指数对数函数应用举例教案

指数对数函数应用举例教案
指数对数函数应用举例教案

4.5.3对数函数的应用举例

教学目的:掌握利用指数函数和对数函数的有关知识解决一些简单的函数应用问题。 教学重点:利用指数函数和对数函数的有关知识解决一些简单的函数应用问题。

教学难点:通过阅读理解读懂题目中文字叙述所反映的实际背景,领悟其中的数学本,弄清题中出现的量及其数学含义;根据实际问题的具体背景,进行数学化设计,根据实际问题建立数学模型。

教学方法:学导式教学法

教学过程:

1.复习

数学来自生活,又应用于生活和生产实践.而实际问题中又蕴涵着丰富的数学知识,数学思想与方法.今天我们就一起来探讨几个有关指数函数和对数函数的应用问题。 例1.现有人口100万,根据最近20年的统计资料,这个城市的人口的年自然增长率为1.2%,按这个增长率计算:

(1) 10年后这个城市的人口预计有多少万?

(2) 20年后这个城市的人口预计有多少万?

(3) 在今后20年内,前10年与后10年分别增加了多少万人?

分析:按年自然增长率为1.2%,计算1年后该城市的人口总数为100+100×1.2%

=100(1+1.2%)(万人)

2年后该城市的人口总数为 100(1+1.2%)+100(1+1.2%)1.2%=100(1+1.2%) (万人)

依此…n 年后该城市的人口总数为 100(1+1.2%)n (万人)

解:(1)10年后该城市的人口总数为 100(1+1.2%)10≈112.67 (万人)

(2)20年后该城市的人口总数为 100(1+1.2%)20 ≈126.94(万人)

(3)前10年增加的人口为112.67-100=12.67(万人)

后10年增加的人口为126.94-112.67=14.27(万人)

答:…

例2.1995年我国人口总数是12亿,如果人口的自然增长率控制在1.25%。问哪一年人口总数将达到14亿?

解:设x 年后人口总数将达到14亿,则有12(1+1.25%)=14 即:1.0125=1214 两边取常用对数可得:x=12

14log 0125.1 ≈12.4 答:13年后即2008年我国人口总数将达到14亿。

例3.库存的某种商品的价值是50万元,如果每年的损耗是4.5%,那么经过多少年,它的价值将为20万元?

解:设经过x 年它的价值将为20万元,依题意有:50(1-4.5%)=20 ?50×0.955=20

? 0.955=0.4 4.0log 955.0=?x ? x ≈20

2.小结:解决数学实际问题的关键是根据实际建立数学模型。

3.作业:page79 T6 PageT9,T10

数学教案-指数函数与对数函数的性质及其应用.doc

数学教案-指数函数与对数函数的性质 及其应用 教案 课题:指数函数与对数函数的性质及其应用 课型:综合课 教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。 重点:指数函数与对数函数的特性。 难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。 教学方法:多媒体授课。 学法指导:借助列表与图像法。 教具:多媒体教学设备。 教学过程: 一、复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。 二、展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

指数函数与对数函数关系一览表函数 性质 指数函数 y=ax (a>0且a≠1) 对数函数 y=logax(a>0且a≠1) 定义域 实数集r 正实数集(0,﹢∞) 值域 正实数集(0,﹢∞) 实数集r 共同的点 (0,1) (1,0) 单调性 a>1 增函数 a>1 增函数 0<a<1 减函数 0<a<1 减函数

函数特性 a>1 当x>0,y>1 当x>1,y>0 当x<0,0<y<1 当0<x<1, y<0 0<a<1 当x>0, 0<y<1 当x>1, y<0 当x<0,y>1 当0<x<1, y>0 反函数 y=logax(a>0且a≠1)y=ax (a>0且a≠1) 图像 y y=(1/2)x y=2x (0,1)

x y y=log2x (1,0) x y=log1/2x 三、同一坐标系中将指数函数与对数函数进行合成,观察其特点,并得出y=log2x与y=2x、 y=log1/2x与y=(1/2)x 的图像关 于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反 函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的 值域与y=ax的定义域相同。 y y=(1/2)x y=2x y=x (0,1) y=log2x (1,0) x y=log1/2x

指数函数与对数函数高考题

第二章 函数 三 指数函数与对数函数 【考点阐述】指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数. 【考试要求】(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 【考题分类】 (一)选择题(共15题) 1.(安徽卷文7)设 232555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2()5x y =在0x >时是减函数,所以c b >。 【方法总结】根据幂函数与指数函数的单调性直接可以判断出来. 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系 中的图像可能是 【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-11矛盾,选D 。 3.(辽宁卷文10)设525b m ==,且112a b +=,则m = (A (B )10 (C )20 (D )100 【答案】 D

解析:选A.211 log 2log 5log 102,10, m m m m a b +=+==∴= 又0,m m >∴= 4.(全国Ⅰ卷理8文10)设a= 3 log 2,b=In2,c=1 2 5 - ,则 A. a>,所以a=>,所以c,从而错选A,这也 是命题者的用苦良心之处. 【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或 1b a = ,所以a+2b=2 a a + 又0f(1)=1+2 1=3,即a+2b 的取值范围是(3,+∞). 6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小 题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a + ≥,从而错选D,这也是命 题者的用苦良心之处.

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结及练习题 一.指数函数 (一)指数及指数幂的运算 n m n m a a = s r s r a a a +=? rs s r a a =)( r r r b a ab =)( (二)指数函数及其性质 1.指数函数的概念:一般地,形如x a y =(0>a 且1≠a )叫做指数函数。 2.指数函数的图象和性质 10<a 6 54321 -1 -4-2 2460 1 6 5 4 3 2 1 -1 -4-2 246 1 定义域 R 定义域 R 值域y >0 值域y >0 在R 上单调递减 在R 上单调递增 非奇非偶函数 非奇非偶函数 定点(0,1) 定点(0,1) 二.对数函数 (一)对数 1.对数的概念:一般地,如果N a x =(0>a 且1≠a ),那么x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做底数,N 叫做真数,N a log 叫做对数式。 2.指数式与对数式的互化 幂值 真数 x N N a a x =?=log 底数 指数 对数

3.两个重要对数 (1)常用对数:以10为底的对数N lg (2)自然对数:以无理数 71828.2=e 为底的对数N ln (二)对数的运算性质(0>a 且1≠a ,0,0>>N M ) ①MN N M a a a log log log =+ ②N M N M a a a log log log =- ③M n M a n a log log = ④换底公式:a b b c c a log log log =(0>c 且1≠c ) 关于换底公式的重要结论:①b m n b a n a m log log = ②1log log =?a b b a (三)对数函数 1.对数函数的概念:形如x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量。 2对数函数的图象及性质 01 32.5 2 1.51 0.5-0.5 -1-1.5-2-2.5 -1 1 23456780 1 1 32.5 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -2.5 -1 1 2345678 1 1 定义域x >0 定义域x >0 值域为R 值域为R 在R 上递减 在R 上递增 定点(1,0) 定点(1,0)

指数函数和对数函数

指数函数和对数函数 知能目标 1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质. 2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质. 3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题. 综合脉络 1. 以指数函数、对数函数为中心的综合网络 2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据): 0a (N log b N a a b >=?=且)1a ≠ 指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表: 3. 指数函数,对数函数是高考重点之一 指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)= x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性.

例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 例3. 已知x 满足≤+6x 2a a 4x 2x a a +++)1a ,0a ( ≠>, 函数y =)ax (log x a 1 log 2 a 12 a ? 的值域为]0 ,8 1[-, 求a 的值. (二) 专题测试与练习:

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

指数函数、对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ g123 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

指数函数对数函数应用题

与指数函数、对数函数相关的应用题较多,如人口的增长(1981年、1996年高考题)、环保等社会热点问题,国民生产总值的增长、成本的增长或降低、平均增长率等经济生活问题,放射性物质的蜕变、温度等物理学科问题等. 一、人口问题 例1、某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下面的问题: ⑴写出该城市人口数y(万人)与年份x(年)的函数关系式; ⑵计算10年以后该城市人口总数(精确到0.1万人); ⑶计算大约多少年以后该城市人口将达到120万人(精确到1年). 二、增长率问题 例2、按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y 随存期x 变化的函数关系式.如果存入本金1000元,每期利率为2.25%,试计算5期后本利和是多少?(注:“复利”,即把前一期的利息和本金加在一起算作本金,再计算下一期利息.) 例3、某乡镇现在人均一年占有粮食360千克,如果乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x年后若人均一年占有y千克粮食,求出函数y关于x的解析式.

三、环保问题 例4、一片森林面积为a ,计划每年砍伐一批木材,每年砍伐的百分比相等,则砍伐到面积一半时,所用时间是T 年,为保护生态环境,森林面积至少要保留原面积的 14,已知到今 年为止,森林剩余面积为原来的2 . ⑴到今年为止,该森林已砍伐了多少年? ⑵今后最多还能砍伐多少年? 四、物理问题 例5、牛顿冷却定律描述一个物体在常温环境下的温度变化:如果物体的初始温度是T 0,则 经过一定时间h 后的温度T 将满足T -T a = 2 1(T 0-T a ),其中T a 是环境温度,使上式成立所需要的时间h 称为半衰期.在这样的情况下,t 时间后的温度T 将满足T -T a =h t )21((T 0-T a ). 现有一杯ο195F 用热水冲的速溶咖啡,放置在ο75F 的房间中,如果咖啡降温到ο 105F 需20分钟,问欲降到ο95F 需多少时间? 例6、设在海拔x m 处的大气压强是y Pa ,y 与x 之间的函数关系式是kx ce y =,其中c,k 为常量.已知某地某天在海平面的大气压为 1.01×105Pa ,1000m 高空的大气压为0.90×105Pa ,求600m 高空的大气压强(结果保留3个有效数字).

《对数函数的应用》导学案.doc

《对数函数的应用》导学案 教学目标:①掌握对数函数的性质。②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值域及单调性。 ③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。 教学重点与难点:对数函数的性质的应用。 教学过程设计: ⒈复习提问:对数函数的概念及性质。 ⒉开始正课 1 比较数的大小 例 1 比较下列各组数的大小。 ⑴loga5.1 ,loga5.9 (a>0,a≠1) ⑵log0.50.6 ,logл0.5 ,lnл 师:请同学们观察一下⑴中这两个对数有何特征? 生:这两个对数底相等。 师:那么对于两个底相等的对数如何比大小? 生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。 师:对,请叙述一下这道题的解题过程。 生:对数函数的单调性取决于底的大小:当0

y=logax单 调递减,所以loga5.1>loga5.9 ;当a>1时,函数 y=logax单调递 增,所以loga5.11时,函数y=logax在(0,+∞)上是增函数,∵5.1<5.9 ∴loga5.10,lnл>0,logл0.51, log0.50.6<1,所以logл0.5< log0.50.6< lnл。 板书:略。 师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函 数的单调性比大小,②借用“中间量”间接比大小,③利用对数 函数图象的位置关系来比大小。 2 函数的定义域, 值域及单调性。 例2 ⑴求函数y=的定义域。

指数函数 和 对数函数公式 (全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01 且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0 ,y x =0,当x ≤0,函数值不存在。 a =1 时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ???=212 10,, 的图象的认识。 图象特征与函数性质: 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,y x =?? ? ? ?12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101, 则, 则 (4)y y x x ==210,的图象自左到右逐渐(4)当a >1时,y a x =是增函数,

高考指数函数与对数函数专题复习

例1.设a >0, f (x)=x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性. 解:(1) 因为)x (f 在R 上是奇函数, 所以)0a (1a 0a a 1 0) 0(f >=?=-? =, (2) =-?∈++=--)x (f )R x (2 4 x x ln )x (f 121 -=++-24x x ln 2=++2 4x x ln 2)x (f 1--, ∴)x (f 1-为奇函数. 用定义法可证)x (f 1 -为单调增函数. 例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 解:设x ax ) x (u 2-=, 对称轴a 21x = . (1) 当1a >时, 1a 0 )2(u 2 a 21>??????>≤; (2) 当1a 0<<时, 81a 00)4(u 4 a 21 ≤≥. 综上所述: 1a > 1.(安徽卷文7)设 232 555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2 ()5x y =在0x >时是减函数,所以c b >。 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可 能是【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-1

对数函数与指数函数的运算

对数函数与指数函数的运算 1.化简下列各式(其中各字母均为正数): (1) ;)(65312121132 b a b a b a ????-- (2).)4()3(6521 332121231----?÷-??b a b a b a 2.化简(1) 313 2)3(---a y x (2) )111)((2211b ab a b a +-+-- 3.化简下列各式 (1) 6113175.0231729)95()27174(256)61(027 .0------+-+-- (2) (a 3+a -3)(a 3-a -3)÷[(a 4+a -4+1)(a-a -1)] 4.求值(1)lg14-2lg 37+lg7-lg18 (2)9lg 243lg

(3) 2.1lg 10lg 38lg 27lg -+ (4)(lg2)3+(lg5)3+3lg2?lg5 (5)化简22)4(lg 16lg 25lg )25(lg ++ 答案: 1.(1)原式= .100653121612131656131212131=?=?=?-+-+--b a b a b a b a b a (2)原式=- )(45)4(25233136121332361------÷-=?÷b a b a b a b a .45145452 32321ab ab ab b a -=?-=?-=-- 2. (1) 639 27x a y ; (2) 3311b a +;

3.(1) 5132;(2) a a 1 ; 4. (1) 0;(2) 25;(3) 23;(4) 1;(5) 2 ;

对数函数的图象变换及在实际中的应用苏教版

对数函数的图象变换及在实际中的应用 对数函数图象是对数函数的一种表达形式, 形象显示了函数的性质。为研究它的数量关 系提供了“形”的直观性,它是探求解题途径、获得问题结果的重要途径。 一. 利用对数函数图象的变换研究复杂函数图象的性质 (一) 图象的平移变换 y log 2(x 2)的图象 主:图象的平移变换: 1.水平平移:函数y f (x b) , (a 0)的图像,可由y f (x)的 2.竖直平移:函数y f (x) b , (b 0)的图像,可由y f (x)的图像向上(+)或向下 平移b 个单位而得到. (二) 图像的对称变换 例2.画出函数y log 2 x 2的图像,并根据图像指出它的单调区间 ? 解:当 x 0 时,函数 y log 2 x 2 满足 f ( x) log 2( x)2 log 2 x 2 f (x),所以 2 2 y log 2 x 是偶函数,它的图象关于 y 轴对称。当x 0时,y log 2 x 2 log 2 x 。因 此先画出y 2 log 2 x ,( x 0)的图象为s ,再作出&关于 y 轴对称C 2, c i 与C 2构成函数y 由图象可以知道函数 y log 2 x 2 调增区间是(0,) 例1. 画出 函数 y log 2 (x 2) 与 y log 2(x 2)的图像,并指出两个图像 之间的关系? 解:函数y log 2 x 的图象如果向右平移 到y Iog 2(x 2)的图像;如果向左平移 /pl y i. J - ■- .— w ■■ *-------- 1 ------ ~ / - 1 ] ''5 / 3 = / ' 到y log 2(x 2)的图像,所以把y log 2(x 2) 图像向左(+)或向右 平移a 个单位而得到 2个单位就得 2个单位就得 的图象向右平移4个单位得到

指数函数和对数函数的重点知识

指数函数和对数函数的重点知识 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为 1,但y x =1的反函数不存在, 因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210 ,,的图象的认识。 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐 标都大于1,在第二象限内的纵坐标都小于1,y x =?? ???12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101 ,则,则 (4)y y x x ==210,的图象自左到右逐渐上升,y x =?? ? ? ?12的图象逐渐下降。 (4)当a >1时,y a x =是增函数, 当01<

指数函数与对数函数图像及交点问题

关于指数函数与对数函数的问题 一、指数函数 底数对指数函数的影响: ①在同一坐标系内分别作函数的图象,易看出:当a>l时,底数越大,函数图象在第一象限越靠近y轴;同样地,当00,且a≠l时,函数与函数y=的图象关于y轴对称。 利用指数函数的性质比较大小: 若底数相同而指数不同,用指数函数的单调性比较: 若底数不同而指数相同,用作商法比较; 若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值

二、对数函数 底数对函数值大小的影响: 1.在同一坐标系中分别作出函数的图象,如图所示,可以看出:当a>l时,底数越大,图象越靠近x轴,同理,当O

对数函数的图象与性质: 三、对数函数与指数函数的对比: (1)对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x对称. (2)它们都是单调函数,都不具有奇偶性.当a>l时,它们是增函数;当O

四、关于同底指数函数与对数函数的交点问题 一、1a >时方程 x log a a x =的解 先求如图3所示曲线x log y a y a x ==与相切时a 的值。设曲线x log y a y a x ==与相切 于点M (00x ,x ),由于曲线x a y =在点M 处的切线斜率为1, 所以?????==?????===1a ln a , x a 1|)'a (,x a 0000x 0x x x x 0x 即

指数函数与对数函数的实际应用.doc

指数函数与对数函数的实际应用 【复习目标】 1、明确题意中指数函数还是对数函数的模型,会根据数量关系建构、解决函数 模型; 2、掌握互化的方法,在指数型函数求幂问题与对数型函数求对数值问题中的运 用; 3、通过实际问题的解决,渗透数学建模的思想,提高学生的数学学习兴趣. 【课前知识整理】 1、指数函数、对数函数的图像和性质: a 1 0 a 1 图 象 ( 1)定义域: 性 ( 2)值域: 质 ( 3)过定点: ( 4)在 ______上是 ________函数. ( 4)在 ______上是 ________函数. 2、指数函数与对数函数的互化: y a x x l o g a y ( a 0,a 1 ) 【基础练习】 、若 9 x 1 ,则 x= ( ) 1 3 A. 1 B. 1 C.2 D.1 2 2 2 2、若函数 h( x) lg( x x 2 1) , h( 1) 1.62 ,则 h( 1) ( ) x 2 A.0.38 B.1.62 C.2.38 D.2.62 3 若 log ( x a) log a 2 log x 有解,则 a 的取值范围是 ( ) A. 0 a 1或 a 1 B. a 1 C. a 1 或 1 a D. a 1 4、某工厂某设备价值 50 万元,且每年的综合损耗是 3%,若一直销售不下去,经过多少年其价值降低为 36 万元。(精确到 1 年)

【考点探析】 活动一涉及指数函数模型的应用问题. 例1、一项技术用于节约资源,使谁的使用量逐月减少,若一工厂用这一技术, 则该工厂的用水量是 5000 m3,计划从二月份,每个月的用水量比上一个月都减 少 10%,预计今年六月份的用水量约是多少?(精确到1m3) 活动二指数函数与对数函数模型的互化. 例2、某种储蓄利率为 2.5%,按复利计算,若本金为 30000 元,设存入 x 期后的本金和利息为 y 元. ( 1)写出 y 随 x 变化的函数; ( 2)若使本利和为存入时的 1.5 倍,应该存入多少期? 【能力提升】 牛奶保鲜时间因储藏温度的不同而不同,假定保鲜时间与储藏温度间的关系为指数函数,若牛奶放在 0 摄氏度的冰箱中,保鲜时间是 192 小时,而在 22 摄氏度的厨房中则是 42 小时. (1)写出保鲜时间 y 关于储藏温度 x 的函数关系式; (2)利用( 1)中的结论,指出温度在 30 摄氏度到 16 摄氏度的保鲜时间. 【课后检测】 1、一批设备价值 a 万元,由于使用磨损,每年比上一年价值降低 b %,则 n 年后这批设备的价值为() C、a [1-(b%) n] D、a(1-b%)n A、 na (1-b%) B、a (1- nb %) 2、方程 2 x x2 2 的实数解的个数是() A.0 B.1 C.2 D.3 3、某放射性物质,每年有10% 的变化,设该放射性物质原来的质量为 a 克.(1)写出它的剩余量 y 随时间 x 变化的函数关系; (2)经过多少年它的原物质是原来的一半.

指数函数和对数函数公式(全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a x ,y log a x 在 a 1及 0 a 1两种不同情况。 1、指数函数: y x 且a 叫指数函数。 定义:函数 aa 0 1 定义域为 R ,底数是常数,指数是自变量。 为什么要求函数 y a x 中的 a 必须 a 0且a 1 。 因为若 a 0时, y 4 x ,当 x 1 时,函数值不存在。 4 a 0 , y 0x ,当 x 0 ,函数值不存在。 a 时, y 1 x x 虽有意义,函数值恒为 1,但 1 对一切 y 1x 的反函数不存在, 因 为 要 求 函 数 y a x 中 的 a 0且 a 1 。 x 1、对三个指数函数 y 2 x , y 1 ,y 10x 的图象的 2 认识。 图象特征与函数性质: 图象特征 函数性质 ( 1)图象都位于 x 轴上方; ( 1) x 取任何实数值时,都有 a x 0 ; 2 0 1 ); ( 2)无论 a 取任何正数, x 0 时, y 1 ; ( )图象都经过点( , ( 3) y 2x , y 10 x 在第一象限内的纵坐 ( 3)当 a x 0,则 a x 1 1 时, 0,则 a x 1 标都大于 1,在第二象限内的纵坐标都小于 1, x 1 y 2 x x 0,则 a x 1 当 0 的图象正好相反; a 1时, 0,则 a x 1 x ( 4) y 2x , y 10 x 的图象自左到右逐渐 ( 4)当 a 1 时, y a x 是增函数,

指数函数与对数函数的关系(附答案)

3.2.3 指数函数与对数函数的关系 知识点一:反函数 1.已知函数y =f(x)有反函数,则方程f(x)=0的根的情况是 A .有且仅有一个实根 B .至少有一个实根 C .至多有一个实根 D .0个,1个或1个以上根 2.若函数y =f(x)的反函数是y =g(x),f(a)=b ,ab≠0,则g(b)等于 A .a B .a -1 C .b D .b -1 3.若函数f(x)的图象上有一点(0,1),则其反函数f -1 (x)上一定存在点 A .(0,1) B .(1,0) C .(0,0) D .不能确定 4.已知函数y =2x -a 的反函数是y =bx +3,则a =__________,b =__________. 5.函数y =3x (02)的反函数是 A .y =2x (x<-1) B .y =(12)x (x>-1) C .y =2-x (x<-1) D .y =(12 )-x (x>-1) 8.函数f(x)=log a (3x -1)(a>0且a≠1)的反函数的图象过定点 A .(1,0) B .(0,1) C .(0,23) D .(2 3,0) 9.已知对数函数f(x)=log a x(a>0,a≠1,x>0)满足f(a 4 )=0,则函数f(x)的反函数f -1 (x)=__________. 10.若函数f -1(x)为函数y =lg(x +1)的反函数,则f -1 (x)的值域是__________. 11.将函数y =3x -2 的图象向左平移两个单位,再将所得图象关于直线y =x 对称后所得图象的函数解析式为__________. 能力点一:求反函数 12.函数y =1+log 1 2 x 的反函数是 A .y =2x -1(x∈R ) B .y =(12)x -1(x∈R ) C .y =2 1-x (x∈R ) D .y =(12 )x -1 (x∈R )

指数函数与对数函数及其不等式

一. 选择题 1. 设0x >且) (0,b a, ,1b a x x ∞+∈<<, 则a 、b 的大小关系是 ( ) A. 1a b << B. 1b a << C. a b 1<< D. b a 1<< 2. 如果1a 0<<, 那么下列不等式中正确的是 ( ) A. 2 131)a 1()a 1(->- B. 23)a 1()a 1(+>- c. 1)a 1()a 1(>-+ 343的结果为() A 、5 B 、5 C 、-5 D 、-5 4、函数y=5x +1的反函数是 A 、y=log 5(x+1) B 、y=log x 5+1 C 、y=log 5(x -1) D 、y=log (x+1)5 5、函数f x x ()=-21,使f x ()≤0成立的x 的值的集合是 A 、{}x x <0 B 、{}x x <1 C 、{}x x =0 D 、{}x x =1 6、设 5.1344.029.01)21(,8,4-===y y y ,则 A 、y 3>y 1>y 2 B 、y 2>y 1>y 3 C 、y 1>y 2>y 3 D 、y 1>y 3>y 2 7、25532lg 2lg lg 16981-+等于 A 、lg2 B 、lg3 C 、lg4 D 、lg5 8. 当1a >时, 在同一坐标系中, 函数x a y -=与=y x log a 的图象是图中的 ( )

二、填空题: 1、已知21366log log x =-,则x 的值是 。 2、计算:21 0319)41()2(4)21(----+-?- = . 3、函数y=lg(ax+1)的定义域为(-∞,1),则a= 。 4、当x ∈[-2,2)时,y =3-x -1的值域是 _ . 5. 若函数=y 2x l o g 2+的反函数定义域为),3(∞+ , 则此函数的定义域为 . 三、解答题: 1、(8分)已知函数f (x )=a x +b 的图象过点(1,3),且它的反函数f -1(x )的图象过(2,0) 点,试确定f (x )的解析式. 2、(8分)设A ={x ∈R |2≤ x ≤π},定义在集合A 上的函数y =log a x (a >0,a ≠1)的最大值比最小值大1,求a 的值 3. 已知函数12x )x (f -=的反函数为)x (f 1-, )1x 3(log )x (g 4+=. (1) 若≤-)x (f 1)x (g ,求x 的取值范围D; (2) 设函数)x (f 2 1)x (g )x (H 1-- =,当∈x D 时, 求函数)x (H 的值域.

对数函数性质的应用

教材:对数函数性质的应用 目的:加深对对数函数性质的理解与把握,并能够运用解决具体问题。 过程: 一、复习:对数函数的定义、图象、性质 二、例一 求下列反函数的定义域、值域: 1.4 12 1 2 - = --x y 11≤≤-x 1- 2.=y 解:∵2x R 从而3.=y 51<--x x ① 0)(log 2 ≥--x x a ②

由①:01<<-x 由②:当1>a 时 必须 12≥--x x φ∈x 当10<= 02 .0log 11.0log 1 .02 .0>= ∵2.0log 3.0log 1.01.0< ∴1.0log 1.0log 2.03.0> 例三 已知3log 1)(x x f += ,2log 2)(x x g = 试比较)()(x g x f 和的大小。

解:4 3log )()(x x g x f x =- 1? 当341431>??????>>x x x 或 ?? ? ??< 2? 当 3 414 3= =x x 即时 )()(x g x f = 3? 0?>x ?<x x 又底数12 10<< ∴012<-y y 12y y < ∴y 在),6(+∞上是减函数。 三、作业:《课课练》 P86 9 P87 “例题推荐” 1 2 3 P88 “课时练习” 8 9

指数函数与对数函数的实际应用

指数函数与对数函数的实际应用 【复习目标】 1、明确题意中指数函数还是对数函数的模型,会根据数量关系建构、解决函数 模型; 2、掌握互化的方法,在指数型函数求幂问题与对数型函数求对数值问题中的运 用; 3、通过实际问题的解决,渗透数学建模的思想,提高学生的数学学习兴趣. 【课前知识整理】 2、指数函数与对数函数的互化: x y a =?y x a l o g =(1,0≠>a a ) 【基础练习】 1、若3 19=-x ,则x= ( ) A.21 B.2 1- C.2 D.1 2、若函数)1lg(2)(22+++=x x x x h ,62.1)1(=-h ,则=-)1(h ( ) A.0.38 B.1.62 C.2.38 D.2.62 3若x a a x πππlog log )(log 2+=+有解,则a 的取值范围是 ( ) A.110-<<a C.011<<->a a 或 D. 1

【考点探析】 活动一涉及指数函数模型的应用问题. 例1、一项技术用于节约资源,使谁的使用量逐月减少,若一工厂用这一技术,则该工厂的用水量是5000 m3,计划从二月份,每个月的用水量比上一个月都减少10%,预计今年六月份的用水量约是多少?(精确到1m3) 活动二指数函数与对数函数模型的互化. 例2、某种储蓄利率为2.5%,按复利计算,若本金为30000元,设存入x期后的本金和利息为y元. (1)写出y随x变化的函数; (2)若使本利和为存入时的1.5倍,应该存入多少期? 【能力提升】 牛奶保鲜时间因储藏温度的不同而不同,假定保鲜时间与储藏温度间的关系为指数函数,若牛奶放在0摄氏度的冰箱中,保鲜时间是192小时,而在22摄氏度的厨房中则是42小时. (1)写出保鲜时间y关于储藏温度x的函数关系式; (2)利用(1)中的结论,指出温度在30摄氏度到16摄氏度的保鲜时间. 【课后检测】 1、一批设备价值a万元,由于使用磨损,每年比上一年价值降低b %,则n年后这批设备的价值为() A、na (1-b%) B、a (1- nb %) C、a [1-(b%) n] D、a(1-b%)n 2、方程2 -+=) 2x x A.0 B.1 C.2 D.3 3、某放射性物质,每年有10%的变化,设该放射性物质原来的质量为a克.(1)写出它的剩余量y随时间x变化的函数关系; (2)经过多少年它的原物质是原来的一半.

相关文档
最新文档