数学人教版六年级下册鸽巢问题教学反思

数学人教版六年级下册鸽巢问题教学反思
数学人教版六年级下册鸽巢问题教学反思

《数学广角--鸽巢问题》教学反思

桔花园小学王艳萍

本节课我从以下几个方面入手:

1、激趣引入

兴趣是最好的老师,在导入新课时,我以魔术游戏引入,激发学生的兴趣,让学生初步感受到为什么5张牌中至少有两张是同一花色是现象,这个游戏虽然简单却能真实地反映鸽巢原理的本质。通过游戏,一下子就抓住了学生的注意力。让学生觉得这节课要探究的问题,好玩又有意义。

2、经历“数学化”的过程。

本节课让学生经历“鸽巢问题”的探究过程,从探究具体问题到类推得出一般结论,初步了解“鸽巢问题”,再到实际生活中加以应用,找到实际问题和“鸽巢问题”之间的联系,灵活地解决实际问题。让学生经历“数学化”的过程,学会思考数学问题的方法,培养学生的数学思维能力。

3、提供探索空间。

本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4根小棒放入3个杯子中,不管怎么放,总有一个杯子里至少放进2根小棒”,然后交流展示,评价各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。

4、注重引导提升。

本节课的教学,有意识地培养学生的“模型”思想,让学生理解“鸽巢问题”的“一般化模型”。在学生自主探索的基础上,教师引导学生对两种方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题;在学生解决了“把4根小棒放入3个杯子”的问题后,继续思考,类推,得出一般性的结论。这样设计,提升了学生的思维,发展了学生的能力。

5、营造提问的空间

本节课注重给学生营造萌发问题的机会,产生问题空间,去品尝提出问题、解决问题的快乐。如在出示课题时问学生看到课题有什么想问的?还有在出示“5个苹果放进了3个抽屉”让学生应用平均分的思路去解题。最后得到至少数是:商+1.

本节课多数学生能积极参与,教学效果较好。也存在一些不足,在最后讲解的物品数除以抽屉的至少数为“商+1”时讲解的过快。不够清楚明白,《数学广

角--鸽巢问题》教学反思:

龙华中心新峰小学林新20150326

本节课我以以下几个方面入手:

1、激趣引入

兴趣是最好的老师,在导入新课时,我以魔术游戏引入,激发学生的兴趣,让学生初步感受到为什么5张牌中至少有两张是同一花色是现象,这个游戏虽然简单却能真实地反映鸽巢原理的本质。通过游戏,一下子就抓住了学生的注意力。让学生觉得这节课要探究的问题,好玩又有意义。

2、经历“数学化”的过程。

本节课让学生经历“鸽巢问题”的探究过程,从探究具体问题到类推得出一般结论,初步了解“鸽巢问题”,再到实际生活中加以应用,找到实际问题和“鸽巢问题”之间的联系,灵活地解决实际问题。让学生经历“数学化”的过程,学会思考数学问题的方法,培养学生的数学思维能力。

3、提供探索空间。

本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝铅笔放入3个杯子中,不管怎么放,总有一个杯子里至少放进2枝铅笔”,然后交流展示,评价各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。

4、注重引导提升。

本节课的教学,有意识地培养学生的“模型”思想,让学生理解“鸽巢问题”的“一般化模型”。在学生自主探索的基础上,教师引导学生对两种方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题;在学生解决了“把4枝铅笔放入3个杯子”的问题后,继续思考,类推,得出一般性的结论。这样设计,提升了学生的思维,发展了学生的能力。

5、营造提问的空间

本节课注重给学生营造萌发问题的机会,产生问题空间,去品尝提出问题、解决问题的快乐。如在出示课题时问学生看到课题有什么想问的?还有在出示“5只鸽子飞进了3个鸽笼”问学生看到这个条件你想提怎样的数学问题?这样间接培养学生的问题意识。

本节课多数学生能积极参与,教学效果较好。也存在一些不足:教学节奏有点快,个别学生思维跟不上。希望大家多提出一些宝贵的建议,谢谢大家!

个别学生思维跟不上。希望大家多提出一些宝贵的建议,谢谢大家!

六年级鸽巢问题

教学辅导教案 学科任课教师:授课时间:年月日(星期) 鸽巢问题 基础知识点 1.鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的, 因此,也称为狭利克雷原理。把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。 类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子。 2. 鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽 屉里至少放进了放进了2个物体。 如:将4支铅笔放入3个笔筒,总有一个笔筒至少有2支铅笔,“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 3. 鸽巢原理(二):如果把多于kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数), 那么一定有一个抽屉中至少放进了(k+1)个物体。 如:把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式物体个数÷鸽巣个数=商……余数至少个数=商+1 摸同色球计算方法:①要保证摸出同色的球,摸出的球的数量至少要比颜色数多1。 物体数=颜色数×(相同颜色数-1)+1 ②极端思想(最坏打算):用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个 什么颜色的球,都能保证一定有两个球是同色的。 鸽巢问题的计算总结:

二、例题讲解: 1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业求证:这5名学生中,至少 有两个人在做同一科作业。 2、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。 3、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同, 则最少要取出多少个球? 4、把红、白、蓝三种颜色的球各10个放到一个袋子里,至少取多少个球,可以保证取到3个颜色相同的球。 5、证明:某班有52名学生,至少有5个人在同一个月出生? 6、一幅扑克牌除大小王有52张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?最少 要抽取几张牌,方能保证其中至少有2张牌有相同的花色? 7、幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意 七个小朋友中总有两个彼此选的玩具都相同,试说明道理。 8、学校图书馆里科普读物、故事书、连环画三种图书。每个学生从中任意借阅两本,那么至少要几个学生借 阅才能保证其中一定有2人借阅的读书相同? 9、某班有学生49名,在这一次的英语期中考试中,除3人以外,分数都在85分以上,是否可以推断,至少 有几人的分数会一样? 三、课堂练习 1、6只鸡放进5个鸡笼,至少有几只鸡要放进同一个鸡笼里。 2、400人中至少有两个人的生日相同,请证明。 3、红、黄、蓝、白四色小球各10个,混合放在一个暗盒中,一次至少摸出多少个,才能保证有6个小球是 同色的。 4、有一个晚上你的房间的电灯忽然间坏了,伸手不见五指,而你又要出去,于是你就摸床底下的袜子。你有 三双分别为红、白、蓝颜色的袜子,可是你在黑暗中不能知道哪一双是颜色相同的。你想拿最少数目的袜子出去,在外面借街灯配成同颜色的一双。这最少数目应该是多少? 5、某班有42人开展读书活动,他们从学校图书馆借了212本图书,那么其中至少有一人借多少本书? 6、学校五(一)班40名学生中,年龄最大的是13岁,最小的是11岁,那么其中必有几名学生是同年同月出 生的。

小学数学学科教学指导

《小学数学学科教学指导》应知应会试卷A 一、填一填。 1.数学课程应致力于现实主义教育阶段的培养目标,面向全体学生,适应学生(个性发展)的需要,使得人人都能获得(良好的数学)教育,不同的人在数学上得到(不同的发展 )。 2.高效的课堂法教学要发挥教师的主导作用,唤醒学生的(主体意识),落实学生的(主体地位),实现(先学后教)以学定教,(少教多学)顺学而导的教学理念,促进师生智慧的共同发展。 3.教学反思是教师(自我认识)(自我分析)(自我提高)的过程。 4.备课要做到“三备”即:(备课标)(备学生)(备教材),在此基础上设计教学过程和板书。 5.布置作业绝不是灵机一动、信手拈来,而是一项充满(创造性)和(艺术性)的行为。 6.教师教学应该以(学生)的认知发展水平和(已有的经验)为基础。面向全体学生,注重启发式和(因材施教)。 7.教学设计不仅是一门(科学),也是一门(艺术)。作为一门科学它必须遵循一定的(教育)、(教学)规律; 8.教学设计依次三个基本问题所组成。首先是(“我去哪里”)即教学目标的制定;然后是(“我如何去那里”);最后是“我怎么判断我已到了那里”即(“教学的评价”)。 二、选择。 1.课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。它包括((1)(2)(3))。 (1)数学的结果(2)数学结果的形成过程(3)数学思想方法(4)数学技能 2.数学备课的基本原则((1)(2)(3)) (1)面向全体(2)因材施教(3)创造性(4)独立性 3.小学数学的作业基本原则包括((1)(2)(3)(4)(5)) (1)科学性(2)趣味性(3)层次性(4)规范性(5)激励性 4.小学数学课堂教学评价基本要素包括((1)(2)(3)(4)(5)(6)(7)(8)) (1)教学目标(2)教学内容(3)教学方法(4)教学过程(5)教师行为(6)学生活动(7)教学效果(8)教学特色 三、简答。 1.义务教育数学课程标准(2011年版)将数学课程的总目标表述是哪三点?(书第三页) 答:1. 获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。 2. 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。 3. 了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和科学态度。 2.第一学段图形的运动的具体要求是什么?(书9页) 答:1. 结合实例,感受平移、旋转、轴对称现象。2. 能辨认简单图形平移后的图形。 3. 通过观察、操作,初步认识轴对称图形。

最新数学广角鸽巢问题教案

《鸽巢问题》教学设计 黄岭子镇中心校 赵春宇

数学广角——鸽巢问题 黄岭子中心校赵春宇教学目标 1.经历“抽屉原理”(鸽巢原理)的探究过程,初步了解“抽屉原理”,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 2.通过操作发展学生的归纳推理的能力,形成比较抽象的数学思维。 3.会用“抽屉原理”解决简单的实际问题,感受数学的魅力。重点难点 重点:经历“抽屉原理”(鸽巢原理)的探究过程,初步了解“抽屉原理”。 难点:理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。 教学过程 第一学时 教学活动 活动1【导入】游戏导入 上课前,我们先来热身一下,做一个预测的游戏。 请各位同学在本子上任意写出三个自己喜爱的老师的名字,之后老师进行预测,如果预测准的话给老师五秒钟的掌声。其实在这个预测的游戏中还蕴含着一个有趣的数学原理,这

节课我们就一起来研究. 活动2【讲授】自主探究,初步感知 1、研究4枝笔放进3个笔筒。 (1)要把4枝笔放进3个笔筒 ,有几种放法?请同学们小组内摆一摆。 (2)反馈:四种放法(课件出示) (3)判断:4枝笔放进3个笔筒,不管怎么放,总有一个杯子里至少放进2支笔。这句话说的对吗?为什么? (4)“总有”什么意思?(一定有) (5)“至少”有2枝什么意思?(不少于2枝) (6)师:4枝笔放进3个笔筒,不管怎么放,总有一个杯子里至少放进几支笔?你是怎么知道的?(先找到每种摆法中笔数最多的杯子,然后再找到这些最多的杯子中最少的笔数) (7)师:实际就是多中找少 师:我们刚刚把所有摆放的方法都一一罗列出来,从而找到总有一个杯子里至少放进2支笔,这种方法叫枚举法。这种方法好不好?(评价:随着数据的扩大,摆放的方法一定会更多,甚至不能一一罗列)那么我们能不能找到一种更为直接的方法,也能得到这个结论呢?请同学们在小组内讨论讨论,怎么摆? (每个杯子都先放进一枝,还剩一枝不管放进哪个杯子,总会有一个杯子至少有2枝笔)(你的方法果然简单)

部编人教版六年级数学下册 《鸽巢问题(2)》优质教案【新版】

鸽巢问题(2) 教学导航: 【教学内容】 “鸽巢问题”的具体应用(教材第70页例3)。 【教学目标】 1.在了解简单的“鸽巢问题”的基础上,使学生会用此原理解决简单的实际问题。 2.培养学生有根据、有条理的进行思考和推理的能力。 3.通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。 【重点难点】 引导学生把具体问题转化为“鸽巢问题”,找出这里的“鸽巢”有几个,再利用“鸽巢问题”进行反向推理。 【教学准备】 课件,1个纸盒,红球、蓝球各4个。 教学过程: 【情景导入】 教师讲《月黑风高穿袜子》的故事。 一天晚上,毛毛房间的电灯突然坏了,伸手不见五指,这时他又要出去,于是他就摸床底下的袜子,他有蓝、白、灰色的袜子各一双,由于他平时做事随便,袜子乱丢,在黑暗中不知道哪些袜子颜色是相同的。毛毛想拿最少数目的袜子出去,在外面借街灯配成相同颜色的

一双。你们知道最少拿几只袜子出去吗? 在学生猜测的基础上揭示课题。 教师:这节课我们利用鸽巢问题解决生活中的实际问题。 板书:“鸽巢问题”的具体应用。 【新课讲授】 1.教学例3。 盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,最少要摸出几个球? (出示一个装了4个红球和4个蓝球的不透明盒子,晃动几下)师:同学们,猜一猜老师在盒子里放了什么? (请一个同学到盒子里摸一摸,并摸出一个给大家看) 师:如果这位同学再摸一个,可能是什么颜色的?要想这位同学摸出的球,一定有2个同色的,最少要摸出几个球? 请学生独立思考后,先在小组内交流自己的想法,验证各自的猜想。 指名按猜测的不同情况逐一验证,说明理由。 摸2个球可能出现的情况:1红1蓝;2红;2蓝 摸3个球可能出现的情况:2红1蓝;2蓝1红;3红;3蓝 摸4个球可能出现的情况:2红2蓝;1红3蓝;1蓝3红;4红;4蓝 摸5个球可能出现的情况:4红1蓝;3蓝2红;3红2蓝;4蓝1红;5红;5蓝

六年级下数学广角-鸽巢问题知识点

第五单元:数学广角-鸽巢问题 【知识点一】“鸽巢原理”(一) “鸽巢原理”(一):把m个物体任意分放进n个鸽巢中(m和n是非0自然数,且 m>n),那么一定有一个鸽巢中至少放进了2个物体。【知识点二】“鸽巢原理”(二) “鸽巢原理”(二):把多于kn个物体任意分进n个鸽巢中(k和n是非0自然数), 那么一定有一个鸽巢中至少放进了(k+1)个物体。【知识点三】应用“鸽巢原理”解决简单的实际问题 应用“鸽巢原理”解题的一般步骤(1)分析题意,把实际问题转化成“鸽 巢问题”,即弄清楚“鸽巢”(“鸽巢”是什么,有几个鸽巢) 和分放的物体。(2)设计“鸽巢”的具体形式。(3)运用 原理得出某个“鸽巢”中至少分放的物体个数,最终解决问 题。 【误区警示】 误区一:判断:因为11÷3=3....2,所以把11本书放进3个抽屉中,总有一个 抽屉里至少放5本书。(√) 错解分析此题错在把这个抽屉至少放的书的本数用“3(商)+2(余数)” 计算了,应该是“3(商)+1”。 错解改正× 误区二:有红、绿、蓝三种颜色的小球各5个,至少取出几个能保证有2个同色的? 5×3÷3=5(个) 错解分析此题错在把小球的总数作为要分放物体的数量了,求得的结果也是 与问题要求不符。本题属于已知鸽巢数量(3中颜色即3个 鸽巢)和分的结果(保证一个鸽巢里至少有2个同色的), 求要分放物体的数量,各种颜色小球的数量并与参与运算。 错解改正3+1=4(个) 【方法运用】运用逆推法解决鸽巢问题 典型例题把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5 个玻璃球?

思路分析由“鸽巢原理”(二)可知,用分放的物体总数除以鸽巢数量求出平均 每个鸽巢里所放物体的数量和余数,其中至少有一个鸽巢中 有(平均每个鸽巢里所放物体的数量+1)个物体。 此题可以把玻璃球的总数看成分放的物体总数,把盒子数看成鸽巢数, 要使其中一个鸽巢里至少有5个玻璃球,则玻璃球的个数至 少要比鸽巢数的(5-1)倍多1个。 正确解答(25-1)÷(5-1)=6个(个) 方法总结(分放的物体总数-1)÷(其中一个鸽巢里至少有的物体个数-1)= a....b(a.b为自然数,且b>a),则a就是所求的 鸽巢数。 典型例题平安路小学组织862名同学去参观甲、乙、丙处景点。规定每名同学 至少参观一处,最多可以参观两处,至少有多少名同学参观 的景点相同? 思路分析参观甲、乙、丙3处景点,若只参观一处,则有3种参观方案;若参观 两处,则有“甲乙、乙丙和甲丙”这3种参观方案。所以, 一共有3+3=6(种)参观方案。求至少有多少名同学参 观的景点相同,可以转化为“鸽巢问题”解答,把862名 同学看成要分放的物体,把6中参观方案看成6个鸽巢。 正确解答3+3=6(种) 862÷6=143(名).....4(名) 143+1=144(名) 【综合测评】 1、 (1)小东玩掷骰子游戏(掷一枚骰子),要保证掷出的骰子数至少有两次是相同 的,小东至少应该掷()次 (2)李阿姨给幼儿园的孩子买衣服,有红、黄、白3种颜色,结果总是至少有2 个孩子的衣服颜色一样,她至少给()个孩子买衣服。 2、11名学生到老师家借书,老师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类型的书,最少可借一本。至少有几名学生所借的书的类型完全相 同?

鸽巢原理教学反思

《鸽巢问题》教学反思 武汉市光谷豹澥第一小学马战勇《鸽巢原理》就是以前是的教学内容《抽屉原理》,新教材把这一部分内容纳入了数学广角。当第一次看到《鸽巢问题》成为必学内容时,老师们都很困惑:什么是鸽巢问题?这么难的内容学生能理解吗?我的印象里《抽屉原理》也是非常坚深难懂的。为了上好这一内容,我搜集学习了很多资料,文中对“抽屉原理”作了深入浅出的分析,使我对“抽屉原理”有了新的认识,也终于理出了头绪。抽屉原理是教给我们一种思考方法,也就是从“最不利”的情况来思考问题,所以要让学生充分体会什么是“最不利”。 兴趣是学习最好的老师。所以在本节课我就设计了“抢凳子”游戏来导入新课,在上课伊始我就说:“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。叫举手的一男一女两个同学上台,然后问,老师想叫三位同学玩这个游戏,但是现在已有两个,你们说最后一个是叫男生还是女生呢?”同学们回答后,老师就说:“不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?”并通过三人“抢凳子”游戏得出不管怎样抢“总有一根凳子至少有两个同学”。相机引入本节课的重点“总有……至少……”。这样设计使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。

只有学生主动参与到学习活动中,才是有效的教学。在教学过程中,充分利用学具操作,如把4支小棒放入3个杯子学习中,把5支小棒放入4个杯子学习中等,都是让学生自己操作,这为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学。 通过直观例子,借助实际操作,引导学生探究“鸽巢问题”,初步经历“数学证明“的过程,并有意识的培养学生的“模型思想。为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好的理解鸽巢问题。在教学过程中能够及时地去发现并认可学生思维中闪亮的火花。 不足之处在于教学过程中所设置的问题应具有针对性,应更多的关注学生的思维活动,及时的给予认可和指导,使教学能够面向全体学生。

鸽巢问题的教学反思

六年级数学下册《鸽巢问题》教学反思 大花岭小学孙立群 数学广角的教学是为了丰富学生解决问题的方法和策略,使学生感受到数 学的魅力。本节课我让学生经历探究“鸽巢原理”的过程,初步了解了“鸽巢 原理”,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思 维。 一、情境导入,初步感知 兴趣是学习最好的老师。所以在本节课我就设计了表演魔术的游戏来导入 新课,在上课开始我就说:我给大家表演一个“魔术”。一副扑克牌,去掉大 小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?想参与这个游戏的请举手。同学们踊跃参加,然后叫举手的两组同学 上台抽牌。同学们发现抽的牌中至少有2张牌是同花色的,接着引出了课题。 相机引入本节课的重点“总有……至少……”。这样设计使学生在生动、活泼的数 学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数 学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动 情的完美结合,全面提高学生的整体素质。这个游戏虽简单却能真实的反映 “鸽巢原理”的本质。通过小游戏,一下就抓住学生的注意力,有效地调动和 激发学生的学习主动性和兴趣,让学生觉得这节课要探究的问题,好玩又有意义。 二、活动中恰当引导,建立模型 采用列举法,让学生把4枝铅笔放入3个笔筒中的所有情况通过摆一摆、 画一画或写一写等方式都列举出来,运用直观的方式,发现并描述,理解最简 单的“鸽巢原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。在例2的教学时,让学生借助直观操作发现列举法适用于数字较小时,有局限性,而假设法应用范围广,假设把书尽量多的“平均分”到各个抽屉, 看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比 平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。大量列举 之后,再引导学生总结归纳这一类“鸽巢原理”的一般规律,让学生借助直观 操作、观察、表达等方式,让学生经历从不同的角度认识鸽巢原理。特别是通 过学生归纳总结的规律:到底是“商+余数”还是“商+1”,引发学生的思 维步步深入,并通过讨论和说理活动,使学生经历了一个初步的“数学证明” 的过程,培养了学生的推理能力和初步的逻辑能力。 三、通过练习,解释应用 适当设计形式多样化的练习,可以引起并保持学生的练习兴趣。如“从扑 克牌中去掉两张王牌,在剩下的52张中任意抽出18张,至少有几张是同花色的。任意抽出20张,至少有几张是数字相同的。把红白两种球各10个放在同 一个盒子里,要保证有两个球的颜色相同,至少要摸出几个球?(3个球), 要保证摸出的球有一个是红色的,至少要摸出多少个球?(11个球)。15只鸽子飞回4个鸽舍中,至少有()只鸽子飞回同一个鸽舍,为什么?教会

最新六年级下数学广角-鸽巢问题知识点

最新六年级下数学广角-鸽巢问题知识点 【知识点一】“鸽巢原理”(一) “鸽巢原理”(一):把m个物体任意分放进n个鸽巢中(m和n是非0自然数,且 m>n),那么一定有一个鸽巢中至少放进了2个物体. 【知识点二】“鸽巢原理”(二) “鸽巢原理”(二):把多于kn个物体任意分进n个鸽巢中(k和n是非0自然数), 那么一定有一个鸽巢中至少放进了(k+1)个物体. 【知识点三】应用“鸽巢原理”解决简单的实际问题 应用“鸽巢原理”解题的一般步骤(1)分析题意,把实际问题转化成“鸽 巢问题”,即弄清楚“鸽巢”(“鸽巢”是什么,有几个鸽巢) 和分放的物体.(2)设计“鸽巢”的具体形式.(3)运用 原理得出某个“鸽巢”中至少分放的物体个数,最终解决问 题. 【误区警示】 误区一:判断:因为11÷3=3....2,所以把11本书放进3个抽屉中,总有一个 抽屉里至少放5本书. (√) 错解分析此题错在把这个抽屉至少放的书的本数用“3(商)+2(余数)” 计算了,应该是“3(商)+1”. 错解改正× 误区二:有红、绿、蓝三种颜色的小球各5个,至少取出几个能保证有2个同色的? 5×3÷3=5(个) 错解分析此题错在把小球的总数作为要分放物体的数量了,求得的结果也是 与问题要求不符.本题属于已知鸽巢数量(3中颜色即3个 鸽巢)和分的结果(保证一个鸽巢里至少有2个同色的), 求要分放物体的数量,各种颜色小球的数量并与参与运算. 错解改正3+1=4(个) 【方法运用】运用逆推法解决鸽巢问题 典型例题把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5 个玻璃球?

思路分析由“鸽巢原理”(二)可知,用分放的物体总数除以鸽巢数量求出平均 每个鸽巢里所放物体的数量和余数,其中至少有一个鸽巢中 有(平均每个鸽巢里所放物体的数量+1)个物体. 此题可以把玻璃球的总数看成分放的物体总数,把盒子数看成鸽巢数, 要使其中一个鸽巢里至少有5个玻璃球,则玻璃球的个数至 少要比鸽巢数的(5-1)倍多1个. 正确解答(25-1)÷(5-1)=6个(个) 方法总结(分放的物体总数-1)÷(其中一个鸽巢里至少有的物体个数-1)= a....b(a.b为自然数,且b>a),则a就是所求的 鸽巢数. 典型例题平安路小学组织862名同学去参观甲、乙、丙处景点.规定每名同学 至少参观一处,最多可以参观两处,至少有多少名同学参观 的景点相同? 思路分析参观甲、乙、丙3处景点,若只参观一处,则有3种参观方案;若参观 两处,则有“甲乙、乙丙和甲丙”这3种参观方案.所以, 一共有3+3=6(种)参观方案.求至少有多少名同学参 观的景点相同,可以转化为“鸽巢问题”解答,把862名 同学看成要分放的物体,把6中参观方案看成6个鸽巢. 正确解答3+3=6(种) 862÷6=143(名).....4(名) 143+1=144(名) 【综合测评】 1、 (1)小东玩掷骰子游戏(掷一枚骰子),要保证掷出的骰子数至少有两次是相同 的,小东至少应该掷()次 (2)李阿姨给幼儿园的孩子买衣服,有红、黄、白3种颜色,结果总是至少有2 个孩子的衣服颜色一样,她至少给()个孩子买衣服. 2、11名学生到老师家借书,老师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类型的书,最少可借一本.至少有几名学生所借的书的类型完全相

鸽巢问题教学反思

六年级数学下册《鸽巢问题》教学反思 云鹤镇中心小学夏春林 数学广角的教学是为了丰富学生解决问题的方法和策略,使学生感受到数学的魅力。本节课我让学生经历探究“鸽巢原理”的过程,初步了解了“鸽巢原理”,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思维。 一、情境导入,初步感知 兴趣是学习最好的老师。所以在本节课我就设计了表演魔术的游戏来导入新课,在上课开始我就说:我给大家表演一个“魔术”。一副扑克牌,去掉大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?想参与这个游戏的请举手。同学们踊跃参加,然后叫举手的两组同学上台抽牌。同学们发现抽的牌中至少有2张牌是同花色的,接着引出了课题。相机引入本节课的重点“总有……至少……”。这样设计使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。这个游戏虽简单却能真实的反映“鸽巢原理”的本质。通过小游戏,一下就抓住学生的注意力,有效地调动和激发学生的学习主动性和兴趣,让学生觉得这节课要探究的问题,好玩又有意义。 二、活动中恰当引导,建立模型 采用列举法,让学生把4枝铅笔放入3个笔筒中的所有情况通过摆一摆、画一画或写一写等方式都列举出来,运用直观的方式,发现并描述,理解最简单的“鸽巢原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。 在例2的教学时,让学生借助直观操作发现列举法适用于数字较小时,有局限性,而假设法应用范围广,假设把书尽量多的“平均分”到各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。 大量列举之后,再引导学生总结归纳这一类“鸽巢原理”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识鸽巢原理。特别是通过学生归纳总结的规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一个初步的“数学证明”的过程,培养了学生的推理能力和初步的逻辑能力。 三、通过练习,解释应用 适当设计形式多样化的练习,可以引起并保持学生的练习兴趣。如“从扑克牌中去掉两张王牌,在剩下的52张中任意抽出18张,至少有几张是同花色的。任意抽出20张,至少有几张是数字相同的。把红白两种球各10个放在同一个盒子里,要保证有两个球的颜色相同,至少要摸出几个球?(3个球),要保证摸出的球有一个是红色的,至少要摸出多少个球?(11个球)。15只鸽子飞回4个鸽舍中,至少有()只鸽子飞回同一个鸽舍,为什么?教会学生用算式来说明理由,简洁明了,因为15÷4=4……3 4+1=5,所以15只鸽子飞回4个鸽舍,总有5只鸽子飞进同一个鸽笼。六年级4班由67个同学,总有多少个同学的属相相同?学校有367个同学,总有各位同学同一天过生日?练习内容紧密联系生活,让学生体会数学来源于生活。练习由易到难,层层递进,符合学生的认知规律。在练习中,学生兴趣盎然,达到了预期的效果。 不足之处是学生的语言表达能力还有待提高。课堂中,数学语言精简性直接影响着学生对新知识的理解与掌握。例如,教材中“不管怎么放,总有一只抽屉

最新人教版六年级下册数学《数学广角——鸽巢问题》教案

数学广角——鸽巢问题 【教学目标】 1.知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。 2.过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3.情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。 【课时安排】 3课时 【第一课时】 【教学重难点】 1.引导学生把具体问题转化成“鸽巢问题”。 2.找出“鸽巢问题”解决的窍门进行反复推理。 【教学准备】 课件 【教学过程】 一、探究新知: 1.教学例1.(课件出示例题1情境图) 思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思? 学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。 操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。 理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 探究证明。

方法一:用“枚举法”证明。 方法二:用“分解法”证明。 把4分解成3个数。 由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。 方法三:用“假设法”证明。 通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。 认识“鸽巢问题” (1)像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。 这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。 小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。 (2)如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔…… 小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。 归纳总结: 鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了2个物体。 2.教学例2(课件出示例题2情境图) 思考问题: (1)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。为什么呢? (2)如果有8本书会怎样呢?10本书呢? 学生通过“探究证明→得出结论”的学习过程来解决问题(一)。 探究证明。 方法一:用数的分解法证明。 把7分解成3个数的和。把7本书放进3个抽屉里,共有如下8种情况: 由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。

鸽巢问题教学反思

《鸽巢问题》教学反思 我在设计鸽巢原理教学时,课堂上,我首先采用游戏导入、小组活动的形式,使学生集中注意力,把心思马上放到课堂上,让学生觉得这节课探究的问题既好玩又有意义。但这部分内容属于奥数知识范畴,真正理解对于学生来说有一定的难度。在教学中我通过实际案例培养学生有根据、有条理地进行思考和推理的能力,从而解决实际问题,初步感受数学的魅力。本堂课注重为学生提供自主探索的空间,引导学生通过探索,初步了解“鸽巢原理”,会用“鸽巢原理”解决实际问题。 在本节课中,我非常注重学生的自主探索精神,让学生在学习中,经历猜想、验证、推理、应用的过程。 1、采用列举法,让学生把4枝笔放入3个笔筒中的所有情况都列举出来,运用直观的方式,发现并描述、理解最简单的“鸽巢原理”即“铅笔数比笔筒数多1时,总有一个抽屉里至少有2枝笔”。 2、让学生借助直观操作发现,把笔尽量多的“平均分”给各个笔筒,看每个笔筒能分到多少枝笔,剩下的笔不管放到哪个笔筒里,总有一个笔筒比平均分得的枝数多1,可以用有余数的除法这一数学规律来表示。 3、大量例举之后,再引导学生总结归纳这一类“鸽巢问题”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识鸽巢原理。 在这堂课的难点突破处,也就是让学生借助直观操作发现,把笔尽量多的“平均分”到各个笔筒,看每个笔筒能分到多少枝笔,剩下的笔不管放到哪个笔筒里,总有一个笔筒比平均分得的枝数多1,我还可以对教学环节进行再安排,让学生体会到多余的物体只要不超过抽屉的个数,总有一个抽屉至少放2个物体,这样学生对“鸽巢原理”规律会更清晰更明了。同时,我们要明确,教学知识不光是让学生按照公式来套用公式,这样很容易造成学生的思维定势,所以在让学生充分说理的基础上,明确把什么当作“抽屉数”,把什么当作“物体数”是相当重要的。 在这节课里部分学生判断不出谁是“物体”,谁是“抽屉”。因此,在今后的教学中,多下些功夫,以求在课堂上让学生更好地理解、消化所授知识。课后还要让多做相关的练习加以巩固。

六年级数学-鸽巢问题

第十讲鸽巢问题 鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家 狭利克雷明确地提出来的,因此,也称为狭利克雷原理。把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。类似的,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子。 鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。 如:将4支铅笔放入3个笔筒,总有一个笔筒至少有2支铅笔,“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 鸽巢原理(二):如果把多于kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。如:把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。 我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣,可以得到鸽巣原理最简单的表达形式 物体个数宁鸽巣个数二商……余数至少个数二商+1 摸同色球计算方法: ①要保证摸出同色的球,摸出的球的数量至少要比颜色数多1。 物体数=颜色数x(相同颜色数—1)+ 1 ②极端思想(最坏打算):用最不利的摸法先摸出两个不同颜色的球,再无论摸出 一个什么颜色的球,都能保证一定有两个球是同色的。

1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业求证:这5名学生中,至少有两个人在做同一科作业 2、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。 3、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 4、把红、白、蓝三种颜色的球各10个放到一个袋子里,至少取多少个球,可以保证取到3个颜色相同的球。 5、证明:某班有52名学生,至少有5个人在同一个月出生 6、一幅扑克牌除大小王有52张,最少要抽取几张牌,方能保证其中至少有2 张牌有相同的点数?最少要抽取几张牌,方能保证其中至少有2张牌有相同的花色? 7、幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件, 那么不

新人教版六年级下册第五单元《数学广角鸽巢问题》教学设计

(5)2015新人教版六年级下册第五单元《数学广角- 鸽巢问题》教学设计 第五单元数学广角——鸽巢问题 单元要点分析 一、单元教材分析: 本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。 二、单元三维目标导向: 1、知识与技能:(1)引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。 2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3、情感态度与价值观:(1)体会数学与生活的紧密联系,体验学数学、用数学的乐趣。(2)理解知识的产生过程,受到历史唯物注意的教育。(3)感受数学在实际生活中的作用,培养刻苦钻研、探究新知的良好品质。 三、单元教学重难点

5 数学广角——鸽巢问题

第五单元数学广角——鸽巢问题 【例1】红、黄、蓝三种颜色的球各6个,混合后放在一个布袋里,一次至少摸出几只,才能保证有两只是同色的? 球看作元素,从最不利情况考虑,每个抽屉先放1个 球,共需要3个,再取出1个不论是什么颜色,总有 一个抽屉里的球和它同色,所以至少要取出:3+1=4 (个)。 解答:3+1=4(个) 答:一次至少摸出4个,才能保证有两个是同色的。 【例2】在一次春游活动中,三年级1班有31人带了面包,38人带了饮料,36人带了水果,34人带了巧克力,全班有45人。可以肯定的是有()人这4种都带了。 解析:可能没带面包的:45 - 31 = 14 、可能没带饮料的:45 - 38 = 7 、可能没带水果的:45 - 36 = 9 、可能没带巧克力的:45 - 34 = 11 、可能只带四样中其中一样的:14 + 7 + 9 + 11 = 41 ,所以可以肯定四样都带了的至少有:45 - 41 = 4 (人)。 解答:可以肯定至少有4人这四样都带了。 【例3】一个袋里有红珠子6粒,黄珠子8粒,蓝珠子10粒。最少要抽出多少 粒珠子才可保证有3粒是同一颜色? 一共摸出6粒:同时摸出红色、蓝色、黄色各2颗;此时再 任意摸出一个,就一定有3粒珠子颜色相同。 解答:3×2+1=7(粒) 答:最少要抽出7粒珠子才可保证有3粒是同一颜色。 【例4】笔筒里有3支红笔和2支黑笔,如果蒙上眼睛摸一次,至少拿出几支笔 才能保证有1支红笔? 解析:把红笔和黑笔看做是两个抽屉,5只笔看做是5个元素,根据抽屉原理考 虑最差情况:摸出2支全是黑笔,那么再任意摸出一支就是红笔。 2+1=3(支) 答:一次必须摸出3支铅笔才能保证至少有一支红笔。 【例5】一个兴趣小组有16名同学,他们都订阅了甲乙两种杂志中的一种或两 种,那么至少有()名同学都订阅的杂志种类相同。 A 5 B 4 C 6 解析:可以订阅杂志的情况有甲、乙或甲和乙一共三种可能,也就是说有3个抽 屉,根据抽屉原理,从最不利的情况考虑:16÷3=5(人)…1(人),所以至少 有5+1=6(名)同学订阅的杂志种类相同。 解答: C 【例6】有100个苹果分给幼儿园某班的小朋友,已知其中有人至少分到了3个。 那么,这个班的小朋友最少有多少人? 解析:本题考查的知识点是抽屉原理。解答时把小朋友的人数为抽屉个数,人数 最少,则分得3个苹果的人数最多,所以用100÷3=33…1,33+1=34(人) 解答:100÷3=33…1 33+1=34

人教版数学六年级下册鸽巢问题

《鸽巢问题》教学反思 日照第四小学朱玉雪 数学广角的教学是为了丰盛学生解决问题的方法和策略,使学生感受到数学的魅力。本节课我让学生经历探究“鸽巢原理”的过程,初步了解了“鸽巢原理”,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思维。 一、情境导入,初步感知 兴趣是最佳的老师。在导入新课时,我让四人玩“抢凳子”的游戏,这个游戏虽简单却能真实的反映“鸽巢原理”的本质。通过小游戏,一下就抓住学生的注意力,有用地调动和激发学生的学习主动性和兴趣,让学生觉得这节课要探究的问题,好玩又有意义。 二、活动中恰当引导,建立模型 采用列举法,让学生把4枝铅笔放入3个笔筒中的所有情况通过摆一摆、画一画或写一写等方式都列举出来,运用直观的方式,发现并描述,理解最简单的“鸽巢原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。 在例2的教学时,让学生借助直观操作发现列举法适用于数字较小时,有局限性,而假设法应用范围广,假设把书尽量多的“平均分”到各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。 大量例举之后,再引导学生总结归纳这一类“鸽巢原理”的大凡规律,让学生借助直观操作、观察、表达等方式,让学生经历从例外的角度认识鸽巢原理。特别是通过学生归纳总结的规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一个初步的“数学证明”的过程,培养了学生的推理能力和初步的逻辑能力。 三、通过练习,解释应用 合适设计形式多样化的练习,可以引起并保持学生的练习兴趣。如“从扑克牌中取出两张王牌,在剩下的52张中任意抽出18张,至少有几张是同花色

鸽巢原理的教学反思

鸽巢原理的教学反思 教学内容: 《义务教育教科书数学》(人教版)六年级下册第70-71页。 教材和学情分析: 1、理解教材: 在数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。 本课时的教学内容为例1和例2。 例1介绍了较简单的“抽屉问题”:只要物体数比抽屉数多,总有一个抽屉里至少放进2个物体。它意图让学生发现这样的一种存在现象:不管怎样放,总有一个杯子里至少放进2根小棒。例1呈现的是2种思维方法:一是枚举法,罗列了摆放的所有情况。二是假设法,用平均分的方法直接考虑“至少”的情况。通过例1两个层次的探究,让学生理解“平均分”的方法能保证“至少”的情况,能用这种方法在简单的具体问题中解释证明。 例2在例1的基础上说明:只要物体数比抽屉数多,总有一个抽屉里至少放进(商+1)个物体。因此我认为例2的目的是使学生进一步理解“尽量平均分”,能用有余数的除法算式表示思维的过程。 2、分析学生: 通过调查,发现有相当多的学生以前的奥数班已经解除了抽屉原理,他们在具体分得过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。 还有部分学生完全没有接触,所以他们可能会认为至少的情况就应该是“1”。 设计理念: 1、用具体的操作,将抽象变为直观。 “总有一个笔筒中至少放进3枝笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”,二在操作中理解“平均分”是保证

六年级下数学广角鸽巢问题知识点

六年级下数学广角鸽巢 问题知识点 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

第五单元:数学广角-鸽巢问题【知识点一】“鸽巢原理”(一) “鸽巢原理”(一):把m个物体任意分放进n个鸽巢中(m和n是非 0自然数,且m>n),那么一定有一个鸽巢中 至少放进了2个物体。 【知识点二】“鸽巢原理”(二) “鸽巢原理”(二):把多于kn个物体任意分进n个鸽巢中(k和n是 非0自然数),那么一定有一个鸽巢中至少放进 了(k+1)个物体。 【知识点三】应用“鸽巢原理”解决简单的实际问题 应用“鸽巢原理”解题的一般步骤(1)分析题意,把实际问题 转化成“鸽巢问题”,即弄清楚“鸽巢”(“鸽 巢”是什么,有几个鸽巢)和分放的物体。 (2)设计“鸽巢”的具体形式。(3)运用原 理得出某个“鸽巢”中至少分放的物体个数,最 终解决问题。 【误区警示】 误区一:判断:因为11÷3=3....2,所以把11本书放进3个抽屉 中,总有一个抽屉里至少放5本书。 (√)

错解分析此题错在把这个抽屉至少放的书的本数用“3(商) +2(余数)”计算了,应该是“3(商)+ 1”。 错解改正× 误区二:有红、绿、蓝三种颜色的小球各5个,至少取出几个能保证有2个同 色的 5×3÷3=5(个) 错解分析此题错在把小球的总数作为要分放物体的数量了,求得 的结果也是与问题要求不符。本题属于已知鸽巢 数量(3中颜色即3个鸽巢)和分的结果(保证 一个鸽巢里至少有2个同色的),求要分放物体 的数量,各种颜色小球的数量并与参与运算。 错解改正3+1=4(个) 【方法运用】运用逆推法解决鸽巢问题 典型例题把25个玻璃球最多放进几个盒子里,才能保证至少有一个 盒子里有5个玻璃球 思路分析由“鸽巢原理”(二)可知,用分放的物体总数除以鸽巢数 量求出平均每个鸽巢里所放物体的数量和余数, 其中至少有一个鸽巢中有(平均每个鸽巢里所放 物体的数量+1)个物体。 此题可以把玻璃球的总数看成分放的物体总数,把盒子数看 成鸽巢数,要使其中一个鸽巢里至少有5个玻璃

相关文档
最新文档