贝叶斯分类多实例分析

贝叶斯分类多实例分析
贝叶斯分类多实例分析

用于运动识别的聚类特征融合方法和装置

提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集。

加速度信号

→时频域特征

→以聚类中心为基向量的线性方程组

→基向量的系数

→方差贡献率

→融合权重

基于特征组合的步态行为识别方法

本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将出现次数最多的类别赋予待识别的步态加速度信号。实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。

传感器

—> 加速度信息

–> 峰值、频率、步态周期、四分位、相关系数

-→聚合法

-→特征向量

→样本及和步态加速度信号的特征向量作为训练集

→分类器具有分类步态行为的能力

基于贝叶斯网络的核心网故障诊断方法及系统

本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。本发明,利用贝叶斯网络分类器构建故障诊断系统,实现了对错综复杂的核心网故障进行智能化的系统诊断功能,提高了诊断的准确性和灵活性,并且该系统构建于网络管理系统之上,易于实施,对核心网综合信息处理具有广泛的适应性。

告警信息和故障类型

→训练集

—>贝叶斯网络分类器

—>训练(由告警信息获得对应的故障类型)

一种MapReduce并行化大数据文本分类方法

一种MapReduce并行化大数据文本分类方法,包括如下步骤:第一步:建立用于文本分类的基准测试数据集,进行数据预处理,包括分词、去停用词、词根还原;将该基准测试数据集随机划分为训练文本和测试文本,将所述基准测试数据集采用向量空间模型建立文本表示模型;第二步:根据上述文本表示模型采用CDMT对所述基准测试数据集进行特征选择;第三步:采用贝叶斯分类器对所述基准测试数据集进行训练学习,得到分类结果。本发明提供一种分类性能良好、区分度较高的MapReduce并行化大数据文本分类方法。

文本分类的基准测试数据集

→数据预处理:分词、去停用词、词根还原

→训练文本和测试文本

→向量模型建立文本表示模型

→CDMT对基准进行特征选择

→贝叶斯分类器

→分类结果

基于贝叶斯分类器的股票中长期趋势预测方法及系统

本发明涉及一种基于贝叶斯分类器的股票中长期趋势预测方法,包括:股票数据的选取,确定各个起始点及区间长度d j;划分区间,计算出历史数据区间斜率;对历史数据区间斜率进行学习并对置信度判断区间进行预测,得到以置信度判断区间起始点为起点的多个交易日的股票均价;计算置信度,将置信度与预先设定好的阈值进行比较;预测未来区间斜率,将未来区间斜率转化得到以预测区间起始点为起点的多个交易日的股票均价;将以预测区间起始点为起点的多个交易日的股票均价的涨跌进行归一化,得到股票的涨跌值;构建股票池。本发明避免了产生累积误差,展现出了在预测区间内的股票趋势变化,更好地捕捉了股市波动变化趋势,更加有效地评估了交易风险。

→股票数据选取

—>确定各个起始点及区间长度

--->区间斜率

-→学习并置信度区间测试

-→股票均价

-→置信度

-→预先设定好的阈值比较

一种数据分类的方法及装置

本发明提供了一种数据分类的方法及装置,该方法包括:预先设置多个数据的标识;根据样本数据确定每一种标识对应的分类规则;按组获取待标识的数据;将所述每组待标识的数据遍历所有分类规则;计算每种所述分类规则匹配的当前组中待标识的数据的匹配个数;确定匹配个数最大的分类规则对应的标识为当前组待标识的数据的标识。通过本发明提供的一种数据分类的方法及装置,能够提高标识数据的效率。

多数据的标识

—>确定每种标识的分类规则

—>待标识数据遍历分类规则

—>计算每种分类规则匹配当前组中标识的数据匹配个数

-→确定匹配个数最大的分类规则对应的标识为当前组待标识的数据的标识。

一种移动自组网路由节点行为预测方法

本发明给出一种移动自组网路由节点行为预测方法,该方法首先选择合适的移动自组路由属性,设置模糊邻近关系,然后根据此原则对记录进行分类,最后使用贝叶斯分类器进行预测,评估路由节点的行为。本发明的目的是提供一种移动自组网路由节点行为预测方法,解决移动自组网路由节点行为预测问题,建立一种基于贝叶斯的预测方法,通过现有的数据分析,对移动自组网路由节点行为进行预测,提高移动自组网的运行效率。

移动自组路由属性

—>设置模糊邻近关系

—>然后根据此原则对记录进行分类

—>贝叶斯预测

一种基于改进贝叶斯算法的安卓恶意软件检测方法

本发明给出了一种基于改进贝叶斯算法的安卓恶意软件检测的方法,通过改进贝叶斯算法对安卓恶意程序和良性程序的特征属性进行分析和分类,实现一种基于改进贝叶斯算法的恶意软件检测方法,从应用程序权限申请的角度出发,判断分析是否为恶意软件。该方法是利用安卓权限请求机制中权限请求标签作为检测的数据源。在此提出利用权限请求标签组合方式用于区分恶意软件和良性软件,利用改进的贝叶斯算法做出检测模型,改进的贝叶斯体现在其对数据源的属性之间的考虑了相互的独立性,这样再利用朴素贝叶斯分类器进行数据建模,大大提高了检测指标,提高了检测的正确率,以及减少了误报率。

→利用权限请求标签作为检测标准

→权限请求标签组合方式区分恶意软件和良性软件

→贝叶斯算法检测

→朴素贝叶斯分类器建模

微博分类方法及装置

本发明公开了一种微博分类方法及装置。该方法包括:步骤1,对训练语料集合进行预处理,对预处理后的训练语料进行分词,获取候选特征,并对候选特征进行权重计算,根据权重计算结果进行特征选择,获取最终的分类特征;步骤2,根据最终的分类特征,采用贝叶斯分类器进行模型训练,获取分类模型;步骤3,采用贝叶斯分类器根据分类模型对微博文档进行分类。借助于本发明的技术方案,提高了分类的召回率与准确率。

训练语料集合

→预处理

一种城市轨道交通客流高峰持续时间预测方法

本发明公开了一种城市轨道交通客流高峰持续时间预测方法,包括以下步骤:首先选择足够样本量的历史

客流数据,然后对原始数据进行处理,处理过程包括流量统计、高峰时间计算、数据清洗、数据区间分类,接着建立关联客流高峰事件属性集,接着计算每一个区间的客流高峰事件的概率分布,再使用贝叶斯分类的方法确定属性分类界限,最后对每一类客流高峰事件建立时间序列模型,并对方法的有效性进行检验。本发明可用于预测城市轨道交通常发和突发的客流高峰事件的持续时间,为轨道交通企业的客流高峰管理提供数据支持,能缓解通行能力浪费和服务水平降低的矛盾,跟随轨道交通客流的变化。

原始数据—(流量统计、高峰时间计算、数据清晰、数据区间分类)-- 关联客流高峰事件属性集–概率分布–贝叶斯分类—时间序列模型

一种基于Android平台的入侵检测系统

本发明公开了一种基于Android平台的入侵检测系统,主要由三部分组成,即数据提取模块、数据分析引擎和响应处理模块;其中数据提取模块主要是对Android系统手机的主体活动信息进行特征提取;数据分析引擎是利用检测算法对提取和整理的数据进行分析,判断是否存在入侵行为或者异常行为;响应处理模块则根据数据分析引擎的分析结果执行相应的处理操作;该入侵检测系统通过对手机的资源使用情况、进程信息和网络流量实时监控,并使用贝叶斯分类器算法判断系统是否被入侵,通过该入侵检测系统能够有效地检测Android手机的异常。

数据提取:特征提取

数据分析:

响应处理:

一种利用相关系数进行相关性分析的贝叶斯分类数据挖掘方法

公开了一种利用相关系数进行相关性分析的贝叶斯分类数据挖掘方法。初步选定一些可能与目标因子具有相关性的预测因子,对预测因子和目标因子进行模型训练,再对训练结果利用相关系数进行相关性分析,如果预测因子和目标因子相关性不大或者不相关,可以立即终止贝叶斯分类算法,不再进行后面的精度评估等步骤,以便用户保留有关预测因子,去掉无关预测因子或者重新选定预测因子;如果预测因子和目标因子相关性很大或者相关时,再在此基础上进行精度评估,评价贝叶斯分类算法的好坏。通过在分类模型的基础上进行相关性判断,不仅可以使分类预测结果更加可靠,而且可以节约资源,提高算法的效率。

预测因子和目标因子—模型训练–相关性分析

一种基于改进贝叶斯的轨道交通故障识别方法及系统

本发明公开了一种基于改进贝叶斯的轨道交通故障识别方法及系统。本方法为:1)根据交通设备的电路结构确定每一交通设备的各种故障模式及对应的监测量,并针对每一故障模式及对应的监测量建立一故障模型;2)根据故障模型识别出监测数据之间的父子关系,得到标准故障样本数据;3)利用标准故障样本数据,采用贝叶斯算法进行训练,得到故障识别模型;每一故障模式的故障识别模型中父节点的权重要大于子节点的权重;4)实时监测和采集交通设备的各种所述监测量,并记录其时序;5)利用故障识别模型对数据进行识别,确定出对应的故障。本发明提高了故障识别的准确率,缩短故障修复时间,设备可故障自诊断,从运维和设备两方面保障行车安全。

一种基于朴素贝叶斯分类器的假指纹检测方法

一种基于朴素贝叶斯分类器的假指纹检测方法,包括以下步骤:1)训练库划分;2)图像归一化;3)特征提取;3.1)离散小波变换;3.2)去噪;3.3)小波重构;

3.4)噪声图估计;3.5)标准差图计算;3.6)划分标准差图,统计得到图像的特征;4)特征划分;5)分类器训练;6)分类器性能评估;7)分类器融合:利用朴素贝叶斯分类器构造的方法,融合得到新的分类器。本发明对单个分类器性能要求不高,但分类器融合后的效果却可以非常好。

一种基于主题网络爬虫的搜索方法及装置

本发明公开了一种基于主题网络爬虫的搜索方法及装置,所述方法包括:从与给定搜索主题相关的网页地址集中提取一个网页地址;获取所述网页地址对应的有效网页;对所述有效网页进行分析,得到有效网页内容;计算所述有效网页与搜索主题在语义上的相关度,即立即价值,并将符合预设条件的有效网页及包含的网页链接添加到页面数据库;对于不符合预设条件的有效网页,计算网页链接相对于所述搜索主题的链接价值,即未来回报价值,并将符合条件的网页链接添加到网页地址集中。本发明实施例通过计算不满足条件的网页链接的未来回报价值,来预测主题网络爬虫的搜索方向,从而避免了主题网络爬虫对无关网页的抓取,提高了主题网络爬虫抓取网页的准确性。

一种软件需求分析量化方法及系统//预计分析工单处理时长

一种软件需求分析量化方法及系统,包括:样本获取模块以基本过程为分类对象,获取分类器的样本,每一样本中,待分类项的特征属性值根据历史数据中一基本过程的特征属性的取值确定,输出类别根据历史数据中该基本过程的开发时间确定;分类器生成模块利用获取的样本作为训练样本训练分类器模型,生成分类器;分类模块在确定软件需求划分成的基本过程的各项特征属性取值后,利用所述分类器进行分类,得到相应的输出类别即开发时间。本发明利用历史数据生成分类器,并引入功能点所属模块类型的特征,可以更为准确地估算软件开发时间,对量化软件开发过程,控制软件生命周期有良好效果。

基于分布式多级聚类的话题检测装置及方法

本发明公开了一种基于分布式多级聚类的话题检测装置及方法,该装置主要包括新闻采集模块、新闻分类模块、话题检测模块和话题整合模块以及话题展示模块;该方法包括:题检测方法,其特征在于,该方法包括:A、对新闻进行采集的步骤;B、对所述新采集的新闻进行分类的步骤;C、对各频道并行地进行多级聚类的步骤;D、计算所有话题的热度,筛选出全系统内的热点话题和每个频道内的热点话题。采用本发明,能够解决在互联网环境中大量文档快速更新的条件下,话题检测面临的检测效果与时间开销的尖锐矛盾。

一种基于协同训练的垃圾邮件过滤方法和装置

本发明实施例提供了一种基于协同训练的垃圾邮件过滤方法和装置,方法包括:输入待过滤的邮件集合;根据邮件集合得到每个样本的特征向量,其中一个样本对应一封邮件;将每个样本的特征向量划分为第一特征向量子集和第二特征向量子集,第一特征向量子集中的特征来源于邮件头信息,第二特征向量子集中的特征来源于邮件内容信息;将第一特征向量子集和第二特征向量子集分别作为每个样本的第一视角和第二视角;利用第一视角和第二视角进行基于贝叶斯分类器的协同训练得到最终的第一分类器和第二分类器;根据第一分类器和第二分类器对垃圾邮件进行分类过滤。本发明实施例可以在样例较少的情况下更加有效地对大规模数据进行分类预测和过滤。

待过滤邮件集合→每个样本的特征向量—>2个特征子集(头和内容)→2个视角—>利用NB得到两个分类器→过滤

场景分类器模型分析报告

目的

利用朴素贝叶斯分类器建立故障工单范围内,区分有效和无效工单。

业务分析

模式提取分析,预处理,算法输入和参数设置,输出,解释说明

术语说明

数据采集

数据预处理

算法步骤

SPSS验证和结果解释

问题

<协同分析,智能过滤>

<垃圾邮件,关联取词>

<神经网络,支持向量机>

贝叶斯分类器的matlab实现

贝叶斯分类器的matlab实现 贝叶斯分类原理: 1)在已知P(Wi),P(X|Wi)(i=1,2)及给出待识别的X的情况下,根据贝叶斯公式计算出后验概率P(Wi|X) ; 2)根据1)中计算的后验概率值,找到最大的后验概率,则样本X属于该类 举例: 解决方案: 但对于两类来说,因为分母相同,所以可采取如下分类标准:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% %By Shelley from NCUT,April 14th 2011 %Email:just_for_h264@https://www.360docs.net/doc/751945079.html, %此程序利用贝叶斯分类算法,首先对两类样本进行训练, %进而可在屏幕上任意取点,程序可输出属于第一类,还是第二类%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% clear; close all %读入两类训练样本数据 load data %求两类训练样本的均值和方差 u1=mean(Sample1); u2=mean(Sample2); sigm1=cov(Sample1); sigm2=cov(Sample2); %计算两个样本的密度函数并显示 x=-20:0.5:40; y= -20:0.5:20; [X,Y] = meshgrid(x,y); F1 = mvnpdf([X(:),Y(:)],u1,sigm1); F2 = mvnpdf([X(:),Y(:)],u2,sigm2); P1=reshape(F1,size(X)); P2=reshape(F2,size(X)); figure(2) surf(X,Y,P1) hold on surf(X,Y,P2) shading interp colorbar title('条件概率密度函数曲线'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %以下为测试部分 %利用ginput随机选取屏幕上的点(可连续取10个点)

朴素贝叶斯算法详细总结

朴素贝叶斯算法详细总结 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法,是经典的机器学习算法之一,处理很多问题时直接又高效,因此在很多领域有着广泛的应用,如垃圾邮件过滤、文本分类等。也是学习研究自然语言处理问题的一个很好的切入口。朴素贝叶斯原理简单,却有着坚实的数学理论基础,对于刚开始学习算法或者数学基础差的同学们来说,还是会遇到一些困难,花费一定的时间。比如小编刚准备学习的时候,看到贝叶斯公式还是有点小害怕的,也不知道自己能不能搞定。至此,人工智能头条特别为大家寻找并推荐一些文章,希望大家在看过学习后,不仅能消除心里的小恐惧,还能高效、容易理解的get到这个方法,从中获得启发没准还能追到一个女朋友,脱单我们是有技术的。贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。这篇文章我尽可能用直白的话语总结一下我们学习会上讲到的朴素贝叶斯分类算法,希望有利于他人理解。 ▌分类问题综述 对于分类问题,其实谁都不会陌生,日常生活中我们每天都进行着分类过程。例如,当你看到一个人,你的脑子下意识判断他是学生还是社会上的人;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、”之类的话,其实这就是一种分类操作。 既然是贝叶斯分类算法,那么分类的数学描述又是什么呢? 从数学角度来说,分类问题可做如下定义: 已知集合C=y1,y2,……,yn 和I=x1,x2,……,xn确定映射规则y=f(),使得任意xi∈I有且仅有一个yi∈C,使得yi∈f(xi)成立。 其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合(特征集合),其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f。 分类算法的内容是要求给定特征,让我们得出类别,这也是所有分类问题的关键。那么如何由指定特征,得到我们最终的类别,也是我们下面要讲的,每一个不同的分类算法,对

Bayes分类器原理

贝叶斯分类器 一、朴素贝叶斯分类器原理 目标: 计算(|)j P C t 。注:t 是一个多维的文本向量 分析: 由于数据t 是一个新的数据,(|)j P C t 无法在训练数据集中统计出来。因此需要转换。根据概率论中的贝叶斯定理 (|)()(|)() P B A P A P A B P B = 将(|)j P C t 的计算转换为: (|)() (|)()j j j P t C P C P C t P t = (1) 其中,()j P C 表示类C j 在整个数据空间中的出现概率,可以在训练集中统计出来(即用C j 在训练数据集中出现的频率()j F C 来作为概率()j P C 。但(|)j P t C 和()P t 仍然不能统计出来。 首先,对于(|)j P t C ,它表示在类j C 中出现数据t 的概率。根据“属性独立性假设”,即对于属于类j C 的所有数据,它们个各属性出现某个值的概率是相互独立的。如,判断一个干部是否是“好干部”(分类)时,其属性“生活作风=好”的概率(P(生活作风=好|好干部))与“工作态度=好”的概率(P(工作态度=好|好干部))是独立的,没有潜在的相互关联。换句话说,一个好干部,其生活作风的好坏与其工作态度的好坏完全无关。我们知道这并不能反映真实的情况,因而说是一种“假设”。使用该假设来分类的方法称为“朴素贝叶斯分类”。 根据上述假设,类j C 中出现数据t 的概率等于其中出现t 中各属性值的概率的乘积。即: (|)(|)j k j k P t C P t C =∏ (2) 其中,k t 是数据t 的第k 个属性值。

其次,对于公式(1)中的 ()P t ,即数据t 在整个数据空间中出现的概率,等于它在各分类中出现概率的总和,即: ()(|)j j P t P t C =∑ (3) 其中,各(|)j P t C 的计算就采用公式(2)。 这样,将(2)代入(1),并综合公式(3)后,我们得到: (|)()(|),(|)(|)(|) j j j j j j k j k P t C P C P C t P t C P t C P t C ?=????=??∑∏其中: (4) 公式(4)就是我们最终用于判断数据t 分类的方法。其依赖的条件是:从训练数据中统计出(|)k j P t C 和()j P C 。 当我们用这种方法判断一个数据的分类时,用公式(4)计算它属于各分类的概率,再取其中概率最大的作为分类的结果。 改进的P(t | C j )的计算方法: 摒弃t(t 1, t 2 , t 3,)中分量相互独立的假设, P(t 1, t 2 , t 3,| C j ) = P(t 1 | C j ) * P(t 2 | t 1, C j ) * P(t 3| t 1, t 2 ,C j ) 注意: P(t 3| t 1, t 2 ,C j )

朴素贝叶斯在文本分类上的应用

2019年1月 取此事件作为第一事件,其时空坐标为P1(0,0,0,0),P1′(0,0,0,0),在Σ′系经过时间t′=n/ν′后,Σ′系中会看到第n个波峰通过Σ′系的原点,由于波峰和波谷是绝对的,因此Σ系中也会看到第n个波峰通过Σ′系的原点,我们把此事件记为第二事件,P2(x,0,0,t),P2′(0,0,0,t′).则根据洛伦兹变换,我们有x=γut′,t=γt′。在Σ系中看到t时刻第n个波峰通过(x, 0,0)点,则此时该电磁波通过Σ系原点的周期数为n+νxcosθ/c,也就是: n+νxcosθc=νt→ν=ν′ γ(1-u c cosθ)(5)这就是光的多普勒效应[2],如果ν′是该电磁波的固有频率的话,从式(5)可以看出,两参考系相向运动时,Σ系中看到的光的频率会变大,也就是发生了蓝移;反之,Σ系中看到的光的频率会变小,也就是发生了红移;θ=90°时,只要两惯性系有相对运动,也可看到光的红移现象,这就是光的横向多普勒效应,这是声学多普勒效应中没有的现象,其本质为狭义相对论中的时间变缓。3结语 在本文中,通过对狭义相对论的研究,最终得到了光的多普勒效应的表达式,并通过与声学多普勒效应的对比研究,理解了声学多普勒效应和光学多普勒效应的异同。当限定条件为低速运动时,我们可以在经典物理学的框架下研究问题,比如声学多普勒效应,但如果要研究高速运动的光波,我们就需要在狭义相对论的框架下研究问题,比如光的多普勒效应。相对论乃是当代物理学研究的基石,通过本次研究,使我深刻的意识到了科学家为此做出的巨大贡献,为他们献上最诚挚的敬意。 参考文献 [1]肖志俊.对麦克斯韦方程组的探讨[J].通信技术,2008,41(9):81~83. [2]金永君.光多普勒效应及应用[J].现代物理知识,2003(4):14~15.收稿日期:2018-12-17 朴素贝叶斯在文本分类上的应用 孟天乐(天津市海河中学,天津市300202) 【摘要】文本分类任务是自然语言处理领域中的一个重要分支任务,在现实中有着重要的应用,例如网络舆情分析、商品评论情感分析、新闻领域类别分析等等。朴素贝叶斯方法是一种常见的分类模型,它是一种基于贝叶斯定理和特征条件独立性假设的分类方法。本文主要探究文本分类的流程方法和朴素贝叶斯这一方法的原理并将这种方法应用到文本分类的一个任务—— —垃圾邮件过滤。 【关键词】文本分类;监督学习;朴素贝叶斯;数学模型;垃圾邮件过滤 【中图分类号】TP391.1【文献标识码】A【文章编号】1006-4222(2019)01-0244-02 1前言 随着互联网时代的发展,文本数据的产生变得越来越容易和普遍,处理这些文本数据也变得越来越必要。文本分类任务是自然语言处理领域中的一个重要分支任务,也是机器学习技术中一个重要的应用,应用场景涉及生活的方方面面,如网络舆情分析,商品评论情感分析,新闻领域类别分析等等。 朴素贝叶斯方法是机器学习中一个重要的方法,这是一种基于贝叶斯定理和特征条件独立性假设的分类方法。相关研究和实验显示,这种方法在文本分类任务上的效果较好。2文本分类的流程 文本分类任务不同于其他的分类任务,文本是一种非结构化的数据,需要在使用机器学习模型之前进行一些适当的预处理和文本表示的工作,然后再将处理后的数据输入到模型中得出分类的结论。 2.1分词 中文语言词与词之间没有天然的间隔,这一点不同于很多西方语言(如英语等)。所以中文自然语言处理首要步骤就是要对文本进行分词预处理,即判断出词与词之间的间隔。常用的中文分词工具有jieba,复旦大学的fudannlp,斯坦福大学的stanford分词器等等。 2.2停用词的过滤 中文语言中存在一些没有意义的词,准确的说是对分类没有意义的词,例如语气词、助词、量词等等,去除这些词有利于去掉一些分类时的噪音信息,同时对降低文本向量的维度,提高文本分类的速度也有一定的帮助。 2.3文本向量的表示 文本向量的表示是将非结构化数据转换成结构化数据的一个重要步骤,在这一步骤中,我们使用一个个向量来表示文本的内容,常见的文本表示方法主要有以下几种方法: 2.3.1TF模型 文本特征向量的每一个维度对应词典中的一个词,其取值为该词在文档中的出现频次。 给定词典W={w1,w2,…,w V},文档d可以表示为特征向量d={d1,d2,…,d V},其中V为词典大小,w i表示词典中的第i个 词,t i表示词w i在文档d中出现的次数。即tf(t,d)表示词t在文档d中出现的频次,其代表了词t在文档d中的重要程度。TF模型的特点是模型假设文档中出现频次越高的词对刻画文档信息所起的作用越大,但是TF有一个缺点,就是不考虑不同词对区分不同文档的不同贡献。有一些词尽管在文档中出现的次数较少,但是有可能是分类过程中十分重要的特征,有一些词尽管会经常出现在众多的文档中,但是可能对分类任务没有太大的帮助。于是基于TF模型,存在一个改进的TF-IDF模型。 2.3.2TF-IDF模型 在计算每一个词的权重时,不仅考虑词频,还考虑包含词 论述244

朴素贝叶斯python代码实现

朴素贝叶斯 优点:在数据较少的情况下仍然有效,可以处理多类别问题 缺点:对于输入数据的准备方式较为敏感 适用数据类型:标称型数据 贝叶斯准则: 使用朴素贝叶斯进行文档分类 朴素贝叶斯的一般过程 (1)收集数据:可以使用任何方法。本文使用RSS源 (2)准备数据:需要数值型或者布尔型数据 (3)分析数据:有大量特征时,绘制特征作用不大,此时使用直方图效果更好 (4)训练算法:计算不同的独立特征的条件概率 (5)测试算法:计算错误率 (6)使用算法:一个常见的朴素贝叶斯应用是文档分类。可以在任意的分类场景中使用朴素贝叶斯分类器,不一定非要是文本。 准备数据:从文本中构建词向量 摘自机器学习实战。 [['my','dog','has','flea','problems','help','please'], 0 ['maybe','not','take','him','to','dog','park','stupid'], 1 ['my','dalmation','is','so','cute','I','love','him'], 0

['stop','posting','stupid','worthless','garbage'], 1 ['mr','licks','ate','my','steak','how','to','stop','him'], 0 ['quit','buying','worthless','dog','food','stupid']] 1 以上是六句话,标记是0句子的表示正常句,标记是1句子的表示为粗口。我们通过分析每个句子中的每个词,在粗口句或是正常句出现的概率,可以找出那些词是粗口。 在bayes.py文件中添加如下代码: [python]view plaincopy 1.# coding=utf-8 2. 3.def loadDataSet(): 4. postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please' ], 5. ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], 6. ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], 7. ['stop', 'posting', 'stupid', 'worthless', 'garbage'], 8. ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], 9. ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] 10. classVec = [0, 1, 0, 1, 0, 1] # 1代表侮辱性文字,0代表正常言论 11.return postingList, classVec 12. 13.def createVocabList(dataSet): 14. vocabSet = set([]) 15.for document in dataSet: 16. vocabSet = vocabSet | set(document) 17.return list(vocabSet) 18. 19.def setOfWords2Vec(vocabList, inputSet): 20. returnVec = [0] * len(vocabList) 21.for word in inputSet: 22.if word in vocabList: 23. returnVec[vocabList.index(word)] = 1 24.else: 25.print"the word: %s is not in my Vocabulary!" % word 26.return returnVec

基于朴素贝叶斯的文本分类算法

基于朴素贝叶斯的文本分类算法 摘要:常用的文本分类方法有支持向量机、K-近邻算法和朴素贝叶斯。其中朴素贝叶斯具有容易实现,运行速度快的特点,被广泛使用。本文详细介绍了朴素贝叶斯的基本原理,讨论了两种常见模型:多项式模型(MM)和伯努利模型(BM),实现了可运行的代码,并进行了一些数据测试。 关键字:朴素贝叶斯;文本分类 Text Classification Algorithm Based on Naive Bayes Author: soulmachine Email:soulmachine@https://www.360docs.net/doc/751945079.html, Blog:https://www.360docs.net/doc/751945079.html, Abstract:Usually there are three methods for text classification: SVM、KNN and Na?ve Bayes. Na?ve Bayes is easy to implement and fast, so it is widely used. This article introduced the theory of Na?ve Bayes and discussed two popular models: multinomial model(MM) and Bernoulli model(BM) in details, implemented runnable code and performed some data tests. Keywords: na?ve bayes; text classification 第1章贝叶斯原理 1.1 贝叶斯公式 设A、B是两个事件,且P(A)>0,称 为在事件A发生的条件下事件B发生的条件概率。 乘法公式P(XYZ)=P(Z|XY)P(Y|X)P(X) 全概率公式P(X)=P(X|Y 1)+ P(X|Y 2 )+…+ P(X|Y n ) 贝叶斯公式 在此处,贝叶斯公式,我们要用到的是

五种贝叶斯网分类器的分析与比较

五种贝叶斯网分类器的分析与比较 摘要:对五种典型的贝叶斯网分类器进行了分析与比较。在总结各种分类器的基础上,对它们进行了实验比较,讨论了各自的特点,提出了一种针对不同应用对象挑选贝叶斯网分类器的方法。 关键词:贝叶斯网;分类器;数据挖掘;机器学习 故障诊断、模式识别、预测、文本分类、文本过滤等许多工作均可看作是分类问题,即对一给定的对象(这一对象往往可由一组特征描述),识别其所属的类别。完成这种分类工作的系统,称之为分类器。如何从已分类的样本数据中学习构造出一个合适的分类器是机器学习、数据挖掘研究中的一个重要课题,研究得较多的分类器有基于决策树和基于人工神经元网络等方法。贝叶斯网(Bayesiannetworks,BNs)在AI应用中一直作为一种不确定知识表达和推理的工具,从九十年代开始也作为一种分类器得到研究。 本文先简单介绍了贝叶斯网的基本概念,然后对五种典型的贝叶斯网分类器进行了总结分析,并进行了实验比较,讨论了它们的特点,并提出了一种针对不同应用对象挑选贝叶斯分类器的方法。 1贝叶斯网和贝叶斯网分类器 贝叶斯网是一种表达了概率分布的有向无环图,在该图中的每一节点表示一随机变量,图中两节点间若存在着一条弧,则表示这两节点相对应的随机变量是概率相依的,两节点间若没有弧,则说明这两个随机变量是相对独立的。按照贝叶斯网的这种结构,显然网中的任一节点x均和非x的父节点的后裔节点的各节点相对独立。网中任一节点X均有一相应的条件概率表(ConditionalProbabilityTable,CPT),用以表示节点x在其父节点取各可能值时的条件概率。若节点x无父节点,则x的CPT为其先验概率分布。贝叶斯网的结构及各节点的CPT定义了网中各变量的概率分布。 贝叶斯网分类器即是用于分类工作的贝叶斯网。该网中应包含一表示分类的节点C,变量C的取值来自于类别集合{C,C,....,C}。另外还有一组节点x=(x,x,....,x)反映用于分类的特征,一个贝叶斯网分类器的结构可如图1所示。 对于这样的一贝叶斯网分类器,若某一待分类的样本D,其分类特征值为x=(x,x,....,x),则样本D属于类别C的概率为P(C=C|X=x),因而样本D属于类别C的条件是满足(1)式: P(C=C|X=x)=Max{P(C=C|X=x),P(C=C|X=x),...,P(C=C|X=x)}(1) 而由贝叶斯公式 P(C=C|X=x)=(2) 其中P(C=Ck)可由领域专家的经验得到,而P(X=x|C=Ck)和P(X=x)的计算则较困难。应用贝叶斯网分类器分成两阶段。一是贝叶斯网分类器的学习(训练),即从样本数据中构造分类器,包括结构(特征间的依赖关系)学习和CPT表的学习。二是贝叶斯网分类器的推理,即计算类结点的条件概率,对待分类数据进行分类。这两者的时间复杂性均取决于特征间的依赖程度,甚至可以是NP完全问题。因而在实际应用中,往往需

机器学习实验报告-朴素贝叶斯学习和分类文本

机器学习实验报告 朴素贝叶斯学习和分类文本 (2015年度秋季学期) 一、实验内容 问题:通过朴素贝叶斯学习和分类文本 目标:可以通过训练好的贝叶斯分类器对文本正确分类二、实验设计

实验原理与设计: 在分类(classification)问题中,常常需要把一个事物分到某个类别。一个事物具有很多属性,把它的众多属性看做一个向量,即x=(x1,x2,x3,…,xn),用x这个向量来代表这个事物。类别也是有很多种,用集合Y=y1,y2,…ym表示。如果x属于y1类别,就可以给x打上y1标签,意思是说x属于y1类别。 这就是所谓的分类(Classification)。x的集合记为X,称为属性集。一般X和Y 的关系是不确定的,你只能在某种程度上说x有多大可能性属于类y1,比如说x有80%的可能性属于类y1,这时可以把X和Y看做是随机变量,P(Y|X)称为Y的后验概率(posterior probability),与之相对的,P(Y)称为Y的先验概率(prior probability)1。在训练阶段,我们要根据从训练数据中收集的信息,对X和Y的每一种组合学习后验概率P(Y|X)。分类时,来了一个实例x,在刚才训练得到的一堆后验概率中找出所有的P(Y|x),其中最大的那个y,即为x所属分类。根据贝叶斯公式,后验概率为 在比较不同Y值的后验概率时,分母P(X)总是常数,因此可以忽略。先验概率P(Y)可以通过计算训练集中属于每一个类的训练样本所占的比例容易地估计。 在文本分类中,假设我们有一个文档d∈X,X是文档向量空间(document space),和一个固定的类集合C={c1,c2,…,cj},类别又称为标签。显然,文档向量空间是一个高维度空间。我们把一堆打了标签的文档集合作为训练样本,∈X×C。例如:={Beijing joins the World Trade Organization, China}对于这个只有一句话的文档,我们把它归类到China,即打上china标 签。 我们期望用某种训练算法,训练出一个函数γ,能够将文档映射到某一个类别:γ:X→C这种类型的学习方法叫做有监督学习,因为事先有一个监督者(我们事先给出了一堆打好标签的文档)像个老师一样监督着整个学习过程。朴素贝叶斯分类器是一种有监督学习。 实验主要代码: 1、 由于中文本身是没有自然分割符(如空格之类符号),所以要获得中文文本的特征变量向量首先需要对文本进行中文分词。这里采用极易中文分词组件

朴素贝叶斯分类器

朴素贝叶斯分类器 Naive Bayesian Classifier C语言实现 信息电气工程学院 计算本1102班 20112212465 马振磊

1.贝叶斯公式 通过贝叶斯公式,我们可以的知在属性F1-Fn成立的情况下,该样本属于分类C的概率。 而概率越大,说明样本属于分类C的可能性越大。 若某样本可以分为2种分类A,B。 要比较P(A | F1,F2......) 与P(B | F1,F2......)的大小只需比较,P(A)P(F1,F2......| A) ,与P(B)P(F1,F2......| B) 。因为两式分母一致。 而P(A)P(F1,F2......| A)可以采用缩放为P(A)P(F1|A)P(F2|A).......(Fn|A) 因此,在分类时,只需比较每个属性在分类下的概率累乘,再乘该分类的概率即可。 分类属性outlook 属性temperature 属性humidity 属性wind no sunny hot high weak no sunny hot high strong yes overcast hot high weak yes rain mild high weak yes rain cool normal weak no rain cool normal strong yes overcast cool normal strong no sunny mild high weak yes sunny cool normal weak yes rain mild normal weak yes sunny mild normal strong yes overcast mild high strong yes overcast hot normal weak no rain mild high strong 以上是根据天气的4种属性,某人外出活动的记录。 若要根据以上信息判断 (Outlook = sunny,Temprature = cool,Humidity = high,Wind = strong) 所属分类。 P(yes| sunny ,cool ,high ,strong )=P(yes)P(sunny|yes)P(cool |yes)P(high|yes)P(strong|yes)/K P(no| sunny ,cool ,high ,strong )=P(no)P(sunny|no)P(cool |no)P(high|no)P(strong|no)/K K为缩放因子,我们只需要知道两个概率哪个大,所以可以忽略K。 P(yes)=9/14 P(no)=5/14 P(sunny|yes)=2/9 P(cool|yes)=1/3 P(high|yes)=1/3 P(strong|yes)=1/3 P(sunny|no)=3/5 P(cool|no)=1/5 P(high|no)=4/5 P(strong|no)=3/5 P(yes| sunny ,cool ,high ,strong)=9/14*2/9*1/3*1/3*1/3=0.00529 P(no| sunny ,cool ,high ,strong )=5/14*3/5*1/5*4/5*3/5=0.20571 No的概率大,所以该样本实例属于no分类。

数据挖掘(8):朴素贝叶斯分类算法原理与实践

数据挖掘(8):朴素贝叶斯分类算法原理与实践 隔了很久没有写数据挖掘系列的文章了,今天介绍一下朴素贝叶斯分类算法,讲一下基本原理,再以文本分类实践。 一个简单的例子 朴素贝叶斯算法是一个典型的统计学习方法,主要理论基础就是一个贝叶斯公式,贝叶斯公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来。公式的右边是总结历史,公式的左边是预知未来,如果把Y看出类别,X看出特征,P(Yk|X)就是在已知特征X的情况下求Yk类别的概率,而对P(Yk|X)的计算又全部转化到类别Yk的特征分布上来。举个例子,大学的时候,某男生经常去图书室晚自习,发现他喜欢的那个女生也常去那个自习室,心中窃喜,于是每天买点好吃点在那个自习室蹲点等她来,可是人家女生不一定每天都来,眼看天气渐渐炎热,图书馆又不开空调,如果那个女生没有去自修室,该男生也就不去,每次男生鼓足勇气说:“嘿,你明天还来不?”,“啊,不知道,看情况”。然后该男生每天就把她去自习室与否以及一些其他情况做一下记录,用Y表示该女生是否去自习室,即Y={去,不去},X是跟去自修室有关联的一系列条件,比如当天上了哪门主课,蹲点统计了一段时间后,该男生打算今天不再蹲点,而是先预测一下她会不会去,现在已经知道了今天上了常微分方法这么主课,于是计算P(Y=去|常微分方

程)与P(Y=不去|常微分方程),看哪个概率大,如果P(Y=去|常微分方程) >P(Y=不去|常微分方程),那这个男生不管多热都屁颠屁颠去自习室了,否则不就去自习室受罪了。P(Y=去|常微分方程)的计算可以转为计算以前她去的情况下,那天主课是常微分的概率P(常微分方程|Y=去),注意公式右边的分母对每个类别(去/不去)都是一样的,所以计算的时候忽略掉分母,这样虽然得到的概率值已经不再是0~1之间,但是其大小还是能选择类别。 后来他发现还有一些其他条件可以挖,比如当天星期几、当天的天气,以及上一次与她在自修室的气氛,统计了一段时间后,该男子一计算,发现不好算了,因为总结历史的公式: 这里n=3,x(1)表示主课,x(2)表示天气,x(3)表示星期几,x(4)表示气氛,Y仍然是{去,不去},现在主课有8门,天气有晴、雨、阴三种、气氛有A+,A,B+,B,C五种,那么总共需要估计的参数有8*3*7*5*2=1680个,每天只能收集到一条数据,那么等凑齐1 680条数据大学都毕业了,男生打呼不妙,于是做了一个独立性假设,假设这些影响她去自习室的原因是独立互不相关的,于是 有了这个独立假设后,需要估计的参数就变为,(8+3+7+5)*2 = 46个了,而且每天收集的一条数据,可以提供4个参数,这样该男生就预测越来越准了。

作业1-贝叶斯分类器

作业1、BAYES分类器 算法1. %绘图,从多个视角观察上述3维2类训练样本 clear all; close all; N1=440; x1(1,:)=-1.7+0.9*randn(1,N1); % 1 类440 个训练样本,3 维正态分布 x1(2,:)= 1.6+0.7*randn(1,N1); x1(3,:)=-1.5+0.8*randn(1,N1); N2=400; x2(1,:)= 1.3+1.2*randn(1,N2); % 2 类400 个训练样本,3 维正态分布 x2(2,:)=-1.5+1.3*randn(1,N2); x2(3,:)= 1.4+1.1*randn(1,N2); plot3(x1(1,:),x1(2,:),x1(3,:),'*',x2(1,:),x2(2,:),x2(3,:),'o'); grid on; axis equal; axis([-5 5 -5 5 -5 5]); xlabel('x ');ylabel('y ');zlabel('z '); %假定2类的类条件概率分布皆为正态分布,分别估计2类的先验概率、均值向量、协方差矩阵 p1=N1/(N1+N2); % 1 类的先验概率 p2=N2/(N1+N2); % 2 类的先验概率 u1=sum(x1')/N1; % 1 类均值估计 u1=u1' for i=1:N1 xu1(:,i)=x1(:,i)-u1;end; e1=(xu1*xu1')/(N1-1) % 1 类协方差矩阵估计 u2=sum(x2')/N2; % 2 类均值估计 u2=u2' for i=1:N2 xu2(:,i)=x2(:,i)-u2;end; e2=(xu2*xu2')/(N2-1) % 2 类协方差矩阵估计 %求解2类的BAYES分类器的决策(曲)面,并绘图、从多个视角观察决策面 %bayse 概率概率分布函数 w10=-(1/2)*u1'*(inv(e1))*u1-0.5*log(det(e1))+log(0.52); w20=-(1/2)*u2'*(inv(e2))*u2-0.5*log(det(e2))+log(0.48); W1=-(0.5)*inv(e1); W2=-(0.5)*inv(e2); w1=inv(e1)*u1; w2=inv(e2)*u2; temp=-5:0.1:5; [x1,y1,z1]=meshgrid(temp,temp,temp); val=zeros(size(x1)); for k=1:(size(x1,1)^3) X=[x1(k),y1(k),z1(k)]';

贝叶斯分类多实例分析总结

用于运动识别的聚类特征融合方法和装置 提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号 中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集。 加速度信号 →时频域特征 →以聚类中心为基向量的线性方程组 →基向量的系数 →方差贡献率 →融合权重 基于特征组合的步态行为识别方法 本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将出现次数最多的类别赋予待识别的步态加速度信号。实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。 传感器 →样本及和步态加速度信号的特征向量作为训练集 →分类器具有分类步态行为的能力 基于贝叶斯网络的核心网故障诊断方法及系统 本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。本发明,利用贝叶斯网络分类器构建故障诊断系统,实现了对错综复杂的核心网故障进行智能化的系统诊断功能,提高了诊断的准确性和灵活性,并且该系统构建于网络管理系统之上,易于实施,对核心网综合信息处理具有广泛的适应性。 告警信息和故障类型 →训练集 —>贝叶斯网络分类器

统计学习_朴素贝叶斯分类器实验报告

作业6 编程题实验报告 (一)实验内容: 编程实现朴素贝叶斯分类器,假设输入输出都是离散变量。用讲义提供的训练数据进行试验,观察分类器在 121.x x m ==时,输出如何。如果在分类器中加入Laplace 平滑(取?=1) ,结果是否改变。 (二)实验原理: 1)朴素贝叶斯分类器: 对于实验要求的朴素贝叶斯分类器问题,假设数据条件独立,于是可以通过下式计算出联合似然函数: 12(,,)()D i i p x x x y p x y =∏ 其中,()i p x y 可以有给出的样本数据计算出的经验分布估计。 在实验中,朴素贝叶斯分类器问题可以表示为下面的式子: ~1*arg max ()()D i y i y p y p x y ==∏ 其中,~ ()p y 是从给出的样本数据计算出的经验分布估计出的先验分布。 2)Laplace 平滑: 在分类器中加入Laplace 平滑目的在于,对于给定的训练数据中,有可能会出现不能完全覆盖到所有变量取值的数据,这对分类器的分类结果造成一定误差。 解决办法,就是在分类器工作前,再引入一部分先验知识,让每一种变量去只对应分类情况与统计的次数均加上Laplace 平滑参数?。依然采用最大后验概率准则。 (三)实验数据及程序: 1)实验数据处理: 在实验中,所用数据中变量2x 的取值,对应1,2,3s m I === 讲义中所用的两套数据,分别为cover all possible instances 和not cover all possible instances 两种情况,在实验中,分别作为训练样本,在给出测试样本时,输出不同的分类结果。 2)实验程序: 比较朴素贝叶斯分类器,在分类器中加入Laplace 平滑(取?=1)两种情况,在编写matlab 函数时,只需编写分类器中加入Laplace 平滑的函数,朴素贝叶斯分类器是?=0时,特定的Laplace 平滑情况。 实现函数:[kind] =N_Bayes_Lap(X1,X2,y,x1,x2,a) 输入参数:X1,X2,y 为已知的训练数据; x1,x2为测试样本值; a 为调整项,当a=0时,就是朴素贝叶斯分类器,a=1时,为分类器中加入Laplace 平滑。 输出结果:kind ,输出的分类结果。

iris数据集的贝叶斯分类

IRIS 数据集的Bayes 分类实验 一、 实验原理 1) 概述 模式识别中的分类问题是根据对象特征的观察值将对象分到某个类别中去。统计决策理论是处理模式分类问题的基本理论之一,它对模式分析和分类器的设计有着实际的指导意义。 贝叶斯(Bayes )决策理论方法是统计模式识别的一个基本方法,用这个方法进行分类时需要具备以下条件: 各类别总体的分布情况是已知的。 要决策分类的类别数是一定的。 其基本思想是:以Bayes 公式为基础,利用测量到的对象特征配合必要的先验信息,求出各种可能决策情况(分类情况)的后验概率,选取后验概率最大的,或者决策风险最小的决策方式(分类方式)作为决策(分类)的结果。也就是说选取最有可能使得对象具有现在所测得特性的那种假设,作为判别的结果。 常用的Bayes 判别决策准则有最大后验概率准则(MAP ),极大似然比准则(ML ),最小风险Bayes 准则,Neyman-Pearson 准则(N-P )等。 2) 分类器的设计 对于一个一般的c 类分类问题,其分类空间: {}c w w w ,,,21 =Ω 表特性的向量为: ()T d x x x x ,,,21 = 其判别函数有以下几种等价形式: a) ()()i j i w w i j c j w w x w P x w P ∈→≠=∈→>,且,,,2,11 , b) ()()() ()i j j i w w i j c j w P w x p w P w x p ∈→≠=>,且,,,2,1i c) ()() () ()()i i j j i w w i j c j w P w P w x p w x p x l ∈→≠=>=,且,,,2,1 d) ()()() ()i j j i i w w i j c j w P w x np w P w x p ∈→≠=+>+,且,,,2,1ln ln ln 3) IRIS 数据分类实验的设计

朴素贝叶斯分类的改进

朴素贝叶斯分类器的改进 摘要:朴素贝叶斯分类器是一种简单而高效的分类器,但是它的属性独立性假设使其无法表示现实世界属性之间的依赖关系,以及它的被动学习策略,影响了它的分类性能。本文从不同的角度出发,讨论并分析了三种改进朴素贝叶斯分类性能的方法。为进一步的研究打下坚实的基础。 关键词:朴素贝叶斯;主动学习;贝叶斯网络分类器;训练样本;树增广朴素贝叶斯 1 问题描述 随着计算机与信息技术的发展,人类获取的知识和能够及时处理的数据之间的差距在加大,从而导致了一个尴尬的境地,即“丰富的数据”和“贫乏的知识”并存。在数据挖掘技术中,分类技术能对大量的数据进行分析、学习,并建立相应问题领域中的分类模型。分类技术解决问题的关键是构造分类器。分类器是一个能自动将未知文档标定为某类的函数。通过训练集训练以后,能将待分类的文档分到预先定义的目录中。常用的分类器的构造方法有决策树、朴素贝叶斯、支持向量机、k近邻、神经网络等多种分类法,在各种分类法中基于概率的贝叶斯分类法比较简单,在分类技术中得到了广泛的应用。在众多的分类器的构造方法与理论中,朴素贝叶斯分类器(Naive Bayesian Classifiers)[1]由于计算高效、精确度高。并具有坚实的理论基础而得到了广泛的应用。文献朴素贝叶斯的原理、研究成果进行了具体的阐述。文章首先介绍了朴素贝叶斯分类器,在此基础上分析所存在的问题。并从三个不同的角度对朴素贝叶斯加以改进。 2 研究现状 朴素贝叶斯分类器(Na?ve Bayesian Classifier)是一种基于Bayes理论的简单分类方法,它在很多领域都表现出优秀的性能[1][2]。朴素贝叶斯分类器的“朴素”指的是它的条件独立性假设,虽然在某些不满足独立性假设的情况下其仍然可能获得较好的结果[3],但是大量研究表明此时可以通过各种方法来提高朴素贝叶斯分类器的性能。改进朴素贝叶斯分类器的方式主要有两种:一种是放弃条件独立性假设,在NBC的基础上增加属性间可能存在的依赖关系;另一种是重新构建样本属性集,以新的属性组(不包括类别属性)代替原来的属性组,期望在新的属性间存在较好的条件独立关系。 目前对于第一种改进方法研究得较多[2][4][5]。这些算法一般都是在分类精度和算法复杂度之间进行折衷考虑,限制在一定的范围内而不是在所有属性构成的完全网中搜索条件依赖关系。虽然如

朴素贝叶斯分类算法代码实现

朴素贝叶斯分类算法 一.贝叶斯分类的原理 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是最小错误率意义上的优化。 贝叶斯分类器是用于分类的贝叶斯网络。该网络中应包含类结点C,其中C 的取值来自于类集合( c1 , c2 , ... , cm),还包含一组结点X = ( X1 , X2 , ... , Xn),表示用于分类的特征。对于贝叶斯网络分类器,若某一待分类的样本D,其分类特征值为x = ( x1 , x2 , ... , x n) ,则样本D 属于类别ci 的概率P( C = ci | X1 = x1 , X2 = x 2 , ... , Xn = x n) ,( i = 1 ,2 , ... , m) 应满足下式: P( C = ci | X = x) = Max{ P( C = c1 | X = x) , P( C = c2 | X = x ) , ... , P( C = cm | X = x ) } 贝叶斯公式: P( C = ci | X = x) = P( X = x | C = ci) * P( C = ci) / P( X = x) 其中,P( C = ci) 可由领域专家的经验得到,而P( X = x | C = ci) 和P( X = x) 的计算则较困难。 二.贝叶斯伪代码 整个算法可以分为两个部分,“建立模型”与“进行预测”,其建立模型的伪代码如下: numAttrValues 等简单的数据从本地数据结构中直接读取 构建几个关键的计数表 for(为每一个实例) { for( 每个属性 ){ 为 numClassAndAttr 中当前类,当前属性,当前取值的单元加 1 为 attFrequencies 中当前取值单元加 1 } } 预测的伪代码如下: for(每一个类别){ for(对每个属性 xj){ for(对每个属性 xi){

相关文档
最新文档