石墨烯修饰铂电极传感器测定水中微量重金属镉和铅

石墨烯修饰铂电极传感器测定水中微量重金属镉和铅
石墨烯修饰铂电极传感器测定水中微量重金属镉和铅

DOI :10.3724/SP.J.1096.2013.20547

石墨烯修饰铂电极传感器测定水中微量重金属镉和铅

唐逢杰1,2 张凤1,2 金庆辉*1 赵建龙1

1

(中国科学院上海微系统与信息技术研究所传感技术联合国家重点实验室,上海200050)

2

(中国科学院大学,北京100039)

摘 要 建立了石墨烯修饰铂电极(G/Pt )共沉积铋膜测定水中微量重金属镉和铅的方法三采用微机电系统(MEMS )工艺制作铂电极,并利用CVD 法在铂电极上原位生长石墨烯,制备了石墨烯修饰铂电极,与Ag/AgCl 参比电极二铂丝对电极构成三电极体系;采用差分脉冲阳极溶出伏安法对水中微量的镉和铅进行测定三在pH =4.5的醋酸?醋酸钠(HAc ?NaAc )底液中,Cd 2+和Pb 2+分别在-0.72和-0.48V 灵敏地产生溶出峰,线性范围分别为0.05~10mg/L 和0.03~5mg/L ,检出限均为10m g/L 三本方法操作简单二安全快速二重现性好,适合于废水二地表水二及生活用水中镉和铅的测定三

关键词 石墨烯修饰铂电极;差分脉冲阳极溶出伏安法;铋膜;重金属离子

 2012?05?25收稿;2012?09?11接受

本文系国家973计划(Nos.2012CB933303,2011CB707505),国家科技支撑计划(No.2012BAK08B05)以及上海市科委(Nos.11391901900,11530700800,11ZR1443900,10391901600)资助项目*E ?mail:jinqh@https://www.360docs.net/doc/7414428119.html,

1 引 言

镉和铅具有极大的生物毒性,富集在人体内会造成极大的危害[1]三因此,研制出灵敏二快速二准确的

重金属检测传感器尤为重要三溶出伏安法广泛地应用于重金属离子的测定,早期的工作电极采用汞膜电极,但汞有毒性且易挥发,存在汞污染问题[2,3]三后来常用低毒的铋代替汞进行测定[4~7]三2004年,石墨烯被首次发现[8]三因为其具有许多优异而独特的性能而被广泛地应用于微纳电子器件二新型复合材料二传感器材料等领域[9,10]三采用石墨烯修饰电极测定重金属离子已有多篇报道,2009年,Li 等[11]用石墨烯纳米片溶液和Nafion 溶液混合制作石墨烯修饰玻碳电极,并预镀铋膜,测定了Cd 和Pb 三

Wang 等[12]用同样的修饰方法制得石墨烯修饰玻碳电极,并镀汞膜,采用溶出伏安法测定了Cu ,Pb 和Cd 三Brownson 等[13]用市售的石墨烯溶液制作石墨烯修饰丝网印刷碳电极,测定了Cd 三石墨烯修饰电极用于电化学分析有以下特点:吸附能力强二传质速率高二抗氧化腐蚀等[11,12]三

采用微机电系统(Micro ?electro ?mechanical systems ,MEMS )技术制作工作电极,具有成本低廉二一致性好二微型化二易集成等优点[5,14,15]三本研究采用MEMS 工艺制作出铂电极,然后利用CVD 法在铂电极上生长石墨烯得到G/Pt 电极,与Ag/AgCl 参比电极二铂丝对电极构成三电极体系三利用本传感器检测HAc ?NaAc 缓冲液中的Cd 2+和Pb 2+,考察了共沉积铋液浓度二电沉积电位二电沉积时间等对实验结果的影响,同时考察了传感器检测的线性范围二检出限二抗干扰性等三利用本传感器测定水样中的Cd 2+和Pb 2+,结果较好三

2 实验部分

2.1 仪器与试剂

Ag/AgCl 电极(上海辰华仪器公司);IM6ex 电化学工作站(德国Zahner 公司);TL1200管式炉(南京意帆仪器公司)三AZ4620光刻胶,AZ400K 显影液(日本Fuji Film 公司)三将C 4H 6CdO 4四2H 2O,C 4H 6PbO 4四3H 2O 和Bi (NO 3)3四5H 2O 分别加入到醋酸?醋酸钠缓冲溶液

(pH =4.5)中,配制成重金属离子浓度梯度和共沉积铋膜溶液三

2.2 石墨烯修饰铂电极的制备

采用氧化工艺,在硅片上制作厚度为微米级的SiO 2氧化层,利用Lift ?off 工艺制备图形化的铂电极;

第41卷2013年2月

分析化学(FENXI HUAXUE ) 研究简报Chinese Journal of Analytical Chemistry

第2期278~282

采用CVD 法在铂电极上生长石墨烯,得到G/Pt 电极(图1)三图2显示铂表面已经生长出呈点片状结构分布的物质三图3中的2D 峰和G 峰都是石墨烯的特征峰,而它们的强度比可以表征石墨烯的层数,D 峰则用于表征石墨烯的缺陷三由图3可知,2D 峰和G 峰基本等高,说明铂电极表面修饰上的物质就是双层石墨烯三其中Lift ?off 工艺详细步骤如下:旋涂光刻胶(AZ4620)二曝光(30s )二显影(AZ400K )二溅射铂(Ti:20nm,Pt:150nm )二去胶(丙酮

)三

 图1 (a )石墨烯修饰铂电极;(b )石墨烯修饰铂电极的多层结构示意图

Fig .1 (a )Front view of grapheme/Pt (G/Pt )electrode;(b )Multi ?layer structure schematic of G/Pt

electrode

 图2 铂电极上生长石墨烯前后SEM Fig .2 SEM of platinum electrode before and after modi ?

fied

3 结果与讨论

3.1 电化学特性对比

固定镉和铅的浓度为1mg/L,铋浓度为30mg/L ,采用差分脉冲溶出伏安法分别用石墨烯修饰铂电极和铂电极进行测定,结果见图4三在相同条件下,用石墨烯修饰铂电极测定的镉和铅的溶出峰电流明显大于用铂平面电极测定的镉和铅的溶出峰电流三原因是石墨烯比表面积大,对重金属离子的吸附能力较强;同时石墨烯传质速率高,导致基线上移,由于线性拟合时要减去基线值,所以不会影响测定结果

 图3 石墨烯修饰铂电极的拉曼光谱

Fig .3 Raman spectra of G/Pt

electrode

 图4 同浓度下石墨烯修饰铂电极和铂平面电极测试结果

Fig .4 Defferential pulse anodic stripping voltammetric curves (DPASVs )for 1mg/L each of Cd 2+and Pb 2+on Pt,G/Pt electrode in solution containing 30mg/L Bi 3+.Sup ?porting electrolyte:0.1mol/L acetate buffer (pH 4.5);Deposition potential:-1.3V;deposition time:120s;Amplitude:50mV;Increment potential:5mV;Quiet time:15s.

3.2 共沉积铋液浓度的选择

固定镉和铅的浓度为1和0.7mg/L,改变铋浓度,测定结果见图5三随着铋浓度的增加,镉和铅的溶出峰电流不断增大三当浓度大于30mg/L 时,峰电流开始减小三原因是铋浓度过大,电极表面沉积铋膜的厚度相应增加产生钝化,降低了铋膜的灵敏度,所以选择铋液浓度为30mg/L 三

9

72第2期唐逢杰等:石墨烯修饰铂电极传感器测定水中微量重金属镉和铅

 图5 铋液浓度对峰电流的影响Fig .5 Effect of bismuth concentration on stripping peak current of 1mg/L each of Cd 2+and Pb 2+on G/Pt electrode.Other conditions are identical to Fig . 4.

3.3 差分脉冲溶出伏安法参数的选择

固定镉和铅的浓度为1.0和0.7mg/L ,铋浓度为30mg/L ,电沉积时间为120s ,改变电沉积电位,测定结果见图6三当电沉积电位从-1.0V 降到-1.3V ,镉的溶出峰电流显著增大,当电沉积电位由-1.3V 变得更负,峰电流迅速下降三综合考虑镉和铅同时测定的灵敏度要求,选择电沉积电位为-1.3V 三浓度不变,设置电沉积电位为-1.3V ,改变电沉积时间,测定结果见图7三随着电沉积时间的延长,镉和铅的溶出峰电流呈线性上升,120s 后峰电流上升的斜率开始减小,这是因为铋膜中所沉积的重金属浓度逐渐达到饱和,且电沉积所得到的复合膜厚度增加影响了电子的传输[16],从而降低了检测上限三所

以选择电沉积时间为120s

 图6 电沉积电位对峰电流的影响

Fig .6 Effect of accumulation potential on stripping peak current of 1mg/L each of Cd 2+

and Pb 2+

on G/Pt electrode.Other conditions are identical to Fig .

4

 图7 电沉积时间对峰电流的影响

Fig .7 Effect of deposition time on stripping peak current of 1mg/L each of Cd 2+and Pb 2+on G/Pt electrode.Other conditions are identical to Fig .4

3.4 线性范围、检出限和精密度

在所选最佳实验条件下,按照浓度梯度进行多次测定(图8a ),将同浓度下多次测量(n =6)的峰电流值数学平均后进行线性拟合(图8b ),得到Cd 2+的浓度在0.05~10.0mg/L 二Pb 2+的浓度在0.03~5.0mg/L 范围内与峰高呈线性关系,线性方程分别为Y =28.828C +9.101,Y =60.395C +2.061(其中,Y 为峰电流(m A ),C 为溶液浓度(mg/L ));其线性相关系数分别为0.985和0.997,检出限为10m g/L 三Cd 2+和Pb 2+的浓度为1mg/L 时,多次测定(n =10)的峰电流基本不变,其相对标准偏差分别为0.72%和0.91%三

3.5 抗离子干扰实验

在最佳实验条件下,对0.2mg/L 的镉和铅标准溶液进行了测定,考察了几种常见离子对峰电流的

影响三当相对误差为±5%时,以下共存离子不干扰测定:1000倍的K +,Na +,Ca 2+,Mg 2+;50倍的Cr 3+,Ni 2+,Mn 2+,Zn 2+,5倍的Fe 2+,Co 2+三Cu 2+对Cd 2+的峰电流影响较大,加入等量的Cu 2+,Cd 2+的峰电流变化率高达15.7%三

3.6 样品测定及回收率

取适量待测液于电解池中,用标准加入法测定了某电镀厂废水二人工湖水二城市自来水3种环境水样中镉和铅的浓度,并将所得结果与电感耦合等离子体质谱(ICP ?MS )测定结果进行对比,结果见表1三082 分析化学第41卷

 图8 (a )采用差分脉冲阳极溶出伏安法对含不同浓度的Cd 2+和Pb 2+的醋酸缓冲液测定;(b )对测定结果的峰电流值进行线性拟合的结果

Fig .8 (a )Striping voltammograms for different concentrations of Cd 2+and Pb 2+on G/Pt electrode in solution containing 30mg/L Bi 3+.From bottom to top,0.1mg/L,0.2mg/L,0.3mg/L,0.4mg/L,0.5mg/L,0.6mg/L,0.7mg/L,0.8mg/L,0.9mg/L and 1mg/L.(b )the calibration curve of Cd 2+and Pb 2+,respec ?tively.Other conditions are identical to Fig .4

表1 样品测定结果及回收率(n =6)

Table 1 Analytical results of water sqmples and recovery rate of standard addition (n =6)

水样Water sample 本法测定值Found (m g/L )Cd Pb 加标量Added (m g/L )Cd Pb 测定总值Total found (m g/L )Cd Pb 回收率Recovery (%)Cd Pb ICP ?MS method

(m g/L )Cd

Pb

152.3214.650.0200.0101.5426.29810550.4212.3215.220.415.020.029.640.1969814.222.53

15.0

15.0

15.3

14.6

102

97

0.16

0.12

4 结 论

本研究利用MEMS 工艺制作石墨烯修饰铂电极,作为溶出伏安法的工作电极,对水中微量的镉和铅进行测定的方法三石墨烯具有许多优异的特性,比表面积大有利于重金属离子的吸附,载流子迁移速度高缩短了检测的反应时间;稳定的物理化学特性延长了电极的使用寿命三本方法不但成本低廉二操作简便二灵敏度高二重现性好,且铋无毒,对人体健康无害,便于推广三References

1 WANG Ai?Xia,GUO Li?Ping,WU Dong?Mei.Spectroscopy and Spectral Analysis ,2006,26(7):1345-1348

王爱霞,郭黎平,吴冬梅.光谱学与光谱分析,2006,26(7):1345-1348

2 Choi J,Seo K,Cho S,Oh J,Kahng S,Park J.Anal.Chim.Acta ,2001,443(2):241-247

3 Reay R,Flannery A,Storment C,Kounaves S,Kovacs G.Sensors and Actuators B ,1996,34(1-3):450-4554 LI Jian?Ping,PENG Tu?Zhi,ZHANG Xue?Jun.Chinese J.Anal.Chem.,2002,30(9):1092-1095

李建平,彭图治,张雪君.分析化学,2002,30(9):1092-1095

5 Kokkinos C,Economou A,Raptis I,Efstathiou C E,Speliotis https://www.360docs.net/doc/7414428119.html,mun.,2007,9(12):2795-2800

6 SONG Wen?Jing,WANG Xue?Wei,DING Jia?Wang,ZHANG Jun,ZHANG Rui?Ming,QIN Wei.Chinese J.Anal.

Chem.,2012,40(5):670-674

宋文璟,王学伟,丁家旺,张军,张锐明,秦伟.分析化学,2012,40(5):670-674

7 GONG Wei?Lei ,DU Xiao?Yan ,WANG Shu?Ran ,JIANG Xian?Chen ,SUN Qian.Chinese J.Anal.Chem.,2008,

36(2):177-181

公维磊,杜晓燕,王舒然,姜宪尘,孙倩.分析化学,2008,36(2):177-181

8 Novoselov K S,Geim A K,Morozov S V,Jiang D,Zhang Y,Dubonos S V,Grigorieva I V,Firsov A A.Science ,2004,

306(5696):666-669

1

82第2期唐逢杰等:石墨烯修饰铂电极传感器测定水中微量重金属镉和铅

9 Geim A K,Novoselov K S.Nature Materials ,2007,6(3):183-191

10 Geim A K.Science ,2009,324(5934):1530-1534

11 Li J,Guo S J,Zhai Y M,Wang E K.Anal.Chim.Acta ,2009,649(2):196-20112 Wang B,Chang Y H,Zhi L J.New Carbon Materials ,2011,26(1):31-3513 Brownson D A C,Banks C https://www.360docs.net/doc/7414428119.html,mun.,2011,13(2):111-113

14 Zou Z,Jang A,Mac Knight E,Wu P M,Do J,Bishop P,Ahn C H.Sensors and Actuators B ,2008,134(1):18-2415 LIU De?Meng,JIN Yan,JIN Qing?Hui,ZHAO Jian?Long.Chinese J.Anal.Chem.,2011,39(11):1748-1752刘德盟,金研,金庆辉,赵建龙.分析化学,2011,39(11):1748-1752

16 Cao L Y,Jia J B,Wang Z H.Electrochimica Acta ,2008,53(5):2177-2182

Determination of Trace Cadmium and Lead in Water Based

on Graphene?modified Platinum Electrode Sensor

TANG Feng?Jie 1,2,ZHANG Feng 1,2,JIN Qing?Hui *1,ZHAO Jian?Long 1

1

(State Key Lab of Transducer Technology ,Shanghai Institute of Microsystem and Information Technology ,

Chinese Academy of Sciences ,Shanghai 200050,China )

2

(University of Chinese Academy of Sciences ,Beijing 100039,China )

Abstract Graphene,grow on platinum electrode (prepared with the method of micro?electromechanical system)with CVD,was used in combination with in situ plated bismuth film electrode for fabricating the enhanced electrochemical sensing platform to determine trace cadmium (Cd 2+)and lead (Pb 2+)by differential pulse anodic stripping voltammetry (DPASV ).The sensor is three?electronic system that consisted of graphene?modified platinum (G /Pt )working electrode,Ag /AgCl reference electrode and platinum wire auxiliary electrode.The experiment result showed that the sensor performed well in simultaneously detecting Cd 2+and Pb 2+.The linear calibration curves ranged from 0.05mg /L to 10mg /L for Cd 2+and 0.03mg /L to

5mg /L for Pb 2+.The detection limits were estimated to be around 10m g /L for Cd 2+and Pb 2+.This method is simple,safe,fast and good reproducibility,and can be used for rapid detection of Cd and Pb in wastewater,

surface water and domestic water.Keywords Graphene?modified platinum electrode;Differential pulse anodic stripping voltammetry;Bismuth

Film;Heavy metal ions

(Received 25May 2012;accepted 11September 2012

)

‘等离子体发射光谱分析“

(第二版,ISBN 978?7?122?09547?3)

该书系统地介绍了ICP 光谱基本技术和知识(ICP 光源特性二定性分析及定量分析方法二分析条件的选择二干扰效应及其处理),ICP 光谱分析领域的新仪器和新技术:固体检测器光谱仪器和技术;轴向观测ICP 光源;各种类型样品的进样技术;有机溶剂和有机样品的ICP 分析方法;ICP 光谱分析的样品处理方法;基体效应的影响及抑制;ICP 光谱仪器和技术的发展;全面介绍了各种新型ICP 光谱仪器性能和特点三还以一定篇幅介绍了ICP 光谱技术在各领域的实际应用:钢铁及其合金二有色金属合金二环境样品二地质矿物二无机非金属材料二化学化工产品二食品和饮料二生物及生化样品二核燃料及核材料等三该书在第一版的基础上作了修订和补充三可作为光谱分析技术人员及高等学校分析化学专业的学生及研究生的学习参考用书,也可作为专业培训班的教材三

该书由化学工业出版社出版,辛仁轩编著,定价40.0元三

282 分析化学第41卷

石墨炉原子吸收光谱仪

原子吸收光谱法 Atomic absorption spectrometry 各种元素的原子结构不同,不同元素的原子从基态激发至第一激发态时,吸收的能量也不同,所以各元素的共振线都不相同,而具有自身的特征性。原子吸收光谱的频率ν或波长λ,由产生吸收跃迁的两能级差ΔE决定: ΔE =hν=hc/λ 原理:利用物质的气态原子对特定波长的光的吸收来进行分析的方法。 原子吸收光谱线很窄,但并不是一条严格的理想几何线,而是占据着有限的、相当窄的频率或波长范围,即谱线实际具有一定的宽度,具有一定的轮廓。 I0为入射光强 I为透射光强 ν0为中心频率 产生谱线宽度的因素 1.自然宽度:与原子发生能级间跃迁时激发态原子的有限寿命有关,其宽度约在10-5nm数量级; 2.多普勒变宽(热变宽) 3.压力变宽通常认为两个主要因素是多普勒变宽和压力变宽。

原子吸收光谱的测量 理论上:积分吸收与原子蒸气中吸收辐射的基态原子数成正比。 吸收系数Kν将随光源的辐射频率ν而改变,这是由于物质的原子对不同频率的光的吸收具有选择性。这是一种绝对测量方法,现在的分光装置无法实现。长期以来无法解决的难题! 在频率O 处,吸收系数有一极大值K 0称为中心吸收系数(或峰值吸收系数)。在锐线光源半宽度范围内,可以认为原子的吸收系数为常数,并等于中心波长处的吸收系数。因为当采用锐线光源进行测量,则Δνe<Δνa ,由图可见,在辐射线宽度范围内,峰值吸收与积分吸收非常接近,可用峰值吸收代替积分吸收在锐线光源半宽度范围内,可以认为原子的吸收系数为常数, 并等于中心波长处的吸2 00πd v e K v N f KN mc +∞-∞ ==?

铅、汞、镉、砷对人体的危害及其预防

铅、汞、镉、砷对人体的危害及其预防 微量重金属元素与人体生命过程有着密切关系,它们虽然在体内的含量非常微小,但生理功能独特。 一、砷 砷在自然界分布很广,动物肌体、植物中都可以含有微量的砷,海产品也含有微量的砷。由于含砷农药的广泛使用,砷对环境的污染问题愈发严重,如以砷化合物作为饲料添加剂,过量添加至牲蓄食用的饲料中,就易使牲蓄体内积砷,食用了这种牲蓄的肉制品后,就容易造成中毒。砷侵入人体后,除由尿液、消化道、唾液、乳腺中排泄外,就蓄积于骨质疏松部、肝、肾、脾、肌肉、头发、指甲等部位。砷作用于神经系统、刺激造血器官,长时期的少量侵入人体,对红血球生成有刺激影响,长期接触砷会引发细胞中毒和毛细管中毒,还有可能诱发恶性肿瘤。我国食品重金属残留限量国家标准规定砷含量最高(粮食)为0.7毫克/千克,鲜乳为0.2毫克/千克。生活饮用水国家标准限量为0.01毫克/升。 二、铅 铅是对人体危害极大的一种重金属,它对神经系统、骨骼造血功能、消化系统、男性生殖系统等均有危害。特别是大脑处于神经系统敏感期的儿童,对铅有特殊的敏感性。研究表明儿童的智力低下发病率随铅污染程度的加大而升高。儿童体内血铅每上升10微克/100毫升,儿童智力则下降6—8分。为此,美国把普遍认为对儿童产生中毒的血铅

含量下限由0.25微克/毫升,下降到0.1微克/毫升。世界卫生组织对水中铅的控制线已降到0.01微克/毫升。我国食品重金属残留量限量国家标准规定铅含量最高(豆类)为0.8毫克/千克,鲜乳为0.05毫克/千克,生活饮用水国家标准限量为0.01毫克/升。 在日常生活中,人们需要在以下六个方面加强对铅中毒的预防。 1、来自生活环境中的土壤和尘埃,玩具和学习用具,家庭装修用劣质油漆和印刷油墨,用铅壶或含铅的锡壶烫酒、饮酒,滥用含铅的丹药或偏方等。 2、食物中的铅,某些饮料、劣质食品、中草药等。某些罐装食品,由于用铅焊接缝而导致食物含铅量增加;含铅量高的食品主要有用含铅量高的容器加工成的爆米化,加入氧化铅以加快其成熟的松花蛋,大街小巷叫卖的“白馒头”也有一部分是用含铅等杂质的硫磺熏蒸而成。 3、动植物体内的铅。植物性食品的铅含量土壤、化肥、农药及灌溉用水含铅量的影响。动物性食品受铅含量受饲料、牧草、空气和饮用水含铅量的影响。 4、大气污染,如用含铅汽油的汽车尾气,以及煤制品(如煤球、煤饼)为燃料的家庭,室内空气中铅平均含量比室外空气的铅含量高很多。 5、暴露在含铅环境下的大人及衣物又交叉感染给孩子,例如交通岗、印刷厂、钢铁厂、炼油厂、铸造厂、蓄电池行业和矿山等都是铅污染重灾区,许多行业都有接触铅化合物的机会,作为大人平时应注意预防铅中毒,既要保护自己,更是要保护孩子。

重金属镉对人体有哪些危害

镉不是人体必需元素 伤害骨骼,导致免疫力下降 “由于镉不是人体必需的元素,镉过量人体会出现很多不良症状。”据朱高红主任介绍,通常镉中毒,人体会出现咽喉干痛、干咳、胸闷、呼吸困难、口内有金属味、头晕、全身乏力、关节酸痛、寒颤发热,严重者出现支气管肺炎、蛋白尿等。如长期接触,会导致肺水肿、肾损害;有致癌、致畸、致突变的可能性。 朱主任说:“镉确实会影响人的骨骼,导致骨软化、骨质疏松,影响人体的生长、发育,导致免疫力下降。”镉的危害,还不仅仅限于骨痛病,它还会导致细胞损伤和退行性变,促使动脉粥样硬化、高血压、冠心病、糖尿病的发生,肝组织坏死、干燥性鼻炎,萎缩性鼻炎。如果损害到中枢神经系统,还有可能出现脑损害,脑神经发育不良,记忆力下降,弱智等情况。因此,镉污染不容小视。 不偏食能获取人体需要元素 对抗镉吃含锌、铁、钙食物 金属元素在人体生命活动中虽然非常重要,但摄入过多反而会对人体产生危害。只要在日常生活中注意合理调节饮食结构,不偏食,就可以获得满足正常人体需要的金属元素。” 相信很多人对于人体金属元素的摄入,仅限于钙、铁、锌这几大类。“其实,人体正常需要吸收的金属元素还有很多,它们包括了镁、铜、硒、钠、钾、磷、铬、钴、锰、钼、碘、氟。” 朱主任介绍说:“比如镁元素就很重要。”缺镁会导致人体虚弱、精神错乱、高血压、抽搐、痉挛、心律不齐等问题,而坚果、豆类、谷类、海鲜、深色蔬菜、巧克力等都属于含镁较高的食物。 朱主任还表示:“平时可以多喝牛奶,多吃新鲜蔬菜水果。”慢性镉中毒会引起肾脏受损,因此膳食中应增加钙和磷酸盐的摄入,供给充足的锌和蛋白质。 【建议】多吃含锌、铁、钙丰富的食物可以对抗镉。 维生素C有利于排出重金属 绿叶蔬菜、高纤维食物要多吃 随着人类社会的发展,水、空气、土壤遭受的污染越来越严重,“大家只有多注意一些生活细节,才能避免遭受危害,”朱主任说。例如:尽量避开车多的马路和有烟雾的环境;做菜时,尽量去掉蔬菜最外层的叶子等。多吃含有有益矿物质的食物,比如坚果,能阻碍人体对有害重金属的吸收;多吃纤维含量高的食物,如燕麦、芹菜等,可以吸附重金属,减少其在体内的吸收度。 【建议】还需多吃绿叶蔬菜,这些绿叶蔬菜中含有大量的维生素C,能促进重金属的排出。

铅、汞、镉、砷对人体的危害及其预防措施

铅、汞、镉、砷对人体的危害及其预防措施 微量重金属元素与人体生命过程有着密切关系,它们虽然在体内的含量非常微小,但生理功能独特。 一、砷 砷在自然界分布很广,动物肌体、植物中都可以含有微量的砷,海产品也含有微量的砷。由于含砷农药的广泛使用,砷对环境的污染问题愈发严重,如以砷化合物作为饲料添加剂,过量添加至牲蓄食用的饲料中,就易使牲蓄体内积砷,食用了这种牲蓄的肉制品后,就容易造成中毒。砷侵入人体后,除由尿液、消化道、唾液、乳腺中排泄外,就蓄积于骨质疏松部、肝、肾、脾、肌肉、头发、指甲等部位。砷作用于神经系统、刺激造血器官,长时期的少量侵入人体,对红血球生成有刺激影响,长期接触砷会引发细胞中毒和毛细管中毒,还有可能诱发恶性肿瘤。我国食品重金属残留限量国家标准规定砷含量最高(粮食)为0.7毫克/千克,鲜乳为0.2毫克/千克。生活饮用水国家标准限量为0.01毫克/升。 二、铅 铅是对人体危害极大的一种重金属,它对神经系统、骨骼造血功能、消化系统、男性生殖系统等均有危害。特别是大脑处于神经系统敏感期的儿童,对铅有特殊的敏感性。研究表明儿童的智力低下发病率随铅污染程度的加大而升高。儿童体内血铅每上升10微克/100毫升,儿童智力则下降6—8分。为此,美国把普遍认为对儿童产生中毒的血铅含量下限由0.25微克/毫升,下降到0.1微克/毫升。世界卫生组织对水中铅的控制线已降到0.01微克/毫升。我国食品重金属残留量限量国家标准规定铅含量最高(豆类)为0.8毫克/千克,鲜乳为0.05毫克/千克,生活饮用水国家标准限量为0.01毫克/升。 在日常生活中,人们需要在以下六个方面加强对铅中毒的预防。 1、来自生活环境中的土壤和尘埃,玩具和学习用具,家庭装修用劣质油漆和印刷油墨,用铅壶或含铅的锡壶烫酒、饮酒,滥用含铅的丹药或偏方等。 2、食物中的铅,某些饮料、劣质食品、中草药等。某些罐装食品,由于用铅焊接缝而导致食物含铅量增加;含铅量高的食品主要有用含铅量高的容器加工成的爆米化,加入氧化铅以加快其成熟的松花蛋,大街小巷叫卖的“白馒头”也有一部分是用含铅等杂质的硫磺熏蒸而成。 3、动植物体内的铅。植物性食品的铅含量土壤、化肥、农药及灌溉用水含铅量的影响。动物性食品受铅含量受饲料、牧草、空气和饮用水含铅量的影响。 4、大气污染,如用含铅汽油的汽车尾气,以及煤制品(如煤球、煤饼)为燃料的家庭,室内空气中铅平均含量比室外空气的铅含量高很多。

重金属可能导致各种各样的病症

重金属污染可引起的疾病 定义: 含有汞、镉、铬、铅及砷等生物毒性显著的重金属元素及其化合物对环境的污染。 重金属污染指由重金属或其化合物造成的环境污染。主要由采矿、废气排放、污水灌溉和使用重金属制品等人为因素所致。因人类活动导致环境中的重金属含量增加,超出正常范围,并导致环境质量恶化。2011年4月初,我国首个“十二五”专项规划——《重金属污染综合防治“十二五”规划》获得国务院正式批复,防治规划力求控制5种重金属。 重金属污染指由重金属或其化合物造成的环境污染。如日本的水俣病是由汞污染污染所引起。其危害程度取决于重金属在环境、食品和生物体中存在的浓度和化学形态。重金属污染主要表现在水污染中,还有一部分是在大气和固体废物中。 主要特点 重金属污染与其他有机化合物的污染不同。不少有机化合物可以通过自然界本身物理的、化学的或生物的净化,使有害性降低或解除。而重金属具有富集性,很难在环境中降解。目前我国由于在重金属的开采、冶炼、加工过程中,造成不少重金属如铅、汞、镉、钴等进入大气、水、土壤引起严重的环境污染。如随废水排出的重金属,即使浓度小,也可在藻类和底泥中积累,被鱼和贝类体表吸附,产生食物链浓缩,从而造成公害。水体中金属有利或有害不仅取决于金属的种类、理化性质,而且还取决于金属的浓度及存在的价态和形态,即使有益的金属元素浓度超过某一数值也会有剧烈的毒性,使动植物中毒,甚至死亡。金属有机化合物(如有机汞、有机铅、有机砷、有机锡等)比相应的金属无机化合物毒性要强得多;可溶态的金属又比颗粒态金属的毒性要大;六价铬比三价铬毒性要大等等。 重金属在人体内能和蛋白质及各种酶发生强烈的相互作用,使它们失去活性,也可能在人体的某些器官中富集,如果超过人体所能耐受的限度,会造成人体急性中毒、亚急性中毒、慢性中毒等,对人体会造成很大的危害,例如,日本发生的水俣病(汞污染)和骨痛病(镉污染,等公害病,都是由重金属污染引起的。

重金属铅和镉在植物体内的分布及 累积效应研究

Hans Journal of Agricultural Sciences 农业科学, 2019, 9(6), 420-426 Published Online June 2019 in Hans. https://www.360docs.net/doc/7414428119.html,/journal/hjas https://https://www.360docs.net/doc/7414428119.html,/10.12677/hjas.2019.96062 Research on Distribution and Accumulation of Heavy Metal in Plants Juan Li1,2,3,4 1Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an Shaanxi 2Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an Shaanxi 3Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Land and Resources, Xi’an Shaanxi 4Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi’an Shaanxi Received: May 28th, 2019; accepted: June 12th, 2019; published: June 19th, 2019 Abstract In modern heavy metal pollution has been an important environment problem, is not limited to the soil heavy metal pollution, the plant has the serious influence. In order to solve this problem, this experiment adopts the Yang herb that has a high nutritional value and economic value of plants for heavy metal lead and cadmium pollution after the study experiment with pH value of 4.79 quaternary yellow soil and Yang grandiflorum used as material, potted plant experiment, the indoor combination of chemical analysis and biological statistics method. The results show that the heavy metal lead and cadmium in Yang herb are widely distributed: root, stem and leaf. The maximum number of accumulated heavy metal lead in the Yang herb is 446.03 mg/kg, the largest accumulation of cadmium in the Yang herb quantity is 11.23 mg/kg and heavy metal has an impact on Yang herb to absorb nutrients, heavy metals also have a certain poison on Yang herb; leaf form, the contents of chlorophyll and study of poisoning are preliminary in this experiment, to under-stand the whole process of poisoning mechanism and also to a detailed analysis of the research. Keywords Heavy-Metal Contamination, Zingiber mioga (Thumb.) Rose, Lead, Cadmium, Distribution 重金属铅和镉在植物体内的分布及 累积效应研究 李娟1,2,3,4 1陕西地建土地工程技术研究院有限责任公司,陕西西安 2陕西省土地工程建设集团有限责任公司,陕西西安

石墨炉原子吸收光谱仪

原子吸收光谱法 AtOmiC absorption SPeCtrOmetry 各种元素的原于结构不同,不同元素的原于从基态激发至第一激发态时,吸收的能量也不同,所以各元素的共振线都不相同,而具有自身的特征性。原于吸收光谱的频率V 或波长λ,由产生吸收跃迁的两能级差ΔE决定: ΔE =hv = hc∕λ 原理:利用物质的气态原于对特定波长的光的吸收来进行分析的方法。 原于吸收光谱线很窄,但并不是一条严格的理想几何线,而是占据着有限的、 相当窄的频率或波长范围,即谱线实际具有一定的宽度,具有一定的轮廓。 VO 产生谱线宽度的因素 1?自然宽度:与原于发生能级间跃迁时激发态原于的有限寿命有关,其宽度约在 10-5n m数量级;2.多普勒变宽(热变宽)3.压力变宽通常认为两个主要因素是多普勒 变宽和压力变宽。

退射光与频车的关系吸收线轮廊与半宽度 原子吸收光谱的测畳 +∞ 2 [K v dv = -NJ = KN. i mc 理论上:积分吸收与原于蒸气中吸收辐射的基态原于数成正比。 吸收系数KV将随光源的辐射频率V而改变,这是由于物质的原于对不同频率的光的吸收具有选择性。这是一种绝对测量方法,现在的分光装置无法实现。长期以来无法解决的难题! 在频率。处,吸收系数有一极大值K。称为中心吸收系数(或峰值吸收系数)。在锐线光源半宽度范围内,可以认为原于的吸收系数为常数,并等于中心波长处的吸收系数。 因为当采用锐线光源进行测量,则?ve

线宽度范围内,峰值吸收与积分吸收非常接近,可用峰值吸收代替积分吸收在锐线光源半宽度范围内,可以认为原于的吸收系数为常数,并等于中心波长处的吸收系数。 定量基础 由于NOoCNOCaC (No基态原于数,N原于总数,C待测元素浓度) 所以:A=KLN(I=KLN=KC 这表明当吸收厚度一定,在一定的工作条件下,峰值吸收测量的吸光度与被 =kN0L 测元素的含量成正比。这是原于吸收光谱定量分析法的基础。 石墨炉非火焰原子化器:利用大电流加热高阻值的石星管,产生髙达3()()0°C的 高温,使之与其中的少量试液固体熔融,可获得自由原于。 火焰的组成: 空气一乙烘火焰:最高温度约230O O C左右; N2O-乙块火焰:温度可达到3000 °C左右; 氧屏蔽空气-乙烘火焰:新型的髙温火焰,大于290OKO 原子吸收法的选择性高,干扰较少且易于克服。 由于原于的吸收线比发射线的数目少得多,这样谱线重叠的几率小得多。而且空 心阴极灯一般并不发射那些邻近波长的辐射线,因此其它辐射线干扰较小。 原子吸收具有较高的灵敏度。 在原于吸收法的实验条件下,原于蒸气中基态原于数比激发态原于数多得多,所以测定的是大部分原于。 原子吸收法比发射法具有更佳的信噪比

硒 石墨炉原子吸收分光光度法

HZHJSZ0090 水质硒的测定石墨炉原子吸收分光光度法 HZ-HJ-SZ-0090 水质石墨炉原子吸收分光光度法 1 范围 本方法规定了测定水与废水中硒的石墨炉原子吸收分光光度法 方法检测限为0.003mg/L 废水中的共存离子和化合物在常见浓度下不干扰测定Zn Bi Ca Fe Cu Si Al Mg Pb6000mg/L2750mg/L2000 mg/L 750 mg/L350 mg/L150 mg/L75 mg/L 以及磷酸根硫酸根225 mg/L125 mg/L时 2 定义 2.1 溶解硒 2.2 硒总量或试样中溶解和悬浮两部分硒含量的总和 在石墨炉中形成的基态原子对特征电磁辐射产生吸收确定试样中被测元素的浓度 分析时均使用符合国家标准的分析纯试剂 4.1 硝酸(HNO3)优级纯 1.42g/Ml 4.3 载气纯度不低于99.99% 1+1 4.5 硝酸溶液用硝酸(4.1)配制 1+499 4.7 硒粉99.999% 1000mg/L±?òaê±?óèè ó?è¥à?×ó????êí?á1000mL 0.4mg/L 4.10 硝酸镍NO3 16g Ni /L溶于适量水中 5 仪器 常用实验室仪器 配有石墨炉和背景校正器 仪器操作参数参照厂家的说明进行选择 实验用的玻璃或塑料器皿用洗涤剂洗净后在硝酸溶液 (4.4)中浸泡过夜 6 试样制备 6.1 采样 用聚乙烯塑料瓶采集样品采集后立即加硝酸(4.1)酸化至pH1~2??1000mL样品中加入2mL硝酸(4.1)?é±£′?°??ê

分析溶解硒时滤液按(6.1)酸化后储存于聚乙烯瓶中 按(6.2)制备试样(7.1.3)步骤处理 7.1.2 测定硒总量时取适量试样按(8.1.2)步骤测定混匀后取适量试样置于250mL烧杯中(8.1.2)步骤测定 加入5~10mL硝酸(4.1)在电热板上加热蒸发至1mL左右颜色较深连续消解至试液清澈透明并蒸发至近干加入20mL硝酸(4.5)èü?a?éèüD???àà ó??D?ù??????è?50mL容器中 7.2 空白试验溶液的制备 在测定试样的同时取适量去离子水代替试样置于250mL烧杯中 再按(8.1.2)步骤测定 在10mL具塞比色管中加入0.1mL硝酸(4.1)和0.5mL 硝酸镍溶液(4.11)试样被测元素的浓度应在标准系列浓度范围内 mL 0 1.00 2.00 3.00 4.00 50.0 工作标准溶液浓度 表2 元素波长mA 狭缝 s 干燥120 20 灰化400 10  原子化2400 5  清洗2600 3  8.1.2 根据表2 和表3选择波长等条件以及设置石墨炉升温程序向石墨炉管内注入用(7.2)与(7.3)所制备的空白和工作标准溶液 8.1.3 用测得的吸光度与相对应的浓度绘制标准曲线 8.2.2 根据扣除空白吸光度后的试样吸光度 注在测量时 D????′2a?¨??°×oí1¤×÷±ê×?èüòo 9 结果计算

仪器分析石墨炉原子吸收实验报告

原子吸收法测定水中的铅含量 课程名称:仪器分析实验实验项目:原子吸收法测定水中的铅含量 原子吸收法测定水中的铅含量 一、实验目的 1。加深理解石墨炉原子吸收光谱法的原理 2。了解石墨炉原子吸收光谱法的操作技术 3. 熟悉石墨炉原子吸收光谱法的应用 二、方法原理 石墨炉原子吸收光谱法,采用石墨炉使石墨管升至2000℃以上的高温,让管内试样中的待测元素分解形成气态基态原子,由于气态基态原子吸收其共振线,且吸收强度与含量成正比,故可进行定量分析。它是一种非火焰原子吸收光谱法。 石墨炉原子吸收法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14g,并可直接测定固体试样.但仪器较复杂、背景吸收干扰较大。在石墨炉中的工作步骤可分为干燥、灰化、原子化和除残渣4个阶段。在选择最佳测定条件下,通过背景扣除,测定试液中铅的吸光度。 三、仪器与试剂 (1)仪器石墨炉原子吸收分光光度计、石墨管、氩气钢瓶、铅空心阴极灯(2) 试剂铅标准溶液(0。5mg/mL)、水样 四、实验步骤 1。设置仪器测量条件 (1)分析线波长 217.0 nm (2)灯电流90(%) (3)通带 0.5nm (4)干燥温度和时间 100℃,30 s (5)灰化温度和时间 1000℃,20 s (6)原子化温度和时间2200℃,3s (7)清洗温度和时间 2800℃,3s (8)氮气或氩气流量100 mL/min 2. 分别取铅标准溶液B,用二次蒸馏水稀释至刻度,摇匀,配制1.00 ,10.00, 20.00, 和50.00 ug/mL铅标准溶液,备用。 3. 微量注射器分别吸取试液注入石墨管中,并测出其吸收值. 4.结果处理 (1)以吸光度值为纵坐标,铅含量为横坐标制作标准曲线. (2)从标准曲线中,用水样的吸光度查出相应的铅含量。 (3)计算水样中铅的质量浓度(μg/mL)

环境材料对铅、镉污染土壤玉米生长和重金属累积的影响(1)

第36卷第3期2 0 1 3年5月 河北农业大学学报 JOURNAL OF AGRICULTURAL UNIVERSITY OF HEBEI Vol.36No.3 Jun.2 0 1 3 文章编号:1000-1573(2013)03-0020-05 环境材料对铅、镉污染土壤玉米生长 和重金属累积的影响 章智明, 黄占斌, 单瑞娟, 樊亚东 (中国矿业大学(北京)化学与环境工程学院北京100083) 摘要:为了探索环境材料对重金属污染土壤的植物生长和土壤修复效果,通过盆栽模拟试验研究了单一高分子 吸水材料(PAM)、煤基营养物质(CBN)、吸附性矿物材料(MAM)、矿物化学材料(MCM)及各材料不同组合对 重金属铅(Pb)、镉(Cd)污染土壤中玉米生长和玉米中重金属累积的影响。结果表明:单一CBN、MAM、MCM 及这3种环境材料的组合促进重金属Pb、Cd污染土壤中玉米株高、叶面积的增加和生物量的积累。MAM和 MCM抑制重金属Pb、Cd向玉米秸秆和籽粒中转移,CBN抑制重金属Pb向玉米秸秆和籽粒中转移。 关 键 词:重金属;农田土壤;环境材料;玉米;盆栽 中图分类号:S19文献标志码:A The effect of environmental materials on maize growth in heavymetal contaminated soil and Pb,Cd accumulation in maize plantsZHANG Zhi-ming,HUANG Zhan-bin,SHAN Rui-juan,FAN Ya-dong (School of Chemical and Environmental Engineering,China University of Mining and Technology-Beijing,Beijing 100083,China) Abstract:In order to explore the effects of environmental materials on plant growth and remedi- ation of heavy metal Pb and Cd contaminated soil,the maize growth and heavy metal accumula-tion in maize under environmental materials polymer absorbent material(PAM),coal-basednutrient(CBN),mineral adsorption materials(MAM),mineral chemical materials(MCM)and their combinations were detected by pot experiment.The results showed that CBN,MAM,MCM and their combination promoted maize height,leaf area and biomass.MAM and MCM restrained the transfer of both Pb and Cd to maize straw and grain,and CBN only re- strained the Pb adsorption of maize plant. Key words:heavy metal;agricultural soil;environmental material;maize;pot experiment 在我国,由于工矿“三废”排放和农药的过量使用,工矿区周围农业土壤中重金属过量积累,造成严重土壤污染[1-2]。我国重金属污染的农田土壤中,重金属铅(Pb)、镉(Cd)为最普遍的复合污染型。重金属Cd污染耕地1.3万hm2,涉及11省市的25个地区;粮食中含Pb量大于1mg/kg的产地也有11个[3]。不断增加的重金属污染已经导致了大面积土地不能耕作。 收稿日期:2013-03-26 基金项目:国家十二五“支撑计划”课题(NO.2011AA100503) 作者简介:章智明(1989-),男,河北省衡水人,在读硕士生,主要从事环境工程、土壤修复和环境材料方面的研究.通讯作者:黄占斌(1961-),男,陕西省武功人,教授,从事植物生理生态、环境材料等方面的研究. E-mail:zbhuang2003@163.com.

常见蔬菜中重金属铅_镉含量的测定(精)

生物灾害科学 2014, 37(1: 60-63 https://www.360docs.net/doc/7414428119.html, Biological Disaster Science, V ol. 37, No. 1, 2014 swzhkx@https://www.360docs.net/doc/7414428119.html, 收稿日期:2013-11-19 作者简介:徐红颖,女,实验师,主要从事分析化学实验工作,E-mail: xuhongying2000@https://www.360docs.net/doc/7414428119.html,。 DOI :10.3969/j.issn.2095-3704.2014.01.011 常见蔬菜中重金属铅、镉含量的测定 徐红颖1,包玉龙2,王玉兰1 (1. 内蒙古化工职业学院,内蒙古呼和浩特 010010;2. 内蒙古疾病控制中心,内蒙古呼和浩特 010010) 摘要:通过对呼和浩特市主要大型超市的25种蔬菜75个样品中重金属Pb 、Cd 的含量进行测定,以期探明铅,镉两种重金属元素在蔬菜中的含量及分布规律。本试验采用石墨炉原子吸收光谱法测定样品的铅,镉含量。试验结果表明:不同蔬菜有不同程度的超标现象,其中超标最严重的为架豆,铅含量超过国标15倍,超标率100%,镉含量超标7倍之多,超标率33.3%,韭菜中的铅含量超标5倍多,超标率100%。试验结论:不同种类的蔬菜对相同的重金属元素以及相同的蔬菜对不同重金属元素富集吸收都存在明显的差异性;不同产地的蔬菜对重金属元素的富集吸收也存在差异性。 关键词:蔬菜;铅、镉含量;超标率;富集吸收;差异性 中图分类号:TS255.7 文献标志码:A 文章编号:2095-3704(2014)01-0060-04 Determination of Contents of Lead and Cadmium in Common Vegetables

实验四 石墨炉原子吸收法测定铜的含量

实验四石墨炉原子吸收法测定铜的含量 一、实验目的 1. 学习原子吸收光谱法的基本原理; 2. 了解石墨炉原子吸收光谱仪的基本结构及使用方法; 3. 掌握标准曲线法测定铜的定量分析方法。 二、实验原理 石墨炉原子吸收光谱法是采用石墨炉使石墨管升至2000 ℃以上,让管内试样中待测元素分解成气态的基态原子,由于气态的基态原子吸收其共振线,且吸收强度与含量成正比关系,故可进行定量分析。它属于非火焰原子吸收光谱法。 石墨炉原子吸收光谱法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14 g,并可直接测定固体试样。但仪器较复杂、背景吸收干扰较大。工作步骤可分为干燥、灰化、原子化和除残四个阶段。 通常使用偏振塞曼石墨炉原子吸收分光光度计。它具有利用塞曼效应扣除背景的功能。 三、实验仪器和试剂 A3石墨炉原子吸收分光光度计;铜空心阴极灯;石墨管;AS3自动进样器;容量瓶铜标准溶液100.0 μg/mL;铜未知液。 四、实验步骤 1. 按下列参数设置测量条件 1) 分析线波长(324.75 nm) 2) 灯电流(75%) 3) 狭缝宽度(0.5 nm) 4) 气化温度(120 ℃)和时间(25 s) 5) 灰化温度(600 ℃)和时间(20 s) 6) 原子化温度(2000 ℃)和时间(3 s) 7) 净化温度(2100 ℃)和时间(2 s) 8)冷却时间(45 s) 9) 氩气流量(2 L/min) 2.取铜标准溶液稀释到刻度,摇匀,配制0.00,5.00,10.00,15.00,20.00,2,5.00 ng/ml

的铜标准溶液,备用。 3.另配制铜未知液1个样。 4.采取自动进样方式进样,进样量20 μg。 五、结果与数据处理 1. 数据记录; 2. 绘制工作曲线; 3. 根据函数关系,计算待测液浓度。 六、注意事项 1. 实验正式开始之前要做好微调,使得进样管的尖端能顺利进样管尖端不能触及石墨管内壁。 2. 在配制溶液时,要注意操作规范使得样品不受杂质干扰。 3. 实验开始前,要仔细检查气瓶总阀与减压阀的连接处,并仔细检查冷却水装置和排气扇是否已打开。 4. 石墨炉温度很高,实验过程中要注意安全,防止灼伤。 七、思考题 1. 石墨炉法为何灵敏度高? 2. 为什么必须使用背景扣除技术? 3. 如何选择石墨炉原子化的实验条件?

镉污染土地分布

南京市矿山分布: 1)江宁区汤山、麒麟、上坊、淳化、云台山(硫 铁矿); 2)下关区幕府山(白云石(镁矿)); 3)雨花台区梅山铁矿采空区; 4)栖霞区龙王山-桂山一带; 5)浦口区珍珠泉风景区; 6)六合区马鞍、瓜埠、冶山、八百桥; 7)溧水县爱景山; 8)南京市聚宝山硫铁矿床; 9)牛首山铁矿; 10)吉山铁矿; 11)凤凰山铁矿; 12)溧水锶矿 13)六合区冶山铁矿 14)江苏高淳溧阳地区矿产 15)江苏江宁-溧水地区矿产(铅、锌矿) 16)宁镇地区有色金属矿床(铁、铜) 17)江苏盱眙地区矿产 18)苏州吴宅矿区(铅、锌矿)

南京市有色金属冶炼厂 南京广源有色金属冶炼厂(地址:江苏省南京市江宁区胜太路胜利新村13号)(冶金矿产) 南京市溧水湖东有色金属冶炼厂(江苏省南京市溧水县和凤乌飞塘)(废铝铜冶炼铝锌等铸造加工) 江宁县陶吴有色金属冶炼厂(江苏省南京市陶吴镇钟村) 南京振泰源金属制品厂(江苏省南京市浦口区宁六路18号)

江苏省冶金研究所(江苏省南京市大光路28号) 南京奥冶合金厂(江苏省南京市江宁区陶吴镇) 南京市电镀厂 南京宁联表面处理有限公司(表面处理电镀)(南京市栖霞区靖安镇联盟村罗二路) 南京电镀加工厂(南京市浦口区西葛村) 南京雨花电镀厂(江苏南京市秦淮区饮虹园25号) 南京市碱性电池厂 南京舟海蓄电池有限公司(江苏省南京市高力汽配科技城2幢146号) 南京电池厂(江苏省南京市弓箭坊社区居民委员) 南京新奇能节能科技有限公司(秦淮区中华门小百花巷48号) 南京风帆蓄电池厂(江苏.南京.江苏南京市南京市黑龙江路32号) 南京本盛电池有限公司(南京江宁滨江经济开发区翔凤路18号区) 苏州南方钜大电池有限公司(中国江苏苏州金陵东路娄上街16号) 无锡市诺雷电池有限公司(无锡市前洲镇堰玉中路10号(前洲镇政府对面))扬州钜大电池科技有限公司(江苏省扬州市新集镇工业集中区8号) 燕子矶的“小南化”,含有58种挥发性有机物、89种半挥发性有机物、13种重金属,污染最严重的地方达到了10米深。(南京市燕子矶地区占地约14平方千米,是南京市传统老工业集中地,曾经密 集分布了66家化工企业,其中最大的为“小南化”,占地700亩。2005年,“小南化”与南化公司合并后迁至南京市江北,新建了10多套具有国际国内先进水平的新装置。2011年4月,燕子矶地区51家小化工企业全部关停。去年底,15家大化工企业全面停产、退城入园。) 金陵石化及周边地区、大厂地区、梅山钢铁及周边地区和长江二桥至 三桥沿岸地区(含八卦洲)四大片区也是南京重要的工业区域。这四大

石墨炉原子吸收T基本操作规程

1.完全打开火焰燃烧器防护门,拆掉火焰原子化器分析台板。 2.拆掉火焰原子化器:拔下废液桶的液封传感器插头,按住火焰原子化器右下侧的白色按钮,并拉开燃烧器两侧的卡扣,向后按压卡扣,此时火焰原子化器将被弹出。把火焰原子化器拉出底座,将其与废液桶整体移开,并将火焰原子化器放在专用支架上。 3.拆掉石墨炉保护罩。 4.安装自动进样器,将自动进样器移至石墨炉前方,旋紧固定螺丝,不可将螺丝拧的太紧,以进样器在外力作用下不移动为准。 5.添加清洗液:取下自动进样器下方悬挂的洗液瓶,加入一定量的纯水或0.2%的硝酸(0.2%的硝酸效果最好)。 6.检查元素灯是否已安装(安装方法参阅火焰部分第6条) 7.仪器开启步骤:依次打开电脑;打开空压机,调整输出压调节旋钮,使空气过滤器中压力达到300-400KPa;打开氩气阀,将减压阀输出气压调整为350-400KPa(更换新氩气瓶时,请在打开氩气阀门前先将减压阀输出气压调至最小,然后打开氩气阀并调整减压阀输出气压);查看循环水系统,若系统内液体使用时间超过三个月,则应完全更换系统内的1:9丙三醇溶液。打开循环水系统,查看系统水位,如果水位低,则关闭系统开关,补充1:9的丙三醇溶液,注意:液面达到Max下方第二个刻度即可,不可过满。补充完液体后再打开循环水系统,并检查水温设置是否为30℃;打开仪器主机,等待仪器自检完毕后再打开操作软件“WinLab32 for AA”。并依次点击“文件”、“改换技术”、“石墨炉”,再点击工县栏中的“灯设置”设定好波长,在“开/关”列打开要使用的元素灯,在设置列点击当前要使用的元素灯灯号,并查看光能量是否正常,再关闭“灯设置”窗口。 8.打开工作区:依次点击“文件”、“打开”、“工作区域”,并打开要用的工作区文件。 9.如需更换石墨管请进行如下操作:点击“维护”中的“打开/关闭”,使该按钮右侧方块显示为绿色。移开石墨炉下方的石墨锥托架,按下石墨锥手柄,用专用石墨管夹取出已损坏的石墨管,并放入新石墨管,注意:石墨管带“耳朵”的一侧向左。托起石墨锥手柄,移回石墨锥托架。点击“维护”中的“打开/关闭”按钮使右侧方块显示为灰色。点击“新石墨管优化”。 10.调整进样针 10.1切针:如果进样针出现弯曲或切口变形等问题,点击“调节取样针位置…”按钮选

食品中铅、镉重金属污染物检测前处理方法

食品中铅、镉重金属污染物检测前处理方法 01目的 由于在食品的重金属检验中,重金属含量属痕量范围,前处理和测定过程时可能带来的外来污染和基体干扰较多,常导致检测结果偏差较大。样品前处理最为食品检验的关键步骤,前处理方法选择是否适合,是直接影响分析结果的精密度和准确度,因此统一前处理方法,是保证检验质量和提高检验效率的重要步骤,有利于排除其它成分对待测成分的干扰,缩短样品的前处理时间。同时还可将待测成分转变成分析测定所要求的状态,使待测成分的量及存在形式,适应所选分析方法的要求,从而使测定顺利进行,以保证分析测定结果准确可靠,确保检测数据准确有效。 02检测方法 铅、镉的检验均按照GB 5009.12-2017和GB 5009.15-2014食品中铅、镉的测定方法执行。 03样品采集 监测数据可靠与否不仅受检测方法影响,与样品的代表性、数量及 采集方法及分析部位也有直接关系。对许多样品来说,采集误差对 结果的影响往往大于分析误差,有时即使是正确采集的样品,若选取不当,保存不好,也同样会严重影响数据的准确性。因此在采样中必须表明样品的采样日期、批号(包装食品)、采集的数量应能反映食品的卫生质量和满足检验项目对样品量的需要。 1)蔬菜、水果等应采新鲜上市的,清洗干净晾干,分别取可食部 分剪碎、匀质。液体(如牛奶、果汁等),应先充分混匀后再采样。 2)粮食及固体食品应自每批食品的上中下不同的部位分别采取部 分样品,混合后按四分法对角取样,再进行混合,最后取代表性样品。 3)肉类、水产品等食品应按分析项目要求分别采取不同部分的样 品或混合采样。 4)瓶装食品或其它小包装食品应根据批号随机取样,同一批号取 样件数250g以上不少于6个包装,250g以下的包装不少于10个包装。 04实验工作的准备 试样前处理是采样,制备样品后至关重要的检测步骤,如果没有适 宜的前处理方法,既使有了代表性的样品,有了灵敏可靠的分析测定方法,也可能因待测成分提取不完全或其它成分的干扰而无法得到准确可靠的分析测定结果,甚至无法进行分析测定。 4.1容器(硝酸(1+1)浸泡过夜); 4.2纯水和试剂; 4.3标准溶液的配臵和储存一般在聚乙烯塑料瓶中,且避光和尽量短时间在空气 中暴露。 4.4目前样品处理最常用的几种方法。

第7讲环境中重金属的污染与危害要点

环境中重金属的污染与危害 广西医科大学张志勇李春宏 重金属对人类健康的威胁主要与镉、汞、铅、砷暴露有关。人类使用重金属已有几千年的历史,早已认识到一些重金属会对健康产生不良影响,但重金属暴露仍然持续,甚至在一些国家还有增无减。20世纪镉排放量剧增,镉化合物主要用于可重复充电的镍-镉电池的生产,由于含镉产品回收率低,常与生活垃圾一起被丢弃而造成环境污染。吸烟是镉暴露的一个重要途径,对于非吸烟者,食物则是镉暴露的主要来源。有资料显示,接触较低剂量的镉也会引起不良健康效应,主要表现为肾脏损伤或骨骼损伤等。普通人群一般通过食物和牙齿填充物暴露于汞,鱼类食物是甲基汞的重要来源。但除了某些进食大量鱼类的人群外,普通人群不会显著地遭受甲基汞暴露的毒性损害。由于甲基汞对胚胎发育有影响,因此孕妇应避免大量进食某些鱼类,如鲨鱼、剑鱼和鲔鱼等,某些来自曾受污染但现已净化的水域的鱼类也应该避免食用。关于牙齿填充物汞合金的安全性一直有争议,有人认为合金中的汞会引起多种疾病,但至今仍没有研究能证实合金填充物和不良健康效应间的因果关系。普通人群通过食物和空气暴露于铅。上世纪,铅排放造成了严重的空气污染,主要原因是汽油燃烧中铅的排放。由于血脑屏障发育仍不成熟,儿童对铅暴露特别敏感, 较低的铅暴露水平也可能导致神经毒性效应的发生,因此儿童的血铅浓度应尽可能降至较低的水平。在过去的几十年间,汽油中铅的使用已大幅度降低,环境铅浓度也随之下降,但仍须限制含铅涂料的使用,食物容器生产中也不能使用铅。另外还需注意表面光滑的食品容器中铅的渗出,会导致所盛食物遭受铅的污染。人群主要通过食物和饮水暴露于砷,且食物摄入是主要暴露途径。长期通过饮水暴露于砷可能会患皮肤癌,同时与其他肿瘤和皮肤损伤等疾患也有关联,如皮肤过度角化和色素沉着等。砷的职业暴露主要通过呼吸道吸入,与肺癌的发生有相关关系,其暴露-反应关系已得到证实。 一、重金属环境污染概况 通常将金属密度大于5g/cm3的金属称为重金属。重金属对人类健康产生影响主要与暴露于镉、铅、汞和砷有关(砷是非金属,通常将其称为类金属)。 千百年来,重金属应用于多种领域。十八世纪中期绘画艺术中广泛使用镉颜料,但由于金属的稀缺性,镉在绘画材料中的应用较少。据历史记载,汞曾作为

原子吸收法测定水体中的铅镉金属

原子吸收法测定水体中的铅镉金属 发表时间:2016-03-23T10:29:55.523Z 来源:《基层建设》2015年20期供稿作者:关秩群[导读] 佛山市高明区环境保护监测站广东佛山 528000 铅和镉危害极大,是一种高度有毒物质,如果在人体中积蓄过久,将会产生慢性毒性,危害人们的身体。 关秩群 佛山市高明区环境保护监测站广东佛山 528000 摘要:本文结合具体实验,对原子吸收分光光度法测定水中铅镉金属的方法进行研究.通过实验分析研究,证明该测定方法具有极高的可信度.可以实现环境水体的监测与预报控制,有一定的应用推广价值。 关键词:原子吸收分光光度法;检测;环境水体;铅镉;介质 铅和镉危害极大,是一种高度有毒物质,如果在人体中积蓄过久,将会产生慢性毒性,危害人们的身体。其中,测定环境水体中铅镉金属的方法有多种,现主要对原子吸收分光光度法进行研究分析,该方法是通过测定辐射光强度减弱的程度,求出供试品中待测元素的含量,可以准确测定环境水体中的微量铝,帮助检测人员快速准确的得到检测结果。 1 铅镉金属 我国是一个水资源严重短缺的国家,人均水资源占有量只有2300m3,约占世界平均水平的1/4。然而随着社会经济的飞速发展,人口急剧膨胀和生活水平的提高,城市化进程步伐不断加快,人类的生产和生活活动,将大量生活污水、工业废水和其它废弃物超标排放,引起河流、湖泊、水库等水体污染日益严重,严重威胁着人类的生存和发展,乃至社会的稳定。重金属污染不同于其它类型污染,具有隐蔽性、长期性和不可逆转性等特点。重金属在水中非常稳定,不易被微生物分解,可以通过食物链在生物体内逐步浓缩富集,成为持久性污染物,对人类有严重的潜在危险。重金属污染是近年来FAO(联合国粮食及农业组织)和WHO的全球水污染监测计划中的重要项目。十多年来,在国家和各级政府的高度重视和全国人民的共同努力下,我国的水污染治理取得了巨大成效,各大流域的水环境都有了很大的改善,但目前我国的水污染依然相当严重。 铅和镉是工业上用途广泛的元素,具有极大地生物毒性,富集在人体内会造成极大的危害。铅和镉主要通过大气沉降、土壤沥出液以及地表径流进入天然水体,其来源主要为采矿、冶金、电镀、燃煤等大规模工业活动造成的。由于铅与人体蛋白质上的疏基有高度亲和力,可使蛋白质变性进而对人体产生毒害,对呼吸系统、消化系统、免疫系统、造血系统、肾脏和神经系统有明显的损害。铅含量摄入过多会造成贫血、肠胃功能紊乱、厌食、头疼、头晕、疲乏、记忆力减退等病症。特别是对婴幼儿的影响更大,可造成婴幼儿智力低下,发育异常;镉能在人体中积蓄,造成对肝、肾和骨骼的损害,会引起骨质疏松、骨骼软化、高血压等病症,并具有致癌、致畸、致突变性。大剂量镉中毒可以造成肺水肿和肾皮质破坏性变化,严重者可因心肺功能受损而死亡。国标GB5749-2006规定了生活饮用水中铅的限量是0.01mg/L,镉的限量是0.005mg/L,严格控制了水中铅和镉的含量。因此,如何快速、有效地测定水中的重金属铅和镉的含量,对水质的评价、治理和人体的健康具有重要的意义。 2 测定方法 目前测定重金属铅和镉的方法主要有原子荧光光谱法(AFS)、原子吸收分光光度法(AAS)、电感耦合等离子体发射光谱法(ICP-AES)、电感耦合等离子体质谱法(ICP-MS)。而原子吸收分光光度法具有快速、灵敏度高、准确、选择性好、干扰少和操作简便等优点,广泛应用于样品中微量元素的测定,在重金属元素分析中得到了广泛的应用。铅和镉在空气/乙炔火焰中易于测定,但在这种火焰中容易产生光谱干扰和非光谱干扰。而由于水中铅和镉的含量较少,不能直接测定,为此,需采取各种措施来提高灵敏度,降低检出限。一般采用整合萃取或离子交换等方法富集后测定。而共沉淀法富集倍数高,基体效应小,可提高分析灵敏度,可作为一种传统的分离富集技术。 3 实验部分 3.1 实验仪器及试剂 TAS-990型原子吸收分光光度计(北京普析仪器公司)、Pd、Cd空心阴极灯(威格拉斯北京有限公司)。Pd、Cd标准溶液(1000μg/mL,国家标准物质研究中心)、HNO3(优级纯)、MgCl2?6H2O、NaOH(分析纯),实验用水全为去离子水。 所使用玻璃器皿均用5%HNO3溶液浸泡24h以上,然后用二次蒸馏水洗净,晾干后使用。 3.2 仪器工作条件 火焰原子吸收分光光度法测定不同重金属时,不同的元素灯要使用不同的工作条件,所测铅和镉的工作条件选择如表1所示。表1 火焰原子吸收分光光度法工作条件 3.3 火焰原子吸收分光光度法工作原理 试样溶液经雾化后送入火焰中被火焰原子化,使被测元素转变为基态原子,被测元素空心阴极灯发出的共振线通过基态原子时,发生选择性共振吸收而使光强减弱,吸收遵循Beer定律。 4 实验方法 4.1 标准溶液的配制 HNO3溶液(1+1):取50mL浓硝酸,用超纯水稀释至100mL;HNO3溶液(1%):取10mL浓硝酸,用超纯水稀释至1000mL;

相关文档
最新文档