换热站计算书.doc

换热站计算书.doc
换热站计算书.doc

鸿玺公馆集中供热换热站系统设计

一、设计方案说明

该换热站热源由武汉市政高温热水供热管网供给。根据前期负荷调查及换热站初步定位结果,计划在该项目本项目换热站定在1#楼2单元地下室二层,换热站面积约为150㎡,梁下净空高度4m 。距离主管道较近,而且主管道接入便利。同时距其他供热点近,有利于二次网的接入。

本次采用两台卧式水水容积式换热机组,参数:低区(-2F —14F)换热量590KW ,高区换热量(15F-30F)858KW

换热站一级网热媒参数为 110/70°c;二级网采暖热媒参数为55°c/45°c 换热站一次侧设计压力:1.6MPa,二次侧采暖设计压力:1.0MPa 。换热站采暖定压方式为变频补水定压,循环水泵变频运行。

换热器的选择与计算

根据设计原则及该换热站的情况 ,选择板式换热器。

α?=∑∑F Q

其中

∑Q —累计热负荷,W ; ∑F —采暖建筑面积,2

m ;

α—面积热指标,2/m W 。

鸿玺公馆换热站供热范围内建筑均为节能建筑,根据《采暖通风空调设计手册》,面积热指标按402/m W 计算。

高区采暖负荷

W 85840214514K Q =?=∑

低区采暖负荷

W 5904014747K Q =?=∑

纯逆流情况对数平均温差:

C 38457055

110ln )

4570()55110(ln 0min

max

min max =-----=???-?=

'?t t t t t m

由此可得高区换热器的换热面积:

m21.738

*9.0*3500858000

**=='?=

m t B K Q F

由此可得低区换热器的换热面积:

m 29.438

*9.0*3500589908

**=='?=

m t B K Q F

根据已知冷、热流体的流量,初、终温度及流体的比热容决定所需的换热面积。初步估计换热面积,一般先假设传热系数,确定换热器构造,再校核传热系数K 值。实际换热面积取计算面积的1.25倍。 实际换热面积取6.1m 2

1. 分集水器

分集水器流量计算:

h

g j t t Q G -=

8601

式中

G 2 — 循环水泵的流量 ,h t /

j Q — 负担建筑物的总供热量,MW g t — 回水温度,C 0

h t — 供水温度,C 0

可知G=31132kg/h

分集水器长度计算:

L=130+125+80+100+80+100+80+100+80+100+120+80*2=1435mm 根据《采暖通风空调设计手册》查表5.5-52 可知低区分集水器D 取219mm 的筒体; 封头高度h 取80mm

循环水给回水管径为:DN1008273?φ 换热器二次网侧管径:DN1006219?φ 一次网侧总管径:DN1256219?φ

板换:5.4159?φ 自补水管DN50 补水管DN505.357?φ 2.循环水泵选型计算

循环水泵的制造应符合 JB/T53058 的规定

h

g j t t Q G -=

8602

G 2 — 循环水泵的流量 ,h t / j Q

— 负担建筑物的总供热量,MW

g t

—供水温度,C 0

h t —回水温度,C 0

得出低区循环泵总流量:12.6t/h 高区循环泵总流量:18.4t/h

3.循环水泵扬程按公式( 2 )计算:

1)水泵的进出口宜选用蝶阀,蝶阀的制造应符合 GB/T12238 的规定。 2)机组内的循环水泵出口应设置止回阀,止回阀的制造应符合国家现行标准。 3)在循环水泵的出口管上,应设置安全阀,安全阀的制造应符合 GB/T12243 的规定。安全阀的管径应为机组回水管管径的 1/4 。安全阀应按设计要求确定开启压力和回座压力。

4)在换热机组的最低点应设置泄水阀,泄水阀宜选用球阀,泄水阀的管径不得小于 DN20 。

H0 =K( H1 + H2 + H3) ( 2) 式中: K —安全系数

H0 —循环水泵的扬程( m )

H1 —热力站内部阻力损失(含换热机组、过滤器、管道)( m ) H2 —二级网侧最不利环路的阻力( m )

H3 —最不利用户内部系统阻力( m ).循环水泵的扬程 可得循环水泵扬程

根据计算出的循环水泵的流量和扬程,在泵的产品样本中选取工作点在高效区的泵的型号。由于板式换热机组的额定循环流量小于或等于 200t/h 时,应选用一台循环水泵,额定循环流量大于 200t/h 时,宜选用二台循环水泵并联运行,换热机组内的循环水泵不应设置备用泵。只取一台循环水泵。且安装备用泵。循环水泵一般安装在换热器的进水侧。 4.补水泵的选择与计算

低区

1)补水泵流量

k —补给率;取0.03 G —循环水流量,h kg /;

=KG 热网补总给水量:

h kG G wb

/t 5.15003.0=?==' 补给水泵流量:1.5t/h 2)补水泵扬程

h

H H H n -+=0

H —补水泵扬程,m ;

0H —补水点压力,一般取静水压力即为循环泵轴线与建筑物最高点的高差,m ; n

H —水泵进出口压力损失,m ;

h —软化水箱最低水位与补水泵轴线的高差,m ; 一般情况下,补水泵扬程可按下式计算:

m H H 30+=

所以该换热站补给水泵扬程:

m m H H 6135830=+=+=

高区

热网补总给水量:

h kG G wb

/t 19.27303.0=?==' 补给水泵流量:2.19t/h 2)补水泵扬程

h

H H H n -+=0

H —补水泵扬程,m ;

一般情况下,补水泵扬程可按下式计算:

m H H 30+=

所以该换热站补给水泵扬程:

m m H H 107310430=+=+=

3.软化器及软化水箱

软化水的消耗量按热网系统补给水量确定,即为4t/h ,故选用全自动软水装置。

选用全自动软水器,流量为4 t/h 。

本换热站设软化水箱一个,其体积按40min 的补水量计算。

326.2432

32m Q V =?=?=

选择33

m 的软化水箱;

8、供、回水系统主要管道管径的选择计算 1)高压热水水力计算:

《采暖通风与空调设计手册》查表 在110°C ,1.6Mpa 的热水系统下 h t Q G /3170

11086.02=?-=

根据设计手册得之

所以取管径DN125mm

在70°C ,1.6Mpa 的热水系统下

h t Q G /3170

11086.02=?-=

根据设计手册得之

所以取管径DN100mm

换热器计算步骤

第2章工艺计算 2.1设计原始数据 表2—1 2.2管壳式换热器传热设计基本步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍 l (9)选取管长 (10)计算管数 N T (11)校核管流速,确定管程数 (12)画出排管图,确定壳径 D和壳程挡板形式及数量等 i (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。

2.3 确定物性数据 2.3.1定性温度 由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。 对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。其壳程混合气体的平均温度为: t=420295 357.5 2 + =℃(2-1) 管程流体的定性温度: T=310330 320 2 + =℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。 2.3.2 物性参数 管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】 表2—2 壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】 表2—3

(完整版)气气热管换热器计算书

热管换热器设计计算 1 确定换热器工作参数 1.1 确定烟气进出口温度t 1,t 2,烟气流量V ,空气出口温度t 2c ,饱和蒸汽压力 p c .对于热管式换热器,t 1范围一般在250C ~600C 之间,对于普通水-碳钢热管的工作温度应控制在300C 以下.t 2的选定要避免烟气结露形成 灰堵及低温腐蚀,一般不低于180C .空气入口温度t 1c .所选取的各参数值 如下: 2 确定换热器结构参数 2.1 确定所选用的热管类型 烟气定性温度: t f = t 1+t 22 = 420°C+200°C 2 =310°C 在工程上计算时,热管的工作温度一般由烟气温度与4倍冷却介质温度的和的平均值所得出: 烟气入口处: t i =t 1+t 2 c ×45 =420°C+152°C×4 5 =180°C 烟气出口处:t o = t 2+t 1 c ×45 = 200°C+20°C×4 5 =56°C 选取钢-水重力热管,其工作介质为水,工作温度为30C ~250C o o ,满足要求,其相容壳体材料:铜、碳钢(内壁经化学处理)。

2.2 确定热管尺寸 对于管径的选择,由音速极限确定所需的管径 d v =1.64√ Q c r(ρv p v )12 根据参考文献《热管技能技术》,音速限功率参考范围,取C Q 4kW ,在t o =56°C 启动时 ρv =0.1113kg/m 3 p v =0.165×105pa r =2367.4kJ/kg 因此 d v =1.64√ Q c r(ρv p v )1 2 =10.3mm 由携带极限确定所要求的管径 d v =√ 1.78×Q ent π? r(ρL ?14 ?+ρv ?1 4?)?2[gδ(ρL ? ρv ]14 ? 根据参考文献《热管技能技术》,携带限功率参考范围,取4Q ent kw 管内工作温度 t i =180℃时 ρL =886.9kg/m 3 ρv =5.160kg/m 3 r =2013kJ/kg 4431.010/N m 因此 d v =√ 1.78×4 π×2013×(886.9?14?+5.16?14?)?2[g×431.0×10?4(886.9?5.160)]1 4 ? =13.6mm 考虑到安全因素,最后选定热管的内径为 m m 22d i 管壳厚度计算由式 ] [200d P S i V 式中,V P 按水钢热管的许用压力228.5/kg mm 选取,由对应的许用230C 来选取管壳最大应力2MAX 14kg/mm ,而 2MAX 1 [] 3.5/4 kg mm

(新)换热器的强度计算

确定了换热器的结构及尺寸以后,必须对换热器的所 有受压元件进行强度计算。因为管壳式换热器一般用 于压力介质的工况,所以换热器的壳体大多为压力容 器,必须按照压力容器的标准进行计算和设计,对于 钢制的换热器,我国一般按照GB150<<钢制压力容器>> 标准进行设计,或者美国ASME标准进行设计。对于其 它一些受压元件,例如管板、折流板等,可以按照我 国的GB151<<管壳式换热器>>或者美国TEMA标准进行 设计。对于其它材料的换热器,例如钛材、铜材等应 按照相应的标准进行设计。 下面提供一氮气冷却器的受压元件强度计算,以供 参考。该换热器为U形管式换热器,壳体直径500mm, 管程设计压力3.8MPa,壳程设计压力0.6MPa。详细强 度计算如下: 1.壳程筒体强度计算 2. 前端管箱筒体强度计算 3. 前端管箱封头强度计算 4. 后端壳程封头强度计算 5.管板强度计算 6. 管程设备法兰强度计算 7. 接管开孔补强计算 氮气冷却器(U形管式换热器)筒体计算 计算条件筒体简图 计算压力P c0.60MPa 设计温度 t100.00? C 内径D i500.00mm 材料16MnR(热轧) ( 板材) 试验温度许用应力[σ]170.00MPa 设计温度许用应力[σ]t170.00MPa 试验温度下屈服点σ s 345.00MPa 钢板负偏差C10.00mm 腐蚀裕量C2 1.00mm 焊接接头系数φ0.85 厚度及重量计算 计算厚度 δ == 1.04 mm 有效厚度δ e =δ n - C1- C2= 7.00mm 名义厚度δ n = 8.00mm 重量481.06Kg

换热站设计计算

换热站设计计算 1. 热负荷计算(1.2系数) 商业: 2645kw, 住宅: 2736kw(分为高中低三区,低区(3~12层)900kw,中区(13~22层)900kw,高区(23~32层)936kw。 2. 板式换热器选型计算(K=5000w/m2.k,一次热源温度130/70℃,二次热水温度55/45℃,结垢系数取0.75) 逆流:Δt1=130-55=75℃,Δt2=70-45=25℃ 商业:2645=5000×10^-3×A×(75-25)/In(75/25)×0.75 换热器面积:A=15.5m2/选用2台,每台满足总量70%,每台15.5× 70=10.85m2 住宅:936=5000×10^-3×A×(75-25)/In(75/25)×0.75 换热器面积:A=5.49m2,各区选一台。 选型:商业BR0.2-20;住宅BR0.2-10。N+ 3.循环水泵选型计算 商业:选用三台泵,两用一备每台G=0.86×2645×0.5/10=106.0m3/h×1.15=121.9m3/h 住宅:各选用两台泵,一用一备 每台G=0.86×936/10=80.5m3/h×1.15=92.6m3/h 由于换热站到最远的供水点约为500m,沿程阻力按100pa/m,局部阻力按沿程阻力的0.3计算,换热器阻力取60Kpa,过滤器阻力取50Kpa,最不利户内阻力取30Kpa,富裕考虑50kpa; 水泵扬程H=0.1×(60+50+0.500×100×(1+0.3)+30+50)=25.5m 取1.1~1.2的系数,取30m扬程。 选型:商业FLGR80-200C;住宅FLGR80-160A。 4.补给水泵(变频)选型计算,采暖系统水容量按30L/kW。每台换热器选用两台水泵,一用一备 商业:水容量2645×30/1000=79.35m3 补给水量G=79.35×5%=3.97m3/h ×1.15=4.57m3/h 扬程,按最高建筑绝对标高按16.2m-水箱绝对标高=16.2+8.55=24.75m 1.系统定压最低压力即补水泵启动压力:P1=24.75+0.5+1=26.25m=26 2.5kPa 2.压罐最低和最高压力确定: 1).安全阀开启压力:P4=600kPa. 2).膨胀水量开始流回补水箱时电磁阀的开启压力:P3=0.9P4=0.9×600=540kPa。 3).补水泵停泵压力即电磁阀关闭压力:P2=0.9P3=0.9×540=486 kPa。 4).压力比:αt=(P1+100)/(P2+100)=(262.5+100)/(486+100)=0.62 本帖隐藏的内容 考虑到补水泵的停泵压力P2,确定补水泵扬程为:(P1+P2)/2=(262.5+486)/2=375kPa 选用一台2.5m3/h,扬程为375kPa(扬程变化范围262.5~486kPa)的水泵。 平时使用1台,初期上水或事故补水时采用2台同时运行。 采用变速泵时,Vt≥2.5×1/3×3/60=0.042m3=42L系统最大膨胀水量:

毕业设计采暖计算书

目录 前言 (2) 摘要 (3) 第一章:工程概况 (4) 第二章:设计参数 (4) 第三章:供暖设计流程 (6) 第四章:负荷计算 (6) 第五章:采暖系统方案设计及说明 (10) 第六章:散热器选型 (11) 第七章:系统水力计算 (15) 第八章:设备选型 (27) 第九章:管道保温 (29) 第十章:英文翻译 (31) 第十一章:设计总结 (40) 第十二章:致谢 (40) 第十三章:主要参考文献 (41)

前言 从环境保护、能源的有效利用看.人口密集的城市发展区域集中供热是方向。城市集中供热是现代化城市建设的一个组成部分,它既是城市能源供应系统的一部分,又是城市公用事业的一项重要设施。 作为建筑环境与设备工程专业的工程人员,应该在建筑环境学、热质交换原理与设备、流体输配管网、施工组织与管理、工程热力学等等主要专业基础课上,在深入联系主体专业课的理论知识,系统的阐述采暖、通风与空调技术的应用过程。 作为建筑环境与设备专业的应届毕业生,在学习基本理论知识后,能具有一般建筑的采暖、通风、空调系统的设计和管理的初步能力,能对建筑物热、湿环境进行调节与控制;对建筑物的污染物进行控制 本次商业大厅采暖设计的计算说明书,充分体现了把专业理论知识应用到设计中,实现对某一房间或空间内空气的热力温度的控制,使人们在一个舒适的环境中生活。

中文摘要 摘要: 针对建筑能耗逐年增加、能源状况日益紧张的现状,就热水采暖系统方面的节能问题作了初步探讨.认为在热水采暖方面节约能源尚有很大潜力。随着我国国民经济和人民生活水平的持续快速发展,能源问题与环境问题一样,已经成为影响中国经济和谐发展的关键因素。我国加入《京都议定书》条约,中央政府对于节能省地住宅的高度重视,以及中国第一部《可再生能源法》的提前出台,等等信息表明我国建筑及其相关的能源问题已经成为全局问题。 关键词: 采暖系统;节能;热网 Key words: heating system ;energy saving;heating network Abstract: According to an increased energy consumption year by year and shirt supply situation in building industry,problems on energy saving in water heating system are preliminarily discussed.It is believed there still exists a great potentiality in energy saving when water heating system is used.Continues along with our country national economy and the lives of the people level fast to develop, the energy question and the environment question are same, already became affects the China economic harmony development the key aspect. Our country joins "the Kyoto Protocol" the treaty, the central authorities highly takes regarding the energy conservation province housing, as well as Chinese first "Renewable Energy Law" appears ahead of time, and so on the information indicated our country residence construct and its the correlation energy question already became the overall situation question.

换热器计算

换热器计算的设计型和操作型问题--传热过程计算 与换热器 日期:2005-12-28 18:04:55 来源:来自网络查看:[大中小] 作者:椴木杉热度: 944 在工程应用上,对换热器的计算可分为两种类型:一类是设计型计算(或称为设计计算),即根据生产要求的传热速率和工艺条件,确定其所需换热器的传热面积及其他有关尺寸,进而设计或选用换热器;另一类是操作型计算(或称为校核计算),即根据给定换热器的结构参数及冷、热流体进入换热器的初始条件,通过计算判断一个换热器是否能满足生产要求或预测生产过程中某些参数(如流体的流量、初温等)的变化对换热器传热能力的影响。两类计算所依据的基本方程都是热量衡算方程和传热速率方程,计算方法有对数平均温差(LMTD)法和传热效率-传热单元数(e-NTU)法两种。 一、设计型计算 设计型计算一般是指根据给定的换热任务,通常已知冷、热流体的流量以及冷、热流体进出口端四个温度中的任意三个。当选定换热表面几何情况及流体的流动排布型式后计算传热面积,并进一步作结构设计,或者合理地选择换热器的型号。 对于设计型计算,既可以采用对数平均温差法,也可以采用传热效率-传热单元数法,其计算一般步骤如表5-2所示。 表5-2 设计型计算的计算步骤

体进出口温度计算参数P 、R ; 4. 由计算的P 、R 值以及流动排布型式,由j-P 、R 曲线确定温度修正系数j ;5.由热量衡算方程计算传热速率Q ,由端部温度计算逆流时的对数平均温差Δtm ; 6.由传热速率方程计算传热面积 。 体进出口温度计算参数e 、CR ; 4.由计算的e 、 CR 值确定NTU 。由选定的流动排布型式查取 e-NTU 算图。可能需由e-NTU 关系反复计算 NTU ;5.计算所需的传热面积 。 例5-4 一列管式换热器中,苯在换热器的管内流动,流量为 kg/s ,由80℃冷却至30℃;冷却水在管间与苯呈逆流流动,冷却水进口温度为20℃,出口温度不超过50℃。若已知换热器的传热系数为470 W/(m2·℃),苯的平均比热为1900 J/(kg·℃)。若忽略换热器的散热损失,试分别采用对数平均温差法和传热效率-传热单元数法计算所需要的传热面积。 解 (1)对数平均温差法 由热量衡算方程,换热器的传热速率为 苯与冷却水之间的平均传热温差为 由传热速率方程,换热器的传热面积为 A = Q/KΔt m = = m 3 (2)传热效率-传热单元数法 苯侧 (m C ph ) = *1900 = 2375 W/℃ 冷却水侧 (m c C pc ) =(m h C ph )(t h1-t h2)/(t c1-t c2) =2375*(80-30)/(50-20)= W/℃ 因此, (m C p )min=(m h C ph )=2375 W/℃ 由式(5-29),可得

换热器结构设计及强度计算说明书

摘要 本次设计的题目为汽提塔冷凝器。汽提塔冷凝器是换热器的一种应用,这里我设计成浮头式换热器。浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗。在化工工业中应用非常广泛。本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,采用了1-2型,即壳侧一程,管侧两程。首先,通过换热计算确定换热面积与管子的根数初步选定结构。然后按照设计的要求以及一系列国际标准进行结构设计,之后对各部分进行校核。 本次毕业设计任务是流量为3500kg/h,浮头式换热器的机械设计,工作压力管程为0.43MPa、壳程为0.042MPa,工作温度管程为61℃、壳程为80℃。 通过本次毕业设计,我熟悉了浮头式换热器的工艺流程,掌握了浮头式换热器的结构及计算方法,了解了浮头式化热器的制造要求及安装过程。但是,限于经验不足和水平有限,一定存在缺点甚至错误之处,敬请老师批评指正。 关键词:换热器;浮头式;管程;壳程

Abstract The topic of my study is the design of . is one of applications heat exchanger.In here, my design is the floating head heat exchanger. The floating head heat exchanger is a special type of tube and shell heat exchanger. It is special for its floating head. One of its tube sheet is fixed,while another can float in the shell,so called floating head. As the tubes can expand without the restriction of the shell,it can avoid thermal stress. Another advantage is that it can be dismantled and clean easily . It is widely used in chemical industry. In this study an overall design of the floating head heat exchanger is carried out .According to the demand the type 1-2 is chosen to be the basic type,which has one segment in shell and two segment in tubes. First,heat transfer is calculated to determine the heat exchange surface area and the number of tubes that needed. Then,according to the request and standards,structural of system is well designed. After that,the finite element analysis of the shell is completed. The graduation design task is 3500kg/h flow of the floating head heat exchanger, the mechanical design, working pressure tube 0.4 3MP, shell, work process of 0.042MP for 61 ℃, the temperature tube for 80 ℃shell cheng. Through the graduation design, I am familiar with the floating head heat exchanger process, mastered the structure of floating head heat exchanger and calculation method of floating head, learned the heat exchanger is manufacturing requirements and installation process. But, due to lack of experience and limited ability, certain shortcomings and even mistakes, please the teacher criticism and corrections. KEY WORDS:HEAT EXCHANGER;FLOATING HEAD;TUBE-SIDE;SHELL-SIDE

换热站、补水泵、循环泵、风机设备选型计算书(审图)

换热站设备选型计算 本工程为陕西碧桂园嘉誉项目换热站设计,为住宅楼1#—8#楼冬季提供低温地板辐射采暖热水,本换热站设于地下室设备用房内。 (1)热负荷统计表 注:(已考虑:外网热损失、室内采暖系统损失以及热力站系统热损失)本工程热源为市政热网热水,经水-水换热以后为小区提供采暖热水。市政热源参数为:总供热量4800.0kW,流量169.0m3/h,供回水温度:95/70℃,1.6MPa;二次侧采暖热水供回水温度:50/40℃。各热力系统分别选用两台板式换热器,单台承担总负荷的70%, 热水循环泵为一用一备,补水泵为一用一备,板式换热器和循环水泵,补水泵组合为一套换热机组。补水定压系统:采暖系统均选用定压罐定压,各系统均选用两台补水泵(一用一备)进行补水。 一.高区采暖换热机组选型计算 1、换热器选型计算 住宅高区采暖总热负荷为1912.1kW,高区热力系统总计算热负荷 Q jz =1912.1x1.1=2103.31kW。换热机组选用板式换热器两组,单台承担70%负荷,即Q1=2103.31x0.65=1367.15kW。 选用板式换热器BRO0.35-1.6-15-E-I,满足设计要求。 2、采暖采暖热水循环系统计算 m/h; 二次侧流量G=3.6x2103.31/(4.2x(50-40))=180.283 换热器内水流阻力约为50kPa; 机房内内管道系统及其他设备水压降约为100kPa; 室外管道水力损失为75.68kPa; 最不利室内环路阻力为35.0kPa, 系统总阻力为(50+100+75.68+35.0)x1.1=286.75kPa。 m/h,H=32.0m,热水循环水泵一用一备,选用KQL 150/315-30/4型,G=187.03 P=30.0kW。

换热器计算程序+++

换热器计算程序 2.1设计原始数据 表2—1 名称设计压力设计温度介质流量容器类别设计规范单位Mpa ℃/ Kg/h / / 壳侧7.22 420/295 蒸汽、水III GB150 管侧28 310/330 水60000 GB150 2.2管壳式换热器传热设计基本步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍 l (9)选取管长 N (10)计算管数 T (11)校核管内流速,确定管程数 D和壳程挡板形式及数量等 (12)画出排管图,确定壳径 i (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。

2.3 确定物性数据 2.3.1定性温度 由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。 对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。其壳程混合气体的平均温度为: t=420295 357.5 2 + =℃(2-1) 管程流体的定性温度: T=310330 320 2 + =℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。 2.3.2 物性参数 管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】 表2—2 密度ρ i- =709.7 ㎏/m3 定压比热容c pi =5.495 kJ/㎏.K 热导率λ i =0.5507 W/m.℃ 粘度μ i =85.49μPa.s 普朗特数Pr=0.853 壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】 表2—3

换热器的强度计算

确定了换热器的结构及尺寸以后,必须对换热器的所有受压元件进行强度计算。因为管壳式换热器一般用于压力介质的工况,所以换热器的壳体大多为压力容器,必须按照压力容器的标准进行计算和设计,对于钢制的换热器,我国一般按照GB150<<钢制压力容器>>标准进行设计,或者美国ASME标准进行设计。对于其它一些受压元件,例如管板、折流板等,可以按照我国的GB151<<管壳式换热器>>或者美国TEMA标准进行设计。对于其它材料的换热器,例如钛材、铜材等应按照相应的标准进行设计。 下面提供一氮气冷却器的受压元件强度计算,以供参考。该换热器为U形管式换热器,壳体直径500mm,管程设计压力3.8MPa,壳程设计压力0.6MPa。详细强度计算如下: 1.壳程筒体强度计算 2. 前端管箱筒体强度计算 3. 前端管箱封头强度计算 4. 后端壳程封头强度计算 5.管板强度计算 6. 管程设备法兰强度计算 7. 接管开孔补强计算

P ]= P ]=

= =

壳程设计压力 管程设计压力 壳程设计温度 管程设计温度 壳程筒体壁厚 管程筒体壁厚 换热器公称直径 ( c 型 ) ( d 型 )

( b d 型 ) ( b c 型 ) ( c d 型 ) ( c 型) ( d 型 ) = 106.81 金属横截面积 0.00 436.43 量直径 0.80 按 : = 按 : = 0 0.00 = 0 0.00 = 0 0.00 0.00 0.2696 和 0.0000 取、大值

= 0 = 0 = 0 = 0 = 0 = 0 = 工况 = = 工况 = 只有壳程设计压力 管程设计压力 只有管程设计压力 = 壳程设计压力 壳程设计压力 设计压力 3.21 ≤[q]

化工原理设计换热器设计计算

化工单元操作与单元设备设计任务书 任务书之十一 拟采用常压筛板(浮阀)塔分离苯-甲苯混合液。已知原料流量为4000kg/h,原料含苯组成30%(摩尔百分数,下同),精馏分离使塔顶产品苯含量不低于97%,塔底产品甲苯含量不低于98%;沸点进料,沸点回流,操作回流比可取2.0;要求产品进入贮罐的温度不低于50℃,原料贮罐贮料、产品贮罐要满足八小时生产任务。设计任务: ? 1.画出流程方框图和带控制点工艺流程图 ? 2.做分离全过程做物料衡算与热量衡算 ? 3. 做换热器设计与精馏塔设计 (1)换热器设计——塔底产品冷却器设计 上述精馏生产过程中,需要将塔底产品从80℃冷却至45℃,要求换热器的管程和壳程压降不大于10kpa,试选用合适的换热器。 (2)精馏塔(筛板或浮阀)设计 完成上述分离任务所需的精馏塔相关设计。 原始数据:精馏塔塔顶压强:4 kpa(表压),单板压降不超过0.7kPa,冷却循环水温度:25℃,饱和水蒸汽压力:0.25Mpa(表压),设备型式:筛板(浮阀)塔,建厂地区压力:1atm 组长: 叶敏萍060 组员: 张光华030 贾国柱011 薛进军059 陈科云006 邢祥龙057

【设计方案】 【一】、选择换热器的类型 (1)、两流体的温度变化情况: 热流体进口的温度80℃ 出口的温度45℃ 冷流体的进口温度25℃ 出口温度35℃ (注)、该换热器用凉水塔水冷却,初步确定选用带有膨胀节的固定板式换热器。 (2)、流动空间及流速的确定: 由于利用凉水塔水冷却,而易结垢,为方便清洗,应使水走管程,甲苯走壳程。选用φ25㎜*2.5㎜的碳钢管,管内流速为Ui=0.5m/s 。 【二】、确定物性参数 (1)、平均温度差 (2)、定性温度 T=﹙T1+T2﹚/2=﹙80+45﹚÷2=62.5℃ ; t=﹙t1+t2﹚/2=﹙35+25﹚÷2=30℃ 平均温差 Δt1=﹙80-35)=45℃ ;Δt2=﹙45-25﹚=20℃ Δt1/Δt2=45/20=2.25 Δt1/Δt2>2 Δ t ′m=﹙Δt1-Δt2﹚/㏑﹙Δt1÷Δt2﹚ =(45—20) ÷ln(45÷20)=30.83℃

换热站计算说明书

河北建筑工程学院 毕业设计计算说明书 系别:能环学院 专业:建筑环境与设备工程 班级:建环 121 姓名:任少朋 学号: 2012305127 起迄日期:16年02月21日~ 16年06月15日 设计(论文)地点:河北建筑工程学院 指导教师:贾玉贵职称:副教授 2016 年 06 月 15 日

摘要 随着人们生活水平的提高,集中供热被越来越多地采用,采用集中供暖可以减少能量的浪费,提高供热效率,减少环境污染,利于管理.同时采用集中供热可提高供热质量,提高人们的生活质量。 本题目是以张家口市桥西区恒峰热力有限公司集中供热系统M13号热力站供热区域的工程设计、改造为需用背景的实际工程。本工程为张家口市桥西区集中供热工程张家口市检察院换热站,属于原有燃煤锅炉房改造工程。供热区域总建筑面积:110000m2,总热负荷:约6400kw。 本次设计主要有工程概述、热负荷计算、供热方案确定、管道水力计算、系统原理图和平面布置图绘制、设备及附件的选择计算的内容。 除上述内容外,在计算说明书中尚需包括如下一些曲线:供回水温度随室外温度变化曲线,调节曲线。 本次设计要求使用CAD绘出图纸,其中包括设计施工说明、主要设备附件材料表,换热站设备平面布置图、换热站管道平面布置图、换热站流程图及相关剖面图等。 在换热站设计合理,安装质量符合标准和操作维修良好的条件下,换热站能够顺利地运行,对于采暖用户,在非采暖期停止运行期内,可以维修并且排除各种隐患,以满足在采暖期内正常运行的要求。 关键词:供热负荷设备选择计算及布置换热站系统运行板式换热器

目录 摘要 (1) 第一章设计概况 (4) 1.1设计题目 (4) 1.2设计原始资料 (4) 1.2.1 设计地区气象资料 (4) 1.2.2 设计参数资料 (4) 第二章换热站方案的确定 (5) 2.1换热站位置的确定 (5) 2.2换热站建筑平面图的确定 (5) 2.3换热站方案确定 (5) 2.4供热管道的平面布置类型 (5) 2.5管道的布置和敷设 (6) 2.6换热站负荷的计算 (6) 第三章换热站设备的选取 (7) 3.1换热器简介 (7) 3.1.1换热器概述 (7) 3.1.2换热器的分类 (7) 3.2换热器的选取 (9) 3.2.1换热器类型的选取 (9) 3.2.2换热器选型计算 (9) 3.3换热站内管道的水力计算 (10) 3.4循环水泵的选择 (11) 3.4.1循环水泵需满足的条件 (11) 3.4.2循环水泵选择 (11) 3.5补水泵的选择 (12) 3.5.1补水泵需该满足的条件 (12) 3.5.2补水泵的选择 (12) 3.6补水箱的选择 (14)

换热器设计计算步骤

换热器设计计算步骤 1. 管外自然对流换热 2. 管外强制对流换热 3. 管外凝结换热 已知:管程油水混合物流量 G ( m 3/d),管程管道长度 L (m),管子外径do (m), 管子内径di (m),热水温度 t ℃, 油水混合物进口温度 t 1’, 油水混合物出口温度 t 2” ℃。 1. 管外自然对流换热 1.1 壁面温度设定 首先设定壁面温度,一般取热水温度和油水混合物出口温度的平均值,t w ℃, 热水温度为t ℃,油水混合进口温度为'1t ℃,油水混合物出口温度为"1t ℃。 "w 11 t ()2 t t =+ 1.2 定性温度和物性参数计算 管程外为水,其定性温度为1()K -℃ 21 ()2 w t t t =+ 管程外为油水混合物,定性温度为'2t ℃ ''"2111 ()2t t t =+ 根据表1油水物性参数表,可以查得对应温度下的油水物性参数值 一般需要查出的为密度ρ (3/kg m ),导热系数λ(/())W m K ?,运动粘度2(/)m s ,体积膨胀系数a 1()K -,普朗特数Pr 。

表1 油水物性参数表 水 t ρ λ v a Pr 10 999.7 0.574 0.000001306 0.000087 9.52 20 998.2 0.599 0.000001006 0.000209 7.02 30 995.6 0.618 0.000000805 0.000305 5.42 40 992.2 0.635 0.000000659 0.000386 4.31 50 998 0.648 0.000000556 0.000457 3.54 60 983.2 0.659 0.000000478 0.000522 2.99 70 997.7 0.668 0.000000415 0.000583 2.55 80 971.8 0.674 0.000000365 0.00064 2.21 90 965.3 0.68 0.000000326 0.000696 1.95 100 958.4 0.683 0.000000295 0.00075 1.75 油 t ρ λ v a Pr 10 898.8 0.1441 0.000564 6591 20 892.7 0.1432 0.00028 0.00069 3335 30 886.6 0.1423 0.000153 1859 40 880.6 0.1414 9.07E-05 1121 50 874.6 0.1405 5.74E-05 723 60 868.8 0.1396 3.84E-05 493 70 863.1 0.1387 0.000027 354 80 857.4 0.1379 1.97E-05 263 90 851.8 0.137 1.49E-05 203 100 846.2 0.1361 1.15E-05 160 1.3 设计总传热量和实际换热量计算 0m v Q Cq t Cq t ρ=?=?v v C q t C q t αρβρ=?+?油油水水 C 为比热容/()j kg K ?,v q 为总体积流量3 /m s ,αβ分别为在油水混合物中 油和水所占的百分比,t ?油水混合物温差,m q 为总的质量流量/kg s 。 实际换热量Q 0Q Q *1.1/0.9= 0.9为换热器效率,1.1为换热余量。 1.4 逆流平均温差计算

板式换热器的计算方法

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU 法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线 估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、 方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准 则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 * A3 F7 y& G7 S+ Q T2 = 热侧出口温度 3 s' _% s5 s. T" D0 q4 b t1 = 冷侧进口温度 & L8 ~: |; B: t2 M2 w$ z t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为:0 B N/ I" A+ m0 z' H9 ~ (热流体放出的热流量)=(冷流体吸收的热流量) 在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W;# Q/ p3 p: I4 ~0 N' I) W mh,mc-----热、冷流体的质量流量,kg/s;+ Z: I9 b- h9 h" r3 P) {/ ^ Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K);6 L8 t6 b3 o& m/ n T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡 算式为:& w3 v) j4 I4 R 一侧有相变化1 Y# e$ B6 c& z% C3 W- W* J 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中

供热工程课程设计计算书示例

课程大作业说明书 课程《供热工程》 班级 姓名 学号 指导教师

目录 1工程概况 (11) 1.1工程概况 (11) 1.2设计内容 (11) 2设计依据 (11) 2.1 设计依据 (11) 2.2 设计参数 (11) 3负荷概算 (11) 3.1 用户负荷 (11) 3.2 负荷汇总 (11) 4热交换站设计 (11) 4.1 热交换器 (11) 4.2 蒸汽系统 (11) 4.3 凝结水系统 (11) 4.4 热水供热系统 (11) 4.5补水定压系统 (11) 5室外管网设计 (11) 5.1 管线布置与敷设方式 (11) 5.2 热补偿 (11) 5.3 管材与保温 (11) 5.4 热力入口 (11)

课程作业总结 (11) 参考资料 1 工程概况 1.1 工程概况 本工程某小区供热系统设计,为1-6#楼房采暖提供热源。 各热用户如下: 1.1.2 工程名称:某小区供热系统 1.1.3 地理位置:城市道路以北 1.1.4 热用户:1#住宅、2#住宅、3#住宅、4#公寓、5#公寓、6#公寓 1.2 设计内容 某小区换热站及室外热网方案设计(参见附带图纸)

2设计依据 2.1设计依据 《采暖通风与空调设计规范》GB0019-2003 《城市热力网设计规范》CJJ34-2002 《城镇直埋供热管道工程技术规程》CJJ/T81-98 《公共建筑节能设计标准》50189-2005 《全国民用建筑工程设计技术措施-暖通空调.动力》-2003 《全国民用建筑工程设计技术措施节能专篇-暖通空调.动力》-2007 2.2 设计参数 冬季采暖设计均为水温:80/60oC 3 热负荷概算 3.1 热用户热负荷概算 Qn=qf*F 1#、12100*45=545500(w) 2#、12100*45=544500(w) 3#、12100*45=544500(w) 4#、4000*50=200000(w) 5#、4800*50=240000(w) 6#、5000*55=275000(w) 3.2 热负荷汇总

板式换热器计算书

终版 曲树明2013-5-22 巨元瀚洋板式换热器工艺计算书 01 用户名称陵县供热公司编号JYR1304018G3 02 项目名称御府花都一期设备号 03 设计人曲树明审核人享成 04 设备型号TH15BW-1.6/150-91 日期2013-4-23 05 设备参数 06 单位回路A 回路B 07 流体名称水水 08 总流量m3/h 104.5 359.1 09 -液体m3/h 104.5 359.1 10 -汽体m3/h 0.0 0.0 11 -不凝气m3/h 0.0 0.0 12 单台流量m3/h 52.3 179.6 13 液相密度/汽相密度kg/m3966.9 / - 990.2 / - 14 比热容kJ/(kg.K) 4.2 4.1765 15 导热系数W/(m.K) 0.677 0.64 16 平均粘度cP 0.32 0.607 17 潜热kJ/kg - - 18 进口温度/出口温度°C 105.0 / 70.0 40.0 / 50.0 19 板间流速m/s 0.18 0.62 20 计算压降/允许压降kPa 1.69 / 50.0 19.39 / 50.0 21 总热负荷kW 4125. 22 富裕量% 108.1 23 换热面积(单台)m240.1 24 并联台数 2 25 总传热系数W /(m2.K) 2598. 26 平均温差°C 41.2 27 结构参数 28 工作压力MPa / / 29 设计压力/试验压力MPa 1.6 /2.08 1.6 /2.08 30 设计温度°C 150.0 150.0 31 流程数 1 1 32 板片数91 (X91) 33 板片厚度mm 0.6 34 净重/工作重量kg 1065 / 1237 35 长/宽/高mm / 36 板片材料316L 37 垫片材料EPDM 38 框架材料Q235-A 39 设计标准/ 接口标准NB/T47004-2009 / JB/T81-1994 40 接口口径DN150 DN150 41 接口材料EPDM Lining EPDM Lining .

列管式换热器的设计计算

列管式换热器的设计计算 1.流体流径的选择 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换 热器为例) (1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3) 压强高的流体宜走管内,以免壳体受压。 (4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。 (5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用 多管程以增大流速。 (7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和 流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。 在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。 2. 流体流速的选择 增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。但是流速增加,又使流体阻力增大,动力消耗就增多。所以适宜的流速要通过经济衡算才能定出。 此外,在选择流速时,还需考虑结构上的要求。例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。管子太长不易清洗,且一般管长都有一定的标准; 单程变为多程使平均温度差下降。这些也是选择流速时应予考虑的问题。 3. 流体两端温度的确定 若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。为了节省水量,可使水的出口温度提高些,但传热面积就需要加大;为了减小传热面积,则要增加水量。两者是相互矛盾的。一般来说,设计时可采取冷却水两端温差为5~10℃。缺水地区选用较大的温度 差,水源丰富地区选用较小的温度差。 4. 管子的规格和排列方法 选择管径时,应尽可能使流速高些,但一般不应超过前面介绍的流速范围。易结垢、粘度较大的液体宜采用较大的管径。我国目前试用的列管式换热器系列标准中仅有φ25×2.5mm及φ19×mm两种 规格的管子。 管长的选择是以清洗方便及合理使用管材为原则。长管不便于清洗,且易弯曲。一般出厂的标准钢管长为6m,则合理的换热器管长应为1.5、2、3或6m。系列标准中也采用这四种管长。此外,管长和壳径应相适应,一般取L/D为4~6(对直径小的换热器可大些)。 如前所述,管子在管板上的排列方法有等边三角形、正方形直列和正方形错列等,如第五节中图4-25所示。等边三角形排列的优点有:管板的强度高;流体走短路的机会少,且管外流体扰动较大,因而对流传热系数较高;相同的壳径内可排列更多的管子。正方形直列排列的优点是便于清洗列管的外壁,适用于壳程流体易产生污垢的场合;但其对流传热系数较正三角排列时为低。正方形错列排列则介于上述两者之间,即对流传热系数(较直列排列的)可以适当地提高。 管子在管板上排列的间距(指相邻两根管子的中心距),随管子与管板的连接方法不同而异。通常,胀管法取t=(1.3~1.5)do,且相邻两管外壁间距不应小于6mm,即t≥(d+6)。焊接法取t=1.25do。 5. 管程和壳程数的确定当流体的流量较小或传热面积较大而需管数很多时,有时会使管内流速较低,因而对流传热系数较小。为了提高管内流速,可采用多管程。但是程数过多,导致管程流体

相关文档
最新文档