离心分离

离心分离

离心分离

离心分离是按照两相的密度差进行分离的方法,其不同于沉降之处在于离心分离的推动力是高速旋转产生的离心力。离心力可由下式求出:

F=

mu2

式中m—旋转物体的质量,kg;

u—旋转线速度,m/s;

r—旋转半径,m;

F—离心力,N;

由于

u=2πrn 60

得出

F=

mr n2

式中n—转速,r/min。

有公式可看出,离心力与转速的平方成正比。

水分和机械杂质离心分离速度与沉降分离速度之比称为相对分离速度K:

K=

n r

例如,在一个r=0.09m,n=40000r/min的离心机中,相对分离速度为

K=400000.09

30

=400

其离心速度为自由沉降速度的400倍。

废油温度对离心分离速度的影响与沉降分离时相同。油的粘度及油与杂质的密度差都影响分离速度,它们又与油温有关,因此对粘稠油也宜适当加温,一般加温至70℃左右。

在离心分离的实际应用中,使用离心机和分离机两种设备。分离机一般直径较大,转速较低;离心机一般直径较小,转速较高。一般分离机在3000-8500r/min下操作。

根据油中杂质的特点,分离机有两种操作方法,一种叫澄清法,一种叫清洗法。

澄清法适用于从油中分离固体杂质、油泥、炭粒及少量的水,此时不连续引出杂质,分离出来的固体物逐渐聚集于转鼓的贮污器中。定期预以清除。

清洗法适于分离含大量水的污油,污油在分离机中分离成两个密度不同的液相,连续地分别离开分离机。

绝缘油一般都用澄清法,含机械杂质及少量水分(0.1%-0.3%)的汽轮机油也用澄清法,含水多的汽轮机油则用清洗法。当按照清洗法操作时,分离机的生产率要比清洗法操作高20%-30%。

离心机的操作也有两种,澄清法及分离法,适用于转子结构不同的离心机与处理不同的原料。

同一台离心机在

离心分离基本原理和离心分离分类

离心分离基本原理和离心分离分类 离心分离基本原理 当非均相体系围绕一中心轴做旋转运动时,运动物体会受到离心力的作用,旋转速率越高,运动物体所受到的离心力越大。在相同的转速下,容器中不同大小密度的物质会以不同的速率沉降。如果颗粒密度大于液体密度,则颗粒将沿离心力的方向而逐渐远离中心轴。经过一段时间的离心操作,就可以实现密度不同物质的有效分离。 根据离心方式的不同,可分为差速离心法和密度梯度离心法等。 (1)差速离心:又叫分级离心法; 是生化分离中最为常用的离心分离方法。它指采用低速和高速两种离心方式交替使用,用不同强度的离心力使具有不同密度的物质分级分离的方法。离心后把上清液与沉淀分开,然后再将上清液加高转速离心,分离出第二部分沉淀,如此往复加高转速,逐级分离出所需要的物质。 (2)密度梯度离心:也叫区带离心; 即离心是在具有连续密度梯度的介质中进行。将试样铺放在一个密度变化范围较小、梯度斜度变化比较平缓的密度梯度介质表面,在离心力场作用下试样中的颗粒按照各自的沉降速率移动到梯度介质中的不同位置,而形成一系列试样组分区带,使不同沉降速率的颗粒得以分离。 赫西HR/T16MM微量实验室高速冷冻离心机 离心分离分类 固一固分离 使固体之间相互分离的离心分离法称离心分级,设备为离心分离机。用控制离心时间的办法,使得溶液中只沉淀大颗粒,而不是所有颗粒,这样就可逐次将颗粒按大小分开。 液一液分离 不互溶的液体在离心机中因密度不同而很快分离。这种方法比重力分离时间要短得多。常用一种称为离心萃取机的装置来分离液体溶液组分。该装置由放置在圆筒转鼓中的一系列多孔同心环组成,转鼓环绕着一个筒形轴以每分钟2 0005 000转的速度旋转,液体通过筒形轴进出,以径向顺流方式在转筒中流动而达到液体溶液组分的分离。 气一气分离 同位素研究中常用的手段。在高速旋转下,气体状态的同位素混合物得以相互分离。用离心分离浓缩235U是有前景的方法之一。 固一液分离 常量分析中常用过滤法,半微量分析中则用离心分离法。常用的旋转装置有手摇离心机和电动离心机(通常转速为1}4千周/分),分离速度远比过滤为快。

三相离心机的工作原理

三相离心机的工作原理 三相分离机是餐厨垃圾预处理中的关键设备,它是将垃圾中的固体和液体(油和水)要分别分开,尤其是要将油和水分开,回收的油有一定的经济价值,可以直接出售,另外残留油对后续的厌氧处理生产沼气也有抑制作用,因此要求设备要尽可能的将油分离干净。 离心机有两个转子组成,一个叫转鼓,另一个转子是螺旋卸料器(简称螺旋),转鼓高速旋转时,转鼓浆料随转鼓一同旋转,并受离心力作用,此离心力比重力大许多倍,这样固体颗粒就会从液体中分离出来,并从离心机转鼓轴心,沉降到转鼓壁上,位于转鼓的螺旋卸料器以低于转鼓的转速转动并将沉积的固体颗粒推出到出渣口,外转鼓与螺旋卸料器的差转速取决于差速器的传动比及其转速。二相密度不同的清液形成同心圆柱,较轻的液相(油)处于层,较重的液相(水)处于外层,分别通过轻重相出口排出。 原理图 转鼓

螺旋 固液分离的原理不难理解,关键是两个液相的分离,即油和水的分离。趁离心机噪声过大解体大修之际,将离心机部构造彻底了解清楚。这也就给我一个难得了解离心机部实际构造的一个机会。 螺旋大端端板相当于油水两相的相位转换器,它把螺旋部外圈的水转换到了圈,把在螺旋部位于圈的油转换到了外圈,油直接流到转鼓外侧,通过离心机下端的出油口排到油箱。

向心泵的出水原理: 水被排到大端盖外的泵腔中,如上图所示,泵腔即螺旋大端盖和大后盖的空腔,它在高速旋转,通过端盖上的筋板,相当于叶轮将水拨动旋转,旋转起的水带有压力进入向心泵。

离心机开动时,通过调节向心泵的手柄来调节进入向心泵的水量,如下图所示,旋转向心泵的入水口与水的转向角度,右下图所示进水量最大,左下图所示进水量最小。通过调节出水量,控制离心机水层的深度,将油层压缩到出油孔位置,以达到油和水的分离目的。

密度梯度离心法分离PBMC操作流程

密度梯度离心法分离PBMC 1.在15mL离心管中加入5mL淋巴细胞分离液Ficoll。 2.取5mL抗凝静脉血与5mL无菌PBS按照1:1充分混匀,用移液管沿管壁缓慢叠加于分层液面上,动作一定要轻,注意保持清楚的界面。外周血,PBS,淋巴细胞分离液最终体积比为1:1:1。 3. 水平离心400g×30分钟。(注意:为保证分离效果,需将离心机升降速率调至最低,即升速为1,降速为0,这样调整后,升降速会比较慢,总体离心时间约为1小时。) 4.离心后可看见管内分为三层,上层为血浆和PBS,下层主要为红细胞和粒细胞,中层为淋巴细胞分离液。在上、中层界面处有一以单个核细胞为主的白色云雾层狭窄带(如下图),单个核细胞包括淋巴细胞和单核细胞。此外,还含有血小板。 血浆和PBS 单个核细胞 淋巴细胞分离液 红细胞和粒细胞 5.去除部分上层液体(用移液管吸取,不可倾倒),余下约1mL,用移液器插到云雾层,吸取单个核细胞。置入另一15mL离心管中,加入5倍以上体积的PBS,离心300g×10分钟,洗涤细胞两次。 6.末次离心后,弃上清,加入红细胞裂解液,室温孵育2分钟,裂解红细胞,可根据情况适量增减时间。 7. 加入10mL PBS,离心300g×10分钟,洗涤细胞两次。

8. 末次离心后,弃上清,加入含有10%FBS的RPMI1640,重悬细胞,计数,计算细胞活力。 用本法分离PBMC,每1mL全血可分离得到1~2×106PBMC,不同人个体之间存在一定差异。活细胞百分率在95%以上。 注意: 1.所有操作都应在无菌条件下进行。 2.在分离前Ficoll和PBS等试剂均需在37℃恒温水浴中预热半小时以上。 3.吸取单个核细胞时不可避免会吸到Ficoll,而Ficoll密度比细胞要大,因此步 骤5中需加入足量PBS稀释,若PBS体积太小可能会导致细胞无法离心收集。

生物分离工程复习

生物分离工程复习题 第一章导论 一解释名词 生物下游加工过程(生物分离工程),生物加工过程 二简答题 1 生物产品与普通化工产品分离过程有何不同?(生物下游加工过程特点是什么?生物分离工程的特点是什么?) 2 生物分离工程在生物技术中的地位? 3 分离效率评价的主要标准有哪些?各有什么意义? 4 生物分离工程可分为几大部分,分别包括哪些单元操作?(简述或图示分离工程一般流程及基本操作单元) 5 在设计下游分离过程前,必须考虑哪些问题方能确保我们所设计的工艺过程最为经济、可靠? 6 下游加工过程的发展趋势有哪些方面? 7 纯化生物产品的得率是如何计算的?若每一步纯化产物得率为90%,共6步纯化得到符合要求产品,其总收率是多少? 第二章发酵液预处理 一解释名词 凝聚,絮凝,凝聚剂,过滤,离心,细胞破碎,包含体 二简答题 1 为什么要进行发酵液的预处理?常用处理方法有哪几种? 2 凝集与絮凝过程有何区别?如何将两者结合使用?常用的絮凝剂有哪些? 3 发酵液预处理中凝聚剂主要起什么作用?絮凝机理是什么? 4 细胞破碎的方法包括哪几类?工业上常用的方法有哪些?为什么? 5 沉降与离心的异同? 6 离心设备可分为哪两大类?按分离因子Fr不同,离心机一般分为哪几类? 7 常用的离心沉降设备有哪些?常用的过滤设备有哪些? 8 固-液分离主要包括哪些方法和设备? 9 试比较固液分离中过滤和离心分离技术的特点。 10 高压匀浆与高速珠磨破碎法各有哪些优缺点? 11 比较工业常用的过滤设备优缺点。离心与过滤各有什么优缺点?

第三章沉淀与结晶 一解释名词 沉淀,结晶,盐析,盐溶,盐析结晶,盐析沉淀,硫酸铵饱和度,晶种,晶核,晶型, 饱和溶液,过饱和溶液,饱和度 二简答题 1 根据加入沉淀剂的不同沉淀分离主要包括哪几类?) 2 常用的蛋白质沉淀方法有哪些?有机溶剂沉淀蛋白质的机理什么?用乙醇沉淀蛋白质时应注意哪些事项? 3 影响盐析的主要因素有哪些?在工艺设计中如何应用? 4 如何确定盐析过程中需要加入硫酸铵的量? 5 简述有机溶剂沉淀的原理。 6沉淀与结晶有何不同? 7 结晶操作的原理是什么?常用结晶器包括哪两种类型?如何选择结晶设备? 8 粒子大小与溶解度有何关系? 9 有哪些方法造成溶液过饱和? 10 绘制饱和温度曲线和过饱和温度曲线,并标明稳定区、亚稳定区和不稳定区。并简述其意义 11 影响硫酸铵盐析效果的主要因素有哪些?公式Ig S=β- Ks I 中β、Ks各与什么因素有关? 第四章萃取 一解释名词 萃取,反萃取,分配系数,有机溶剂萃取,分离因子,乳化,胶团,反胶团,反胶团萃取,临界胶束浓度,溶解度参数,介电常数,HLB 值,萃取因素,带溶剂,超临界流体,超临界流体萃取,双水相萃取,液膜萃取,多级逆流萃取 二简答题 1 生物物质的萃取与传统的萃取相比有哪些不同点? 2 溶剂萃取按参与溶质分配的两相不同而分为哪5类?有机溶剂萃取中产生乳化后使有机相和水相分层困 难,一般会出现哪两种夹带?各产生什么后果? 3 萃取过程(方式)设计分为哪几种类型? 4 pH 对弱电解质的萃取效率有何影响? 5 发酵液乳化现象是如何产生的?对分离纯化产生何影响? 影响乳浊液稳定的因素主要有哪些?如何有 效消除乳化现象?

离心机离心分离的几种方法及特点

离心机离心分离的几种方法及特点 2009-07-10文字选择: 制备型超高速离心机的几种分离方法: A.差速离心:逐次增加离心力,每次可沉降样品溶液中的一些组份。 差速离心是一种最常用的方法。在这种方法中,离心管在开始时装满了均一的样品溶液。通过在一定速度下一定时间的离心后,就可得到两个部份:沉淀和上清液。 通常在第一次离心时把大部分不需要的大粒子沉降去掉。这时所需的组份大部分仍留在上清液中。然后将收集到的上清液以更高速度离心,把所需的粒子沉积下来。离心的时间要选择得当,使大部份不需要的更小的粒子仍留在上清液中。对于得到的沉淀和上清液可以进行进一步的离心,直到达到所需要的分离纯度为止。 差速离心的特点是操作简单,但分离纯度不高。 B.密度梯度离心法:可以同时使样品中几个或全部组份分离,具有很好的分辨率。 1)速率区带法(rate zonal): 根据样品中不同粒子所具有的不同的尺寸大小及沉降速度(S)。大致步骤如下: 在离心管中装入密度梯度溶液,溶液的密度从离心管顶部至底部逐渐增加(正梯度)。 将所需分离的样品小心地加至密度梯度溶液的顶部。样品在梯度溶液表面形成一负梯度。 由于不同大小的粒子在离心力作用下,在梯度中移动的速度不一样,所以经过离心后会形成几条分开的样品区带。 注意:样品粒子的密度必须大于梯度液注中任一点的密度。离心过程必须在区带到达管子底部前停止。2)等密度离心法(isopycnic): 根据粒子的不同密度来分离。离心过程中,粒子会移至与它本身密度相同的地方形成区带。 密度样度的选择要使梯度的范围包括所有待分离粒子的密度。样品可以在密度梯度液粒上面或均匀分布在密度梯度中。经离心后,样品粒子达到它们的平衡点。

超离心技术简介

超离心技术简介 超速离心机的离心速度为每分钟60000转或更多,离心力约为重力加速度的500000倍。在操作技术上,最常用的是差速离心和密度梯度离心。前者是交替使用低速和高速离心,用不同强度的离心力使具有不同质量的物质分级分离的方法。此法适用于混合样品中各沉降系数差别较大组分的分离。欲分离沉降系数接近的物质,则广泛使用密度梯度离心法。这种方法使用一种密度能形成梯度(在离心管中,其密度从上到下连续增高)又不会使所分离的生物活性物质凝聚或失活的溶剂系统,离心后各物质颗粒能按其各自的比重平衡在相应的溶剂密度中形成区带。 一、差速离心 差速离心是交替使用低速和高速离心,用不同强度的离心力使具有不同质量的物质分级分离的方法。此法适用于混合样品中各沉降系数差别较大组分的分离。离心速度较低,较大的颗粒沉降到管底,小的颗粒仍然悬浮在上清液中。收集沉淀,改用较高的离心速度离心悬浮液,将较小的颗粒沉降,以此类推,达到分离不同大小颗粒的目的。 原理:不同沉降系数的组分在不同的离心速度下沉降的速度不同,以此用来分离亚细胞组份。物体围绕中心轴旋转时会受到离心力的作用,离心力越大,被离心物质沉降得越快。 应用:此法多用于分离细胞匀浆中的各种亚细胞组分,用低渗匀浆、超声破碎或研磨等方法可使细胞质膜破损,形成细胞核、线粒体、叶绿体、内质网、高尔基体、溶酶体等细胞器和细胞组分组成的混合

匀浆,再通过差速离心将各种质量和密度不同的亚细胞组分和各种颗粒分开。

二、密度梯度离心 密度梯度离心使用一种密度能形成梯度(在离心管中,其密度从上到下连续增高)又不会使所分离的生物活性物质凝聚或失活的溶剂系统,离心后各物质颗粒能按其各自的比重平衡在相应的溶剂密度中形成区带。常用的密度梯度溶剂是蔗糖或氯化铯(CsCl)溶液。用蔗糖时,先将蔗糖溶液制成密度梯度溶液,再在其顶端加样品。离心后,如欲收集所分离的组分,可在离心管的下端刺一小洞,然后分部收集。如用CsCl这种密度大又扩散迅速的溶剂系统时,可将样品均匀地混合于溶剂中。离心达到平衡后, CsCl溶液形成密度梯度,样品中各组分也在相应密度处形成区带。 原理:离心介质以连续密度梯度分布,通过离心、每种物种悬浮到与自己密度相当的介质区。当不同颗粒存在浮力密度差时,在离心力场下,在密度梯度介质中,颗粒或向下沉降,或向上浮起,一直移动到与它们各自的密度恰好相等的位置,在这里颗粒没有重量,不管离心多长时间,它们再也不移动了,形成一系列密度区。从而使不同浮力密度的物质得到分离。 应用:此法常用CsCl、蔗糖、甘油等做介质,一般应用于物质的大小相近,而密度差异较大时。常用来分离提取核酸、富含AT和富含GC的DNA、亚细胞器和质粒等。

离心分离机原理

离心分离机主要用于将悬浮液中的固体颗粒与液体分开;或将乳浊液中两种密度不同,又互不相溶的液体分开(例如从牛奶中分离出奶油);它也可用于排除湿固体中的液体,例如用洗衣机甩干湿衣服;特殊的超速管式分离机还可分离不同密度的气体混合物,例如浓缩、分离气态六氟化铀;利用不同密度或粒度的固体颗粒在液体中沉降速度不同的特点,有的沉降离心机还可对固体颗粒按密度或粒度进行分级。离心分离机大量应用于化工、石油、食品、制药、选矿、煤炭、水处理和船舶等部门。 离心分离机的研究和发展趋势是:①强化分离性能,包括提高转鼓转速;在离心分离过程中增加新的推动力;加快推渣速度;增大转鼓长度使离心沉降分离的时间延长。②发展大型的离心分离机,主要是加大转鼓直径和采用双面转鼓提高处理能力使处理单位体积物料的设备投资、能耗和维修费降低。③改进卸渣机构使操作连续化。④增加专用和组合转鼓离心机,以满足特殊的和多项的分离要求。⑤理论研究方面,主要研究转鼓内流体流动状况和滤渣形成机理,研究最小分离度和处理能力的计算方法。复杂形状转鼓的应力分布和强度计算的研究。⑥研究离心分离过程最佳化控制技术。 离心分离机有一个绕本身轴线高速旋转的圆筒,称为转鼓,通常由电动机驱动。悬浮液(或乳浊液)加入转鼓后,被迅速带动与转鼓同速旋转,在离心力作用下各组分分离,并分别排出。通常,转鼓转速越高,分离效果也越好。 离心分离机的作用原理有离心过滤和离心沉降两种。①离心过滤:悬浮液在离心力场下产生的离心压力,作用在过滤介质(滤网或滤布)上,使液体通过过滤介质成为滤液;而固体颗粒被截留在过滤介质表面,形成滤渣,从而实现液-固分离。过滤型转鼓圆周壁上有孔,在内壁衬以过滤介质。②离心沉降:利用悬浮液(或乳浊液)密度不同的各组分在离心力场中迅速沉降分层的原理,实现液-固(或液-液)分离。沉降型转鼓圆周壁无孔。图3为4种典型的沉降型转鼓。悬浮液(或乳浊液)加入转鼓后,固体颗粒(或密度较大的液体)向转鼓壁沉降,形成沉渣(或重分离液)。密度较小的液体向转鼓中心方向聚集,流至溢流口排出,成为分离液(或轻分离液)。转鼓均为间歇排渣,适用于含固体颗粒粒度较小、浓度较低的悬浮液或乳浊液分离;图3b的转鼓用螺旋连续排渣,可分离固体颗粒浓度较高的悬浮液。在具有多层圆锥形碟片的转鼓中,液体被碟片分成若干薄层,缩短了沉降分离的距离,使分离加快,改善了分离效果。 另一类实验分析用的分离机,可进行液体澄清和固体颗粒富集或液-液分离,分离粒度达0.1~0.5微米。常用的试管分离机(图4)转速为3000~20000转/分,装等量料液的玻璃试管对称插入摆架或角形转子的凹穴中,在离心力作用下料液在试管内沉降分层。超高速分析用分离机采用小直径沉降转鼓。这类分离机有常压、真空、冷冻条件下操作的不同结构型式。 在分离过程中,需净化的气体进入螺旋形轨道后,在螺旋形轨道的引导下做旋转运动,旋转上升进入筒体上部,在离心力的作用下,大量液体或固体颗粒被甩向筒体下部的壁面,气体进入筒体上部后,旋转分离的颗粒甩向筒体上部的内壁面,并向下进入集液室中,从而达到了净化气体的作用。由于气体的旋转直径很小,在较小的气体流量和较低的气速下仍有较强的离心力场,确保了分离的效果

离心分离技术

离心分离技术 离心分离技术是借助于离心机旋转所产生的离心力,根据物质颗粒的沉降系数、质量、密度及浮力等因子的不同,而使物质分离的技术。 一、离心机的种类与用途 离心机按用途有分析用、制备用及分析-制备之分;按结构特点则有管式、吊蓝式、转鼓式和碟式等多种;按转速可分为常速(低速)、高速和超速三种。 1.常速离心机 常速离心机又称为低速离心机。其最大转速在8000 rpm以内,相对离心力(RCF)在104g以下,主要用于分离细胞、细胞碎片以及培养基残渣等固形物,和粗结晶等较大颗粒。常速离心机的分离形式、操作方式和结构特点多种多样,可根据需要选择使用。 2.高速离心机 高速离心机的转速为1x104~2.5x104 rpm,相对离心力达 1x104~1x105g,主要用于分离各种沉淀物、细胞碎片和较大的细胞器等。为了防止高速离心过程中温度升高而使酶等生物分子变性失活,有些高速离心机装设了冷冻装置,称高速冷冻离心机。 3.超速离心机 超速离心机的转速达 2.5x104~8x104 rpm,最大相对离心力达5x105g 甚至更高一些。超速离心机的精密度相当高。为了防止样品液溅出,一般附有离心管帽;为防止温度升高,均有冷冻装置和温度控制系统;为了减少空气阻力和摩擦,设置有真空系统。此外还有一系列安全保护系统、制动系统及各种指示仪表等。 分析用超速离心机用于样品纯度检测时,是在一定的转速下离心一段时间以后,用光学仪器测出各种颗粒在离心管中的分布情况,通过紫外吸收率或折光率等判断其纯度。若只有一个吸收峰或只显示一个折光率改变,表明样品中只含一种组分,样品纯度很高。若有杂质存在,则显示含有两种或多种组分的图谱。 分析用超速离心机可用于测定物质的沉降系数。沉降系数是指在单位离心力的作用下粒子的沉降速度。以Svedberg表示,简称S, 单位秒,1S=1x10-13s。 S可通过超速离心,根据转速、离心时间和粒子移动的距离,按下列公式求出: 式中ω:角速度;t2-t1:离心时间(s);X2,X1:分别为t2和t1时,运动粒子到离心机转轴中心的距离(cm)。 沉降系数与相对分子质量有一定的对应关系。

溶液与沉淀的分离方法有3种倾析法、过滤法和离心分离法

溶液与沉淀的分离方法有3种:倾析法、过滤法和离心分离法。( 1)倾析法当沉淀的密度较大或结晶的颗粒较大,静置后能沉降至容器底部时,可用倾析法进行沉淀的分离和洗涤。具体作法是把沉淀上部的溶液倾入另一容器内,然后往盛着沉淀的容器内加入少量洗涤液,充分搅拌后,沉降,倾去洗涤液。如此重复操作3遍以上,即可把沉淀洗净,使沉淀与溶液分离。 (2)过滤法分离溶液与沉淀最常用的操作方法是过滤法。过滤时沉淀留在过滤器上,溶液通过过滤器而进入容器中,所得溶液叫做滤液。 过滤方法共有3种:常压过滤、减压过滤和热过滤。 1)常压过滤此法最为简便和常用,使用玻璃漏斗和滤纸进行过滤。按照孔隙的大小,滤纸可分为快速、中速和慢速3种。快速滤纸孔隙最大。过滤时,把圆形滤纸或四方滤纸折叠成4层(方滤纸折叠后还要剪成扇形)。然后将滤纸撕去一角,放在漏斗中①。滤纸的边缘应略低于漏斗的边缘。用水润湿滤纸,并使它紧贴在玻璃漏斗的内壁上。这时如果滤纸和漏斗壁之间仍有气泡,应该用手指轻压滤纸,把气泡赶掉,然后向漏斗中加蒸馏水至几乎达到滤纸边。这时漏斗颈应全部被水充满,而且当滤纸上的水已全部流尽后,漏斗颈中的水柱仍能保留。如形不成水柱,可以用手指堵住漏斗下口,稍稍掀起滤纸的一边,向滤纸和漏斗间加水,直到漏斗颈及锥体的大部分全被水充满,并且颈内气泡完全排出。然后把纸边按紧,再放开下面堵住出口的手指,此时水柱即可形成。在全部过滤过程中,漏斗颈必须一直被液体所充满,这样过滤才能迅速。过滤时应注意以下几点:调整漏斗架的高度,使漏斗末端紧靠接受器内壁。先倾倒溶液,后转移沉淀,转移时应使用搅棒。倾倒溶液时,应使搅棒指向3层滤纸处。漏斗中的液面高度应低于滤纸高度的2/3。如果沉淀需要洗涤,应待溶液转移完毕,用少量洗涤剂倒入沉淀,然后用搅棒充分搅动,静止放置一段时间,待沉淀下沉后,将上方清液倒入漏斗,如此重复洗涤两三遍,最后把沉淀转移到滤纸上。 2)减压过滤此法可加速过滤,并使沉淀抽吸得较干燥,但不宜过滤胶状沉淀和颗粒太小的沉淀,因为胶状沉淀易穿透滤纸,颗粒太小的沉淀易在滤纸上形成一层密实的沉淀,溶液不易透过,循环水真空泵使吸滤瓶内减压,由于瓶内与布氏漏斗液面上形成压力差,因而加快了过滤速度。安装时应注意使漏斗的斜口与吸滤瓶的支管相对。布氏漏斗上有许多小孔,滤纸应剪成比漏斗的内径略小,但又能把瓷孔全部盖没的大小。用少量水润湿滤纸,开泵,减压使滤纸与漏斗贴紧,然后开始过滤。当停止吸滤时,需先拔掉连接吸滤瓶和泵的橡皮管,再关泵,以防反吸。为了防止反吸现象,一般在吸滤瓶和泵之间,装上一个安全瓶。 3)热过滤①为保证滤纸与漏斗密合,第二次对折时先不要折死,把滤纸展开成锥形,用食指把滤纸按在玻璃漏斗(漏斗应干净而且干燥)的内壁上,稍微改变滤纸的折叠程度,直到滤纸与漏斗密合时为止,此时可把第二次折边折死。某些物质在溶液温度降低时,易成结晶析出,为了滤除这类溶液中所含的其他难溶性杂质,通常使用热滤漏斗进行过滤(图1-24),防止溶质结晶析出。过滤时,把玻璃漏斗放在铜质的热滤漏斗内,热滤漏斗内装有热水以维持溶液的温度。(3)离心分离当被分离的沉淀的量很小时,可把沉淀和溶液放在离心管内,放入电动离心机中进行离心分离。使用离心机时,将盛有沉淀的离心试管放入离心机的试管套内,在与之相对称的另一试管套内也放入盛有相等体积水的试管,然后缓慢起动离心机,逐渐加速。停止离心时,应让离心机自然停止。

固液分离固液分离的方法有倾析法过滤法和离心分离法三种倾

固液分离 固液分离的方法有倾析法、过滤法和离心分离法三种。 一、倾析法 如果沉淀的相对密度较大或晶体颗粒较大,静置后能较快沉降的,常用倾析法分离和洗涤沉淀。操作时将沉淀上部的清液缓慢沿玻璃棒倾入另一容器中,如图1。然后在盛沉淀的容器中加入少量洗涤液(如蒸溜水),充分搅拌后静置,待沉淀沉降后倾去洗涤液,重复2~3次既可将沉淀洗净。 二、过滤法 最常用的固液分离方法是过滤法。 当溶液和固体的混合物通过过滤器(如滤纸或玻璃砂芯)时,沉淀留在过滤器上,溶液通过过滤器流入另一容器中。过滤后的溶液称滤液。 图1. 倾析法过滤图2. 普通滤纸的折叠 1. 滤纸的选择 实验时应根据具体要求选用合适类型和规格的滤纸,如BaSO4、CaC2O4·2H2O等细晶形沉淀,应选用“慢速”滤纸过滤;Fe2O3·n H2O为胶状沉淀.,应选用“快速”滤纸过滤;MgNH4PO4等粗晶形沉淀,应选用“中速”滤纸过滤。 2. 过滤方法选择 过滤方法又分常压过滤、减压过滤和热过滤三种。 (1) 常压过滤(普通过滤) 在大气压下使用普通玻璃漏斗过滤的方法。沉淀物为胶体或微细晶体时,用此法过滤较好。 根据沉淀的具体情况选择适合的滤纸和漏斗。圆形滤纸对折两次成扇形,展开成圆锥形,一边为三层,一边为一层(图2),用水润湿滤纸,使滤纸漏斗内壁紧贴。 漏斗应放在漏斗架上,下面用一个洁净的烧杯承接滤液,将漏斗颈出口斜口长的一侧贴紧烧杯内壁,以加快过滤速度,并防止滤液外溅。 过滤时,为了避免沉淀堵塞滤纸的空隙,影响过滤速度,一般多采用倾泻法过滤。首先倾斜静置烧杯,待沉淀下降后,先采用倾泻法先滤去尽可能多的清液,如果需要洗涤沉淀,可在溶液转移后,往盛沉淀的容器中加入洗涤液充分搅匀,待沉淀沉降后按倾斜法倾出溶液,如此洗涤沉淀2~3次;然后把沉淀转移到漏斗上;最后清洗烧杯和洗涤漏斗上的沉淀。而不是一开始过滤就将沉淀和溶液搅混后过滤。 操作中注意让溶液沿玻璃棒在三层滤纸一侧倾入漏斗中,液面高度应低于滤纸

离心分离

离心分离技术 摘要: 离心分离是利用不同物质之间的密度形状大小的差异,用离心力场对悬浮液中的不同颗粒进行分离和提取的物理分离分析技术,它广泛用于生物学(生物工程和生物制品等)、医学、化学、化工等领域,而其设备——离心机是这些领域的必需设备。本文以离心机为起点,接着从离心分离方法、离心条件确定对离心分离技术进行了论述,最后再对我国的离心分离技术水平作出展望。 关键词:离心分离离心机分离方法条件确定展望 离心技术是利用物体高速旋转时产生强大的离心力,使置于旋转体中的悬浮颗粒发生沉降或漂浮,从而使某些颗粒达到浓缩或与其他颗粒分离之目的。这里的悬浮颗粒往往是指制成悬浮状态的细胞、细胞器、病毒和生物大分子等。离心机转子高速旋转时,当悬浮颗粒密度大于周围介质密度时,颗粒离开轴心方向移动,发生沉降;如果颗粒密度低于周围介质的密度时,则颗粒朝向轴心方向移动而发生漂浮。根据离心原理,离心技术又可以分为差速离心法、密度梯度离心法和等密度梯度离心法。 1.离心机 离心机是利用离心力,分离液体与固体颗粒或液体与液体的混合物中各组分的机械。离心机主要用于将悬浮液中的固体颗粒与液体分开;或将乳浊液中两种密度不同,又互不相溶的液体分开(例如从牛奶中分离出奶油);它也可用于排除湿固体中的液体,例如用洗衣机甩干湿衣服;特殊的超速管式分离机还可分离不同密度的气体混合物;利用不同密度或粒度的固体颗粒在液

体中沉降速度不同的特点,有的沉降离心机还可对固体颗粒按密度或粒度进行分级。 按分离因素Fr值分(分离因素Fr是指物料在离心力场中所受的离心力,与物料在重力场中所受到的重力之比值。) 1、常速离心机Fr≤3500(一般为600~1200),这种离心机的转速较低,直径较大。 2、高速离心机Fr=3500~50000,这种离心机的转速较高,一般转鼓直径较小,而长度较长。 3、超高速离心机Fr>50000,由于转速很高(50000r/min以上),所以转鼓做成细长管式。 2.离心分离方法 2.1差速离心 差速离心采用不同的离心速度和离心时间,使沉降速度不同的颗粒分批分离的方法称为差速离心。操作时,采用均匀的悬浮液进行离心,选择好离心力和离心时间,使大颗粒先沉降,取出上清液,在加大离心力的条件下再进行离心,分离较小的颗粒。如此多次离心,使不同大小的颗粒分批分离。差速离心所得到的沉降物含有较多杂质,需经过重新悬浮和再离心若干次,才能获得较纯的分离产物。差速离心主要用于分离大小和密度差异较大的颗粒。操作简单方便,但分离效果较差。 2.2密度梯度离心 密度梯度离心又称速度区带离心。密度梯度离心是指样品在密度梯度介质中进行的一种沉降速度离心。密度梯度系统是在溶剂中加入一定的梯度介质制成的。梯度介质应有足够大的溶解度,以形成所需的密度,不与分离组分反应,不会引起分离组分的凝聚、变性或失活,常用的有蔗糖、甘油等。

1102012032;李士豪;离心分离技术综述

离心分离技术综述 学号:1102012032 姓名:李士豪班级:生工2 摘要 离心分离技术是借助于离心机旋转所产生的离心力,根据物质颗粒的沉降系数、质量、密度及浮力等因子的不同,而使物质分离的技术。离心分离是利用不同物质之间的密度形状大小的差异,用离心力场对悬浮液中的不同颗粒进行分离和提取的物理分离分析技术,它广泛用于生物学(生物工程和生物制品等)、医学、化学、化工等领域,而其设备——离心机是这些领域的必需设备。本文以离心机为起点,接着从离心分离方法、离心条件确定对离心分离技术进行了论述,最后再对我国的离心分离技术水平作出展望。 关键词:离心分离;离心机;分离方法;离心条件 ;展望 引言 离心技术是利用物体高速旋转时产生强大的离心力,使置于旋转体中的悬浮颗粒发生沉降或漂浮,从而使某些颗粒达到浓缩或与其他颗粒分离之目的。这里的悬浮颗粒往往是指制成悬浮状态的细胞、细胞器、病毒和生物大分子等。离心机转子高速旋转时,当悬浮颗粒密度大于周围介质密度时,颗粒离开轴心方向移动,发生沉降;如果颗粒密度低于周围介质的密度时,则颗粒朝向轴心方向移动而发生漂浮。根据离心原理,离心技术又可以分为差速离心法、密度梯度离心法和等密度梯度离心法。 离心机 离心机是利用离心力,分离液体与固体颗粒或液体与液体的混合物中各组分的机械。离心机主要用于将悬浮液中的固体颗粒与液体分开;或将乳浊液中两种密度不同,又互不相溶的液体分开(例如从牛奶中分离出奶油);它也可用于排除湿固体中的液体,例如用洗衣机甩干湿衣服;特殊的超速管式分离机还可分离不同密度的气体混合物;利用不同密度或粒度的固体颗粒在液体中沉降速度不同的特点,有的沉降离心机还可对固体颗粒按密度或粒度进行分级。 按分离因素Fr值分(分离因素Fr是指物料在离心力场中所受的离心力,与物料在重力场中所受到的重力之比值。) 1、常速离心机Fr≤3500(一般为600~1200),这种离心机的转速较低,直径较大。 2、高速离心机???Fr=3500~50000,这种离心机的转速较高,一般转鼓直径较小,而长度较长。

离心法提纯硅的原理

离心机工作原理 一、发展历程 离心机是利用离心力,分离液体与固体颗粒或液体与液体的混合物中各组分的机械。 离心机主要用于将悬浮液中的固体颗粒与液体分开;或将乳浊液中两种密度不同,又互不相溶的液体分开(例如从牛奶中分离出奶油);它也可用于排除湿固体中的液体,例如用洗衣机甩干湿衣服;特殊的超速管式分离机还可分离不同密度的气体混合物;利用不同密度或粒度的固体颗粒在液体中沉降速度不同的特点,有的沉降离心机还可对固体颗粒按密度或粒度进行分级。 离心机大量应用于化工、石油、食品、制药、选矿、煤炭、水处理和船舶等部门。 中国古代,人们用绳索的一端系住陶罐,手握绳索的另一端,旋转甩动陶罐,产生离心力挤压出陶罐中蜂蜜,这就是离心分离原理的早期应用。 工业离心机诞生于欧洲,比如19世纪中叶,先后出现纺织品脱水用的三足式离心机,和制糖厂分离结晶砂糖用的上悬式离心机。这些最早的离心机都是间歇操作和人工排渣的。 由于卸渣机构的改进,20世纪30年代出现了连续操作的离心机,间歇操作离心机也因实现了自动控制而得到发

展。 工业用离心机按结构和分离要求,可分为过滤离心机、沉降离心机和分离机三类。 离心机有一个绕本身轴线高速旋转的圆筒,称为转鼓,通常由电动机驱动。悬浮液(或乳浊液)加入转鼓后,被迅速带动与转鼓同速旋转,在离心力作用下各组分分离,并分别排出。通常,转鼓转速越高,分离效果也越好。 离心分离机的作用原理有离心过滤和离心沉降两种。离心过滤是使悬浮液在离心力场下产生的离心压力,作用在过滤介质上,使液体通过过滤介质成为滤液,而固体颗粒被截留在过滤介质表面,从而实现液-固分离;离心沉降是利用悬浮液(或乳浊液)密度不同的各组分在离心力场中迅速沉降分层的原理,实现液-固(或液-液)分离。 还有一类实验分析用的分离机,可进行液体澄清和固体颗粒富集,或液-液分离,这类分离机有常压、真空、冷冻条件下操作的不同结构型式。 衡量离心分离机分离性能的重要指标是分离因数。它表示被分离物料在转鼓内所受的离心力与其重力的比值,分离因数越大,通常分离也越迅速,分离效果越好。工业用离心分离机的分离因数一般为100~20000,超速管式分离机的分离因数可高达62000,分析用超速分离机的分离因数最高达610000。决定离心分离机处理能力的另一因素是转鼓的工作

离心沉降分离原理

離心沉降分離原理 A、概述 利用微生物、動物、或植物細胞生產有機酸、胺基酸、抗生素、特化品、酵素、甚或藥用蛋白質已經是相當成熟的生物技術。不管生產細胞的取得是經由篩選、突變、原生質融合或是基因工程,在量產時通常要給與適當的培養基及培養環境,提高細胞數量並誘導生成產物。產物生成的模式不外乎三類:(1)分泌於細胞体外醱酵液;(2)溶於細胞体內;(3)不溶性胞內包涵體(inclusion body)。下表為各種生技產品及其生產菌株表現產物的模式: 第(1)類產物:分泌於細胞体外醱酵液;有機酸產物如檸檬酸、乳酸,胺基酸產物(如味精、離胺酸,抗生素產物如青黴素、紅黴素),酵素產物(如糖化酵素、蛋 白質分解酵素等)。動物細胞表現藥用蛋白質產品如Erythropoietin 則屬第 (1) 類模式產物。 第(2)類產物:溶於細胞体內;一些分子量較大的生化物質如阿巴汀(avermectin)、勃激素(gibberellin)、過氧化氫觸媒酵素(catalase)等。將外來的基因轉殖於宿 主微生物表現時,其蛋白質產物無法排出體外,如r-DNA酵母菌B型肝炎 表面抗原(Hepatitis B surface antigen, HBsAg),亦屬於第(2)類產物。 第(3)類產物:不溶性胞內包涵體;常見於採用基因工程改造的微生物表現高等動物蛋白質的情況。轉殖於宿主微生物的結構基因(structure gene),被強力的啟動 子(promoter)推動而在短時間大量表現蛋白質產物,造成在胞內形成不溶 性胞內包涵體,如r-DNA 大腸桿菌的胰島素等。

下游產品回收的工程包括 : 菌体分離、細胞破碎及去除、粗分離、純化及白質分解酵素,必須除菌取得胞外液;如阿巴汀,必須取菌体後,再行萃取工作;如表現HBsAg 的r-DNA 酵母菌醱酵液,因為HBsAg 生產於酵母菌胞內,在打破細胞釋出產品前,醱酵液中仍含相當多之雜蛋白質宜先行移除,所以必須取菌濃縮及清洗,再行打破。 細胞菌体之分離回收方法甚多,但可以量產規模實施,連續及自動化操作的有下列幾種程序:一般過濾、膜過濾、離心沉降、及離心過濾等。本實驗僅就離心沉降做簡單的介紹。 B 、離心沉降的原理 ( principle of centrifugal sedimentation) (1) 離心機介紹 沉降(sedimentation)乃是利用菌體密度大於醱酵液密度而會沉降於底層的特性來分離菌體。但由於微生物菌体顆粒很小,沉降非常慢,故要提供離心場,來加速沉降速度,稱為離心沉降(centrifugal sedimentation)一般常用的批次離心機(或瓶式離心機,batch centrifuge)為分析及樣品製備用途,但當規模大於150公升時批次離心機已不適合使用,因此一定要以連續離心(continuous centrifugation)的設計,方能放大使用。 <連續離心機> 如下圖,常見之工業用連續離心機有(a)管碗式高速離心機(tubular bowl centrifuge );(b)固体停留盤式離心機(solid-retaining type disk centrifuge );(c)間斷式排渣盤式離心機 (intermittent ejection type disk centrifuge );(d)噴嘴式盤式離心機(nozzle type disk centrifuge)及(e)螺旋式離心機(screw type decanter)。以下說明:

离心分离机的作用原理以及选择

离心分离机的作用原理以及选择 离心机是利用离心力,分离液体与固体颗粒或液体与液体的混合物中各组分的机械。 离心机主要用于将悬浮液中的固体颗粒与液体分开;或将乳浊液中两种密度不同,又互不相溶的液体分开(例如从牛奶中分离出奶油);它也可用于排除湿固体中的液体,例如用洗衣机甩干湿衣服;特殊的超速管式分离机还可分离不同密度的气体混合物;利用不同密度或粒度的固体颗粒在液体中沉降速度不同的特点,有的沉降离心机还可对固体颗粒按密度或粒度进行分级。 离心机大量应用于化工、石油、食品、制药、选矿、煤炭、水处理和船舶等部门。中国古代,人们用绳索的一端系住陶罐,手握绳索的另一端,旋转甩动陶罐,产生离心力挤压出陶罐中蜂蜜,这就是离心分离原理的早期应用。 工业离心机诞生于欧洲,比如19世纪中叶,先后出现纺织品脱水用的三足式离心机,和制糖厂分离结晶砂糖用的上悬式离心机。这些最早的离心机都是间歇操作和人工排渣的。 由于卸渣机构的改进,20世纪30年代出现了连续操作的离心机,间歇操作离心机也因实现了自动控制而得到发展。 工业用离心机按结构和分离要求,可分为过滤离心机、沉降离心机和分离机三类。离心机有一个绕本身轴线高速旋转的圆筒,称为转鼓,通常由电动机驱动。悬浮液(或乳浊液)加入转鼓后,被迅速带动与转鼓同速旋转,在离心力作用下各组分分离,并分别排出。通常,转鼓转速越高,分离效果也越好。 离心分离机的作用原理有离心过滤和离心沉降两种。离心过滤是使悬浮液在离心力场下产生的离心压力,作用在过滤介质上,使液体通过过滤介质成为滤液,而固体颗粒被截留在过滤介质表面,从而实现液-固分离;离心沉降是利用悬浮液(或乳浊液)密度不同的各组分在离心力场中迅速沉降分层的原理,实现液-固(或液-液)分离。 还有一类实验分析用的分离机,可进行液体澄清和固体颗粒富集,或液-液分离,这类分离机有常压、真空、冷冻条件下操作的不同结构型式。 衡量离心分离机分离性能的重要指标是分离因数。它表示被分离物料在转鼓内所受的离心力与其重力的比值,分离因数越大,通常分离也越迅速,分离效果越好。工业用离心分离机的分离因数一般为100~20000,超速管式分离机的分离因数可高达62000,分析用超速分离机的分离因数最高达610000。决定离心分离机处理能力的另一因素是转鼓的工作面积,工作面积大处理能力也大。 选择离心机须根据悬浮液(或乳浊液)中固体颗粒的大小和浓度、固体与液体(或两种液体)的密度差、液体粘度、滤渣(或沉渣)的特性,以及分离的要求等进行综合分析,满足对滤渣(沉渣)含湿量和滤液(分离液)澄清度的要求,初步选择采用哪一类离心分离机。然后按处理量和对操作的自动化要求,确定离心机的类型和规格,最后经实际试验验证。 通常,对于含有粒度大于0.01毫米颗粒的悬浮液,可选用过滤离心机;对于悬浮液中颗粒细小或可压缩变形的,则宜选用沉降离心机;对于悬浮液含固体量低、颗粒微小和对液体澄清度要求高时,应选用分离机。

食品分离技术自测题(推荐文档)

第一章绪论 一名词解释 1. 平衡分离过程 2.速率控制过程 二、填空 1、食品分离过程是熵的过程,必须外加能量才能进行。 2、食品分离通常来说要达到下列两个目的: , . 3、随着社会地发展和技术的进步,工业上形成的分离技术越来越多,但从本质上来说,所有分离技术都可分为和传质分离两大类。传质分离又分为和 4、食品分离技术按分离性质可分为和两大类 5、食品分离技术按分离方法可分为、、 三、判断题 1、分离剂是分离过程的推动力或辅助物质,它包括质量分离剂和能量分离剂。() 2、机械分离过程的分离对象是有两相组成的混合物。() 3、单元操作侧重分离方法的共性规律,而分离过程则侧重分离方法的个性规律。() 四、选择题 1、以下不属于传质分离过程的是 A 过滤B超滤C蒸馏D萃取 2、以下不属于平衡分离过程的是 A 离子交换B色谱C结晶D干燥 五、简答题 1、分离过程有哪些基本原则? 2、食品分离过程特点是什么? 3、评价一种食品分离技术的优良,可从哪几方面来考虑? 4、简述食品分离技术在食品工业中的重要性。 第二章细胞的破碎与细胞分离 一、名词解释 凝聚絮凝 差速离心分离:离心速度逐渐提高,样品中组分按大小先后沉降。 区带离心分离:借助离心管中的梯度介质,经高速离心将样品中组分分离。 二、选择题 1、丝状(团状)真菌适合采用()破碎。 A、珠磨法 B、高压匀浆法 C、A与B联合 D、A与B均不行 2、适合小量细胞破碎的方法是()

A高压匀浆法 B.超声破碎法 C.高速珠磨法 D.高压挤压法 3、发酵液的预处理方法不包括() A. 加热B絮凝 C.离心 D. 调pH 4、下列物质属于絮凝剂的有()。 A、明矾 B、石灰 C、聚丙烯类 D、硫酸亚铁 5、哪种细胞破碎方法适用工业生产() A. 高压匀浆B超声波破碎 C. 渗透压冲击法 D. 酶解法 6、高压匀浆法破碎细胞,不适用于() A. 酵母菌B大肠杆菌 C. 巨大芽孢杆菌 D.青霉 三、判断题 1.细胞破碎时破碎率越大,细胞中大分子目的物得率越高。() 2.G -菌细胞膜网状结构不及G+菌的坚固,故较易破碎。() 3.机械法中高压匀浆法细胞破碎率最高,且成本最低。() 4、超声波破碎法的有效能量利用率极低,操作过程产生大量的热,因此操作需在冰水或有外部冷却的容器中进行。() 5、冻结的作用是破坏细胞膜的疏水键结构,降低其亲水性和通透性。() 6.渗透压冲击是各种细胞破碎法中最为温和的一种,适用于易于破碎的细胞,如革兰氏阳性菌和动物细胞。() 7、差速区带离心中,梯度液的密度要包含所有被分离物质的密度。() 8.凝聚与絮凝作用的原理是相同的,只是沉淀的状态不同。() 9、平衡区带离心适于分离大小相同密度不同的物质。() 10、助滤剂是一种不可压缩的多孔微粒,可使滤饼疏松,滤速增加。() 四、填空 1.发酵液常用的固液分离方法有()和()等。 2、化学细胞破碎中常用的试剂有(),(),()等。 3、在非机械法破碎细胞的方法中自溶法是利用_______ ___溶解细胞壁。 4、当目标产物存在于细胞膜附近时,可采用较温和的方法如____ __ 、_ _等 5、破碎率的测定方法有、、。 五、简答题 1、试比较凝聚和絮凝两过程的异同? 答:凝聚和絮凝——在电介质作用下,破坏溶质胶体颗粒表面的双电层,破坏胶体系统的分散状态,使胶体粒子聚集的过程。 凝聚:简单电解质降低胶体间的排斥力。从而范德华引力起主导作用,聚合成较大的胶粒,粒子的密度越大,越易分离。 絮凝:指在某些高分子絮凝剂存在下,在悬浮粒子之间发生架桥作用而使胶粒形成粗大的絮

高中课本中涉及离心技术比较

高中课本中涉及离心技术比较 离心技术:是利用旋转运动产生的离心力,根据物质的沉降系数或浮力密度的差别进行物质的分析、分离、浓缩和提纯的一种技术。 功能:?分离、纯化样品;?对已纯化的样品进行结构和性质的分析。 主要分两种类型:制备性离心技术和分析性离心技术 一、制备性离心技术:是以分离纯化生化物质、细胞、亚细胞粒子为目的离心技术。 1、差速离心法(差速沉降离心法) Cellhomogenate细胞匀浆pelletcontains颗粒包含nucleicytoskeletons细胞骨架mitochondriallysosomes peroxisomes线粒体溶酶体过氧化物酶体microsomessmall vesicles 微粒小囊泡ribosomesviruses large macromolecules核糖体病毒大分子fractionation 高中课本涉及的细胞器 的获取分离通过 差速离心法获得。

2、密度梯度离心法(密度梯度区带离心法) 此法可以用于DNA复制分离、 病毒颗粒的分离等。 二、分析性超速离心技术:与制备性超速离心不同的是:分析性超速离心主要是为了研究生物大分子的沉降特性和结构,而不是专门收集某一特定组份。因此它使用了特殊的转子和检测手段,以便连续监视物质在一个离心场中的沉降过程。 分析性超速离心的应用: ⒈测定生物大分子的相对分子重量测定相对分子重量主要有三种方法:沉降速度、沉降平衡和接近沉降平衡。其中应用最广的是沉降速度,超速离心在高速中进行,这个速度使得任意

分布的粒子通过溶剂从旋转的中心辐射地向外移动,在清除了粒子的那部分溶剂和尚含有沉降物的那部分溶剂之间形成一个明显的界面,该界面随时间的移动而移动,这就是粒子沉降速度的一个指标,然后用照相记录,即可求出粒子的沉降系数。 ⒉生物大分子的纯度估计静分析性超速离心已广泛地应用于研究DNA 制剂、病毒和蛋白质的纯度。用沉降速度的技术来分析沉降界面是测定制剂均质性的最常用方法之一,出现单一清晰的界面一般认为是均质的,如有杂质则在主峰的一侧或二侧出现小峰。 ⒊分析生物大分子中的构象变化分析性超速离心已成功地用于检测大分子构象的变化,例如DNA 可能以单股或双股出现,其中每一股在本质上可能是线性的,也可能是环状的,如果遇到某种因素(温度或有机溶剂)DNA 分子可能发生一些构象上的变化,这些变化也许可逆、也许不可逆,这些构象上的变化可以通过检查样品在沉降速度上的差异来证实。

相关文档
最新文档