB 50026-93) 7)《建筑边坡工程技术规范》(GB50330-2007) 8)本工程地质勘察报告、基坑围护设计方案、保护对象权属部门对监测 的技术要求等。 9)同类工程实践经验。

基坑监测总结报告

基坑监测总结报告 This model paper was revised by the Standardization Office on December 10, 2020

*********商业楼基础开挖基坑监测技术 总结报告 2017年7月 *******商业楼基础开挖基坑监测 技术总结报告 编写: 审核: 审定: 2017年7月

目录 1工程概况 简况 *************大街东段南侧,东侧与京港澳高速公路相望,西侧接近南联路,地势平坦。基坑东西宽约55米,南北长为米,开挖面积约亩。开挖深度在~米。

周边环境 本工程基坑3倍基坑深度范围内地上无建筑物、构筑物,地下无管线等。地质概述 详见本工程《岩土工程勘察报告》。 基坑围护 本基坑根据周边环境、开挖深度及土层情况,选用土钉墙挂网锚喷的支护形式。 2监测依据 1)《国家一、二等水准测量规范》GB/T 12897-2006 2)《建筑变形测量规范》JGJ 8-2007 4)《建筑基坑工程变形技术规范》(GB50497-2009) 5)《精密水准测量规范》(GB/T15314-940) 6)《工程测量规范》(GB 50026-93) 7)《建筑边坡工程技术规范》(GB50330-2007) 8)本工程地质勘察报告、基坑围护设计方案、保护对象权属部门对监测的 技术要求等。 9)同类工程实践经验。 3 工程地质概要 本基坑地下水埋藏较深,不考虑地下水变化监测。 拟建场地浅层土层成份复杂,观测点和基准点应充分考虑其稳定性和可使用性。 4、监测内容: 本工程布设的监测系统及时、有效、准确地反映施工中围护体及周边环境的动向。根据现场的周边环境情况及设计的常规要求,本项目完成了以下监测内容: 1、护坡的水平位移监测 2、竖向位移监测。

变形监测实验报告完整版

编号:TQC/K485变形监测实验报告完整版 Daily description of the work content, achievements, and shortcomings, and finally put forward reasonable suggestions or new direction of efforts, so that the overall process does not deviate from the direction, continue to move towards the established goal. 【适用信息传递/研究经验/相互监督/自我提升等场景】 编写:________________________ 审核:________________________ 时间:________________________ 部门:________________________

变形监测实验报告完整版 下载说明:本报告资料适合用于日常描述工作内容,取得的成绩,以及不足,最后提出合理化的建议或者新的努力方向,使整体流程的进度信息实现快速共享,并使整体过程不偏离方向,继续朝既定的目标前行。可直接应用日常文档制作,也可以根据实际需要对其进行修改。 1、实验要求: 应用全站仪对科技楼楼顶避雷针进行变形观测 2.实验过程: 首先认真理解前方交会原理,然后利用GPS做静态控制得出控制点坐标,将全站仪架在其中一个控制点A上,另一个控制点B架上反射棱镜,将全站仪望远镜瞄准反射棱镜定向,然后置零,转动照准部对准避雷针顶端C,记录角度,然后盘右观测,一站观测两个测回,得出夹角α将全

济南舆情监测系统平台数据分析报告

济南舆情监测系统平台数据分析报告 监测周期:2020-02-20 00:00:00~2020-02-20 23:59:59 分析范围:济南 媒体类型:全部 信息类型:全部 信息倾向性:全部 去重类型:相同URL去重 查询类型:发布信息 报告导出:2020-02-20 18:33:21 一、趋势分析 在整体发展趋势中,2020.02.20 00:00声量最高,共产生1688条信息。在2020.02.20 00:00重要媒体声量最高,共产生63条信息。 (一)整体趋势 监测时间全部声量重要媒体声量2020.02.20 00:00 1688 63 2020.02.20 01:00 0 0 2020.02.20 02:00 0 0 2020.02.20 03:00 0 0 2020.02.20 04:00 0 0 2020.02.20 05:00 0 0 2020.02.20 06:00 0 0 2020.02.20 07:00 0 0 2020.02.20 08:00 0 0 2020.02.20 09:00 0 0 2020.02.20 10:00 0 0 2020.02.20 11:00 0 0 2020.02.20 12:00 0 0 2020.02.20 13:00 0 0

2020.02.20 14:00 0 0 2020.02.20 15:00 0 0 2020.02.20 16:00 0 0 2020.02.20 17:00 0 0 2020.02.20 18:00 0 0 (二)原创/转发趋势 (三)原创/转发分布

类型数据量占比 原创声量1013 60.01% 转发声量675 39.99% (四)媒体/网民趋势 (五)媒体/网民分布 类型数据量占比

基坑监测总结报告

基坑工程监测 总 结 报 ( 告 2010年10月 基坑工程监测总结报告

编写: 审核: 审定: , 2012年12月 地址:网址:电话:传真

目录 1工程概况 (1) 简况 (1) 周边环境 (1) 地质概述 (2) 基坑围护 (2) 2监测目的及依据 (2) 监测目的 (2) 监测依据 (3) 方案编制原则 (3) 3监测内容及项目 (4) 4基准点、监测点布设与保护 (4) 基准点及监测控制网的布设 (4) 监测点的布设 (5) 监测点的保护 (6) 5监测方法 (7) 垂直位移监测 (7) 水平位移监测 (7) 测斜监测 (7) 6监测周期及频率 (8) 监测周期 (8) 监测频率 (9) 7监测报警值 (9) 8监测仪器设备及检定要求 (10) 监测仪器设备 (10) 仪器检定 (10) 9施工工况 (10) 10曲线图及分析 (11) 建筑物垂直位移累计变化一览表及曲线图 (11) 地表垂直位移累计变化一览表及曲线图 (13) 地下管线垂直、水平位移 (15) 深层土体水平位移累计变化一览表及曲线图 (19) 11 结论与建议 (22)

1工程概况 简况 本工程位于上海市浦东新区康桥镇沪南公路以东、秀沿路以南、网船浜河道以北区域。本工程基地面积约万平米,拟建总建筑面积7万平米。本工程拟建四栋高层住宅及一座地下一层车库及附属用房。 周边环境 基坑东侧 该侧地下室外轮廓退用地界址线为~不等, 东侧坡道外面紧贴用地界址线;东端的4号房基坑边距用地界址线为~不等。目前界线上未砌筑围墙。用地界址线外侧为已投入使用的文化中心,距离大于40米以上。 基坑南侧 为网船浜河道,1号楼基坑距离河道蓝线最小距离为米,其余号房基坑距离河道蓝线距离均大于20米,车库基坑距离河道蓝线最小距离为30米,河道蓝线外6米为河道上口,河道两侧为天然放坡,没有石驳岸。 基坑西侧 为沪南公路。本工程车库基坑的西侧距离西侧红线距离约100米。可不考虑对西侧红线外的道路、管线等防护要求。但是需考虑车库西侧拟建的附属用房的安全。 基坑北侧 为秀沿路,该侧地下室外轮廓退用地红线为10.55米。红线外依次为人行道、

变形监测实习报告

变形监测实习报告 变形监测实习报告_20xx301610245_王宏达 变形监测实习报告 王宏达20xx301610245 一、各监测点本期沉降量 1第1次0第2次1.2第3次0.5第4次0.3第5次-1.4第6次0.3第7次-0.3第8次-0.6第9次0.6第10次-0.9第11次-0.3第12次-0.3第13次-0.5第14次 -0.3 23003.2 4.4 -1.2-2.90 0 -1.8-0.40.8 0.5 -0.9-1.30.9 0.9 -1.4-0.71.3 0.7 -0.4-0.2-0.8-0.4-0.5-0.40.1 -0.3 45003.26-3-3.40-1.30.7 -0.2 -0.10.1-0.4-10.8 1.3 -0.3-0.80 0.5

-0.5-0.6-1.9-1.80.40.70.2 3.7 67000.50.5-0.10.41.60.2 -0.4-1.1-0.7-1 0.7-0.6-0.31.2 0.3-0.3-0.90.1 -0.9-0.4-0.9-1.31.40.5 -0.6 -3.1801.10.10.4 0-0.6 -0.40.5 -1.20.8 -0.6-0.90 -3.8 二、各期的平均累积沉降量 第1次第2次第3次第4次第5次第6次第7次第8次第9次第10次第11 101.20.50.3-1.40.3-0.3-0.60.6-0.9-0.3 20304050 600.5-0.11.6-0.4-0.70.7-0.30.3-0.9-0.9 7080 平均02.5125-1.20.15-0.575-0.0875-0.5250.5875-0.4750.2-0.487 3.24.4-1.20-1.8 -2.90-0.4 3.26-30 -3.4-1.3 0.51.10.40.10.20.4-1.1-1-0.6 0-0.6-0.4 0.7-0.2-0.1-0.4 0.1-1 0.80.5-0.9

成都舆情监测系统平台数据分析报告

成都舆情监测系统平台数据分析报告 监测周期:2020-02-20 00:00:00~2020-02-20 23:59:59 分析范围:成都 媒体类型:全部 信息类型:全部 信息倾向性:全部 去重类型:相同URL去重 查询类型:发布信息 报告导出:2020-02-20 18:33:44 一、趋势分析 在整体发展趋势中,2020.02.20 00:00声量最高,共产生4571条信息。在2020.02.20 00:00重要媒体声量最高,共产生225条信息。 (一)整体趋势 监测时间全部声量重要媒体声量2020.02.20 00:00 4571 225 2020.02.20 01:00 0 0 2020.02.20 02:00 0 0 2020.02.20 03:00 0 0 2020.02.20 04:00 0 0 2020.02.20 05:00 0 0 2020.02.20 06:00 0 0 2020.02.20 07:00 0 0 2020.02.20 08:00 0 0 2020.02.20 09:00 0 0 2020.02.20 10:00 0 0 2020.02.20 11:00 0 0 2020.02.20 12:00 0 0 2020.02.20 13:00 0 0

2020.02.20 14:00 0 0 2020.02.20 15:00 0 0 2020.02.20 16:00 0 0 2020.02.20 17:00 0 0 2020.02.20 18:00 0 0 (二)原创/转发趋势 (三)原创/转发分布

类型数据量占比 原创声量2253 49.29% 转发声量2318 50.71% (四)媒体/网民趋势 (五)媒体/网民分布 类型数据量占比

变形监测实验报告范文精选

变形监测实验报告范文精选 篇一:变形监测实验报告 1、实验要求: 应用全站仪对科技楼楼顶避雷针进行变形观测 2.实验过程: 首先认真理解前方交会原理,然后利用GPS做静态控制得出控制点坐标,将全站仪架在其中一个控制点A上,另一个控制点B架上反射棱镜,将全站仪望远镜瞄准反射棱镜定向,然后置零,转动照准部对准避雷针顶端C,记录角度,然后盘右观测,一站观测两个测回,得出夹角α将全站仪与反射棱镜互换位置,同样方法测得夹角β,根据已知A,B两点坐标可求得避雷针顶端的平面坐标,然后在另一已知点D上架全站仪,A点架上反射棱镜,以A点做后视定向,观测A,D 两点间夹角,盘左盘右观测两个测回γ,同时观测竖角β,量取仪器高,根据观测数据计算进行比较检核。 3.实验已知数据: A点坐标X 3525052.175 Y 527483.758 B点坐标X 3525047.348 Y 527412.793 D点坐标X 3524903.239 Y 527259.558 4.实验观测数据:

α=76°22′05″,β=80°37′19″, γ=88°39′44″(检核角) 竖角θ=37°24′03″ 5 实验结果: C点坐标:X 3524875.2304 Y 527453.3827 Z 75.066 检校误差3″ 6.实验心得: 通过本次实验巩固了在变形监测课堂上所学的理论知识,极大的提高了我的动手操作能力,仪器操作还不是很熟练,以后应该多加练习,理论和实际还是有一定的差距。要有耐心,要学会等待,忍耐,有时候仪器不稳定,必须得等。 篇二:三维动画制作实验报告 一、实验目的 四、实验方法及步骤 二、实验原理 五、实验记录及数据处理 三、实验仪器 六、误差分析及问题讨论 目录

现代变形监测重点内容与思考题答案

第1章变形监测概述一、什么是工程建筑物的变形?对工程建筑物进行变形监测的意义何在? 工程建筑物的变形:由于各种相关因素的影响,工程建筑物及精密设备都有可能随时间的推移发生沉降、位移、挠曲、倾斜及裂缝等现象,这些现象统称为变形。 变形监测:利用专门的仪器和设备测定建(构)筑物及其地基在建(构)筑物荷载和外力作用下随时间而变形的测量工作。 内部变形监测内容主要有工程建筑物的内部应力、温度变化的测量,动力特性及其加速度的测定等; 外部变形监测又称变形观测,其主要内容有建(构)筑物的沉降观测、位移观测、倾斜观测、裂缝观测、挠度观测等。 意义:通过变形监测,可以检查各种工程建筑物及其地质构造的稳定性,及时发现问题,确保工程质量和使用安全; 更好地了解建(构)筑物变形的机理,验证有关工程设计的理论和地壳运动的假说,建立正确的变形预报理论和方法; 以及对某种工程的新结构、新材料和新工艺的性能作出科学的客观评价。 二、工程建筑物产生变形的主要原因,及变形的分类? 原因:(1) 自然条件及其变化:建筑物地基的工程地质、水文地质、大气温度的变化,以及相邻建筑物的影响等。 (2) 与建筑物本身相联系的原因:如建筑物本身的荷重、建筑物的结构、形式以及动荷载的作用、工艺设备的重量等。 (3) 由于勘测、设计、施工以及运营管理方面的工作缺陷,还会引起建筑物产生额外变形。分类:(1)按变形性质可以分为周期性变形和瞬时变形(2)按变形状态则可分为静态变形和动态变形 三、变形监测的主要任务和目的? 任务:是周期性地对拟定的观测点进行重复观测,求得其在两个观测周期间的变化量;或采用自动遥测记录仪监测建(构)筑物的瞬时变形。 目的:(1)监测——以保证建(构)筑物的安全为目的,通过变形观测取得的资料,可以监视工程建筑物的变形的空间状态和时间特性;在发生不正常现象时,可以及时分析原因,采取措施,防止事故发生,以保证建(构)筑物的安全。(变形的几何分析) (2)科研——以积累资料、优化设计为目的,通过施工和运营期间对建筑物的观测,分析研究其资料,可以验证设计理论,所采用的各项参数与施工措施是否合理,为以后改进设计与施工方法提供依据。(变形的物理解释) 四、高层建筑的主要变形特点? (1)基础较深,需进行基坑回弹测量(2)沉降量较大,需进行沉降观测(3)楼体高力矩大,需进行倾斜观测(4)风荷载大,需进行风振测量(5)墙体温差大,需进行日照变形观测五、制约变形监测质量的主要因素有哪些? (1)观测点的布置;(2)观测的精度与频率;(3)观测所进行的时间。 六、确定变形监测精度的目的和原则? 变形监测的精度,取决于建筑物预计的允许变形值的大小和进行观测的目的。如何根据允许变形值来确定观测的精度,因其与观测条件和待测建(构)筑物的类型以及观测的目的相关。 七、确定变形监测的频率主要由哪些因素决定?应遵循什么原则? (一)因素:观测的频率取决于变形值的大小和变形速度,同时与观测目的也有关系。 (二)原则: 1.变形监测的频率应以既能系统地反映所测变形的变化过程,又不遗漏其变化的时刻为原则,根据单位时间内变形量的大小及外界因素的影响来确定。 2.当实际观测中发现异常情况时,则应及时相应地增加观测次数。 八、简述变形监测的主要技术和数据处理分析的主要内容。

相关文档
最新文档