激光定位与传统定位的区别

激光定位与传统定位的区别
激光定位与传统定位的区别

激光定位与传统定位的区别

(F)原装进口激光二极管,光学透镜。光板清晰,发散度低,准直性好,体积

小,工业适用性强,优点:

1智能反馈控制电路;

2高效透过率光学系统;

3低功耗,高效能光功率输出;

4性能稳定,一致性好,使用寿命长。

光斑形状:线状(多种可定制)

光斑颜色:红光

输出波长:红光(635nm 650nm 660nm)、绿光(532nm)、蓝紫光(405nm)红外(808nm )等(多种可定制)

输出功率:5mw 10mw 50mw等(多种可定制)

工作温度:-10~75℃

储存温度:-40~85℃

使用寿命:连续使用大于8000小时

可选附件:专用电源(配套专用电源,具有很强的抗干扰性、高稳定性、抑制

浪涌电流及缓启动等特点,特别适于恶劣的工作环境,能有效保证产品的稳定性和使用寿命)

工业支架(配套专用支架:具有良好的导热性和灵活性,使镭射激

光产品可安装在任何垂直或水平面,并使之在三维空间任意360度调整,以达到最佳使用效果

外形尺寸:Φ16*55 Φ22*85 Φ26*110等(可按客户要求制定)

光学透镜:光学镀膜玻璃透镜或塑胶透镜

激光用途:激光的发射原理及产生过程的特殊性决定了激光具有普通光所不具有的特点:即三好(单色性好、相干性好、方向性好)一高(亮度

高)。利用激光的定向性好和高亮度,可广泛应用于医疗保健、军

事、鉴伪、安防、舞台(红、绿、蓝)灯光、各种电动工具、测量

类、仪器、设备、水平尺、定位仪、测距仪、测温仪、激光标线仪

(投线仪)、各种板材切割成型机、石材机械、木工机械、金属锯

床、包装机械的对刀、放线、服装类(缝纫机、裁剪机、自动手动

断布机、开袋机、套结机、拉布机、绣花机、印花机、钉珠机、钉

扣机、铆钉机、啤机)、电子工量具、鼠标、U盘、摄像机、手机、

投影教学翻页笔、激光笔、工艺品、室内外装饰、手电筒、礼品类、

玩具类等产品中。方便快捷、直观实用、易于安装、稳定可靠。能

较大幅度的提高工作效率。

2、激光定位与传统定位的比较:

a. 传统激光定位中留下的杂痕难以去除;激光无痕,通电即有断电即无。

b. 传统定位过程繁琐;激光使用简易,通电即可。

c. 传统定位模糊且不准,生产过程中耗损严重;激光效果清晰定位准确。

d. 传统定位生产工艺落后、耗时、人工成本高;激光定位工艺先进,节省成本。

e. 激光定位其他特点:安装方便(若另配我厂生产万向转动支架,能使使用更简便);拆卸简单本文章由陕西日成科技提供。

半导体分布反馈激光器-DFB

半导体分布反馈激光器 半导体分布反馈激光器是采用折射率周期变化的结构实现谐振腔反馈功能的半导体激光器。这种激光器不仅使半导体激光器的某些性能(如模式、温度系数等)获得改善,而且由于它采用平面工艺,在集成光路中便于与其他元件耦合和集成。GaAs-GaAlAs分布反馈激光器已实现室温连续工作,阈值3.4×103安/厘米2(320K)。282K下得到的最大连续输出功率为40毫瓦。 半导体分布反馈激光器- 简介 采用折射率周期变化的结构实现谐振腔反馈功能的 半导体激光器。这种激光器不仅使半导体激光器的某些 性能(如模式、温度系数等)获得改善,而且由于它采 用平面工艺,在集成光路中便于与其他元件耦合和集成。 1970年采用双异质结的GaAs-GaAlAs注入式半导体激光 器实现了室温连续工作。与此同时,贝尔实验室H.利戈 尼克等发现在周期结构中可由反向布喇格散射提供反 馈,可以代替解理面。在实验中,最初是把这种结构用 于染料激光器,1973年开始用于半导体激光器,1975年 GaAs分布反馈激光器已实现室温连续工作。 半导体分布反馈激光器- 原理 半导体分布反馈激光器的反馈结构是一种周期结构,反馈靠反向布喇格散射提供(见图)。为了使正向波与反向波之间发生有效的布喇格耦合,要求光栅周期满足布喇格条件:半导体分布反馈激光器,式中λ0是激射波长,Ng是有效折射率,m=1、2、3、…(相当于耦合级次)。对于GaAs材料,一级耦合:Λ=0.115微米。在实验中,使用3250埃He-Cd激光和高折射率棱镜(nP=1.539),已制出Λ=0.11微米的周期结构(见半导体激光二极管)。 1.结构及工作机理 DFB激光器的激光振荡不是靠F—P腔来实现,而是依靠沿纵向等间隔分布的光栅所形成的光耦合,如图2—81所示。

激光治疗的操作规范及管理讲解

激光治疗的操作规范及管理 激光治疗具有相当的风险性,因而有必要在各方面严格遵循质控要求和有关的规章制度。唯有如此,才能充分保障患者的健康及安全,最大限度地减少并避免医疗事故。 【对操作人员的要求】 (1激光从业医技人员必须具备执业资格。 (2从事皮肤激光治疗的医师,应有一定的皮肤科临床经验。 (3从事皮肤激光治疗的医师均应经过正规培训,掌握激光的基本知识、激光的技术参数和操作方法。 (4从业人员应定期接受培训和再教育。 【操作规程】 (1与患者及家属进行术前谈话,告知激光手术可能的风险及术后注意事项,使患者的期望值达到合理水平,患者术前均应签署知情同意书。 (2按常规进行术前准备,根据需要清洁手术区、常规消毒,必要时还应予以局部麻醉和表面麻醉。麻醉剂的使用应遵循安全、规范的原则。 (3根据对患者的诊断,选择合适的激光器和激光参数进行治疗。治疗时,对周围正常皮肤要给予妥善防护,工作人员应佩戴防护目镜以保护眼部。 (4治疗完毕后,根据需要在创面上外用保护剂,以预防感染。 (5术后应避免感染,可外用和(或)口服抗生素,治疗区应避免 搔抓,避免剧烈运动。美容激光或光子嫩肤术后应避免日晒。 (6患者术后如有意外情况,应尽早与医师联系并复诊。【激光器的分级】

激光器按其对人体的危害,可分为4级,这主要是参照美国辐射卫生局制定的标准。 I级激光器:在通常操作的情况下,这一级激光器对人体无辐射危害,因而可以免除控制措施,也不必使用警示标志。 Ⅱ级激光器:又称为低功率激光器。在使用时,只要仔细操作即可,一般不需要特别的安全防护措施,但是在机器的外罩上要使用警示标志。 Ⅲ级激光器:又称为中功率激光器,其中Ⅲ-A 类型对人体有低度危险性,Ⅲ-B 类型对人体有中度危险性。由于本级激光器对人体可造成直接的危害,因此必须采取防护措施,严禁直视激光束,同时尽可能减少激光反射。机器的外罩上应使用警示标志。 Ⅳ级激光器:此类激光器输出功率高,对人体具有高度危险性。因此必须采取严格的防护措施,并使用警示标志。同对激光器最好安放于单独的房间内,实行远距离操作。 【激光室的管理】 (1激光治疗室应定期清洁或消毒,手术器械也要定期消毒。 (2激光治疗室要有充分的照明、通风条件,尽量减少能形成漫反射的物质。 (3二氧化碳激光、铒激光等治疗时易产生烟尘,安放这些设备的 手术室要安装吸烟尘装置。 (4病史资料及各种物品应由专人负责管理。 【皮肤激光治疗的防护】 (1Ⅱ~Ⅳ级激光器应贴有警示标志。

地震学基础复习整理 (量稳版)

地震学基础复习题 1.地震学的四大研究内容:a.传播、结构, b. 仪器, c.震源形成机制, d. 工程方面:抗震设防 2.地震波:由地震震源发出的,在地球内部传播的波 震源:地震发生的地方,即岩石发生断裂的地方 震中:过震源做地面的垂线,与地面的交点即为震中 震源深度:震源到阵中的距离 震中距:震中到台站的距离 发震时刻:发生地震的时刻 震级:地震释放能量的量度 3.烈度的六大影响因素:震源深度,震级,震中距,岩土和地质性质,震源机制,地貌和地下水位 4.地震序列:主震余震型、前震主震余震型、群震型 5.地震按震源深度分类:浅源地震小于60千米、中源地震60-300千米、深源地震大于300千米 6.波阵面:地震波传播过程中同一相位点连成的面 波前:起始点连接的面,即波在介质中传播时,某时刻刚刚开始位移的质点构成的面 波线:为了形象的描述波在空间的传播而引入的沿传播方向所画的带箭头的直线(与薄面垂直) 7.波动的基本性质:反射、透射、折射 8.地震方法的基础:均匀连续、各向同性、完全弹性 9.弹性体:在弹性限度内,介质受到力的作用时发生形变,撤去外力时又能恢复原来形状的性质 塑性体:在弹性限度内,介质受到力的作用时发生形变,撤去外力时不能恢复原来形状的性质

线弹性体:在弹性限度内,介质受力发生形变,力与形变量呈线性关系的性质 脆弹性体:物体在受到外力时发生破碎而不能恢复原来形状的性质 10.应力:介质受到外力作用时,内部质点间的相互作用力 应变:由应力作用产生的形变 S 面波的性质:a.面波是干涉醒地震波,由地下介质和结构决定,与震源无关 b. 首波:若介质是分层的,当地震波由低速的一方向高速的一方入射时,还存在着一种波,叫做首波 13.love波:平行于地面的质点位移没有垂直分量,振动方向与传播方向垂直 Rayleigh波:质点的运动为逆进椭圆,短轴平行于传播方向,长轴垂直于传播方向 注:与Rayleigh波相比love波传播速度较快

地震勘探在海洋石油勘探中的基本原理

地震勘探在海洋石油勘探中的基本原理

————————————————————————————————作者: ————————————————————————————————日期:

本科生课外研学任务书及成绩评定表 题目__地震勘探在海洋石油勘探中的基本原理学生姓名____ 黄邦毅________________ 指导教师____ 严家斌____________ 学院____ 地信院________________ 专业班级___地科0901_______________

地震勘探在海洋石油勘探中的基本原理 一、引言 国内外的勘探实践表明,没有物探技术的进步,就没有更多圈闭的发现,就没有钻探成功率的提高,也就更不会有油田和储产量的快速增长。宏观看,物探的作用在勘探阶段是客观的目标评价,在开发阶段是精细的油藏描述。因此,油气勘探开发离不开地震技术和地震技术的进步与发展。如果说勘探技术是石油工业的第一生产力,那么物探技术就是获得油气储量的第一直接生产力。 纵观近些年的勘探技术的具体运用,最常见的莫过于地震勘探,所谓地震勘探就是通过人工方法激发地震波,研究地震波在地层中传播的情形,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法! 21世纪是海洋的世纪,海洋蕴藏着很多宝贵的资源,随着生产技术的日趋进步,世界各国(包括中国在内)目前都在积极寻求开发海洋资源,在海洋的勘探开发中离不开物探,而且运用最广泛也最有效的是地震勘探。 二、海洋地震勘探 在茫茫大海里寻找石油最有效的技术方法是地球物理方法,其中主要是地震勘探方法。近几十年来,随着电子计算机的广泛应用,海洋地震勘探的数据采集和装备得到了极大的改进,数据处理技术和解释方法也得到迅速的发展。在油气勘探中,利用地震资料不仅能确定地下的构造形态、断裂分布,而且能了解地层岩性、储层厚度、储层参数甚至能直接指示地下油气的存在。在油气开发中,地震资料同测井、岩芯资料以及其它地下地质资料相结合能对油藏进行描述和监测。地震技术远远超出了石油勘探领域,已向石油开发和生产领域渗透。 用于寻找海上石油的地震反射法,和陆地的地震反射法相比,在方法基本原理、资料处理和解释方法等方面基本上是一样的。其中, 测量原理 在这类方法中,地震波在介质中传播的物理模型如图1所示。从震源O激发出的弹性波投射到反射界面上产生反射波,其条件是:入射角α等于反射角β。能

激光器介绍

激光器介绍 WALC4020数控激光切割机 更快、更宽、更厚的钣金切割专家 1、产品简介 更高性能的激光切割系统: WALC4020选择了世界最先进的激光器、切割头。拥有最高质量的部件和最好的结构。如西门子的控制系统和直线驱动系统,STAR的直线导轨。 更先进的结构型式: A.横梁 WALC4020激光切割机采用横梁倒挂结构,此结构有如下优势: 1.与横梁悬臂式相比,横梁的运行速度更高,运行更平稳,可达200米/分。这是因为驱动力的作用点位于横梁的重心,不会产生附加力矩,驱动效率更高,运行更平稳。 2.与小龙门移动式相比,电气控制更简单,系统更可靠。操作更方便。 因此,WALC4020更适用于高速,高功率切割。 B.交换工作台: 采用垂直升降式交换工作台,此型式的交换方式与目前使用的斜升式相比有如下优点: A.提升能力更大,安装更方便。 B.与横梁倒挂结构配合,结构更合理。 C.在切割区内,工作台下的空间更大,以便布置排渣装置及抽风除尘装置。 C.驱动: WALC4020激光切割机的X、Y轴采用了西门子的控制系统和直线驱动系统,与传统电机+滚珠丝杠(齿条)相比,驱动力更大,加速度更高。加速度可达3G,速度最高可达200米/分。而且运行更平稳。 X,Y,Z轴的导轨采用STAR高品质直线导轨,精度更高,运行更平稳。 2、产品特性 WALC4020融合了激光最新技术的应用 一.控制 WALC4020的控制器是SIEMENS 840D。该控制器的界面已经进行了改进,以适合激光切割系统的应用。 二.穿透检测 在打孔时,穿透检测使用传感器来确定光束是不是已经穿透了板材,这样可以得到最高质量的穿透效果,节省时间。

DFB激光器调研报告(在实际工程中的应用)

分布反馈式半导体激光器在实际工程系统中的应用 摘要:DFB (Distributed Feed Back) DFB型光发射机,分布反馈(激光器)半导体激光器因其波长的扩展、高功率激光阵列的出现以及可兼容的激光导光和激光能量参数微机控制的出现而迅速发展、半导体激光器体积小、重量轻、成本低、波长可选择,其应用范围遍及的领域越来越宽广,其的出现带来了巨大的变化,使科技更发达,人们生活更加丰富多彩,应用范围遍及医学、科技、航天交通,通信等各个领域。自从1962 年世界上第一台半导体激光器(Diode Laser)发明问世以来, 由于其体积小、重量轻、易于调制、效率高以及价格低廉等优点, 被认为是二十世纪人类最伟大的发明之一. 四十几年来半导体激光器逐步应用在激光唱机、光存储器、激光打印机、条形码解读器、光纤电信以及激光光谱学中, 不断扩大应用范围, 进入了一些其它类型激光器难以进入的新的应用领域。 关键字:DFB、工作波长、边模抑制比、阈值电流、输出光功率 一、分布反馈式半导体激光器简介 1、分布反馈式半导体激光器是以一定的半导体材料做工作物质而产生受激发射作用的器件.其工作原理是,通过一定的激励方式,在半导体物质 的能带之间,或者半导体物质的能带与杂质能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用.半导体激光器的激励方式主要有三种,即电注入式,光泵式和高 能电子束激励式.电注入式半导体激光器,一般是由GaAS,InAS,Insb等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射.光泵式半导体激光器,一般用N型或P型半导体单晶(如GaAS,InAs,InSb等)做工作物质,以其他激光器发出的激光作光泵激励.高 能电子束激励式半导体激光器,一般也是用N型或者P型半导体单晶(如PbS,CdS,ZhO等)做工作物质,通过由外部注入高能电子束进行激励.在半导体激光器件中,目前性能较好,应用较广的是具有双异质结构的电注入式GaAs二极管激光器。DFB( Distributed Feedback Laser),即分布式反馈激光器,其不同之处是内置了布拉格光栅(Bragg Grating),属于侧面发射的半导体激光器。目前,DFB激光器主要以半导体材料为介质,包括锑化镓、砷化镓、磷化铟、硫化锌等。DFB激光器最大特点是具有非常好的单色性(即光谱纯度),它的线宽普遍可以做到1MHz以内,以及具有非常高的边摸抑制比(SMSR),目前可高达40-50dB以上。 2、分布反馈式半导体激光器的主要参数:a.工作波长:激光器发出光谱的中心波长。b.边模抑制比:激光器工作主模与最大边模的功率比。 c.-20dB光谱宽度:由激光器输出光谱的最高点降低20dB处光谱宽度。 d.阈值电流:当器件工作电流超过阈值电流时激光器发出相干性很好的激光。 e.输出光功率:激光器输出端口发出的光功率。

医学中常用激光器(详细)

医学中常用的激光器 自第一台激光器问世后,人们对激光器件及技术进行了大量的研制工作,取得了相当可观的成果。目前能实现激光运转的工作物质达数百种以上,大体上分为气体、固体、半导体、染料等几大类。人们在探索激光产生机理的同时,扩展了激光的频谱范围,几千条谱线遍布于真空紫外到远红外的广阔光谱区域。激光方向性好、强度大,可以使被照物体在1/1000s内产生几千度的高温,瞬间发生汽化。由于激光的物理特性决定了其具有明显的生物学效应,。各种不同的激光具有不同的特性和组织效应,正确认识激光的这些特点,是选择和合理利用激光的基础。 一.气体激光器 气体激光器,按工作物质的性质,大致可分成下列三种:(1)原子激光器:利用原子跃迁产生激光振荡,以氦氖激光器为代表。氩、氪、氙等惰性气体,铜、镉、汞等金属蒸气,氯、溴、碘等卤素,它们的原子均能产生激光。原子激光器的输出谱线在可见和红外波段,典型输出功率为10毫瓦数量级。 (2)分子激光器:利用分子振动或转动状态的变化产生辐射制成的,输出的激光是分子的振转光谱。分子激光器以二氧化碳(CO2)激光器为代表,其他还有氢分子(H2),氮分子(N2)和一氧化碳(CO)分子等激光器。分子激光器的输出光谱大多在近红外和远红外波段,输出功率从数十瓦到数万瓦。(3)离子激光器:这类激光器的激活介质是离子,由被激发的离子产生激光放大作用,如氩离子(激活介质为Ar+)激光器。氦镉激光器(激活介质为Cd+)等。离子激光器的输出光谱大多在可见光和紫外波段,输出功率从几毫瓦到几十瓦。 气体激光器是覆盖波谱范围最广的一类器件,能产生连续输出。其方向性、单色性也比其他类型器件好,加之制造方便、成本低、可靠性高,因此成为目前应用最广的一类器体。 1、氦氖激光器 氦氖激光器能输出波长为632.8nm的可见光,具有连续输出的特性。它的光束质量很好(发散角小,单色性好,单色亮度大)。激光器结构简单,成本低,但输出功率较小。氦氖激光器在工业、科研、国防上应用很广,医疗上主要用于照射,有刺激、消炎、镇痛、扩张血管和针灸等作用,广泛用于内科、皮肤科、口腔科及细胞的显微研究。 氦氖激光器有三种结构形式:内腔式、外腔式和半内腔式。它们均由放电管、谐振腔、激励电源等三部分组成。以内腔式为例,放电毛细管是产生气体放电和激光的区域,它的内径很小,约在1到几毫米。电极A为阳极,由钨杆或钼(或镍)筒制成。阴极K为金属圆筒,由铝、钼、钽等制成,它们均有足够的电子发射能力和抗溅射能力。组成谐振腔的两块反射镜紧贴于放电管两端,并镀以多层介质膜。其中一个为全反射镜,另一个则为部分反射镜,整个谐振腔在出厂前已调整完毕,因此使用简单、方便。放电管的管径比放电毛细管粗几十倍,用以保持氦氖气压比及加固谐振腔。为了避免放电管变形而引起激光输出下降,内腔管的长度不宜过大,一般不超过一米。外腔式激光器可以更换不同的反射镜,使输出功率最大,光束发散角最小。也可在反射镜和放电管之间插入光学元件,以研究激光器的输出特性,调制它的频率或幅度,并可制成单频大功率激光器。 2、二氧化碳激光器 二氧化碳激光器的能量转换效率达20~25%(氦氖激光器的能量转换效率仅为千分之几)。它的输出波长为10.6微米,属于远红外区,连续输出功率可达万瓦级,常用电激励,结构比较简单紧凑,使用方便,是目前最常用的激光器之一,在医学上,CO2激光器作为手术刀使用日益引起人们的重视。CO2激光器也用于皮肤科、外科、神经外科、整形外科、妇科和五官科的手术,在癌症的治疗上也有一定成效。 最常见的封离型内腔式二氧化碳激光器的管壳是由硬质玻璃或石英材料制成的。常见为三层玻璃套管结构,其最内层是放电管,中间层是水冷套,外层是储气管。在内外层之间有气体循环通路,这是为了保证混合气体的均匀分布而设计的。其光学谐振腔通常用平凹球面腔。球面镜可用石英或其他光学玻璃做基片,然后,在表面上镀层金属膜。平面镜是输出窗片,要求它对10.6μm的激光有很好的透过率,且表面不易损伤,机械性能好等。一般中小功率的激光器常常采用锗单晶做输出片,大功率的用砷化镓

(完整版)关于车载激光雷达的知识清单

关于车载激光雷达的知识清单 ?2017年6月28日 ? ?国际电子商情 本篇知识清单分享给你,助你快速了解车载激光雷达产业。 在无人驾驶架构中,传感层被比作为汽车的“眼睛”,包括车载摄像头等视觉系传感器和车载毫米波雷达、车载激光雷达和车载超声波雷达等雷达系传感器。其中激光雷达已经被大部分人认为是实现自动驾驶的必要基础,毕竟传统雷达无法识别物体细节,而摄像头在暗光或逆光条件下识别效率明显降低。 也正得益于无人驾驶汽车市场规模的爆发,预计2030年全球激光雷达市场可达到360亿美元的规模,将成为新的蓝海。本篇知识清单分享给你,助你快速了解车载激光雷达产业。 内容导读: 1.车载激光雷达的技术原理 2.激光雷达在自动驾驶应用中有何优缺点? 3.车载激光雷达有哪些应用? 4.如何降低自激光雷达的成本? 5.国内外最全激光雷达企业介绍 一、车载激光雷达的技术原理 激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统,最初是军事用途。其工作原理是向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对飞机、导弹等目标进行探测、跟踪和识别。 这里详细介绍一下车载激光雷达的工作原理及实现方式。第一种是较为传统的扫描式激光雷达,这种设备被架在汽车的车顶上,能够用多束激光脉冲绕轴旋转360°对周围环境进行距离检测,并结合软件绘制3D图,从而为自动驾驶汽车提供足够多的环境信息。 这种激光雷达最初是在11年前的Darpa无人车挑战赛上,由美国Velodyne公司开发并被参赛团队使用(当时采用的是64线的激光雷达方案)。由于那时的成本

60个常用穴位的定位、主治、操作手法及注意事项

60个常用穴位定位、主治、操作 1.尺泽合穴 定位:在肘横纹中,肱二头肌腱桡侧凹陷处。 主治:咳嗽,气喘,咳血,小儿惊风,急性吐泻,肘臂挛痛。 操作:直刺0.8~1.2寸,或点刺出血。 2.列缺络穴;八脉交会穴(通于任脉) 定位:桡骨茎突上方,腕横纹上1.5寸,当肱桡肌与拇长展肌腱之间。(简便取穴双手虎口交叉,食指指尖所指处) 主治:头痛,项强,咳嗽,气喘,咽喉肿痛,口眼歪斜,牙痛。操作:向上斜刺正0.5~0.8寸。 3.少商井穴 定位:拇指桡侧指甲根角旁约0.1寸。主治:咽喉肿痛,高热,昏迷,癫狂,鼻衄。操作:浅刺0.1寸,或点刺出血。 4.商阳井穴 定位:示指末节桡侧,指甲根角旁0.1寸。 主治:齿痛,咽喉肿痛及五官疾患,热病、昏迷。 操作:浅刺0.1寸,或点刺出血。 5.合谷原穴 定位:在手背,第1、2掌骨间,当第2掌骨桡侧的中点处。(半握拳取穴)主治:头痛,齿痛,目赤肿痛,口眼歪斜,耳聋,经闭,滞产,无,发热恶寒,无汗,多汗。 操作:直刺0.5~1寸。 6.手三里 定位:在阳溪穴与曲池穴连线上,肘横纹下2寸处。 主治:肘臂无力,上肢不遂,腹痛,腹泻,腹胀,齿痛,颊肿。操作:直刺 0.8~1.2寸。 7.曲池合穴 定位:屈肘成直角,在肘横纹外侧端与肱骨外上髁连线中点。 主治:手臂痹痛,半身不遂,瘾疹,热病,癫狂,腹痛,吐泻,高血压,咽喉肿痛,齿痛。操作:直刺0.5~1寸。 8.肩髃 定位:肩峰端下缘,当肩峰与肱骨大结节之间,三角肌上部中央。臂外展或平举时,肩部出现两个凹陷,当肩峰前下方凹陷处。主治:肩臂挛痛,上肢不遂,瘰疬。操作:直刺或向下斜刺0.8~1.5寸。 9.迎香 定位:在鼻翼外缘中点旁开约0.5寸,当鼻唇沟中。(微笑当鼻辰沟中正中央,略向上刺)主治:鼻塞,口歪,鼻衄,胆道蛔虫。操作:略向内上方刺或平刺0.3~0.5寸。 10.四白 定位:目正视,瞳孔直下,当眶下孔凹陷处。主治:目赤痛痒,目翳,眼睑润动,头痛,眩晕,口眼歪斜,面肌痉挛。操作:直刺0.3~0.5寸。 11.地仓 定位:口角旁约0.4寸,上直对瞳孔 主治:口眼歪斜,齿痛,流涎,三叉神经痛。 操作:斜刺或平刺0.5~0.8寸。

分布反馈光纤激光器传感阵列关键技术研究

目录 摘要 (i) Abstract ............................................................................................................... i i 第一章绪论 (1) 1.1 分布反馈光纤激光器的研究背景 (1) 1.2 分布反馈光纤激光器及阵列的研究现状 (3) 1.2.1 分布反馈光纤激光器研究概况 (3) 1.2.2 分布反馈光纤激光器阵列研究概况 (6) 1.2.3 光纤光栅高温特性研究概况 (11) 1.3 论文的主要工作 (12) 第二章分布反馈光纤激光器基本特性研究 (15) 2.1 光纤光栅基础理论 (15) 2.1.1 耦合模理论 (15) 2.1.2 光纤布拉格光栅 (16) 2.1.3 长周期光纤光栅 (19) 2.2 分布反馈光纤激光器工作原理 (21) 2.2.1 相移光栅光谱特性 (22) 2.2.2 分布反馈光纤激光器单模运行方案 (24) 2.3 分布反馈光纤激光器制作技术 (25) 2.3.1 常规光纤光栅制作 (26) 2.3.2 分布反馈光纤激光器制作 (27) 2.4 分布反馈光纤激光器性能测试 (28) 2.5 本章小结 (32) 第三章分布反馈光纤激光器阵列相干坍塌特性研究 (33) 3.1 分布反馈光纤激光器的相干坍塌特性 (33) 3.1.1 对称结构分布反馈光纤激光器 (33) 3.1.2 非对称结构分布反馈光纤激光器 (34) 3.1.3 相干坍塌对光纤激光器阵列复用容量的影响 (35) 3.2 光纤激光器阵列腔外反馈元分析 (37) 3.2.1 二基元光纤激光器阵列的腔外反馈机制分析 (37) 3.2.2 相邻光纤激光器对腔外反馈光的影响 (38)

分布式反馈激光器

DFB分布式反馈激光器 091041A 谢伟超 DFB( Distributed Feedback Laser),即分布式反馈激光器,其不同之处是内置了布拉格光栅(Bragg Grating),属于侧面发射的半导体激光器。 DFB激光器将布拉格光栅集成到激光器内部的有源层中(也就是增益介质中),在谐振腔内即形成选模结构,可以实现完全单模工作。 目前,DFB激光器主要以半导体材料为介质,包括锑化镓(GaSb)、砷化镓(GaAs)、磷化铟(InP)、硫化锌(ZnS)等。DFB激光器最大特点是具有非常好的单色性(即光谱纯度),它的线宽普遍可以做到1MHz以内,以及具有非常高的边摸抑制比(SMSR),目前可高达40-50dB以上。 设计和制作在高速调制下仍能保持单纵模工作的激光器是十分重要的,这类激光器统称动态单模半导体激光器。实现动态单纵模工作的最有效的方法之一,就是在半导体激光器内部建立一个布拉格光栅,靠光栅的反馈来实现纵模选择。这种结构还能够在更宽的工作温度和工作电流范围内抑制模式跳变,实现动态单模。 分布反馈半导体激光器(DFB-LD),在DFB-LD中,光栅分布在整个谐振腔中,所以称为分布反馈。因为采用了内部布拉格光栅选择波长,所以DFB-LD 的谐振腔损耗有明显的波长依存性,这一点决定了它在单色性和稳定性方面优于一般的F-P腔激光器。 结构及工作机理 DFB激光器的激光振荡不是靠F—P腔来实现,而是依靠沿纵向等间隔分布的光栅所形成的光耦合,如图2—81所示。

图中光栅的周期为A,称为栅距。 当电流注入激光器后,有源区内电子——空穴复合,辐射出能量相应的光子,这些光子将受到有源层表面每一条光栅的反射。在DFB激光器的分布反馈中,此时的反射是布拉格发射,光栅的栅条间入射光和反射光的方向恰好相反。 满足上式的那些特定波长的光才会受到强烈反射,从而实现动态单纵模工作。式也称为分布反馈条件(一般m取1)。 DFB-LD的光栅是完全均匀对称的,使得其发光出现了两个主模同时振荡的现象。为了将辐射功率集中在同一主模上,同时使各振荡模式的阈值增益差增大,可以采用如下方法: (1)在光栅中引进一个2/4相移; (2)将解理面之一做成斜面或增透,造成非对称的端面反射率; (3)在有源区中靠近腔面的一小段区域上,没有布拉格光栅,形成无分布反馈的透明区; (4)对光栅周期进行适当啁啾。 引进2/4相移和不对称端面反射率两种方法较可行且有效。虽然1/4相移方法在工艺上有一定难度,但是能获得性能很好的动态单纵模。 DFB激光器的特点 与一般F—P腔激光器相比,DFB激光器具有以下两大优点,因而在目前的光纤通信系统中得到广泛应用。 (1)动态单纵模窄线宽输出 由于DFB激光器中光栅的栅距(A)很小,形成一个微型谐振腔,对波长具有良好的选择性,使主模和边模的阈值增益相对较大,从而得到比F—P腔激光器窄很多的线宽,并能保持动态单纵模输出。 (2)波长稳定性好 由于DFB激光器内的光栅有助于锁定给定的波长,其温度漂移约为0.8?/℃,比F—P腔激光器要好得多。 尽管DFB激光器有很多优点,但并非尽善尽美。例如,为了制作光栅, DFB 激光器需要复杂的二次外延生长工艺,在制造出光栅沟槽之后由于二次外延的回熔,可能吃掉已形成的光栅,致使光栅变得残缺不全,导致谐振腔内的散射损耗增加,从而使激光器的内量子效率降低。此外, DFB激光器的震荡频率偏离Bragg 频率,故其阈值增益较高。

YLPM激光器使用说明

●更宽的频率调节范围(1.6kHz~1000kHz); ●更高的峰值功率; ●可广泛应用于塑胶按键及阳极铝打黑等项目上。 ●更快的开关光速度,打标速度更快。 在安装打标软件时,注意选择选择“YLPM型激光器”, 在控制界面,YLP-M比YLP-F多了一个打标参数:激光模式。共有8种激光模式可选。可直接把所需的模式填入。 8种模式都有标称频率,即RR值,如果设定的频率低于该值时,激光器会自动降低输出功率,以保护激光器。 其中,T1模式配160镜头可在阳极铝上打黑,其效果类似皮秒激光器; T2模式配254镜头也可在阳极铝上打黑,效果可与SPI激光器的3号波形的

效果媲美; 而打标参数与SPI 激光器3号波形下的参数大致相同。 另,T2模式可用在含激光粉的PC,ABS材料上打白。 6.1ns T2模式,RR=200kHz,上升时间:3.8ns,50%时的脉冲宽度:8.4ns,10%时的脉冲宽度: 15.4ns T3模式, RR=125kHz,上升时间:3.8ns,50%时的脉冲宽度:14.4ns,10%时的脉冲宽度:21.1n s T4模式, RR=105kHz,上升时间:3.8ns,50%时的脉冲宽度:14.9ns,10%时的脉冲宽度:26.3ns T5模式, RR=85kHz,上升时间:4.0ns,50%时的脉冲宽度:14.6ns,10%时的脉冲宽度:31.5ns

T6模式, RR=60kHz,上升时间:3.2ns,50%时的脉冲宽度:14.8ns,10%时的脉冲宽度:53.6ns T7模式, RR=40kHz,上升时间:3.3ns,50%时的脉冲宽度:24.5ns,10%时的脉冲宽度:100.3ns

地震定位基本原理

1、Hypo2000定位方法的基本原理 1.1基本原理 Hypoinverse 算法是在Geiger 法的思想上发展起来的一种单事件绝对定位方法。设n 个台站的观测到时为t 1,t 2,…,t n 求震源位置 x o ,y o ,z o 及发震时刻t o ,使得目标函数最小。 ? t 0,x 0,y 0,z 0 = r i 2n i=1 1 其中r i 为到时残差 r i =t i ?t o ?T i x o ,y o ,z o (2) T i 为震源到第i 个台站的计算走时。 使目标函数取极小值,即 ?θ? θ =0 3 其中θ= t o ,x o ,y o ,z o T ,?θ= ? ?t o ,??x o ,??y o ,??z o T 。 g θ =?θ? θ 4 在真解θ附近任意试探解θ?及其校正矢量δθ满足 g θ? + ?θg θ? T T δθ=0 5 即 ?θg θ? T T δθ=? g θ? 6 由?的定义可得公式(6)的具体表达式 ?r i ?θj ?r i ?θk +r i ?2r i ?θj ?θk θ?δθj =? r i ?r i ?θk θ?n i=1n i=1 7 若θ?偏离真解θ不大,则r i θ? 和 ?2T i ?θ j ?θk θ?较小。可忽略二阶导数项,上式被简化为线性最小二乘解: ?r i ?θj ?r i ?θk n i=1δθj =? r i ?r i ?θk θ? n i=1 8 以矩阵形式表示,上式为 A T A δθ=A T r 其中 A = 1?T 1?x 0 ?T 1?y 0 ???1?T n ?x 0 ?T n ?y 0 ?T 1?z 0??T n ?z 0 θ? ,r = r 1 ?r n 9 若二阶导数项不可忽略。则式(7)给出的非线性最小二乘解 A T ?A ?θA T r δθ=A T r 10 通常各站台的到时数据具有不同的精度,若果不加以区别,则具有较低精度的数据将影响结果的精度,这一问题可以通过引入加权目标函数来解决。设各台站到时残差r i 的方差为σi 2,引入加权目标函数 ?r θ = r i 2n i=1 θ 1 σi 2 11 按照上述同样的步骤,得到如下加权线性最小二乘解 A T C r ?1A δθ=A T C r ?1r 12 其中C r 为加权方差矩阵:C r =diag σ12,…,σn 2 。 求得δθ后,以θ=θ?+δθ作为新的尝试点,再求解相应方程。如此反复迭代,直到?或?r 足够小,此时即得估计解θ 。[4]

激光雷达测距基本知识与其应用

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1雷达与激光雷达系统 (2) 2激光雷达测距方程研究 (3) 2.1测距方程公式 (3) 2.2发射器特性 (4) 2.3大气传输 (5) 2.4激光目标截面 (5) 2.5接收器特性 (6) 2.6噪声中信号探测 (6) 3伪随机m序列在激光测距雷达中的应用 (7) 3.1测距原理 (7) 3.2 m序列相关积累增益 (8) 3.3 m序列测距精度 (8) 4脉冲激光测距机测距误差的理论分析 (9) 4.1脉冲激光测距机原理 (9) 4.2 测距误差简要分析 (10) 5激光雷达在移动机器人等其它方面中的应用 (10) 6结束语 (11) 致谢 (12) 参考文献 (12) -

激光雷达测距原理与其应用 摘要:本文简单介绍激光雷达系统组成,激光雷达系统与普通雷达系统性能的对比,着重阐述激光雷达测距方程的研究。针对激光远程测距中的微弱信号检测,介绍一种基于m序列的激光测距方法,给出了基于高速数字信号处理器的激光测距雷达数字信号处理系统的实现方案,并理论分析了脉冲激光测距机的测距误差。了解并学习激光雷达在移动机器人等其它方面中的应用。 关键词:激光雷达;发射器和接收器特性; 伪随机序列; 脉冲激光;测距误差 Applications and Principles of laser radar ranging Student majoring in Optical Information Science and Technology Ren xiaonan Tutor Shang lianju Abstract:This paper briefly describes the composition of laser radar systems, laser radar system and radar system performance comparison of normal, focusing on the laser radar range equation. Laser Ranging for remote signal detection, presents a introduction of a sequence based on laser ranging method m, gives the high-speed digital signal processor-based laser ranging radar digital signal processing system implementations, and theoretical analysis of the pulse Laser rangefinder range error.We understand and learn application of Laser radar in the mobile robot and other aspects. Key words:Laser radar; Transmitter and receiver characteristics;Pseudo-random sequence;Pulsed laser;Ranging error. 引言:激光雷达是传统雷达技术与现代激光技术相结合的产物,激光具有亮度 高、单色性好、射束窄等优点,成为光雷达的理想光源,因而它是目前激光应用主要的研究领域之一。激光雷达是一项正在迅速发展的高新技术,激光雷达技术从最简单的激光测距技术开始,逐步发展了激光跟踪、激光测速、激光扫描成像、激光多普勒成像等技术,使激光雷达成为一类具有多种功能的系统。利用激光作为遥感设备可追溯到30多年以前,从20世纪60年代到70年代,人们进行了多项试验,结果都显示了利用激光进行遥感的巨大潜力,其中包括激光测月和卫星激光测距。激光雷达测量技术是一门新兴技术,在地球科学和行星科学领域有着广泛的应用.LiDAR(LightLaser Detection and Ranging)是激光探测及测距系统的简称,通常指机载对地激光测距技术,对地激光测距的主要目标是获取地质、地形、地貌以及土地利用状况等地表信息。相对于其他遥感技术,LIDAR的相关研究是一个非常新的领域,不论是在提高LIDAR数据精度及质量方面还是在丰富LIDAR数据应用技术方面的研究都相当活跃。随着LIDAR传感器的不断进步,地表采点密度的逐步提高,单束激光可收回波数目的增多,LIDAR数据将提供更为丰富的地表和地物信息。激光测距可分为星载(卫星搭载)、机载(飞机搭载)、车载(汽车搭载)以及定位(定点测量)四大类,目前激光测距仪已投入使用,激光雷达正处在试验阶段,某些激光雷达已付诸实

80常用腧穴定位

常用腧穴 1、尺泽:在肘区,肘横纹上,肱二头肌腱桡侧缘凹陷中; 2、孔最:在前臂前区,腕掌侧远端横纹上7寸,尺泽与太渊连线上; 3、列缺:在前臂,腕掌侧远端横纹上1.5寸,拇短伸肌腱与拇长伸肌腱之间,拇长展肌腱沟的凹陷中; 4、鱼际:在手外侧,第一掌骨桡侧中点赤白肉际处; 5、少商:在手拇指末节桡侧,指甲根角侧上方0.1寸; 6、商阳:在手食指末节桡侧,指甲根角侧上方0.1寸; 7、合谷:在手背,第1、2掌骨间,当第2掌骨桡侧的中点处。 8、手三里:在前臂,阳溪穴与曲池穴连线上,肘横纹下2寸; 9、曲池:在肘区,尺泽与肱骨外上髁连线的中点处; 10、肩髃:在三角肌区,肩峰外侧缘前端与肱骨大结节两骨间凹陷中; 11、迎香:在面部,鼻翼外缘中点旁,鼻唇沟中; 12、地仓:在面部,口角旁开0.4寸; 13、下关:在面部,颧弓下缘中央与下颌切迹之间凹陷中; 14、头维:在头部,当额角发际直上0.5寸,头正中线旁开4.5寸; 15、天枢:在腹部,平脐中,前正中线旁开2寸; 16、梁丘:在股前区,髌底上2寸,股外侧肌与股直肌肌腱之间; 17、犊鼻:在膝前区,髌骨下缘髌韧带外侧凹陷中; 18、足三里:在小腿外侧,犊鼻穴下3寸,胫骨前嵴外一横指; 19、条口:在小腿外侧,犊鼻下8寸,胫骨前嵴外一横指; 20、丰隆:在小腿外侧,外踝尖上8寸,胫骨前肌外缘,条口旁开1寸; 21、内庭:在足背,第2、3趾间,趾蹼缘后方赤白肉际处; 22、公孙:在跖区,第一跖骨基底部的前下方赤白肉际处; 23、三阴交:在小腿内侧,内踝尖上3寸,胫骨内侧缘后际; 24、地机:在小腿内侧,阴陵泉下3寸,胫骨内侧缘后际; 25、阴陵泉:在小腿内侧,胫骨内侧踝下缘与胫骨内缘之间的凹陷中; 26、血海:在股前区,髌底内侧端上2寸,股内侧肌隆起处; 27、通里:在前臂区,腕掌侧远端横纹上1寸,尺侧腕屈肌腱的桡侧缘; 28、神门:在腕前区,腕掌侧远端横纹尺侧端,尺侧腕屈肌腱的桡侧缘处; 29、后溪:在手内侧,第5掌指关节尺侧近端赤白肉际凹陷中; 30、天宗:在肩胛区,肩胛冈中点与肩胛骨下角连线上1/3与下2/3交点凹陷中; 31、听宫:在面部,耳屏正中与下颌骨髁突之间的凹陷中; 32、攒竹:在面部,眉头凹陷中,额切迹处; 33、天柱:在颈后区,斜方肌外缘凹陷中,后发际正中旁开1.3寸; 34、肺俞:在脊柱区,第3胸椎棘突下,后正中线旁开1.5寸; 35、膈俞:在脊柱区,第7胸椎棘突下,后正中线旁开1.5寸; 36、胃俞:在脊柱区,第12胸椎棘突下,后正中线旁开1.5寸; 37、肾俞:在脊柱区,第2腰椎棘突下,后正中线旁开1.5寸; 38、大肠俞:在脊柱区,第4腰椎棘突下,后正中线旁开1.5寸; 39、次髎:在骶区,正对第2骶后孔中; 40、委中:在膝后区,腘横纹中点; 41、秩边:在骶区,平第4骶后孔,骶正中嵴旁开3寸; 42、承山:在小腿后区,腓肠肌两肌腹与肌腱交角处;

分布反馈式半导体激光器

分布反馈式半导体激光器 半导体激光器及其应用调研报告课程题目分布反馈式半导体激光器在实际工程系统中的应用学院光电技术学院班级电科一班姓名李俊锋学号2010031029 任课教师张翔2013年 5 月15 日分布反馈式半导体激光器在实际工程系统中的应用李俊锋2010031029 摘要:DFB (Distributed Feed Back) DFB型光发射机,分布反馈半导体激光器因其波长的扩展、高功率激光阵列的出现以及可兼容的激光导光和激光能量参数微机控制的出现而迅速发展、半导体激光器体积小、重量轻、成本低、波长可选择,其应用范围遍及的领域越来越宽广,其的出现带来了巨大的变化,使科技更发达,

人们生活更加丰富多彩,应用范围遍及医学、科技、航天交通,通信等各个领域。自从1962 年世界上第一台半导体激光器(Diode Laser)发明问世以来, 于其体积小、重量轻、易于调制、效率高以及价格低廉等优点, 被认为是二十世纪人类最伟大的发明之一. 四十几年来半导体激光器逐步应用在激光唱机、光存储器、激光打印机、条形码解读器、光纤电信以及激光光谱学中, 不断扩大应用范围, 进入了一些其它类型激光器难以进入的新的应用领域。关键字:DFB、工作波长、边模抑制比、阈值电流、输出光功率一、分布反馈式半导体激光器简介1、分布反馈式半导体激光器是以一定的半导体材料做工作物质而产生受激发射作用的器件.其工作原理是,通过一定的激励方式,在半导体物质的能带之间,或者半导体物质的能带与杂质能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发

射作用.半导体激光器的激励方式主要有三种,即电注入式,光泵式和高能电子束激励式.电注入式半导体激光器,一般是GaAS,InAS,Insb等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射.光泵式半导体激光器,一般用N型或P型半导体单晶(如GaAS,InAs,InSb等)做工作物质,以其他激光器发出的激光作光泵激励.高能电子束激励式半导体激光器,一般也是用N型或者P型半导体单晶(如PbS,CdS,ZhO等)做工作物质,通过外部注入高能电子束进行激励.在半导体激光器件中,目前性能较好,应用较广的是具有双异质结构的电注入式GaAs二极管激光器。DFB( Distributed Feedback Laser),即分布式反馈激光器,其不同之处是内置了布拉格光栅,属于侧面发射的半导体激光器。目前,DFB激光器主要以半导体材料为介质,包括锑化镓、砷化镓、磷化铟、硫化锌等。DFB激光器最大特点是具有非常好的单色性,它

新版C 系列激光器用户使用指南

C series 激光器 用户使用指南

前言 (4) 第一章 C series激光器的结构及性能指标 (5) 1.1 C series激光器的内部结构组成 (5) 1.2 C series 激光器的性能指标 (5) 1.3 C series 激光器的光束传播特性 (7) 第二章 C series激光器的控制方法 (8) 2.1 激光器控制端口说明 (8) 2.2 C series激光器的反馈信号及应用 (9) 2.3 C series激光器的应用控制模式 (10) 2.3.1 用户需要准备的工具和材料 (10) 2.3.2 CW输出模式的控制方法 (11) 2.3.3 Gated CW输出模式的控制方法 (12) 第三章 C Series激光器的外围设备及要求 (13) 3.1 激光器外部设备概述 (13) 3.2 激光器的外部电源系统 (13) 3.2.1用户需准备的材料和工具 (14) 3.2.2激光器对电源的要求及注意事项 (14) 3.3 激光器的冷却系统 (15) 3.3.1风冷型冷却系统 (15) 3.3.2 水冷型冷却系统 (15) 3.3.2.1 用户需准备的工具与材料: (15) 3.3.2.2激光器对外部冷水机的要求: (15) 3.4激光器的外部控制系统 (16) 3.4.1 用户需准备的材料和工具 (16) 3.4.2激光器对外部控制信号的要求 (16) 3.5 激光器的外部光路保护系统 (17) 3.5.1 用户需准备的材料和工具 (17) 3.5.2激光器对外部光路防护装置的要求 (17) 3.6激光器的外部固定系统 (18) 第四章 C Series激光器用户疑问解答 (19) 附录 C Series激光器的外形尺寸 (22) 附录1.C30A外形尺寸 (22) 附录2 C30L外形尺寸 (23) 附录3 C55A外形尺寸 (24) 附录4 C55L外形尺寸 (24)

相关文档
最新文档