钢管许用应力

钢管许用应力
钢管许用应力

常用钢材化学成分及力学性能

01.碳素钢板

(一)Q235-A.F钢

(二)Q235-A钢板

(三)Q235-B钢板

(四)Q235-C钢板

(五)20HP钢板

(六)15MnHP钢板

(七)20R钢板

02.低合金高强度钢板(一)16MnR钢板

15MnVR

(三)15MnVNR钢板

(四)18MnMoNbR钢板

(五)13MnNiMoNbR钢板

03.低温钢板

(一)16MnDR钢板

(二)09Mn2VDR钢板

(三)15MnNiDR钢板

(四)09MnNiDR钢板

(五)07MnNiCrMoVDR钢板

04.中温抗氢钢板(一)15CrMoR钢板

(二)12Cr2Mo1R钢板

05.不锈钢板

(一)0Cr13钢板

(二)0Cr18Ni9钢板

(三)1Cr18Ni9Ti钢板

(四)0Cr18Ni10Ti钢板

(五)0Cr17Ni12Mo2钢板

(六)0Cr18Ni12Mo2Ti钢板

(七)0Cr19Ni13Mo3钢板

( 八)00Cr19Ni10钢板

(九)00Cr17Ni14Mo2钢板

(十)00Cr19Ni13Mo3钢板

(十一)00Cr18Ni5Mo3Si2钢板

(十二)铁素体型或马素体型钢板

(十三)奥氏体型钢管

(十四)奥氏体--铁素体型钢板

各种许用应力与抗拉强度、屈服强度的关系

各种许用应力与抗拉强度、屈服强度的关系 我们在设计的时候常取许用剪切应力,在不同的情况下安全系数不同,许用剪切应力就不一样。校核各种许用应力常常与许用拉应力有联系,而许用材料的屈服强度(刚度)与各种应力关系如下: <一> 许用(拉伸)应力 钢材的许用拉应力[δ]与抗拉强度极限、屈服强度极限的关系: 1.对于塑性材料[δ]= δs /n 2.对于脆性材料[δ]= δb /n δb ---抗拉强度极限 δs ---屈服强度极限 n---安全系数 轧、锻件n=1.2-2.2 起重机械n=1.7 人力钢丝绳n=4.5 土建工程n=1.5 载人用的钢丝n=9 螺纹连接n=1.2-1.7 铸件n=1.6-2.5 一般钢材n=1.6-2.5 注:脆性材料:如淬硬的工具钢、陶瓷等。 塑性材料:如低碳钢、非淬硬中炭钢、退火球墨铸铁、铜和铝等。 <二> 剪切 许用剪应力与许用拉应力的关系: 1.对于塑性材料[τ]=0.6-0.8[δ] 2.对于脆性材料[τ]=0.8-1.0[δ] <三> 挤压 许用挤压应力与许用拉应力的关系 1.对于塑性材料[δj]=1.5- 2.5[δ]

2.对于脆性材料[δj]=0.9-1.5[δ] 注:[δj]=1.7-2[δ](部分教科书常用) <四> 扭转 许用扭转应力与许用拉应力的关系: 1.对于塑性材料[δn]=0.5-0.6[δ] 2.对于脆性材料[δn]=0.8-1.0[δ] 轴的扭转变形用每米长的扭转角来衡量。对于一般传动可取[φ]=0.5°--1°/m;对于精密件,可取[φ]=0.25°-0.5°/m;对于要求不严格的轴,可取[φ]大于1°/m计算。 <五> 弯曲 许用弯曲应力与许用拉应力的关系: 1.对于薄壁型钢一般采取用轴向拉伸应力的许用值 2.对于实心型钢可以略高一点,具体数值可参见有关规范。

管道培训材料3doc-管道应力

3 管道应力 3.1 石油化工管道应力分析常用规范、标准有哪些? 答:石油化工管道应力分析常用规范、标准有: (1)《工业金属管道设计规范》(国标报批稿); (2)《石油化工企业管道柔性设计规范》(SHJ41-91); (3)《石油化工企业非埋地管道抗震设计通则》(SHJ39-91); (4)《石油化工企业管道设计器材选用通则》(SH3059-94); (5)《石油化工企业管道支吊架设计规范》(SH3073-95); (6) 化工管道设计规范(HG20695-1987); (7) 化工部设计标准《管架标准图》(HG/T21629-1991)。 3.2 管道应力分析主要包括哪些内容?各种分析的目的是什么? 答:管道应力分析分为静力分析和动力分析。 静力分析包括: (1) 压力荷载和持续荷载作用下的一次应力计算—防止塑性变形破坏; (2) 管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算—防止疲劳破坏; (3) 管道对设备作用力的计算—防止作用力太大,保证设备正常运行; (4) 管道支吊架的受力计算—为支吊架设计提供依据; (5) 管道上法兰的受力计算—防止法兰泄漏。 动力分析包括: (1) 管道自振频率分析—防止管道系统共振; (2) 管道强迫振动响应分析—控制管道振动及应力; (3) 往复压缩机(泵)气(液)柱频率分析—防止气柱共振; (4) 往复压缩机(泵)压力脉动分析—控制压力脉动值。 3.3 管道上可能承受的荷载有哪些? 答:管道上可能承受的荷载有: (1) 重力荷载,包括管道自重、保温重、介质重和积雪重等; (2) 压力荷载,压力荷载包括内压力和外压力; (3) 位移荷载,位移荷载包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4) 风荷载; (5) 地震荷载; (6) 瞬变流冲击荷载,如安全阀启跳或阀门的快速启闭时的压力冲击; (7) 两相流脉动荷载; (8) 压力脉动荷载,如往复压缩机往复运动所产生的压力脉动;

钢管许用应力

钢管许用应力 钢管壁厚表示方法有管子表号、钢管壁厚尺寸和管子重量三种方法 Sch10s、Sch40s、Sch80s四个等级; 2)以钢管壁厚尺寸表示? 中国、ISO、日本部分钢管标准采用 3)是以管子重量表示管壁厚度,它将管子壁厚分为三种: A.标准重量管,以STD表示 B.加厚管,以XS表示 C.特厚管,以XXS表示。 对于DN≤250mn的管子,Sch40相当于STD,DN<200mm的管子,Sch80相当于XS。补充: 1、以管子表号(Sch.)表示壁厚系列 这是1938年美国国家怔准协会ANSIB36.10(焊接和无缝钢管)标准所规定的。 管子表号(Sch.)是设计压力与设计温度下材料的许用应力的比值乘以1000,并经圆 整后的数值。即 ????? Sch .=P/[ó]t×1000??? (1-2-1) 式中? P—设计压力,MPa;?? ????????? [ó]t—设计温度下材料的许用应力,MPa。 无缝钢管与焊接钢管的管子表号可查资料确定。 ANSI B36.10和JIS标准中的管子表号为;Sch10、20、30、40、60、80、100、120、140、160。 ANSI B36.19中的不锈钢管管子表号为:5S、10S、40S、80S。 ??? 管表号(Sch.)并不是壁厚,是壁厚系列。实际的壁厚,同一管径,在不同的管子表

号中其厚度各异。不同管子表号的管壁厚度,在美国和日本是应用计算承受内压薄壁管厚度 的Barlow公式计算并考虑了腐蚀裕量和螺纹深度及壁厚负偏差-12.5%之后确定的,如公式 (1-2-2)和(1-2-3)所示。??? tB=D0P/2[ó]t??????? (1-2-2)??????????????? t=[D0/2(1-0.125)×P/[ó]t]+2.54??? (1-2-3) 式中? tB 、t——分别表示理论和计算壁厚,mm D0————管外径,mm P——设计压力,MPa [ó]t——在设计温度下材料的许用压力,MPa 计算壁厚径圆整后才是实际的壁厚。 如果已知钢管的管子表号,可根据式(1-2-1)计算出该钢管所能适应的设计压力,即 ????? P=Sch..× [ó]t/1000??????????????? (1-2-4) 例如,Sch40,碳素钢20无缝钢管,当设计温度为350oC时给钢管所能适应 设计压力为: P=40×92/1000①=3.68 MPa 中国石化总公司标准SHJ405规定了无缝钢管的壁厚系列并Sch.5S②,? Sch.10, Sch.10s,Sch.20,Sch.20s,Sch.30,Sch.40,Sch。40s,Sch.60,Sch.80,Sch.100, Sch.120,Sch.140,Sch。160,如表1-2-9所示。 2、以管子重量表示管壁厚度的壁厚系列 美国MSS和ANSI规定的以管子重量表示壁厚方法,将管子壁厚分为;种: ??? (1)标准重量管以STD表示;

钢铁材料的许用应力

表1 普通碳钢及优质碳钢构件基本许用应力/MPa 材 料类型材料 标号 截面尺寸 /mm 热处 理 材料性能拉压弯曲扭转剪切 抗拉强度σb 屈服强度σs /MPa ⅠⅡⅢⅠⅡⅢⅠⅡⅢⅠⅡⅢ σlσlσlστnτnτnτττ 普通碳钢Q215 100 热 扎 σb335~410 σs185~215 145 125 90 175 95 90 60 100 90 60 Q235 σb375~460 σs205~235 160 140 100 190 160 120 105 σσ110 100 70 Q275 σb490~610 σs235~275 175 150 110 210 170 130 115 140 105 120 110 80 优质碳钢20 ≤100 正 火 σb410 σs245 175 145 105 210 165 125 115 105 70 120 105 75 25 σb450 σs275 195 160 115 230 175 135 125 115 75 135 120 80 35 σb530 σs315 210 180 125 250 200 150 135 120 80 145 120 85 调质σb550~750 σs320~370 210 185 130 250 205 155 135 125 85 145 120 85 45 正火σb600 σs355 230 200 145 270 220 170 150 135 90 160 140 95 调质σb630~800 σs370~430 250 215 150 300 235 180 160 150 100 175 150 100 50 ≤25 正火σb630 σs375 250 215 150 300 235 180 160 150 100 175 150 100 ≤100 调质σb>700 σs>400 265 235 165 310 260 195 170 155 105 180 160 110

钢管应力计算

第一章总则 第1.0.1条管道应力计算的任务是:验算管道在内压、自重和其它外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力,以判明所计算的管道是否安全、经济、合理以及管道对设备的推力和力矩是否在设备所能安全承受的范围内。 第1.0.2条本规定适用于以低碳钢、低合金钢和高铬钢为管材的火力发电厂汽水管道的应力计算。 油、空气介质的管道应力计算,可参照本规定执行。 核电站常规岛部分管道应力计算,可参照本规定执行。 第1.0.3条管道的热胀应力按冷热态的应力范围验算。管道对设备的推力和力矩按在冷状态下和在工作状态下可能出现的最大值分别进行验算。 第1.0.4条恰当的冷紧可减少管道运行初期的热态应力和管道对端点的热态推力,并可减少管系的局部过应变。冷紧与验算的应力范围无关。 第1.0.5条进行管系的挠性分析时,可假定整个管系为弹性体。 第1.0.6条使用本规定进行计算的管道,其设计还应遵守《火力发电厂汽水管道设计技术规定》。管道零件和部件的结构、尺寸、加工等,应符合《火力发电厂汽水管道零件及部件典型设计》的要求。

第二章 钢材的许用应力 第2.0.1条 钢材的许用应力,应根据钢材的有关强度特性取下列三项中的最小值: σ b 20/3,σs t /1.5或σs t (0.2%)/1.5,σD t /1.5 其中 σb 20——钢材在20℃时的抗拉强度最小值(MPa ); σs t ——钢材在设计温度下的屈服极限最小值(MPa ); σ s t (0.2%)——钢材在设计温度下残余变形为0.2%时的屈服极限最小值(MPa ); σD t ——钢材在设计温度下105h 持久强度平均值。 常用钢材的许用应力数据列于附录A 。 国产常用钢材和附表中所列的德国钢材的许用应力按本规定的安全系数确定。 美国钢材的许用应力摘自美国标准ASME B31.1。 对于未列入附录A 的钢材,如符合有关技术条件可作为汽水管道的管材时,它的许用应力仍按本规定计算。

常用钢管标准比较

一.焊接钢管 在目前的石油化工生产装置中,大量使用的是无缝钢管,而焊接管子仅在一些介质条件比较低或者因管子直径比较大而无无缝方法供货的情况下才使用焊接钢管,这是因为焊接钢管质量比较差的缘故。随着现代工业技术的发展,焊接钢管的生产技术水平和质量在不断的提高,其应用范围也在不断地扩大。焊接钢管与无缝钢管相比,其价格便宜,材料利用率高,尺寸偏差小,设备投资也较少,尤其是在大直径(DN≥600)钢管的生产上,无缝钢管的生产已经比较困难。因此,目前新建的或改建的石油化工生产装置中,焊接钢管应用的越来越多,尤其是对一些不锈钢应用较多的装置,采用焊接钢管代替无缝钢管,投资可以节省1/4,这对工程建设者来说无异是一个较大的吸引力。 目前,常用的焊接钢管根据其生产时采用的焊接工艺不同可以分为连续护焊(锻焊)钢管、电阻焊钢管和电弧焊钢管三种。 1.连续护焊(锻焊)钢管 连续护焊(锻焊)钢管是在加热炉内对钢带进行加热,然后对已成型的边缘采用进行加压方法使其焊接在一起而形成的具有一条直缝的钢管。其特点是生产效率高,生产成本低,但焊接接头冶金结合不完全,焊缝质量差,综合机械性能差。目前护焊管在压力管道中仅用于水和压缩空气系统。 GB/T3091《低压流体输送用镀锌焊接钢管》、GB/T3092《低压流体输送用焊接钢管》标准的钢管一般为护焊钢管(有时也用电阻焊制造),它们除了流体输送用钢管的必检项目外,只附加了弯曲试验要求,故此类管子的制造、检验要求是比较低的。它们的规格范围为1/8”~6”,壁厚有普通级的和加厚级两种,材料牌号有Q195A、215QA、Q235A三种,适用于设计温度为0℃~100℃、设计压力不超过0.6MPa的水和压缩空气系统。 当输送介质为仪表用净化压缩空气时,因为仪表驱动芯子孔径比较小,若有较小的固体杂质进入就会引起操作故障,因此它采用的管子应为符合GB/T3091标准的镀锌管,而且其管道组成件应是螺纹连接而不是焊接。实际上这点是很难做到的,因为DN≥50的管子及其元件均采用螺纹连接是不合适的。通常,将仪表用净化压缩空气输送用的干管(一般DN≥50)采用无缝钢管,连接为焊接,而支管(一般DN≤40)则采用镀锌管,且支管从干管的上部引出,这样处理的结果基本上能保证仪表用净化压缩空气的干净度要求。 2.电阻焊钢管 电阻焊钢管是通过电阻焊和电感应焊接方法生产的、带有一条直焊缝的钢管,其特点是生产效率高,自动化程度高,焊接时不需要焊条和焊药,对母材损伤小,焊后的变形和残余应力也较小。但它的生产设备较复杂,设备投资高,对焊接接头的表面质量要求也比较高。由于接头处难免有杂质存在,所以接头处的塑性和冲击韧性较低,不宜用于高温高温情况下和重要场合。一般规定电阻焊钢管应使用在不超过200℃的名情况下。 常用的电阻焊钢管标准有SY/T5038《普通流体输送用螺旋缝高频焊钢管》等。SY/T5038标准的规格范围为DN150~DN500,壁厚从4.0mm~10mm共9种规格,材料牌号有Q195、Q215、Q235三种,适用介质为水、煤气、空气、采暖蒸汽等普通流体。 3.电弧焊钢管 电弧焊钢管是采用电弧焊焊接方法生产的钢管,它的特点是焊接接头达到完全的冶金结合,接头的机械性能能够完全达到或接近母材的机械性能。在经过适当的热处理和无损检查之后,电弧焊直缝钢管的使用条件可以达到无缝钢管的使用条件而取代无缝钢管。 根据焊缝形式的不同,电弧焊钢管可分为直缝管和螺旋焊缝管两种。根据焊接时采取的保护方法的不同,电弧焊钢管又可分为埋弧焊钢管融化极气体保护焊钢管两种。 螺旋缝焊接钢管是在焊接过程中,焊枪和焊缝处于旋转运动和直线运动结合的相对运动中,其焊缝呈螺旋形。与直缝钢管相比,其焊缝线度长,而且焊缝的受力为二维拉应力。

钢管许用应力

钢管许用应力Last revision on 21 December 2020

钢管许用应力 钢管壁厚表示方法有管子表号、钢管壁厚尺寸和管子重量三种方法 Sch10s、Sch40s、Sch80s四个等级; 2)以钢管壁厚尺寸表示中国、ISO、日本部分钢管标准采用 3)是以管子重量表示管壁厚度,它将管子壁厚分为三种: A.标准重量管,以STD表示 B.加厚管,以XS表示 C.特厚管,以XXS表示。 对于DN≤250mn的管子,Sch40相当于STD,DN<200mm的管子,Sch80相当于XS。补充: 1、以管子表号(Sch.)表示壁厚系列 这是1938年美国国家怔准协会(焊接和无缝钢管)标准所规定的。 管子表号(Sch.)是设计压力与设计温度下材料的许用应力的比值乘以1000,并经圆整后的数值。即 Sch .=P/[ó]t×1000 (1-2-1) 式中 P—设计压力,MPa; [ó]t—设计温度下材料的许用应力,MPa。 无缝钢管与焊接钢管的管子表号可查资料确定。 ANSI 和JIS标准中的管子表号为;Sch10、20、30、40、60、80、100、120、140、160。 ANSI 中的不锈钢管管子表号为:5S、10S、40S、80S。 管表号(Sch.)并不是壁厚,是壁厚系列。实际的壁厚,同一管径,在不同的管子表

号中其厚度各异。不同管子表号的管壁厚度,在美国和日本是应用计算承受内压薄壁管厚度 的Barlow公式计算并考虑了腐蚀裕量和螺纹深度及壁厚负偏差-12.5%之后确定的,如公式 (1-2-2)和(1-2-3)所示。 tB=D0P/2[ó]t (1-2-2) t=[D0/2()×P/[ó]t]+ (1-2-3) 式中 tB 、t——分别表示理论和计算壁厚,mm D0————管外径,mm P——设计压力,MPa [ó]t——在设计温度下材料的许用压力,MPa 计算壁厚径圆整后才是实际的壁厚。 如果已知钢管的管子表号,可根据式(1-2-1)计算出该钢管所能适应的设计压力,即 P=Sch..× [ó]t/1000 (1-2-4) 例如,Sch40,碳素钢20无缝钢管,当设计温度为350oC时给钢管所能适应 设计压力为: P=40×92/1000①= MPa 中国石化总公司标准SHJ405规定了无缝钢管的壁厚系列并Sch.5S②, Sch.10, Sch.10s,Sch.20,Sch.20s,Sch.30,Sch.40,Sch。40s,Sch.60,Sch.80,Sch.100, Sch.120,Sch.140,Sch。160,如表1-2-9所示。 2、以管子重量表示管壁厚度的壁厚系列 美国MSS和ANSI规定的以管子重量表示壁厚方法,将管子壁厚分为;种: (1)标准重量管以STD表示;

钢管压力标准

钢管压力标准 钢管压力标准 压力管道的组成件一般都是标准件,因此压力管道组成件的设计主要是其标准件的选用,管道压力等级的确定也就 是其标准件等级的确定。 管道的压力等级包括两部分: 以公称压力表示的标准管件的公称压力等级; 以壁厚等级表示的的标准管件的壁厚等级。 管道的压力等级:通常把管道中由标准管件的公称压力等级和壁厚等级共同确定的能反映管道承压特性的参数叫做 管道的压力等级。而习惯上为简化描述,常把管道中管件的公称压力等级叫做管道的压力等级。 压力等级的确定是压力管道设计的基础,也是设计的核心。它是压力管道布置、压力管道应力校核的设计前提条件, 也是影响压力管道基建投资和管道可靠性的重要因素。 5.1 设计条件 工程上,工艺操作参数不宜直接作为压力管道的设计条件,要考虑工艺操作的波动、相连设备的影响、环境的影响等因素,而在工艺操作参数的基础上给出一定的安全裕量作为设计条件。这里所说的设计条件主要是指设计压力和设计温 度。 管道的设计压力:应不低于正常操作时,由内压( 或外压)与温度构成的最苛刻条件下的压力。 最苛刻条件:是指导致管子及管道组成件最大壁厚或最高公称压力等级的条件。 设计压力确定:考虑介质的静液柱压力等因素的影响,设计压力一般应略高于由(或)外压与温度构成的最苛刻条件 下的最高工作压力。 a. 一般情况下管道元件的设计压力确定 一般情况下,为了操作上的方便,在此不妨采用压力容器的做法,即在相应工作压力的基础上增加一个裕度系数。 表5-1 一般情况下管道元件的设计压力确定

b. 管道中有安全泄压装置时, 管道中有安全泄压装置时预示着该管道在运行过程中有出现超出其正常操作压力的可能。设置安全泄压装置(如安全阀、爆破片等)的目的,就是在系统中出现超出其正常操作压力的情况时,能将压力自动释放而使设备、管道等系统的硬件得到保护。此时管道的设计压力应不低于安全泄压装置的设定压力。 c. 管道中有高扬程的泵 对于高扬程的泵,尤其是往复泵,在开始启动的短时间内,往往会在第一道切断阀之前的管道和泵内产生一个较高的封闭压力,有时这个封闭压力会达到一个很大的值。此时泵的出口管道,其设计压力应取泵的最大封闭压力值。 D. 真空系统 真空系统管道承受的压力就是其外部的大气压力,故其设计压力应取0.1MPa外压; e. 与塔或容器等设备相连的管道 与塔或容器等设备相连的管道其设计压力应不低于所连设备的设计压力。当管道内有较高的液体液柱时,还应考虑该液体静压头的影响。事实上,对于管道来说,其受力要比设备复杂,这是因为它除受介质载荷之外,还往往遭受到由于管道的热胀冷缩而产生的管系力等。因此,管道的设计压力一般应不低于设备的设计压力。 5.1.2设计温度

材料的许用应力和安全系数

第四节 许用应力·安全系数·强度条件 由脆性材料制成的构件,在拉力作用下,当变形很小时就会突然断裂,脆性材料断裂时的应力即强度极限σb ;塑性材料制成的构件,在拉断之前已出现塑性变形,在不考虑塑性变形力学设计方法的情况下,考虑到构件不能保持原有的形状和尺寸,故认为它已不能正常工作,塑性材料到达屈服时的应力即屈服极限σs 。脆性材料的强度极限σb 、塑性材料屈服极限σs 称为构件失效的极限应力。为保证构件具有足够的强度,构件在外力作用下的最大工作应力必须小于材料的极限应力。在强度计算中,把材料的极限应力除以一个大于1的系数n (称为安全系数),作为构件工作时所允许的最大应力,称为材料的许用应力,以[σ]表示。对于脆性材料,许用应力 b b n σσ=][ (5-8) 对于塑性材料,许用应力 s s n σσ=][ (5-9) 其中b n 、s n 分别为脆性材料、塑性材料对应的安全系数。 安全系数的确定除了要考虑载荷变化,构件加工精度不同,计算差异,工作环境的变化等因素外,还要考虑材料的性能差异(塑性材料或脆性材料)及材质的均匀性,以及构件在设备中的重要性,损坏后造成后果的严重程度。 安全系数的选取,必须体现既安全又经济的设计思想,通常由国家有关部门制订,公布在有关的规范中供设计时参考,一般在静载下,对塑性材料可取0.2~5.1=s n ;脆性材料均匀性差,且断裂突然发生,有更大的危险性,所以取0.5~0.2=b n ,甚至取到5~9。 为了保证构件在外力作用下安全可靠地工作,必须使构件的最大工作应力小于材料的许用应力,即 ][max max σσ≤=A N (5-10) 上式就是杆件受轴向拉伸或压缩时的强度条件。根据这一强度条件,可以进行杆件如下三方

钢管许用应力

钢管许用应力 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

钢管许用应力 钢管壁厚表示方法有管子表号、钢管壁厚尺寸和管子重量三种方法 Sch10s、Sch40s、Sch80s四个等级; 2)以钢管壁厚尺寸表示中国、ISO、日本部分钢管标准采用 3)是以管子重量表示管壁厚度,它将管子壁厚分为三种: A.标准重量管,以STD表示 B.加厚管,以XS表示 C.特厚管,以XXS表示。 对于DN≤250mn的管子,Sch40相当于STD,DN<200mm的管子,Sch80相当于XS。 补充: 1、以管子表号(Sch.)表示壁厚系列 这是1938年美国国家怔准协会(焊接和无缝钢管)标准所规定的。 管子表号(Sch.)是设计压力与设计温度下材料的许用应力的比值乘以1000,并经圆 整后的数值。即 Sch .=P/[ó]t×1000 (1-2-1) 式中 P—设计压力,MPa; [ó]t—设计温度下材料的许用应力,MPa。 无缝钢管与焊接钢管的管子表号可查资料确定。 ANSI 和JIS标准中的管子表号为;Sch10、20、30、40、60、80、100、120、140、160。 ANSI 中的不锈钢管管子表号为:5S、10S、40S、80S。

管表号(Sch.)并不是壁厚,是壁厚系列。实际的壁厚,同一管径,在不同的管子表 号中其厚度各异。不同管子表号的管壁厚度,在美国和日本是应用计算承受内压薄壁管厚度 的Barlow公式计算并考虑了腐蚀裕量和螺纹深度及壁厚负偏差-12.5%之后确定的,如公式 (1-2-2)和(1-2-3)所示。 tB=D0P/2[ó]t (1-2-2) t=[D0/2()×P/[ó]t]+ (1-2-3) 式中 tB 、t——分别表示理论和计算壁厚,mm D0————管外径,mm P——设计压力,MPa [ó]t——在设计温度下材料的许用压力,MPa 计算壁厚径圆整后才是实际的壁厚。 如果已知钢管的管子表号,可根据式(1-2-1)计算出该钢管所能适应的设计压力,即 P=Sch..× [ó]t/1000 (1-2-4) 例如,Sch40,碳素钢20无缝钢管,当设计温度为350oC时给钢管所能适应 设计压力为: P=40×92/1000①= MPa 中国石化总公司标准SHJ405规定了无缝钢管的壁厚系列并Sch.5S②, Sch.10, Sch.10s,Sch.20,Sch.20s,Sch.30,Sch.40,Sch。40s,Sch.60,Sch.80,Sch.100,

钢材安全系数与许用应力

安全系数与许用应力 由于各种原因使结构丧失其正常工作能力的现象,称为失效。工程材料失效的两种形式为: (1)塑性屈服,指材料失效时产生明显的塑性变形,并伴有屈服现象。如低碳钢、铝合金等塑性材料。 (2)脆性断裂,材料失效时几乎不产生塑性变形而突然断裂。如铸铁、混凝土等脆断材料。 许用应力:保证构件安全可靠工作所容许的最大应力值。 对于塑性材料,进入塑性屈服时的应力取屈服极限,对于某些无明显屈服平台的合金材料取,则危险应力或;对于脆性材料:断裂时的应力是强度极限,则。 构件许用应力用表示,则工程上一般取 塑性材料:; 脆性材料: 分别为塑性材料和脆性材料的安全系数。

表1 常用金属材料拉伸和压缩时的机械性质(常温、静载) 材料名称 牌号 屈服点s σ 2 (kgf /cm ) 抗拉强度b σ 2 (kgf /cm ) 抗压强度c σ 2 (kgf /cm ) 伸长率s ε % 用途 普通碳素钢 (GB700-65) A3 240 (2400) 380~470 (3800~4700) 25~27 金属结构构 件,普通零 件 A5 280 (2800) 500~620 (5000~6200) 19~21 同上 优质碳素钢 45 360 (3600) 610 (6100) 16 强度要求 较高的零 件, 齿轮、轴等 50 390 (3900) 660 (6600) 13 齿轮、连杆、轮缘 扁弹簧、轧辊等 普通低合金钢 16Mn 280~350 (2800~3500) 480~520 (4800~5200) 19~21 建筑结构、起重 设备、容器、 造船、矿山机械 15MnV 340~420 (3400~4200) 500~560 (5000~5600) 17~19 中高压容器、 车辆、 桥梁、 起重机 材料名称 牌号 屈服点s σ 抗拉强度b σ 抗压强度c σ 伸长率s ε 用途

钢管许用应力

钢管许用应力 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

钢管许用应力 钢管壁厚表示方法有管子表号、钢管壁厚尺寸和管子重量三种方法 Sch10s、Sch40s、Sch80s四个等级; 2)以钢管壁厚尺寸表示中国、ISO、日本部分钢管标准采用 3)是以管子重量表示管壁厚度,它将管子壁厚分为三种: A.标准重量管,以STD表示 B.加厚管,以XS表示 C.特厚管,以XXS表示。 对于DN≤250mn的管子,Sch40相当于STD,DN<200mm的管子,Sch80相当于XS。补充: 1、以管子表号(Sch.)表示壁厚系列 这是1938年美国国家怔准协会(焊接和无缝钢管)标准所规定的。 管子表号(Sch.)是设计压力与设计温度下材料的许用应力的比值乘以1000,并经圆整后的数值。即 Sch .=P/[ó]t×1000 (1-2-1) 式中 P—设计压力,MPa; [ó]t—设计温度下材料的许用应力,MPa。 无缝钢管与焊接钢管的管子表号可查资料确定。 ANSI 和JIS标准中的管子表号为;Sch10、20、30、40、60、80、100、120、140、160。 ANSI 中的不锈钢管管子表号为:5S、10S、40S、80S。 管表号(Sch.)并不是壁厚,是壁厚系列。实际的壁厚,同一管径,在不同的管子表

号中其厚度各异。不同管子表号的管壁厚度,在美国和日本是应用计算承受内压薄壁管厚度 的Barlow公式计算并考虑了腐蚀裕量和螺纹深度及壁厚负偏差-12.5%之后确定的,如公式 (1-2-2)和(1-2-3)所示。 tB=D0P/2[ó]t (1-2-2) t=[D0/2()×P/[ó]t]+ (1-2-3) 式中 tB 、t——分别表示理论和计算壁厚,mm D0————管外径,mm P——设计压力,MPa [ó]t——在设计温度下材料的许用压力,MPa 计算壁厚径圆整后才是实际的壁厚。 如果已知钢管的管子表号,可根据式(1-2-1)计算出该钢管所能适应的设计压力,即 P=Sch..× [ó]t/1000 (1-2-4) 例如,Sch40,碳素钢20无缝钢管,当设计温度为350oC时给钢管所能适应 设计压力为: P=40×92/1000①= MPa 中国石化总公司标准SHJ405规定了无缝钢管的壁厚系列并Sch.5S②, Sch.10, Sch.10s,Sch.20,Sch.20s,Sch.30,Sch.40,Sch。40s,Sch.60,Sch.80,Sch.100, Sch.120,Sch.140,Sch。160,如表1-2-9所示。 2、以管子重量表示管壁厚度的壁厚系列 美国MSS和ANSI规定的以管子重量表示壁厚方法,将管子壁厚分为;种: (1)标准重量管以STD表示;

钢管材料许用应力值

2-5表2-5 钢管材料许用应力值序 号钢号 材料 标准 壁厚 (毫 米) 常温机械 性能 在下类温度(°C)下材料的许用应力值(公 斤/厘米2) σbσs ≤2 10 15 20 25 30 35 40 45 0 碳酸钢钢管 1 10 YB2 31-7 ≤10 310 210 11 30 11 30 11 90 10 00 91 84 78 72 67 0 YB2 37-7 >10 ~20 320 100 10 70 10 70 10 30 97 91 84 78 72 67 2 20 YB2 31-7 ≤10 400 250 13 30 13 30 13 10 12 20 11 30 10 30 94 84 80 0 YB2 37-7 >10 ~20 380 230 12 70 12 70 12 70 12 20 11 30 10 30 94 84 80 低合金钢钢管 3 16Mn YB2 31-7 ≤10 500 330 16 70 16 70 16 70 16 30 15 00 13 80 12 80 11 90 95 0 >10 ~20 480 310 16 00 16 00 16 00 15 90 15 00 13 80 12 80 11 90 95

>20 460 0 290 15 30 15 30 15 30 14 70 13 80 12 80 11 90 10 90 95 4 15MnV YB2 31-7 ≤10 520 380 17 30 17 30 17 30 17 30 16 90 15 60 14 70 13 80 13 10 >10 ~20 500 360 16 70 16 70 16 70 16 70 16 70 15 60 14 70 13 80 13 10 >20 480 340 16 00 16 00 16 00 16 00 15 60 14 70 13 80 12 80 12 30 5 12GrM o YB2 37-7 420 250 14 00 14 00 13 10 12 50 11 90 11 80 10 60 10 00 97 6 15GrM o YB2 37-7 450 250 15 00 14 70 13 80 13 10 12 50 11 90 11 30 10 60 10 30 7 12Gr1 MoV YB2 31-7 480 260 16 00 14 70 13 80 13 10 12 50 11 90 11 30 10 60 10 30 8 10MoW VNb 480 300 16 00 16 00 16 00 16 00 15 90 15 60 15 00 14 40 13 90 9 Gr2Mo YB2 37-7 (40 00) (18 00) 11 30 10 70 10 50 10 30 10 10 98 95 92 89 10 Gr5Mo YB2 37-7 400 200 12 50 11 30 10 60 10 30 10 00 97 94 91 89 11 09Mn2 V YB2 31-7 440 300 14 70

弹簧常用材料及其许用应力

表1 弹簧常用材料及其许用应力 ③弹簧材料的拉伸强度极限,查表 2。 弹簧钢丝的拉伸强度极限 bB ( MPa ) 常用旋绕比C 值 普通圆柱螺旋弹簧尺寸系列 导杆(导套)与弹簧间的间隙 通圆柱螺旋压缩及拉伸弹簧的结构尺寸 表1弹簧常用材料及其许用应力(摘自 GBI239-1976 ) 特性及用途 强度高,韧性好, 适用于做小弹簧 弹性好,回火稳定 性好,易脱碳,用 于制造大载荷弹簧 注:① 弹簧按载荷性质分为三类: I 类一受变载荷作用次数在 106 以上的弹簧; II 类一受变载荷作用次数在 103~10 5及冲击载荷的弹簧; III 类一受变载荷作用次数 在 103 下的弹簧。 ②碳素弹簧钢丝的组别见表

表2弹簧钢丝的拉伸强度极限 o ( MPa ) 注:表中OB 均为下限值。 碳素弹簧钢丝 特殊用途碳素弹簧钢丝 重要用途弹簧钢丝 钢丝直径 d(mm) I 组 II 组Ila 组 III 组 钢丝直径 d(mm) 甲组 乙组 丙组 钢丝直径 d(mm) ■1 65Mn 0.32 ? 0.6 2599 2157 1667 0.2? 0.55 2844 1 2697 1 2550 0.63 ? 0.8 2550 2108 1667 0.6 ? -0.8 2795 2648 2501 0.85 ? 0.9 2501 2059 1618 0.9 ?1 2746 2599 2452 1765 1 2452 2010 1618 1. 1 2599 2452 1? 1.2 1716 1.1? 1.2 2354 1912 1520 1.2 ? -1.3 2501 2354 1.4 ? -1.6 1.3? 1.4 2256 1863 1471 1.4 ? -1.5 2403 2256 1667 1.5? 1.6 2157 1814 1422 1.8 ?2 1618 1.7? 1.8 2059 1765 1373 2.2 ? -2.5 2 1961 1765 1373 1569 2.2 1863 1667 1373 2.8 ? -3.4 1471 2.5 1765 1618 1275 3.5 1422 2.8 1716 1618 1275 3.8 ? -4.2 1373 3 1667 1618 1275 4.5 1324 3.2 1 1 1667 1520 1177 4.8 ? -5.3 1275 3.4? 3.6 1618 1520 1177 5.5 ?6 4 1 1 1569 1471 1128 4.5? 5 1471 1373 1079 5.6? 6 1422 1324 1030 6.3? 8 , 1 1226 981 1 1

螺栓的材料和许用应力

螺栓的材料和许用应力 六、螺栓的材料和许用应力 (1)螺栓材料 常用材料:Q215、Q235、25和45号钢,对于重要的或特殊用途的螺纹联接件,可选用15Cr ,20Cr,40Cr,15MnVB,30CrMrSi等机械性能较高的合金钢。 (2)许用应力 螺纹联接件的许用应力与载荷性质(静、变载荷) 、联接是否拧紧,预紧力是否需要控制以及螺纹联接件的材料、结构尺寸等因素有关。精确选定许用应力必须考虑上述各因素,设计时可参照表11-4选择。 表11-4 螺栓、螺钉、螺柱、螺母的性能等级 注:9.8级仅适用于螺纹公称直径≤16mm 的螺栓、螺钉和螺柱。 表11-5紧螺栓联接的许用应力及安全系数 注:松螺栓联接时,取:[σ]=σs/S,S=1.2~1.7。

表11-6 许用剪切和挤压应力及安全系数 例11-1 如例图11-1所示,一铸铁吊架用两个螺栓固紧在混凝土梁上。吊架所承受的静载荷为P=6000 N,吊架底面尺寸及其它有关尺寸如图所示。试求受力最大的螺栓所受的拉力。 解:该螺栓联接属受轴向载荷的普通螺栓联接(受拉螺栓联接),螺栓受拉力 和螺纹间的摩擦力矩的作用。若将增加30%以考虑的影响,则可认为螺栓所受的当量拉力为 =1.3 1、计算受力最大的螺栓所受的轴向工作载荷: F=P/2+PL/500 =6000/2+6000×350/500=7200N 2、预紧力F'的大小应能满足下面两个条件: 受弯矩M=PL作用后,联接的右端不出现间隙; 受弯矩M=PL作用后,联接的左端不被压溃。 为了满足第一个条件,应使:在接合面上,由预紧力F'产生的压应力应比与由拉力P产生的拉应力与由弯矩M产生的弯曲应力之和要大。即 由此可求得F'≥13500 N。 并校核是否满足联接的左端不被压溃的条件(一般可以满足,这里略去这一校核) 3、确定螺栓的相对刚度由表11-2,查得相对刚度为

相关文档
最新文档